JPH02301651A - Co-generation system - Google Patents

Co-generation system

Info

Publication number
JPH02301651A
JPH02301651A JP1118641A JP11864189A JPH02301651A JP H02301651 A JPH02301651 A JP H02301651A JP 1118641 A JP1118641 A JP 1118641A JP 11864189 A JP11864189 A JP 11864189A JP H02301651 A JPH02301651 A JP H02301651A
Authority
JP
Japan
Prior art keywords
heat
hot water
heat exchanger
load
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1118641A
Other languages
Japanese (ja)
Inventor
Tsuneo Yumikura
弓倉 恒雄
Masaki Ikeuchi
正毅 池内
Kazunari Nakao
一成 中尾
Eiichi Ozaki
永一 尾崎
Takeshi Doi
全 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1118641A priority Critical patent/JPH02301651A/en
Publication of JPH02301651A publication Critical patent/JPH02301651A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To maintain always high efficiency even for unbalanced demand of heat and electric power by installing a heat accumulating tank provided with the first heat exchanger for heat accumulation and the second heat exchanger for heat collection, and a three-way valve which regulates a valve opening according to the utilized heat value under a load and changes over a hot water piping system. CONSTITUTION:The exhaust gas of an engine 1 and the heat of cooling water are collected in the hot water from a hot water tank 8 by a cooling water heat exchanger 3 and an exhaust gas heat exchanger 5. In the case when the load of a generator 1 is too much, the hot water amount of a load heat exchanger 9 may be small, and the hot water where exhaust heat has been collected is diverted by the first three-way valve 11. On one side, a required amount of heat flows into the heat exchanger 9 from the second three-way valve 17, and heat is transmitted to the hot water in a load piping 10 and returns to the hot water tank 8. On the other side, it is made to flow into the first heat exchanger 14 in the heat accumulating tank 12 to accumulate the heat of a heat accumulating material 13, returning to the hot water tank 8. In the case when thermal load is too much, all the collected heat is led to the heat exchanger 9, and in the case when thermal load is further too much, the hot water is made to flow into the second heat exchanger 15 from the hot water tank 8 to collect the heat in the heat accumulating tank 12 and to supply it to the heat exchanger 9. It is thus possible to always maintain high system efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エンジンで発電機を駆動して発電するとと
もに、このエンジン排熱を利用して冷暖房・給湯するコ
ージェネレーションシステムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cogeneration system that uses an engine to drive a generator to generate electricity, and utilizes the engine exhaust heat for air conditioning, heating, and hot water supply.

〔従来の技術〕[Conventional technology]

第2図は、例えば日本機械学会が昭和62年11月16
日、17日に開催した“コージェネレーションの現状と
将来”という題の第154回講習会の教材から抜粋して
示す従来のコージェネレーションシステムを示す系統図
であり、図において、1はガスエンジンやディーゼルエ
ンジンなどのエンジン、2は発電機で、この発電機2と
エンジン1とは軸により連結されている。3は冷却水熱
交換器で、この冷却水熱交換器3とエンジン1とはエン
ジン1から冷却水熱交換器3を経てエンジン1に戻る冷
却水配管4が接続されている。5は排ガス熱交換器で、
この排ガス熱交換器5とエンジン1とは排ガス配管6に
よって接続されていると共に、冷却水熱交換器3と排ガ
ス熱交換器5とは温水配管7aによって接続されている
。8は温水槽で、上記温水配管7aは、排ガス熱交換器
5から温水槽8へ、さらに温水槽8から冷却水熱交換器
3へと接続されて温水が流れる循環系を構成している。
Figure 2 shows, for example, the Japan Society of Mechanical Engineers published on November 16, 1986.
This is a system diagram showing a conventional cogeneration system, which is excerpted from the teaching material of the 154th seminar titled "Current status and future of cogeneration" held on the 17th. In the diagram, 1 indicates a gas engine or An engine such as a diesel engine, 2 is a generator, and the generator 2 and the engine 1 are connected by a shaft. Reference numeral 3 denotes a cooling water heat exchanger, and the cooling water heat exchanger 3 and the engine 1 are connected to each other by a cooling water pipe 4 that returns from the engine 1 to the engine 1 via the cooling water heat exchanger 3. 5 is an exhaust gas heat exchanger,
The exhaust gas heat exchanger 5 and the engine 1 are connected by an exhaust gas pipe 6, and the cooling water heat exchanger 3 and the exhaust gas heat exchanger 5 are connected by a hot water pipe 7a. 8 is a hot water tank, and the hot water pipe 7a is connected from the exhaust gas heat exchanger 5 to the hot water tank 8, and further from the hot water tank 8 to the cooling water heat exchanger 3, forming a circulation system through which hot water flows.

