JPS62252870A - Method of controlling flow rate of refrigerant in refrigeration or heat pump cycle - Google Patents

Method of controlling flow rate of refrigerant in refrigeration or heat pump cycle

Info

Publication number
JPS62252870A
JPS62252870A JP9402686A JP9402686A JPS62252870A JP S62252870 A JPS62252870 A JP S62252870A JP 9402686 A JP9402686 A JP 9402686A JP 9402686 A JP9402686 A JP 9402686A JP S62252870 A JPS62252870 A JP S62252870A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
flow rate
induction machine
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9402686A
Other languages
Japanese (ja)
Other versions
JPH0445739B2 (en
Inventor
敬介 笠原
和平 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP9402686A priority Critical patent/JPS62252870A/en
Publication of JPS62252870A publication Critical patent/JPS62252870A/en
Publication of JPH0445739B2 publication Critical patent/JPH0445739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • F25B2400/141Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、冷凍またはヒートボンブリ“イクルにおける
冷媒流量の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for controlling the flow rate of refrigerant in a refrigeration or heat bombardment.

(従来の技術) 従来、冷凍ザイクル又はヒートポンプサイクルにおいて
は、冷媒の膨脹過程は、膨張弁(減圧弁)の絞り弁作動
か、乾式サイクルにおける絞り式自動膨張弁を使用して
いる。前古は、満液式、乾式の何れの方式もとれるが、
手動にせよ自動にせよ液量の1illlOが困難で、満
液のため液バツクの危険があり、後者は乾式のため制御
はよいが、ドライのため伝熱効率は悪り、蒸発器は大と
なり、過熱度が大となり能力を低下させる欠点がある。
(Prior Art) Conventionally, in a refrigeration cycle or a heat pump cycle, the refrigerant expansion process uses a throttle valve operation of an expansion valve (pressure reducing valve) or a throttle type automatic expansion valve in a dry cycle. Maeko can use either the liquid-filled method or the dry method, but
Whether it is manual or automatic, it is difficult to control the liquid volume to 1ill0, and there is a risk of liquid backing up because the liquid is full.The latter is a dry type, so control is good, but because it is dry, heat transfer efficiency is poor, and the evaporator is large. There is a drawback that the degree of superheating becomes large and the capacity decreases.

そもそも膨張弁による冷媒噴出1は高圧と低圧どの差圧
に関係し、その差圧が夏季と冬季とで異り、液洛のRi
l+御は差圧変動によって難しく、確実性に乏しい欠点
がある。そのために、乾式蒸発器の方式を採らざるを得
す、絞り式自動膨張弁を使用しており、したがって伝熱
効率及び制御性が悪く、前記絞り式自動膨張弁もコス1
−が高く大型となり、制御機皿もコスト高となっている
In the first place, the refrigerant jet 1 from the expansion valve is related to the differential pressure between high pressure and low pressure, and the differential pressure differs between summer and winter, and the Ri
l+ control is difficult due to differential pressure fluctuations and has the drawback of lacking reliability. For this purpose, a dry evaporator method is forced, and a throttle-type automatic expansion valve is used, which has poor heat transfer efficiency and controllability, and the throttle-type automatic expansion valve is also cost-effective.
- is high and large, and the cost of the control machine plate is also high.

(発明が解決しようとする問題点) 従来技術においては、前記のように種々の問題点があり
、最良伝熱効果を上げる湿式蒸発器の冷媒液量の完全な
制御方式がないという現状であつ lこ 。
(Problems to be Solved by the Invention) The conventional technology has various problems as mentioned above, and the current situation is that there is no complete control method for the amount of refrigerant in a wet evaporator that can achieve the best heat transfer effect. lko.

