JP2007303709A - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
JP2007303709A
JP2007303709A JP2006131131A JP2006131131A JP2007303709A JP 2007303709 A JP2007303709 A JP 2007303709A JP 2006131131 A JP2006131131 A JP 2006131131A JP 2006131131 A JP2006131131 A JP 2006131131A JP 2007303709 A JP2007303709 A JP 2007303709A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
refrigeration cycle
liquid separator
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006131131A
Other languages
Japanese (ja)
Inventor
Masato Tsuboi
政人 坪井
Kenichi Suzuki
謙一 鈴木
Yuichi Matsumoto
雄一 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006131131A priority Critical patent/JP2007303709A/en
Priority to EP07107061A priority patent/EP1855068A3/en
Publication of JP2007303709A publication Critical patent/JP2007303709A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle capable of reducing the number of components of a vapor compression type refrigerating cycle, reducing cost and the size of the cycle as a whole, and reducing its weight. <P>SOLUTION: In this refrigerating cycle having an evaporator, a compressor, a radiator for cooling a refrigerant discharged from the compressor, an expander for decompressing and expanding the refrigerant cooled by the radiator, and a gas-liquid separator for separating the refrigerant flowing out of the expander and the refrigerant flowing in from the evaporator into a liquid-phase refrigerant and a gas-phase refrigerant, allowing the liquid-phase refrigerant to flow out to an evaporator side and allowing the gas-phase refrigerant to flow out to a compressor side, a pump means is disposed between the gas-liquid separator and the evaporator for pressure feeding the liquid-phase refrigerant flowing out of the gas-liquid separator to the evaporator side, and the gas-liquid separator and at least the pump means are integrated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蒸気圧縮式の冷凍サイクルに関し、とくに、自然系冷媒等の超臨界域でも使用される冷媒を用いたサイクルに適用して好適な冷凍サイクルに関する。   The present invention relates to a vapor compression refrigeration cycle, and particularly to a refrigeration cycle suitable for application to a cycle using a refrigerant that is also used in a supercritical region such as a natural refrigerant.

蒸気圧縮式の冷凍サイクルは、圧縮した冷媒を放熱器にて冷却するとともにその圧縮した冷媒を減圧し、低圧となった冷媒を蒸発器にて蒸発させることにより冷凍能力を得るものが一般的である(例えば、特許文献1)。   In the vapor compression refrigeration cycle, the compressed refrigerant is generally cooled by a radiator, the compressed refrigerant is decompressed, and the refrigerant at a low pressure is evaporated by an evaporator to obtain a refrigeration capacity. There is (for example, Patent Document 1).

上記のような蒸気圧縮式の冷凍サイクルにおいては、従来のフロン系冷媒を使用した冷凍サイクルと比べ、超臨界域を含む冷凍サイクル、例えば、二酸化炭素等の自然系冷媒を使用する冷凍サイクルでは、高圧側圧力を冷媒の臨界圧力以上まで上昇させる必要があり、圧縮機の必要動力が大きくなるため、冷凍サイクルの効率が低いという問題がある。   In the above-described vapor compression refrigeration cycle, compared with a refrigeration cycle using a conventional chlorofluorocarbon refrigerant, a refrigeration cycle including a supercritical region, for example, a refrigeration cycle using a natural refrigerant such as carbon dioxide, There is a problem that the efficiency of the refrigeration cycle is low because the high-pressure side pressure needs to be increased to the critical pressure of the refrigerant or more, and the required power of the compressor increases.

また、従来のフロン系冷媒を使用した冷凍サイクルでは、冷媒の蒸発器の性能を効率良く発揮させるために蒸発器出口冷媒の過熱度を5〜10degに制御するのが望ましいとされている。従って、蒸発器出口手前で冷媒の乾き度が1となるように蒸発器内の冷媒量を調節していた。ところが、二酸化炭素を冷媒とした冷凍サイクルのように超臨界域を含む冷凍サイクルの場合、冷媒物性の違いから従来どおりに蒸発器内の冷媒の乾き度を大きくすると、蒸発器の熱伝達率が大きく減少し、冷却性能が悪くなり、冷凍サイクルの効率も悪化する。そのような中で超臨界域を含む冷凍サイクルおよびその構成部品の研究が盛んに行われており、蒸発器に関する特性はもとより、乾き度と熱伝達率との関係も把握されつつある。   In a refrigeration cycle using a conventional chlorofluorocarbon refrigerant, it is desirable to control the degree of superheat of the evaporator outlet refrigerant to 5 to 10 deg in order to efficiently exhibit the performance of the refrigerant evaporator. Therefore, the amount of refrigerant in the evaporator is adjusted so that the dryness of the refrigerant becomes 1 before the outlet of the evaporator. However, in the case of a refrigeration cycle including a supercritical region such as a refrigeration cycle using carbon dioxide as a refrigerant, if the dryness of the refrigerant in the evaporator is increased as usual due to the difference in refrigerant physical properties, the heat transfer coefficient of the evaporator is increased. It greatly decreases, the cooling performance deteriorates, and the efficiency of the refrigeration cycle also deteriorates. Under such circumstances, researches on refrigeration cycles including supercritical regions and their components are actively conducted, and the relationship between the dryness and the heat transfer coefficient is being grasped as well as the characteristics of the evaporator.