9は負荷熱交換器で、この負荷熱交換器9と温水槽8と
は温水槽8から負荷熱交換器9を経て温水槽8に戻る系
の温水配管7bが接続されている。また、負荷熱交換器
9には負荷配管10も接続されている。
Reference numeral 9 denotes a load heat exchanger, and the load heat exchanger 9 and the hot water tank 8 are connected to a hot water pipe 7b that runs from the hot water tank 8 through the load heat exchanger 9 and back to the hot water tank 8. Further, a load pipe 10 is also connected to the load heat exchanger 9.

次に動作について説明する。エンジン1では、天然ガス
、重油など燃料の燃焼により駆動力を得、この駆動力で
発電機2が回転され、電力が得られる。また、エンジン
1には冷却のために冷却水を流す必要があり、同時に燃
料の燃焼により高温の排ガスが発生する。エンジン1の
熱によって暖められ、冷却水配管4内を流れる冷却水は
冷却水熱交換器3に運ばれ、またエンジン1の排ガスの
熱は排ガス熱交換器5に運ばれて冷却水熱交換器3と排
ガス熱交換器5において温水槽8から温水配管Ia内を
通って流れる温水に伝達され、温水槽8へ導かれる。一
般には、エンジン1の冷却水と排ガスの温度レベルを比
較すると排ガス温度のほうが高いため、温水は冷却水熱
交換器3から排ガス熱交換器5に順次流れる系統として
いる。排ガス熱交換器5から温水配管7aを通りて温水
槽8に流入した温水は、温水配管7bを通って負荷熱交
換器9に導かれ、ここで負荷配管10内を流れる温水と
熱交換し、温度が下がって温水槽8に戻る。温水槽8で
は、排ガス熱交換器5などで熱回収した比較的高温の温
水と、負荷熱交換器9で熱交換した比較的低温の温水と
の混合を避けるため、第2図に示すよ5に仕切板8aを
入れている場合もある。
Next, the operation will be explained. The engine 1 obtains driving force by burning fuel such as natural gas or heavy oil, and this driving force rotates the generator 2 to obtain electric power. Further, it is necessary to flow cooling water to the engine 1 for cooling, and at the same time, high temperature exhaust gas is generated due to combustion of fuel. The cooling water heated by the heat of the engine 1 and flowing through the cooling water pipe 4 is carried to the cooling water heat exchanger 3, and the heat of the exhaust gas of the engine 1 is carried to the exhaust gas heat exchanger 5, and the cooling water is transferred to the cooling water heat exchanger 5. 3 and the exhaust gas heat exchanger 5, the hot water is transmitted from the hot water tank 8 to the hot water flowing through the hot water pipe Ia, and is guided to the hot water tank 8. Generally, when comparing the temperature levels of the cooling water of the engine 1 and the exhaust gas, the exhaust gas temperature is higher, so the system is such that hot water flows sequentially from the cooling water heat exchanger 3 to the exhaust gas heat exchanger 5. The hot water flowing from the exhaust gas heat exchanger 5 into the hot water tank 8 through the hot water pipe 7a is led to the load heat exchanger 9 through the hot water pipe 7b, where it exchanges heat with the hot water flowing in the load pipe 10, The temperature drops and the water returns to the hot water tank 8. In the hot water tank 8, in order to avoid mixing the relatively high temperature hot water whose heat has been recovered by the exhaust gas heat exchanger 5 and the relatively low temperature hot water which has been heat exchanged by the load heat exchanger 9, the hot water tank 8 is heated as shown in FIG. In some cases, a partition plate 8a is included.