本発明はこれに鑑みてなされたもので、蒸発器が乾式、
満液式の何れであっても、液冷媒を負荷に応じて最適m
に制御することによって前記の問題点を除去する方法を
得ることを目的とするものである。
The present invention was made in view of this, and the evaporator is a dry type,
Regardless of the liquid type, the liquid refrigerant is adjusted to the optimum m according to the load.
The object of the present invention is to provide a method for eliminating the above-mentioned problems by controlling.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の冷凍又はヒートポンプサイクルにおける冷媒流
ffl t、II I11方法は前記の問題点を解決す
るために次の手段により構成される。
(Means for Solving the Problems) The refrigerant flow ffl t, II I11 method in a refrigeration or heat pump cycle of the present invention is configured by the following means in order to solve the above problems.

第1の発明 容積型二相流の1a脹機を誘導機と連結し、前記誘導機
の回転を電気的に変換制御し、前記誘導機を発電機とし
て作動させて前記制御に応じて動力を回収させ動ツノの
軽減を品Iると共に、膨脹過程における冷媒流量の制御
を行う。
First Invention A volumetric two-phase flow 1a expander is connected to an induction machine, the rotation of the induction machine is electrically converted and controlled, and the induction machine is operated as a generator to generate power according to the control. The refrigerant flow rate during the expansion process is controlled in addition to reducing the amount of movement caused by recovery.

第2の発明 容積型二相流の膨@機を誘導機と連結し、前記誘導機の
回転を電気的に変換制御し、前記誘導様を発電機として
作動させて動力を回収させ、動力の軽減を削ると共に1
、IEIi脹過程における冷媒流mの制御を行って低圧
受液器内の冷媒液レベルを制御する一方、分離器内の冷
媒液を負荷部との間で循環させる液再循環型サイクルに
おける容積型液ポンプを電動機と連結し、前記電動機の
回転を電気的に変換制御し、それにより冷媒流mの制御
を行う。
Second Invention A positive displacement two-phase flow expansion machine is connected to an induction machine, the rotation of the induction machine is electrically converted and controlled, the induction machine is operated as a generator to recover power, and the power is recovered. 1 along with reducing the reduction
, a positive displacement type in a liquid recirculation type cycle in which the refrigerant flow m in the IEIi expansion process is controlled to control the refrigerant liquid level in the low-pressure liquid receiver, while the refrigerant liquid in the separator is circulated between the load section and the refrigerant flow m. The liquid pump is connected to an electric motor, and the rotation of the electric motor is electrically converted and controlled, thereby controlling the refrigerant flow m.

第3の発明 絞り弁により冷媒液の膨張を行って低圧受液器内に導入
し、低圧受液器内の冷媒液を負荷部との間で循環させる
液再循環型シイクルにおける容積型の液ポンプを18機
と連結し、前記電!JJ機の回転を電気的に変換制御し
、それにより冷媒流量の制御を行う。
Third Invention A positive displacement liquid in a liquid recirculation cycle in which refrigerant liquid is expanded by a throttle valve and introduced into a low-pressure liquid receiver, and the refrigerant liquid in the low-pressure liquid receiver is circulated between the load part and the refrigerant liquid. The pump was connected to 18 machines, and the electricity! The rotation of the JJ machine is electrically converted and controlled, thereby controlling the refrigerant flow rate.

〈作用) 冷凍又はヒートポンプサイクルにおける負荷等の変動に
応じて誘導機を電気的に制御することにより、誘導機に
連結される容積型である膨脹機及び又は電aI11の回
転を制御することによって、負荷に対する供給冷媒mが
迅速かつ正確に制御されて負荷の変化に即応できるとと
もに、回転に応じて動力回収を適宜に行うことができる
(Function) By electrically controlling the induction machine in accordance with changes in load, etc. in the refrigeration or heat pump cycle, by controlling the rotation of the positive displacement expander and/or electric aI 11 connected to the induction machine, The refrigerant m supplied to the load can be controlled quickly and accurately, so that changes in the load can be immediately responded to, and power can be recovered as appropriate depending on the rotation.