従来の冷凍サイクル101は、例えば図5に示すように構成されており、冷媒を圧縮する圧縮機102と、圧縮機102から流出した冷媒を冷却する放熱器103と、放熱器103から流出した高圧冷媒とアキュームレータ104(気液分離器を兼ねたもの)から流出した低圧冷媒の熱交換を行うとともに、高圧冷媒と熱交換された低圧冷媒を前記圧縮機102に供給する内部熱交換器105と、内部熱交換器105から流出した高圧冷媒を減圧する減圧器106と、減圧器106から流出した低圧冷媒を蒸発させる蒸発器107と、蒸発器107から流出した液相冷媒および気相冷媒の二相冷媒を蓄えると共に、気相冷媒を前記内部熱交換器105に供給するアキュームレータ104を備えたものが知られている。
特開平11−193967号公報
A conventional refrigeration cycle 101 is configured, for example, as shown in FIG. 5, and includes a compressor 102 that compresses refrigerant, a radiator 103 that cools refrigerant that has flowed out of the compressor 102, and a high pressure that flows out of the radiator 103. An internal heat exchanger 105 that performs heat exchange between the low-pressure refrigerant that has flowed out of the refrigerant and the accumulator 104 (also serving as a gas-liquid separator) and supplies the low-pressure refrigerant heat-exchanged with the high-pressure refrigerant to the compressor 102; A decompressor 106 that depressurizes the high-pressure refrigerant that has flowed out of the internal heat exchanger 105, an evaporator 107 that evaporates the low-pressure refrigerant that has flowed out of the decompressor 106, and a two-phase liquid-phase refrigerant and gas-phase refrigerant that have flowed out of the evaporator 107 What is known is provided with an accumulator 104 that stores refrigerant and supplies gas-phase refrigerant to the internal heat exchanger 105.
JP 11-193967 A

上記のような従来技術に対し、先に本出願人により、高圧冷媒を減圧する際に発生する膨張エネルギーを回生しながら冷凍サイクルの運転に利用し、実質的に冷凍サイクルの消費動力を低減することが可能な、成績係数の高い冷凍サイクルが提案されている(特願2005−358659)。この先の提案に係る冷凍サイクルは、より具体的には、冷媒を蒸発させる蒸発器と、冷媒を圧縮し吐出する圧縮機と、該圧縮機から吐出された冷媒を冷却する放熱器と、該放熱器により冷却された冷媒を減圧する第1減圧器と、該第1減圧器から流出した冷媒と蒸発器から流入した冷媒とを、液相冷媒と気相冷媒に分離するとともに、液相冷媒を蒸発器側に流出させ、かつ、気相冷媒を前記圧縮機側に流出させる気液分離器と、を有する冷凍サイクルであって、前記気液分離器と蒸発器の間に、気液分離器から流出した液相冷媒を蒸発器側へ圧送するポンプ手段を設けたことを特徴とするものからなる。   In contrast to the above-described conventional technology, the applicant of the present invention uses the expansion energy generated when the high-pressure refrigerant is depressurized for refrigerating cycle operation while regenerating, substantially reducing the power consumption of the refrigeration cycle. A refrigeration cycle having a high coefficient of performance has been proposed (Japanese Patent Application No. 2005-358659). More specifically, the refrigeration cycle according to the previous proposal includes an evaporator for evaporating the refrigerant, a compressor for compressing and discharging the refrigerant, a radiator for cooling the refrigerant discharged from the compressor, and the heat dissipation. A first pressure reducer that depressurizes the refrigerant cooled by the cooler, a refrigerant that flows out of the first pressure reducer, and a refrigerant that flows in from the evaporator are separated into a liquid phase refrigerant and a gas phase refrigerant, and a liquid phase refrigerant A refrigerating cycle having a gas-liquid separator that flows out to an evaporator side and causes a gas-phase refrigerant to flow out to the compressor side, wherein the gas-liquid separator is disposed between the gas-liquid separator and the evaporator The liquid-phase refrigerant that has flowed out of the pump is provided with pump means for pumping the refrigerant to the evaporator side.

ところが、この先の提案に係る冷凍サイクルでは、冷凍サイクルを構成する膨張機−ポンプ手段なる新たな部品の追加、およびその部品を冷凍サイクル内に繋ぐための冷媒配管やシール部品等の配管部品や、それらの部品を接続する作業を必要とするため、冷凍サイクルのコスト低減や小型化、軽量化を図るのが難しいという問題が残されている。   However, in the refrigeration cycle according to the previous proposal, the addition of a new part as an expander-pump means constituting the refrigeration cycle, and piping parts such as refrigerant pipes and seal parts for connecting the parts in the refrigeration cycle, Since the operation | work which connects those components is required, the problem that it is difficult to aim at cost reduction, size reduction, and weight reduction of a refrigerating cycle remains.

そこで本発明の課題は、上記点を鑑み、冷凍サイクルの基本構成としては上記先の提案に係る冷凍サイクルと同様の構成としてその構成による利点を活かしつつ、部品点数を低減することが可能で、サイクル全体のコスト低減や小型化、軽量化を図ることが可能な冷凍サイクルを提供することにある。   Therefore, in view of the above points, the problem of the present invention is that the basic configuration of the refrigeration cycle can reduce the number of parts while taking advantage of the configuration as a configuration similar to the refrigeration cycle according to the above proposal, An object of the present invention is to provide a refrigeration cycle capable of reducing the cost, size and weight of the entire cycle.