負荷熱交換器9で温度の上昇した負荷配管10内の温水
は、例えば暖房、給湯負荷として利用される。また、負
荷側で冷房を行う場合には、負荷熱交換器9は例えば吸
収式冷凍機の再生器に置き換えられ、温水槽8から温水
配管7bを通って流れる温水の熱は、この冷凍機の加熱
源となる。なお、図中の矢印は温水などの流体の流れ方
向を示している。
The hot water in the load piping 10 whose temperature has increased in the load heat exchanger 9 is used, for example, as a heating or hot water supply load. In addition, when cooling is performed on the load side, the load heat exchanger 9 is replaced with a regenerator of an absorption refrigerator, for example, and the heat of the hot water flowing from the hot water tank 8 through the hot water piping 7b is transferred to the refrigerator. Serves as a heating source. Note that the arrows in the figure indicate the flow direction of fluid such as hot water.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来ノコージェネレーションシステムは以上のように構
成されているので、発電電力と回収した排熱の利用量の
バランスが崩れた場合は、余剰となった電力あるいは熱
を何らかの形で処理する必要などが生じ、システム効率
が低下するという問題点があった。さらに、システム起
動時においてはエンジンが定常状態に至るまでの時間が
掛り、また、温水槽8内の水の熱容量の問題から、熱負
荷に必要な温度の温水を得るためにかなりの時間を要す
るなどの問題点があった。
Conventional cogeneration systems are configured as described above, so if the balance between the amount of generated power and the amount of recovered waste heat used is disrupted, it is necessary to process the surplus power or heat in some way. There was a problem in that the system efficiency was lowered. Furthermore, when the system is started, it takes time for the engine to reach a steady state, and due to the heat capacity of the water in the hot water tank 8, it takes a considerable amount of time to obtain hot water at the temperature required for the heat load. There were problems such as.

この発明は、上記のような問題点を解消するためKなさ
れたもので、電力あるいは熱の消費量にアンバランスが
生じても常に高いシステム効率で動作でき、さら忙、シ
ステ・ムの立ち上がりが早いコージェネレーシ1ンシス
テムを得ることを目的とする。
This invention was made to solve the above-mentioned problems, and even if there is an imbalance in power or heat consumption, the system can always operate at high efficiency, and it can be used more efficiently and with less time to start up the system. The purpose is to obtain a fast cogeneration system.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るコージェネレーションシステムは、温水
配管系統に、蓄熱用の熱交換器と熱回収用の熱交換器と
を有する蓄熱槽および三方弁を設けたものである。
A cogeneration system according to the present invention includes a hot water piping system provided with a heat storage tank having a heat exchanger for heat storage and a heat exchanger for heat recovery, and a three-way valve.

〔作 用〕[For production]

この発明におけるコージェネレーションシステムは、負
荷での利用熱量に応じて三方弁の弁開度を調節し、蓄熱
槽内に蓄熱させるか、あるいは蓄熱槽内の熱回収を行う
かすることにより電力あるいは熱の消費量にアンバラン
スが生じても常に高いシステム効率で動作でき、システ
ムの立ち上がり時間を短縮する。
The cogeneration system of this invention adjusts the valve opening degree of the three-way valve according to the amount of heat used by the load, stores heat in the heat storage tank, or recovers the heat in the heat storage tank to generate electricity or heat. The system can always operate at high efficiency even if there is an imbalance in the amount of energy consumed, reducing the system start-up time.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す構成図で、第1図に
おいて第2図と同一または均等な構成部分には同一符号
を付して重複説明を省略する。図において、11は第1
三方弁、12は蓄熱材13が充填された蓄熱槽で、この
蓄熱槽12内には第1熱交換器14、第2熱交換器15
および凝縮器16が設けられている。そして、排ガス熱
交換器5と温水槽8とを接続する温水配管7aKは途中
に第1三方弁11および第1熱交換器14が介挿接続さ
れている。したがって、温水配管7aは温水槽8から冷
却水熱交換器3、排ガス熱交換器5、第1三方弁11お
よび第1熱交換器14を通って温水槽8に戻る系統とな
っている。17は第1三方弁11に接続された第2三方
弁で、この第2三方弁17は第2熱交換器15と負荷熱
交換器9とを接続する温水配管7bに介挿接続されてい
る。
FIG. 1 is a configuration diagram showing an embodiment of the present invention. In FIG. 1, the same or equivalent components as in FIG. In the figure, 11 is the first
A three-way valve 12 is a heat storage tank filled with a heat storage material 13, and a first heat exchanger 14 and a second heat exchanger 15 are installed in the heat storage tank 12.
and a condenser 16 are provided. The hot water pipe 7aK connecting the exhaust gas heat exchanger 5 and the hot water tank 8 has a first three-way valve 11 and a first heat exchanger 14 inserted therebetween. Therefore, the hot water pipe 7a is a system returning from the hot water tank 8 to the hot water tank 8 through the cooling water heat exchanger 3, the exhaust gas heat exchanger 5, the first three-way valve 11, and the first heat exchanger 14. 17 is a second three-way valve connected to the first three-way valve 11, and this second three-way valve 17 is inserted and connected to the hot water pipe 7b connecting the second heat exchanger 15 and the load heat exchanger 9. .