(実施例) 第1図は本発明の方法を遂行する第1の実論例であって
、1は圧縮機、2は凝縮器、3aはスクリュー型二相流
の膨rffXn、4は蒸発器、7aは膨脹機3a1.:
3’fl結される誘導機、9aは誘導機7aを制御づ゛
る周波数変換器である。
(Example) FIG. 1 is a first practical example of carrying out the method of the present invention, in which 1 is a compressor, 2 is a condenser, 3a is an expansion rffXn of screw type two-phase flow, and 4 is an evaporator. , 7a is the expander 3a1. :
The induction machine 9a is a frequency converter that controls the induction machine 7a.

圧縮11により圧縮された冷媒は凝縮器2において放熱
負荷1Gににって冷却されて凝縮し、液管12を経て高
圧液の入口ボート19から1影服機3aへ流入して#、
広し、誘導機7aが充電機として触いて、従来の絞り弁
方式のものでW IE In失として失われていたエネ
ルギーを動力として回収し、排出口20から流量し連通
管13を通って、蒸発器4へ流入し吸熱作用を遂行し、
熱肖荷11の要求に応する。なお従来技術では液管12
の冷媒液は液管18の膨脂弁3により減圧膨張して熱発
器4に流入するように作動した。
The refrigerant compressed by the compression 11 is cooled and condensed by the heat dissipation load 1G in the condenser 2, and flows through the liquid pipe 12 from the high-pressure liquid inlet boat 19 to the 1-shading machine 3a.
The induction machine 7a acts as a charging machine, recovers the energy that was lost as WIE in in the conventional throttle valve type as a power, flows from the discharge port 20 and passes through the communication pipe 13, flows into the evaporator 4 and performs an endothermic action;
Comply with the requirements of heat transfer 11. In addition, in the conventional technology, the liquid pipe 12
The refrigerant liquid expanded under reduced pressure by the expansion valve 3 of the liquid pipe 18 and was operated to flow into the heat generator 4.

膨脹機3aに流入した高圧液は低圧フラッシュガスにI
f!服する圧力によりその圧力エネルギーを回収エネル
ギーに変換され、直結する誘導11i7aが発電機とし
て動いてその回転エネルギーを電気に変換しこれを商用
電源25に回収させる。周波数変換器9aは、誘導機7
aと商用電源25との間に介在しており、変換周波数に
対する誘導機7aの同期速度を商用周波数以上になるよ
うに変換周波数を調整させるものとなっている。
The high-pressure liquid that has flowed into the expander 3a is turned into a low-pressure flash gas.
f! The applied pressure converts the pressure energy into recovered energy, and the directly connected induction 11i7a operates as a generator to convert the rotational energy into electricity, which is recovered by the commercial power source 25. The frequency converter 9a is an induction machine 7
It is interposed between the converter 7a and the commercial power supply 25, and adjusts the conversion frequency so that the synchronization speed of the induction machine 7a with respect to the conversion frequency becomes higher than the commercial frequency.

すなわち、変換周波数は負荷、冷媒の温度T又は圧力液
の過熱度T等の負荷変動をあらかじめ所望の温度に調節
指令する調節計23により検知し、負荷に応じての制御
は誘導機7aを発iI機として動力を商用電源25側に
回収させ、l15r&弁3aを通じて流量される冷媒量
を回転数により比例的に調節可能どしたらのである。
That is, the conversion frequency is detected by the controller 23 which issues a command to adjust the load, the temperature T of the refrigerant, the superheat degree T of the pressure fluid, etc. to a desired temperature in advance, and the control according to the load is performed by generating the induction motor 7a. As an iI machine, the power is recovered to the commercial power source 25 side, and the amount of refrigerant flowing through the l15r & valve 3a can be adjusted proportionally by the rotation speed.

第2図は本発明の方法を遂行する第2の実施例であって
、いわゆる液再循環型サイクル(液ポンプ方式)の冷凍
勺イクルである。第1図と同じ循環系であるAサイクル
に液ポンプ方式の循環系であるBす゛イクルが組み合さ
れた形式となっている。
FIG. 2 shows a second embodiment of the method of the present invention, which is a refrigeration cycle of a so-called liquid recirculation type cycle (liquid pump system). The A-cycle, which is the same circulation system as in FIG. 1, is combined with the B-cycle, which is a liquid pump type circulation system.