上記課題を解決するために、本発明に係る冷凍サイクルは、冷媒を蒸発させる蒸発器と、冷媒を圧縮し吐出する圧縮機と、該圧縮機から吐出された冷媒を冷却する放熱器と、該放熱器により冷却された冷媒を減圧膨張させる膨張機と、該膨張機から流出した冷媒と蒸発器から流入した冷媒とを液相冷媒と気相冷媒に分離するとともに、液相冷媒を蒸発器側に流出させ、かつ、気相冷媒を前記圧縮機側に流出させる気液分離器と、を有する冷凍サイクルであって、前記気液分離器と前記蒸発器の間に、気液分離器から流出した液相冷媒を蒸発器側へ圧送するポンプ手段を設けるとともに、前記気液分離器と少なくとも前記ポンプ手段とを一体に構成したことを特徴とするものからなる。気液分離器と少なくともポンプ手段が一体に構成されることにより、この部分における配管が省略可能になるとともに、この部分のコスト低減や小型化、軽量化が可能になる。   In order to solve the above problems, a refrigeration cycle according to the present invention includes an evaporator for evaporating a refrigerant, a compressor for compressing and discharging the refrigerant, a radiator for cooling the refrigerant discharged from the compressor, An expander that decompresses and expands the refrigerant cooled by the radiator, and separates the refrigerant that flows out of the expander and the refrigerant that flows in from the evaporator into a liquid-phase refrigerant and a gas-phase refrigerant, and the liquid-phase refrigerant on the evaporator side And a gas-liquid separator that causes a gas-phase refrigerant to flow out to the compressor side, wherein the gas-liquid separator flows between the gas-liquid separator and the evaporator. Pump means for pumping the liquid phase refrigerant to the evaporator side is provided, and the gas-liquid separator and at least the pump means are configured integrally. By integrally configuring the gas-liquid separator and at least the pump means, the piping in this portion can be omitted, and the cost, size and weight of this portion can be reduced.

この冷凍サイクルにおいては、さらに上記膨張機も上記気液分離器と一体に構成されており、該膨張機と上記ポンプ手段が同軸で連結されている構成とすることが可能である。この一体化構成により、さらに冷凍サイクルの部品点数の低減、コスト低減、小型化、軽量化が可能になる。また、膨張機とポンプ手段の同軸連結構成により、該ポンプ手段の駆動エネルギーとして膨張機にて膨張する冷媒の膨張エネルギーを利用することが可能になり、冷凍サイクルの消費動力を低減することが可能になって、さらに効率の高い冷凍サイクルを実現することが可能になる。   In this refrigeration cycle, the expander is also configured integrally with the gas-liquid separator, and the expander and the pump means can be coaxially connected. With this integrated configuration, the number of parts of the refrigeration cycle can be further reduced, the cost can be reduced, the size can be reduced, and the weight can be reduced. In addition, the coaxial connection configuration of the expander and the pump means makes it possible to use the expansion energy of the refrigerant expanding in the expander as the drive energy of the pump means, thereby reducing the power consumption of the refrigeration cycle. Thus, a more efficient refrigeration cycle can be realized.

上記ポンプ手段としては、軸流ポンプを用いることができる。軸流ポンプを用いることにより、後述の実施形態に示すように、ポンプ手段と気液分離器を一体化する際に、容易によりコンパクトな構成が可能になる。   An axial pump can be used as the pump means. By using the axial flow pump, as shown in an embodiment described later, when the pump means and the gas-liquid separator are integrated, a more compact configuration can be easily achieved.

また、本発明に係る冷凍サイクルにおいては、上記放熱器と上記気液分離器の間に、冷媒の一部を上記膨張機をバイパスさせて流すバイパス通路が設けられており、該バイパス通路も上記気液分離器と一体に構成されている構成とすることができる。このような構成においては、膨張機前の冷媒圧力が異常に高くなった場合等に、バイパス通路へ冷媒を流す(逃す)ことで、冷媒圧力の異常な上昇を回避することが可能になる。そして、バイパス通路も気液分離器と一体に構成することにより、効率の高い冷凍サイクルを実現しつつ、冷凍サイクル全体としての部品(特に配管)点数の低減、コスト低減、小型化、軽量化が可能になる。このバイパス通路には、冷凍サイクルの状態に関する物理量に基づいて該バイパス通路の冷媒流量を調節するバイパス流量調節手段が設けられている構成を採用することもできる。   Further, in the refrigeration cycle according to the present invention, a bypass passage is provided between the radiator and the gas-liquid separator to flow a part of the refrigerant by bypassing the expander. It can be set as the structure comprised integrally with a gas-liquid separator. In such a configuration, when the refrigerant pressure before the expander becomes abnormally high, an abnormal increase in the refrigerant pressure can be avoided by causing the refrigerant to flow (release) through the bypass passage. And by constructing the bypass passage integrally with the gas-liquid separator, while realizing a highly efficient refrigeration cycle, the number of parts (particularly piping) as a whole refrigeration cycle is reduced, cost reduction, size reduction, and weight reduction are achieved. It becomes possible. The bypass passage may be provided with a bypass flow rate adjusting means for adjusting the refrigerant flow rate of the bypass passage based on a physical quantity related to the state of the refrigeration cycle.