また、この温水配管7bは温水槽8と第2熱交換器15
とを接続している。したがりて、温水配管7bは温水槽
8から第2熱交換器15、第2三方弁17および負荷熱
交換器9を通って温水槽8に戻る系統になっている。1
8はシステムの立上り時間を短縮するために発電機2の
余剰電力により蓄熱材13を介して蓄熱槽12に蓄熱す
るための蒸気圧縮式冷凍サイクルで、発電機2で発生し
た電力により駆動される圧縮機19、凝縮器16、減圧
装[20および蒸発器21を経て圧縮機19に戻る循環
系統で構成されている。なお、22は蓄熱材13の温度
を検出する温度検出器で、この温度検出器22よりの温
度出力により第1三方弁11および第2三方弁17の弁
開度を調節する。
Moreover, this hot water pipe 7b connects the hot water tank 8 and the second heat exchanger 15.
is connected to. Therefore, the hot water piping 7b is a system that returns to the hot water tank 8 from the hot water tank 8 through the second heat exchanger 15, the second three-way valve 17, and the load heat exchanger 9. 1
8 is a vapor compression refrigeration cycle for storing heat in the heat storage tank 12 via the heat storage material 13 using the surplus power of the generator 2 in order to shorten the start-up time of the system, and is driven by the power generated by the generator 2. It is composed of a circulation system that returns to the compressor 19 via a compressor 19, a condenser 16, a pressure reducing system [20, and an evaporator 21]. Note that 22 is a temperature detector that detects the temperature of the heat storage material 13, and the valve opening degrees of the first three-way valve 11 and the second three-way valve 17 are adjusted based on the temperature output from this temperature detector 22.

また、図中の矢印各流体の流れ方向を示している。Further, the arrows in the figure indicate the flow direction of each fluid.

次に動作について説明する。コージェネレーションシス
テムの運転モードとしては、電気負荷過多と熱負荷過多
の場合が考えられる。エンジン1の排ガスとしておよび
冷却水により得られる熱は、従来装置と同様冷却水熱交
換器3と排ガス熱交換器5により回収される。電気負荷
が過多の場合は、負荷熱交換器9に流す温水量は少なく
てもよく、熱回収した熱が余剰となる。この場合には、
排ガス熱交換器5を出てエンジン排熱を回収した温水は
、第1三方弁11に流入し、ここで分流される。
Next, the operation will be explained. Possible operating modes of the cogeneration system include excessive electrical load and excessive thermal load. The heat obtained as the exhaust gas of the engine 1 and from the cooling water is recovered by the cooling water heat exchanger 3 and the exhaust gas heat exchanger 5 as in the conventional device. When the electric load is excessive, the amount of hot water flowing through the load heat exchanger 9 may be small, and the recovered heat becomes surplus. In this case,
The hot water that has exited the exhaust gas heat exchanger 5 and recovered the engine exhaust heat flows into the first three-way valve 11 and is divided there.