第1図と同一符号のものは同等の部分を表わしているの
でその説明を省略する。
Components with the same reference numerals as those in FIG. 1 represent the same parts, so their explanation will be omitted.

5は低圧受液器、6は容積型液ポンプ、8は電動機、9
b、 9cは周波数変換器である。液管12を流れる高
圧の冷媒液は高圧液の入口ボート19が膨張113bへ
流入して膨張し、誘導機7bが発電機として働いて動力
を回収し、門出口20がら流量し、連通管13を通って
低圧受液器5へ流入する。調節計26は低圧受液器5の
冷媒液レベルを一定に制御するためのものであって、該
冷媒液レベルの上下に応じて周波数変換器9bにより周
波数を制御して誘導機7bの回転を制御するように動作
する。
5 is a low pressure liquid receiver, 6 is a positive displacement liquid pump, 8 is an electric motor, 9
b, 9c are frequency converters. The high-pressure refrigerant liquid flowing through the liquid pipe 12 flows into the expansion 113b through the high-pressure liquid inlet boat 19 and expands, and the induction machine 7b works as a generator to recover power, flows out from the gate outlet 20, and flows through the communication pipe 13. It flows into the low-pressure receiver 5 through. The controller 26 is for controlling the refrigerant liquid level in the low-pressure liquid receiver 5 at a constant level, and the frequency is controlled by the frequency converter 9b according to the rise and fall of the refrigerant liquid level to control the rotation of the induction machine 7b. Act to control.

Bυイクルにおいて、低圧受液器5の冷媒液は、液管1
4を経て入口21より容積型液ポンプ6に流入し、出口
22から流量して蒸発器4に導入されて熱負荷17によ
り蒸発作用を遂行した後、連通管15から再び低圧受液
器5に戻る。容積型液ポンプ6は電動n8と商用7[2
5との間に入れられた周波数変換器9Cにより、インバ
ーター制御を行う。
In the Bυ cycle, the refrigerant liquid in the low-pressure liquid receiver 5 flows through the liquid pipe 1
4, flows into the positive displacement pump 6 from the inlet 21, flows through the outlet 22, is introduced into the evaporator 4, performs the evaporation action by the heat load 17, and then returns to the low-pressure liquid receiver 5 from the communication pipe 15. return. The positive displacement liquid pump 6 includes an electric n8 and a commercial 7 [2
Inverter control is performed by a frequency converter 9C inserted between the frequency converter 5 and the frequency converter 9C.

すなわち、冷媒の温度、圧力又は負荷側の温度に応じて
調節計27を動作させ周波数変換器9Cにより周波数を
制御して電動機8の回転を制御し容積型液ポンプ6の回
転を制御して蒸発器4に供給する冷媒液の呈を調部する
。容積型液ポンプはスクリュー型であれば流漬計に相当
する精度の高い吐出Φが保証できる。
That is, the controller 27 is operated according to the temperature and pressure of the refrigerant or the temperature on the load side, the frequency is controlled by the frequency converter 9C, the rotation of the electric motor 8 is controlled, and the rotation of the positive displacement liquid pump 6 is controlled to perform evaporation. The temperature of the refrigerant liquid supplied to the vessel 4 is measured. If the positive displacement liquid pump is a screw type, it can guarantee a highly accurate discharge Φ equivalent to that of a flowmeter.

なお、第2図の実施例のものにおいては、低圧受液器5
の冷媒液レベルの制御と蒸発器4における熱負荷制御と
は両者が互いに比例的に変化するものの制御であるので
、容積型液ポンプ6と膨張1fi3bとを同軸にし、誘
導機7bと電動機8とを共通にして誘導機7Cとし、し
たがって調節計26.27及び周波数変換器9b、 9
cもそれぞれ共通にして調節器28及び周波数変換器9
dとし第3図のようにして実施することらできる。
In addition, in the embodiment shown in FIG. 2, the low pressure liquid receiver 5
Since the control of the refrigerant liquid level and the heat load control in the evaporator 4 are controls that change proportionally to each other, the positive displacement liquid pump 6 and the expansion 1fi 3b are made coaxial, and the induction machine 7b and the electric motor 8 are are made common to the induction machine 7C, and therefore the controller 26, 27 and the frequency converter 9b, 9
c is also common to the adjuster 28 and frequency converter 9.
d and can be implemented as shown in FIG.