また、本発明に係る冷凍サイクルにおいては、上記放熱器と上記膨張機の間の冷媒通路に異物が通過することを防止するためのフィルタを設けることができ、このフィルタも上記気液分離器と一体に構成することができる。この一体化構成により、フィルタの機能を活かしつつ、冷凍サイクル全体としての部品(特に配管)点数の低減、コスト低減、小型化、軽量化が可能になる。   Further, in the refrigeration cycle according to the present invention, a filter can be provided for preventing foreign matter from passing through the refrigerant passage between the radiator and the expander, and the filter is also connected to the gas-liquid separator. It can be configured integrally. With this integrated configuration, it is possible to reduce the number of parts (particularly piping) as a whole refrigeration cycle, reduce the cost, reduce the size, and reduce the weight while utilizing the function of the filter.

また、本発明に係る冷凍サイクルにおいては、従来技術における内部熱交換器設置と同様に、上記放熱器から流出した高圧冷媒と圧縮機へ流入する低圧冷媒とを熱交換する冷媒熱交換器が設けられている構成としてもよい。このような構成により、サイクル内における熱エネルギーをより有効に利用することが可能になる。   Further, in the refrigeration cycle according to the present invention, a refrigerant heat exchanger for exchanging heat between the high-pressure refrigerant flowing out from the radiator and the low-pressure refrigerant flowing into the compressor is provided, as in the case of installing the internal heat exchanger in the prior art. It is good also as a structure currently provided. With such a configuration, it becomes possible to more effectively use the thermal energy in the cycle.

このような本発明に係る冷凍サイクルは、超臨界域を含む冷凍サイクルに、とくに冷媒が自然系冷媒である二酸化炭素からなる場合に好適なものである。また、本発明に係る冷凍サイクルは、とくに車両用空調装置の冷凍サイクルとして用いられる場合に好適なものである。   Such a refrigeration cycle according to the present invention is suitable for a refrigeration cycle including a supercritical region, particularly when the refrigerant is carbon dioxide which is a natural refrigerant. The refrigeration cycle according to the present invention is particularly suitable when used as a refrigeration cycle for a vehicle air conditioner.

本発明に係る冷凍サイクルによれば、ポンプ手段を、好ましくはその他の機器や部品まで含めて、気液分離器と一体に構成することにより、つまり、一体のモジュール化構成とすることにより、超臨界域で作動させる冷媒を使用した冷凍サイクルの部品点数を低減することが可能になる。このモジュール化を介して、冷凍サイクル全体としてのコスト低減、小型化、軽量化を図ることが可能になる。   According to the refrigeration cycle according to the present invention, the pump means is preferably integrated with the gas-liquid separator, including other devices and parts, that is, by having an integrated modular configuration, It becomes possible to reduce the number of parts of the refrigeration cycle using the refrigerant operating in the critical region. Through this modularization, it becomes possible to reduce the cost, size and weight of the entire refrigeration cycle.

以下に、本発明の望ましい実施の形態を、とくに自然系冷媒である二酸化炭素を用いた蒸気圧縮式冷凍サイクルについて、詳細に説明する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with respect to a vapor compression refrigeration cycle using carbon dioxide, which is a natural refrigerant.

図1は、本発明の実施例1に係る冷凍サイクルを示しており、図1に示す冷凍サイクル1は、冷媒を圧縮し吐出する圧縮機2と、圧縮機2から吐出された冷媒を冷却する放熱器3と、放熱器3により冷却された冷媒を減圧膨張させる膨張機4と、膨張機4から流出した冷媒と蒸発器6から流入した冷媒とを、液相冷媒と気相冷媒に分離するとともに、液相冷媒を蒸発器6側に流出させ、かつ、気相冷媒を圧縮機2側に流出させる気液分離器5と、気液分離器5から流出した液相冷媒を蒸発させて気相冷媒とする蒸発器6とを有し、気液分離器5と蒸発器6の間にあって気液分離器5から分離流出された液相冷媒を蒸発器6側に向けて圧送するポンプ手段7を有しており、気液分離器5と少なくともポンプ手段7とは、一体にされた一体化モジュール8(気液分離器一体化モジュールと言うこともある。)として構成されている。   FIG. 1 shows a refrigeration cycle according to Embodiment 1 of the present invention. The refrigeration cycle 1 shown in FIG. 1 cools a compressor 2 that compresses and discharges a refrigerant, and a refrigerant discharged from the compressor 2. The radiator 3, the expander 4 that decompresses and expands the refrigerant cooled by the radiator 3, and the refrigerant that flows out of the expander 4 and the refrigerant that flows in from the evaporator 6 are separated into a liquid-phase refrigerant and a gas-phase refrigerant. At the same time, the gas-liquid separator 5 that causes the liquid-phase refrigerant to flow out to the evaporator 6 side and the gas-phase refrigerant to flow toward the compressor 2 side, and the liquid-phase refrigerant that has flowed out from the gas-liquid separator 5 evaporate to form a gas. A pump unit 7 having an evaporator 6 as a phase refrigerant, and pumping the liquid phase refrigerant separated and discharged from the gas-liquid separator 5 toward the evaporator 6 between the gas-liquid separator 5 and the evaporator 6. The gas-liquid separator 5 and at least the pump means 7 are integrated into an integrated module. Is configured as Lumpur 8 (sometimes referred to as gas-liquid separator integrated module.).