一方は第2三方弁17を通って負荷熱交換器9に必要量
が流入し、ここで負荷配管10内の温水に熱が伝達され
暖房などに利用されると共に、負荷熱交換器9で熱交換
した温水は、温水槽8に導かれる。他方は、蓄熱槽12
内の第1熱交換器14に流入し、流入する温水より若干
低い温度で相変化する潜熱蓄熱材などの蓄熱材13に熱
は伝達され蓄熱される。蓄熱量は、温度検出器22によ
り管理、調節することが可能である。第1熱交換器14
を出た温水は、温水槽8に導かれ、温水配管7bを通っ
て負荷熱交換器9から流入した温水とともに再び冷却水
熱交換器3を経て排ガス熱交換器5へ流れる。また、熱
負荷が過多の場合は、第1熱交換器14を用いての蓄熱
は実施せず、熱回収された熱は全て第1三方弁11から
第2三方弁17を通り負荷熱交換器9へ導かれる。さら
に、熱負荷が大きい場合は、温水を温水槽8から第2熱
交換器15に温水配管Tb内を循環し、蓄熱槽12に蓄
熱された熱を回収して第2三方弁1Tを通り負荷熱交換
器9に供給することができる。これにより、エンジン排
熱以上の熱量を熱負荷として利用が可能となる。また、
発電機2で発生した電力が余剰となっていれば、この電
力で蒸気圧縮式冷凍サイクル18内の圧縮機19を駆動
し、冷媒の凝縮潜熱を凝縮器16を介して蓄熱材13に
蓄熱することができる。この場合、蒸気圧縮式冷凍サイ
クル18内の冷媒は、圧縮機19で圧縮され、高温高圧
となり、凝縮器16で凝縮液化させ、さらに減圧装置2
0で減圧し、蒸発器21で蒸発して圧縮機19に吸入さ
れる動作を行う。
On the other hand, the required amount flows into the load heat exchanger 9 through the second three-way valve 17, where the heat is transferred to the hot water in the load piping 10 and used for heating etc. The replaced hot water is led to the hot water tank 8. The other side is the heat storage tank 12
The heat flows into the first heat exchanger 14 inside, and is transferred to and stored in a heat storage material 13 such as a latent heat storage material that changes phase at a slightly lower temperature than the inflowing hot water. The amount of heat storage can be managed and adjusted by the temperature detector 22. First heat exchanger 14
The hot water that exits is led to the hot water tank 8, and flows through the hot water pipe 7b to the exhaust gas heat exchanger 5 through the cooling water heat exchanger 3 together with the hot water that has flowed in from the load heat exchanger 9. In addition, when the heat load is excessive, heat storage using the first heat exchanger 14 is not carried out, and all the recovered heat passes from the first three-way valve 11 to the second three-way valve 17 to the load heat exchanger. Leads to 9. Furthermore, when the heat load is large, the hot water is circulated from the hot water tank 8 to the second heat exchanger 15 in the hot water pipe Tb, and the heat stored in the heat storage tank 12 is recovered and passed through the second three-way valve 1T to load the hot water. It can be supplied to the heat exchanger 9. This makes it possible to use the amount of heat greater than the engine exhaust heat as a heat load. Also,
If the power generated by the generator 2 is surplus, this power drives the compressor 19 in the vapor compression refrigeration cycle 18, and the latent heat of condensation of the refrigerant is stored in the heat storage material 13 via the condenser 16. be able to. In this case, the refrigerant in the vapor compression refrigeration cycle 18 is compressed by the compressor 19, becomes high temperature and high pressure, is condensed and liquefied by the condenser 16, and is further compressed by the pressure reducing device 2.
The pressure is reduced at 0, evaporated in the evaporator 21, and sucked into the compressor 19.