また、第1図ないし第3図の実施例においては、9aな
いし9dを周波数変換器としたが、このようなインバー
タ一方式に限られるものでなく、誘導機7aないし7C
及び電動l118の回転を電気的に変換制御できるもの
であればよく、セルビラ・ス方式、ツイン・チョッパ一
方式等の可変速制御器を使用することもできる。
In addition, in the embodiments shown in FIGS. 1 to 3, frequency converters 9a to 9d are used, but the invention is not limited to such a one-sided inverter type, and induction motors 7a to 7C are used as frequency converters.
Any device may be used as long as it can electrically convert and control the rotation of the electric motor 1118, and a variable speed controller such as a Cerviras type or a twin chopper type can also be used.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、容積型二相流の膨脹機を仝聞運
転するに際しても最大の発電力を17ることができると
ともに、匍記膨脹機及び又は液ポンプの回転をそれらに
3!I!枯される誘導機を電気的に変換制御することに
よって制御するようにしたから、0荷等に応じて自動的
に迅速かつ正確に供給冷媒の液mを調節することができ
る。したがって湿式の場合においても液バツクの起らな
い冷媒の調節ができる。又誘導機の動力も小さくするこ
とができる。
According to the method of the present invention, even when operating a positive displacement two-phase flow expander, the maximum power generation can be increased to 17%, and the rotation of the expander and/or liquid pump can be reduced to 3%. I! Since the induction machine to be depleted is controlled by electrical conversion control, the liquid m of the supplied refrigerant can be automatically, quickly and accurately adjusted depending on the zero load, etc. Therefore, even in the case of a wet type, the refrigerant can be adjusted without causing liquid back up. Moreover, the power of the induction machine can also be reduced.

膨張弁(絞り弁)による制御は故旧制御を正確に行うこ
とはできないし、絞り式自動膨張弁においては乾式シス
テムとなるので伝熱効率は湿式に比べて低いという従来
の膨脹過程に、湿式でその負荷変動に応じて適切な液量
の正確な制御ができる。
Control using an expansion valve (throttle valve) cannot perform the old control accurately, and since the throttle type automatic expansion valve is a dry system, the heat transfer efficiency is lower than that of the wet type. Accurate control of appropriate liquid volume is possible according to load fluctuations.

また、膨脹機として容積型二相流のものを使用している
のでこれを翼壁タービンとした場合に比べて熱効率の上
でも良好な結果を奏せしめることができる。すなわち、
第4図において、翼壁タービンを用いるときは0点であ
り、Ill弁を用いればG点にすることができるが、容
積型二相流の膨脹機を使用すると該膨脹機内における気
液混合体の作動が効率にり良好に行われる結果、高圧冷
媒液の膨脹過程をFDのようにすることができることに
なり、翼壁タービンを用いる場合に比べてGD分だけ動
力回収が増加さると同時に(iG−iD)分だけザイク
ルによって汲み上げられる熱量を大きくすることができ
る。
Furthermore, since a positive displacement two-phase flow expander is used as the expander, it is possible to achieve better results in terms of thermal efficiency than when using this as a blade wall turbine. That is,
In Fig. 4, when a blade wall turbine is used, the point is 0, and if an Ill valve is used, it can be made to the G point, but when a positive displacement two-phase flow expander is used, the gas-liquid mixture inside the expander is As a result, the expansion process of the high-pressure refrigerant liquid can be made similar to FD, and the power recovery is increased by GD compared to the case where a blade wall turbine is used. The amount of heat pumped up by the cycle can be increased by the amount iG-iD).