本実施例では、膨張機4も気液分離器5と一体に構成されており(気液分離器一体化モジュール8内に組み込まれており)、膨張機4とポンプ手段7とは同じ軸9で連結されて、膨張機4で回生された冷媒の膨張エネルギーをポンプ手段7の駆動エネルギーとして利用できるようになっている。また本実施例では、放熱器3と気液分離器5の間に、冷媒の一部を膨張機4をバイパスさせて流すバイパス通路10が設けられており、該バイパス通路10部分も気液分離器5と一体に構成され、上記気液分離器一体化モジュール8内に組み込まれている。このバイパス通路10には、冷凍サイクル1の状態に関する物理量に基づいて該バイパス通路10の冷媒流量を調節するバイパス流量調節手段としてのバイパスバルブ11が設けられている。なお、ポンプ手段7と蒸発器6の間には、蒸発器6に流入する冷媒をより低圧の蒸発により適した冷媒とするために、減圧器12を設けておいてもよい。なお、減圧器12は、冷凍サイクル1の状態に関する情報に基づいて減圧度合が決定される機構を有するものとすることができる。この場合、該機構は、前後の冷媒圧力差に基づいて自律して動作するものでもよいし、外部からの電気信号または圧力信号により動作するものでもよい。   In this embodiment, the expander 4 is also configured integrally with the gas-liquid separator 5 (incorporated in the gas-liquid separator integrated module 8), and the expander 4 and the pump means 7 are the same shaft 9. Thus, the expansion energy of the refrigerant regenerated by the expander 4 can be used as the driving energy of the pump means 7. Further, in this embodiment, a bypass passage 10 is provided between the radiator 3 and the gas-liquid separator 5 so that a part of the refrigerant is allowed to bypass the expander 4 and the bypass passage 10 is also separated from the gas-liquid separator. It is integrated with the vessel 5 and incorporated in the gas-liquid separator integrated module 8. The bypass passage 10 is provided with a bypass valve 11 as a bypass flow rate adjusting means for adjusting the refrigerant flow rate of the bypass passage 10 based on a physical quantity relating to the state of the refrigeration cycle 1. Note that a decompressor 12 may be provided between the pump means 7 and the evaporator 6 in order to make the refrigerant flowing into the evaporator 6 suitable for lower pressure evaporation. The decompressor 12 may have a mechanism that determines the degree of decompression based on information regarding the state of the refrigeration cycle 1. In this case, the mechanism may operate autonomously based on the refrigerant pressure difference between the front and rear, or may operate based on an external electric signal or pressure signal.

上記気液分離器一体化モジュール8の構成を、図2、図3を参照して、より詳しく説明する。
気液分離器一体化モジュール8には、放熱器3からの冷媒21を導入する導入ポート22と、蒸発器6側に冷媒23を圧送、流出させる流出ポート24とが設けられており、気液分離器5には、蒸発器6からの冷媒25を流入させる流入ポート26と、気液分離器5で分離された気相冷媒27を圧縮機2側に流出させる流出ポート28が設けられている。気液分離器一体化モジュール8内には、本実施例では、上記導入ポート22の下流側に放熱器3と膨張機4の間の冷媒通路に異物が通過することを防止するためのフィルタ29が設けられている。フィルタ29の下流側に膨張機4が設けられているが、膨張機4に至るまでに冷媒通路が分岐された前述のバイパス通路10が形成されており、このバイパス通路10内にバイパスバルブ11が設けられている。このバイパスバルブ11は、その前後の圧力差に応じて冷媒流量が変わる冷媒流量調節式バイパスバルブを構成している。高圧冷媒はその圧力が閾値を超えると、高圧側冷媒通路(バイパスバルブ11の上流側)と低圧冷媒通路である気液分離器5の内部をバイパスバルブ11によりショートカットする(または圧力調節される)。
The configuration of the gas-liquid separator integrated module 8 will be described in more detail with reference to FIGS.
The gas-liquid separator integrated module 8 is provided with an introduction port 22 for introducing the refrigerant 21 from the radiator 3 and an outflow port 24 for feeding and outflowing the refrigerant 23 to the evaporator 6 side. The separator 5 is provided with an inflow port 26 through which the refrigerant 25 from the evaporator 6 flows in and an outflow port 28 through which the gas-phase refrigerant 27 separated by the gas-liquid separator 5 flows out to the compressor 2 side. . In the gas-liquid separator integrated module 8, in this embodiment, a filter 29 for preventing foreign matter from passing through the refrigerant passage between the radiator 3 and the expander 4 downstream of the introduction port 22. Is provided. Although the expander 4 is provided on the downstream side of the filter 29, the above-described bypass passage 10 in which the refrigerant passage is branched up to the expander 4 is formed, and the bypass valve 11 is provided in the bypass passage 10. Is provided. The bypass valve 11 constitutes a refrigerant flow rate adjustment type bypass valve in which the refrigerant flow rate changes according to the pressure difference between the front and rear. When the pressure of the high-pressure refrigerant exceeds a threshold value, the bypass valve 11 shortcuts (or pressure-adjusts) the interior of the gas-liquid separator 5 that is the high-pressure side refrigerant passage (upstream side of the bypass valve 11) and the low-pressure refrigerant passage. .