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の方法を実施するためのそ
れぞれ異なる実施例のフローシートダイヤグラムであり
、第4図は本発明の方法による効果を説明するためのP
−iG図である。 3a、 3b・・膨脹機、5・・低圧受液器、6・・容
積型液ポンプ、7a、 7b、 7c・・誘導機、8・
・電動機、9a、 9b、 9c、 9d・・電気的な
変換制御器としての周波数変換制御器。 b 手続判11正四(自発) 昭和61年05月27日 1、事件の表示 昭和61年特許願第94026号 2、発明の名称 冷凍又はヒートポンプサイクルにおける冷IR流■制御
方法3、補正をするち 事(’tとの関係 特許出願人 株式会社萌川製作所 4、代理人 東京都新宿区新宿4丁目3番22号(′!2#、ビル)
        1電話 03−352−1561  
(代)5、補正命令の日付 な し 7、補正の内容 (1)明細書第7頁末行の「膨張弁3aJを、「膨1脹
礪3aJと訂正する。 (2)明細書第8頁第1行から第2行の「比例的に調節
可能としたものである。」の次に、「なお、膨[fi3
aを複数台設け、台数制御運転を併せ行うことも勿論可
能である。」を加入する。 a和61年5月270
1 to 3 are flow sheet diagrams of different embodiments for carrying out the method of the present invention, and FIG. 4 is a flow sheet diagram for explaining the effects of the method of the present invention.
-iG diagram. 3a, 3b... Expansion machine, 5... Low pressure liquid receiver, 6... Positive displacement liquid pump, 7a, 7b, 7c... Induction machine, 8...
- Electric motor, 9a, 9b, 9c, 9d... Frequency conversion controller as an electrical conversion controller. b Procedural Judgment No. 11 Sho 4 (Spontaneous) May 27, 1985 1, Case description 1988 Patent Application No. 94026 2, Title of invention Cold IR flow in refrigeration or heat pump cycle ■ Control method 3, Amendments made (Relationship with 't) Patent applicant Moegawa Seisakusho 4, agent 4-3-22 Shinjuku, Shinjuku-ku, Tokyo ('!2#, Building)
1Telephone 03-352-1561
5. Date of amendment order None 7. Contents of amendment (1) "Expansion valve 3aJ" at the end of page 7 of the specification is corrected to "expansion 1 expansion 3aJ." (2) Specification No. 8 From the first line to the second line of the page, next to ``It is proportionally adjustable.''
Of course, it is also possible to provide a plurality of a and perform a number control operation together. ” to join. aMay 270, 2005

Claims (5)