バイパス通路10をバイパスされない冷媒は膨張機4に送られ、膨張機4で膨張された冷媒は、バイパス通路10からの冷媒と合流されて、気液分離器5の入口ポート30から気液分離器5内へと導入される。導入された冷媒31は、前述の蒸発器6からの導入冷媒25と合流されて、気液分離器5内で気相冷媒32と液相冷媒33とに分離される。分離された気相冷媒32は、U字状の内部配管34を介して流出ポート28から圧縮機2側に送られ、液相冷媒33は、流出ポート35からポンプ手段7部へと送られる。この流出冷媒36が、ポンプ手段7により圧送され、前述の流出ポート24を介して蒸発器6側へと送られる。本実施例では、ポンプ手段7は軸流ポンプからなり、前述の如く膨張機4と同軸9で連結されている。この連結軸9は、例えば、軸受43により保持されており、さらにポンプ手段としての軸流ポンプ7の案内羽根によって保持されることも可能である。この軸流ポンプ7を内蔵する部分およびそれに連通する気液分離器5内部は、超臨界圧以下の低圧室になっている。また、分離された液相冷媒33の気液分離器5内底部には、冷媒中に含まれていた冷凍機油37が溜まるが、この冷凍機油37は、内部配管34の底部に設けられたオイル戻り穴38を介して、圧縮機2側へと戻されて潤滑に供される。   The refrigerant that is not bypassed by the bypass passage 10 is sent to the expander 4, and the refrigerant expanded by the expander 4 is merged with the refrigerant from the bypass passage 10, and the gas-liquid separator from the inlet port 30 of the gas-liquid separator 5. 5 is introduced. The introduced refrigerant 31 merges with the introduced refrigerant 25 from the evaporator 6 described above, and is separated into the gas phase refrigerant 32 and the liquid phase refrigerant 33 in the gas-liquid separator 5. The separated gas phase refrigerant 32 is sent to the compressor 2 side from the outflow port 28 via the U-shaped internal pipe 34, and the liquid phase refrigerant 33 is sent from the outflow port 35 to the pump means 7 part. This outflow refrigerant 36 is pumped by the pump means 7 and is sent to the evaporator 6 side through the outflow port 24 described above. In this embodiment, the pump means 7 is an axial pump and is connected to the expander 4 on the same axis 9 as described above. The connecting shaft 9 is held by a bearing 43, for example, and can also be held by guide vanes of an axial flow pump 7 as a pump means. The portion incorporating the axial flow pump 7 and the interior of the gas-liquid separator 5 communicating with the axial flow pump 7 are low pressure chambers having a supercritical pressure or lower. The refrigerating machine oil 37 contained in the refrigerant is collected at the bottom of the separated liquid-phase refrigerant 33 in the gas-liquid separator 5. This refrigerating machine oil 37 is oil provided at the bottom of the internal pipe 34. It returns to the compressor 2 side through the return hole 38 and is used for lubrication.

このように構成された冷凍サイクル1においては、気液分離器5と少なくともポンプ手段7が一体に構成された気液分離器一体化モジュール8とされることにより、従来必要であったこの部分における少なくとも配管が省略でき、部品点数の低減が可能になるとともに、冷凍サイクル1全体としてのコスト低減や小型化、軽量化が可能になる。さらに、上記実施例のように、他の部位(フィルタ29、バイパス通路10、膨張機4の少なくともいずれかの部位)まで気液分離器一体化モジュール8内に組み込むことにより、より一層の部品点数の低減、コスト低減、小型化、軽量化が可能になる。   In the refrigeration cycle 1 configured in this way, the gas-liquid separator 5 and at least the pump means 7 are integrated into the gas-liquid separator integrated module 8 which is configured integrally, so that in this part which has been conventionally required At least piping can be omitted, the number of parts can be reduced, and the cost, size and weight of the refrigeration cycle 1 as a whole can be reduced. Further, as in the above-described embodiment, by incorporating other parts (at least any part of the filter 29, the bypass passage 10, and the expander 4) in the gas-liquid separator integrated module 8, the number of parts can be further increased. Reduction, cost reduction, size reduction, and weight reduction are possible.

図4は、本発明の実施例2に係る冷凍サイクル41を示している。この冷凍サイクル41においては、実施例1と同様の構成を備えたサイクルに、さらに放熱器3から流出した高圧冷媒と圧縮機2へ流入する低圧冷媒とを熱交換する冷媒熱交換器42が設けられている。このような構成とすれば、冷凍サイクル41内における熱エネルギーがより有効に利用され、消費動力あるいはエネルギー的により効率の良い冷凍サイクルを実現することが可能になる。気液分離器一体化モジュール8による一体化構成によって得られる効果は、実施例1に準じる。   FIG. 4 shows a refrigeration cycle 41 according to Embodiment 2 of the present invention. In the refrigeration cycle 41, a refrigerant heat exchanger 42 for exchanging heat between the high-pressure refrigerant flowing out of the radiator 3 and the low-pressure refrigerant flowing into the compressor 2 is provided in a cycle having the same configuration as that of the first embodiment. It has been. With such a configuration, the heat energy in the refrigeration cycle 41 can be used more effectively, and a refrigeration cycle that is more efficient in terms of power consumption or energy can be realized. The effect obtained by the integrated configuration by the gas-liquid separator integrated module 8 is the same as in the first embodiment.

本発明は、蒸気圧縮式の冷凍サイクルに適用でき、とくに、自然系冷媒である二酸化炭素を冷媒として用いた冷凍サイクルに好適なものである。   The present invention can be applied to a vapor compression refrigeration cycle, and is particularly suitable for a refrigeration cycle using carbon dioxide, which is a natural refrigerant, as a refrigerant.

本発明の実施例1に係る冷凍サイクルの概略構成図である。It is a schematic block diagram of the refrigerating cycle which concerns on Example 1 of this invention. 図1の冷凍サイクルにおける気液分離器一体化モジュール部の拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view of a gas-liquid separator integrated module part in the refrigeration cycle of FIG. 1. 図2の気液分離器一体化モジュール部の概略横断面図である。It is a schematic cross-sectional view of the gas-liquid separator integrated module part of FIG. 本発明の実施例2に係る冷凍サイクルの概略構成図である。It is a schematic block diagram of the refrigerating cycle which concerns on Example 2 of this invention. 従来の冷凍サイクルの概略構成図である。It is a schematic block diagram of the conventional refrigeration cycle.

符号の説明Explanation of symbols

1 冷凍サイクル
2 圧縮機
3 放熱器
4 膨張機
5 気液分離器
6 蒸発器
7 ポンプ手段
8 気液分離器一体化モジュール
9 軸(連結軸)
10 バイパス通路
11 バイパスバルブ
12 減圧器
29 フィルタ
32 気相冷媒
33 液相冷媒
34 内部配管
37 冷凍機油
38 オイル戻り穴
41 冷凍サイクル
42 冷媒熱交換器
43 軸受
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Compressor 3 Radiator 4 Expander 5 Gas-liquid separator 6 Evaporator 7 Pump means 8 Gas-liquid separator integrated module 9 Shaft (connection shaft)
DESCRIPTION OF SYMBOLS 10 Bypass path 11 Bypass valve 12 Pressure reducer 29 Filter 32 Gas phase refrigerant 33 Liquid phase refrigerant 34 Internal piping 37 Refrigerating machine oil 38 Oil return hole 41 Refrigeration cycle 42 Refrigerant heat exchanger 43 Bearing

Claims (9)

冷媒を蒸発させる蒸発器と、冷媒を圧縮し吐出する圧縮機と、該圧縮機から吐出された冷媒を冷却する放熱器と、該放熱器により冷却された冷媒を減圧膨張させる膨張機と、該膨張機から流出した冷媒と蒸発器から流入した冷媒とを液相冷媒と気相冷媒に分離するとともに、液相冷媒を蒸発器側に流出させ、かつ、気相冷媒を前記圧縮機側に流出させる気液分離器と、を有する冷凍サイクルであって、前記気液分離器と前記蒸発器の間に、気液分離器から流出した液相冷媒を蒸発器側へ圧送するポンプ手段を設けるとともに、前記気液分離器と少なくとも前記ポンプ手段とを一体に構成したことを特徴とする冷凍サイクル。   An evaporator for evaporating the refrigerant, a compressor for compressing and discharging the refrigerant, a radiator for cooling the refrigerant discharged from the compressor, an expander for decompressing and expanding the refrigerant cooled by the radiator, The refrigerant flowing out of the expander and the refrigerant flowing in from the evaporator are separated into a liquid phase refrigerant and a gas phase refrigerant, the liquid phase refrigerant is discharged to the evaporator side, and the gas phase refrigerant is discharged to the compressor side. A refrigeration cycle having a gas-liquid separator, and a pump means for pumping the liquid-phase refrigerant flowing out from the gas-liquid separator to the evaporator side between the gas-liquid separator and the evaporator. The refrigeration cycle, wherein the gas-liquid separator and at least the pump means are integrally formed. さらに前記膨張機も前記気液分離器と一体に構成されており、該膨張機と前記ポンプ手段が同軸で連結されている、請求項1に記載の冷凍サイクル。   The refrigeration cycle according to claim 1, wherein the expander is also integrally formed with the gas-liquid separator, and the expander and the pump means are connected coaxially. 前記ポンプ手段が軸流ポンプからなる、請求項1または2に記載の冷凍サイクル。   The refrigeration cycle according to claim 1 or 2, wherein the pump means comprises an axial flow pump. 前記放熱器と前記気液分離器の間に、冷媒の一部を前記膨張機をバイパスさせて流すバイパス通路が設けられており、該バイパス通路も前記気液分離器と一体に構成されている、請求項1〜3のいずれかに記載の冷凍サイクル。   A bypass passage is provided between the radiator and the gas-liquid separator to flow a part of the refrigerant by bypassing the expander, and the bypass passage is also configured integrally with the gas-liquid separator. The refrigeration cycle according to any one of claims 1 to 3. 前記バイパス通路には、冷凍サイクルの状態に関する物理量に基づいて該バイパス通路の冷媒流量を調節するバイパス流量調節手段が設けられている、請求項4に記載の冷凍サイクル。   The refrigeration cycle according to claim 4, wherein the bypass passage is provided with bypass flow rate adjusting means for adjusting a refrigerant flow rate of the bypass passage based on a physical quantity related to a state of the refrigeration cycle. 前記放熱器と前記膨張機の間の冷媒通路に異物が通過することを防止するためのフィルタが設けられており、該フィルタも前記気液分離器と一体に構成されている、請求項1〜5のいずれかに記載の冷凍サイクル。   A filter for preventing foreign matter from passing through a refrigerant passage between the radiator and the expander is provided, and the filter is also configured integrally with the gas-liquid separator. The refrigeration cycle according to any one of 5. 前記放熱器から流出した高圧冷媒と圧縮機へ流入する低圧冷媒とを熱交換する冷媒熱交換器が設けられている、請求項1〜6のいずれかに記載の冷凍サイクル。   The refrigeration cycle according to any one of claims 1 to 6, further comprising a refrigerant heat exchanger that exchanges heat between the high-pressure refrigerant flowing out of the radiator and the low-pressure refrigerant flowing into the compressor. 前記冷媒が二酸化炭素からなる、請求項1〜7のいずれかに記載の冷凍サイクル。   The refrigeration cycle according to any one of claims 1 to 7, wherein the refrigerant is made of carbon dioxide. 車両用空調装置の冷凍サイクルとして用いられるものからなる、請求項1〜8のいずれかに記載の冷凍サイクル。   The refrigeration cycle according to any one of claims 1 to 8, wherein the refrigeration cycle is used as a refrigeration cycle of a vehicle air conditioner.
JP2006131131A 2006-05-10 2006-05-10 Refrigerating cycle Pending JP2007303709A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006131131A JP2007303709A (en) 2006-05-10 2006-05-10 Refrigerating cycle
EP07107061A EP1855068A3 (en) 2006-05-10 2007-04-26 Vapor compression refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131131A JP2007303709A (en) 2006-05-10 2006-05-10 Refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2007303709A true JP2007303709A (en) 2007-11-22