【特許請求の範囲】[Claims] (1)容積型二相流の膨脹機を誘導機と連結し、前記誘
導機の回転を電気的に変換制御し、前記誘導機を発電機
として作動させて前記制御に応じて動力を回収させるこ
とにより、膨脹過程における冷媒流量の制御を行うこと
を特徴とする冷凍又はヒートポンプサイクルにおける冷
媒流量制御方法。
(1) A positive displacement two-phase flow expander is connected to an induction machine, the rotation of the induction machine is electrically converted and controlled, and the induction machine is operated as a generator to recover power according to the control. A refrigerant flow rate control method in a refrigeration or heat pump cycle, characterized by controlling the refrigerant flow rate during an expansion process.
(2)容積型二相流の膨脹機としてスクリュー型二相流
の膨脹機を用いることを特徴とする特許請求の範囲第1
項記載の冷凍又はヒートポンプサイクルにおける冷媒流
量制御方法。
(2) Claim 1, characterized in that a screw type two-phase flow expander is used as the volumetric two-phase flow expander.
A method for controlling the flow rate of refrigerant in a refrigeration or heat pump cycle as described in 1.
(3)容積型二相流の膨脹機を誘導機と連結し、前記誘
導機の回転を電気的に変換制御し、前記誘導機を充電機
として作動させて動力を回収させることにより、膨脹過
程における冷媒流量の制御を行つて低圧受液器内の冷媒
液レベルを制御する一方、低圧受液器内の冷媒液を負荷
部との間で循環させる液再循環型サイクルにおける容積
型液ポンプを電動機と連結し、前記電動機の回転を電気
的に変換制御し、それにより冷媒流量の制御を行うこと
を特徴とする冷凍又はヒートポンプサイクルにおける冷
媒流量制御方法。
(3) The expansion process is achieved by connecting a positive displacement two-phase flow expander to an induction machine, electrically converting and controlling the rotation of the induction machine, and operating the induction machine as a charger to recover power. A positive displacement liquid pump in a liquid recirculation cycle that controls the refrigerant flow rate in the low-pressure liquid receiver to control the refrigerant liquid level in the low-pressure liquid receiver, and circulates the refrigerant liquid in the low-pressure liquid receiver to and from the load section. 1. A refrigerant flow rate control method in a refrigeration or heat pump cycle, characterized in that the refrigerant flow rate is controlled by connecting to an electric motor, electrically converting and controlling the rotation of the electric motor, and thereby controlling the refrigerant flow rate.
(4)絞り弁により冷媒液の膨脹を行つて低圧受液器内
に導入し、分離器内の冷媒液を負荷部との間で循環させ
る液再循環型サイクルにおける容積型液ポンプを電動機
と連結し、前記電動機の回転を電気的に変換制御し、そ
れにより冷媒流量の制御を行うことを特徴とする冷凍又
はヒートポンプ、サイクルにおける冷媒流量制御方法。
(4) A positive displacement liquid pump in a liquid recirculation cycle in which the refrigerant liquid is expanded by a throttle valve and introduced into a low-pressure liquid receiver, and the refrigerant liquid in the separator is circulated between the load section and the electric motor. A method for controlling a refrigerant flow rate in a refrigeration or heat pump cycle, characterized in that the rotation of the electric motor is electrically converted and controlled, thereby controlling the refrigerant flow rate.
(5)容積型二相流の膨脹機又は容積型液ポンプが軸封
装置、を必要としないキャンド型誘導機と一体であるこ
とを特徴とする特許請求の範囲第1項ないし第4項の何
れかに記載の冷凍又はヒートポンプサイクルにおける冷
媒流量制御方法。
(5) Claims 1 to 4 characterized in that the positive displacement two-phase flow expander or positive displacement liquid pump is integrated with a canned induction machine that does not require a shaft sealing device. A refrigerant flow rate control method in any refrigeration or heat pump cycle.
JP9402686A 1986-04-23 1986-04-23 Method of controlling flow rate of refrigerant in refrigeration or heat pump cycle Granted JPS62252870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9402686A JPS62252870A (en) 1986-04-23 1986-04-23 Method of controlling flow rate of refrigerant in refrigeration or heat pump cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9402686A JPS62252870A (en) 1986-04-23 1986-04-23 Method of controlling flow rate of refrigerant in refrigeration or heat pump cycle

Publications (2)

Publication Number Publication Date
JPS62252870A true JPS62252870A (en) 1987-11-04
JPH0445739B2 JPH0445739B2 (en) 1992-07-27

Family

ID=14099050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9402686A Granted JPS62252870A (en) 1986-04-23 1986-04-23 Method of controlling flow rate of refrigerant in refrigeration or heat pump cycle

Country Status (1)