Family

ID=38320649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131131A Pending JP2007303709A (en) 2006-05-10 2006-05-10 Refrigerating cycle

Country Status (2)

Country Link
EP (1) EP1855068A3 (en)
JP (1) JP2007303709A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE531701C2 (en) 2007-11-05 2009-07-14 Alfa Laval Corp Ab Liquid separator for a vaporization system
US20110225999A1 (en) * 2008-06-03 2011-09-22 Panasonic Corporation Refrigeration cycle apparatus
DE102012101041A1 (en) * 2012-02-09 2013-08-14 Viessmann Werke Gmbh & Co Kg heat pump device
EP3159627A1 (en) * 2015-10-20 2017-04-26 Ulrich Brunner GmbH Coolant medium circuit
EP3159626A1 (en) * 2015-10-20 2017-04-26 Ulrich Brunner GmbH Heat pump circuit
DE102016101292A1 (en) * 2016-01-26 2017-07-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling device for an electric drive unit of a vehicle
DE102021131788A1 (en) 2021-12-02 2023-06-07 Valeo Klimasysteme Gmbh Refrigerant cycle and cooling system for vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132850U (en) * 1978-03-08 1979-09-14
JPS62252870A (en) * 1986-04-23 1987-11-04 株式会社 前川製作所 Method of controlling flow rate of refrigerant in refrigeration or heat pump cycle
JP2003194432A (en) * 2001-10-19 2003-07-09 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2005291622A (en) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
JP2006064257A (en) * 2004-08-26 2006-03-09 Daikin Ind Ltd Air conditioner indoor unit and freezer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE51440T1 (en) * 1986-09-16 1990-04-15 Knoche Kaelte Klima REFRIGERATION SYSTEM.
JPH11193967A (en) * 1997-12-26 1999-07-21 Zexel:Kk Refrigerating cycle
EP1046869B1 (en) * 1999-04-20 2005-02-02 Sanden Corporation Refrigeration/air conditioning system
DE10001470A1 (en) * 2000-01-15 2001-07-19 Max Karsch Method for operating climate control in vehicles involves connecting precipitate collector in on input side of evaporator which is mainly loaded with coolant from same
AU2002216463A1 (en) * 2001-12-21 2003-07-15 Phil-Chan Rha Refrigerator having a expansion unit to execute condensing function
JP3676333B2 (en) * 2002-09-18 2005-07-27 三菱重工業株式会社 Bottoming cycle power generation system
DE10358428A1 (en) * 2003-12-13 2005-07-07 Grasso Gmbh Refrigeration Technology Refrigerating plant for a supercritical operating method with an economizer has a condenser with a coolant like carbon dioxide with its condensing pressure in a supercritical range
JP3870951B2 (en) * 2004-04-13 2007-01-24 松下電器産業株式会社 Refrigeration cycle apparatus and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132850U (en) * 1978-03-08 1979-09-14
JPS62252870A (en) * 1986-04-23 1987-11-04 株式会社 前川製作所 Method of controlling flow rate of refrigerant in refrigeration or heat pump cycle
JP2003194432A (en) * 2001-10-19 2003-07-09 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2005291622A (en) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
JP2006064257A (en) * 2004-08-26 2006-03-09 Daikin Ind Ltd Air conditioner indoor unit and freezer

Also Published As

Publication number Publication date
EP1855068A2 (en) 2007-11-14
EP1855068A3 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP4776438B2 (en) Refrigeration cycle
JP4897284B2 (en) Refrigeration cycle
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
JP4897298B2 (en) Gas-liquid separator module
EP1813887B1 (en) Air conditioning device
JP2007303709A (en) Refrigerating cycle
JP2008190377A (en) Multistage compressor
JPH10115470A (en) Steam compression type regrigeration cycle
JPH1194380A (en) Refrigeration cycle
JP5018725B2 (en) Ejector refrigeration cycle
JP2007155229A (en) Vapor compression type refrigerating cycle
JP2008249209A (en) Refrigerating device
JP2011133209A (en) Refrigerating apparatus
JP2007178072A (en) Air conditioner for vehicle
JP5484890B2 (en) Refrigeration equipment
JP2006292229A (en) Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JP2011133204A (en) Refrigerating apparatus
JP4971877B2 (en) Refrigeration cycle
JP4442237B2 (en) Air conditioner
JP2007263390A (en) Refrigerating cycle device
JP2011133210A (en) Refrigerating apparatus
JP2011149636A (en) Air conditioner
JP2007155277A (en) Refrigerating cycle
JP4326004B2 (en) Air conditioner
JP2009270496A (en) Compressor and refrigerating cycle using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A131 Notification of reasons for refusal

Effective date: 20110408

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110802

Free format text: JAPANESE INTERMEDIATE CODE: A02