Country Link
JP (1) JPS62252870A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651756U (en) * 1992-12-16 1994-07-15 株式会社東洋製作所 Cooling system
JP2000329416A (en) * 1999-03-15 2000-11-30 Denso Corp Refrigeration cycle
JP2003090633A (en) * 2001-09-14 2003-03-28 Mayekawa Mfg Co Ltd Liquid return device of flooded type evaporator
JP2006329445A (en) * 2005-05-23 2006-12-07 Kansai Electric Power Co Inc:The Natural refrigerant heat pump system
JP2007017014A (en) * 2005-07-05 2007-01-25 Matsushita Electric Ind Co Ltd Method for controlling refrigerating cycle device and refrigerating cycle device using it
JP2007132541A (en) * 2005-11-08 2007-05-31 Daikin Ind Ltd Heat pump water heater
JP2007163005A (en) * 2005-12-13 2007-06-28 Sanden Corp Refrigeration cycle
JP2007303709A (en) * 2006-05-10 2007-11-22 Sanden Corp Refrigerating cycle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891638A (en) * 1972-03-07 1973-11-28
JPS54132850U (en) * 1978-03-08 1979-09-14
JPS5634067U (en) * 1979-08-24 1981-04-03
JPS6042557A (en) * 1983-08-18 1985-03-06 株式会社前川製作所 Method of recovering power by using volume type two phase current expansion machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111667A (en) * 1975-03-26 1976-10-02 Hitachi Ltd Wiring examining device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891638A (en) * 1972-03-07 1973-11-28
JPS54132850U (en) * 1978-03-08 1979-09-14
JPS5634067U (en) * 1979-08-24 1981-04-03
JPS6042557A (en) * 1983-08-18 1985-03-06 株式会社前川製作所 Method of recovering power by using volume type two phase current expansion machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651756U (en) * 1992-12-16 1994-07-15 株式会社東洋製作所 Cooling system
JP2000329416A (en) * 1999-03-15 2000-11-30 Denso Corp Refrigeration cycle
JP2003090633A (en) * 2001-09-14 2003-03-28 Mayekawa Mfg Co Ltd Liquid return device of flooded type evaporator
JP2006329445A (en) * 2005-05-23 2006-12-07 Kansai Electric Power Co Inc:The Natural refrigerant heat pump system
JP4649268B2 (en) * 2005-05-23 2011-03-09 関西電力株式会社 Natural refrigerant heat pump system
JP2007017014A (en) * 2005-07-05 2007-01-25 Matsushita Electric Ind Co Ltd Method for controlling refrigerating cycle device and refrigerating cycle device using it
JP2007132541A (en) * 2005-11-08 2007-05-31 Daikin Ind Ltd Heat pump water heater
JP2007163005A (en) * 2005-12-13 2007-06-28 Sanden Corp Refrigeration cycle
JP2007303709A (en) * 2006-05-10 2007-11-22 Sanden Corp Refrigerating cycle

Also Published As

Publication number Publication date
JPH0445739B2 (en) 1992-07-27

Similar Documents

Publication Publication Date Title
JP6194351B2 (en) Thermal cycle for heat transfer and electricity generation between media
US4617808A (en) Oil separation system using superheat
US5929591A (en) Air conditioner
US8739537B2 (en) Power generation apparatus
CN208702471U (en) Cascade organic Rankine cycle power generation system
US4214170A (en) Power generation-refrigeration system
JPS62252870A (en) Method of controlling flow rate of refrigerant in refrigeration or heat pump cycle
US11732934B2 (en) Heat of compression energy recovery system using a high speed generator converter system
JPS61149507A (en) Heat recovery device
AU2007255673A1 (en) Refrigerating apparatus
JPS6213490B2 (en)
JP2007183078A (en) Refrigerating machine and refrigerating device
JP2595232B2 (en) Optimal operation method of heat recovery equipment
JP4465439B2 (en) Power generation / refrigeration system
JP2001272134A (en) Hybrid construction of heat pump
JPS62197606A (en) Heat recovery device
CN114922704B (en) Turbine unit power generation system capable of safely running under low load
CN220728562U (en) Low-ambient-temperature air source full-direct-current frequency conversion module unit
CN219283662U (en) High-efficiency energy-saving double-temperature variable-frequency laser water chiller
CN218469301U (en) Combined air source high-temperature heating device
JP2906507B2 (en) Heat pump water heater
JPS62142813A (en) Power generating engine utilizing solar heat
JPH027412Y2 (en)
JPH02301651A (en) Co-generation system
SU1456713A1 (en) District heating system