次に起動時の立ち上がりの動作を説明する。まず、温水
配管7a系は、温水槽8から冷却水熱交換器3、排ガス
熱交換器5、第1三方弁11、第1熱交換器14と順に
温水が循環する。これにより温水は、第1熱交換器14
で蓄熱材13の潜熱を奪い速やかに常温からエンジン排
熱の熱回収温度近くまで上昇する。温度が上昇した後は
、電気負荷過多の場合と同様な系統で温水は循環される
Next, the start-up operation at startup will be explained. First, in the hot water piping 7a system, hot water circulates from the hot water tank 8 to the cooling water heat exchanger 3, the exhaust gas heat exchanger 5, the first three-way valve 11, and the first heat exchanger 14 in this order. As a result, hot water is transferred to the first heat exchanger 14
The latent heat of the heat storage material 13 is taken away and the temperature quickly rises from room temperature to near the heat recovery temperature of engine exhaust heat. After the temperature rises, the hot water is circulated through the same system as in the case of electrical overload.

一方、負荷側は起動時において温水配管7b系を利用し
、温水槽8かも第2熱交換器15、第2三方弁17、負
荷熱交換器9と頭に温水が循環する。
On the other hand, on the load side, hot water is circulated through the hot water tank 8, the second heat exchanger 15, the second three-way valve 17, and the load heat exchanger 9 using the hot water piping 7b system at the time of startup.

これにより、温水配管7b内の温水は、第2熱交換器1
5で蓄熱材13の潜熱を奪い、速やかに温度が上昇し、
素早く負荷に対応が可能である。
As a result, the hot water in the hot water pipe 7b is transferred to the second heat exchanger 1.
5 removes the latent heat from the heat storage material 13, and the temperature quickly rises,
It is possible to quickly respond to loads.

なお、上記実施例においては温水配管ratγbの温水
循環量制御を蓄熱槽12内の温度検出器22で検知した
温度により第1三方弁11および第2三方弁17の弁開
度を調節して行う例を示したが、温水配管7bの負荷熱
交換器9の出口にも温度検出器を設けて温水温度を検知
し、負荷熱交換器9における熱交換量も含めて、第1三
方弁11、第2三方弁17の弁開度を調節する制御を行
うようにしてもよい。
In the above embodiment, the hot water circulation amount of the hot water pipe ratγb is controlled by adjusting the valve opening degrees of the first three-way valve 11 and the second three-way valve 17 based on the temperature detected by the temperature detector 22 in the heat storage tank 12. Although the example is shown, a temperature detector is also provided at the outlet of the load heat exchanger 9 of the hot water pipe 7b to detect the hot water temperature, and the first three-way valve 11, including the heat exchange amount in the load heat exchanger 9, Control may be performed to adjust the opening degree of the second three-way valve 17.

また、上記実施例では蓄熱槽12内の温度検出器22の
個数は特に限定するものではなく、必要に応じて個数を
増加することが可能なことは言うまでもない。
Further, in the above embodiment, the number of temperature detectors 22 in the heat storage tank 12 is not particularly limited, and it goes without saying that the number can be increased as necessary.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば温水系統内に第1熱交
換器および第2熱交換器を有する蓄熱槽を設け、システ
ムの運転モードにより温水循環量を三方弁などの制御で
調節可能にするシステムを構成したので、熱と電力の需
要のアンバランスに対しても常に高いシステム効率を維
持でき、さら0、起動時の立ち上がり時間が短くなると
いう効果がある。
As described above, according to the present invention, a heat storage tank having a first heat exchanger and a second heat exchanger is provided in a hot water system, and the amount of hot water circulation can be adjusted by controlling a three-way valve or the like depending on the system operation mode. Since the system has been configured to do this, it is possible to maintain high system efficiency even in the face of an imbalance between heat and power demand, and also has the effect of shortening the start-up time at startup.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例によるコージェネレーシ
ョンシステムを示す構成図、第2図は、従来のコージェ
ネレーションシステムを示す構成図である。 図において、1はエンジン、2は発電機、3は冷却水熱
交換器、5は排ガス熱交換器、7a、7bは温水配管、
8は温水槽、9は負荷熱交換器、11.17は三方弁、
12は蓄熱槽、14は第1熱交換器、15は第2熱交換
器。 なお、図中同一符号は同一または相当部分を示す。 特許出願人    三菱電機株式会社 、−゛ (外2名)
FIG. 1 is a block diagram showing a cogeneration system according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a conventional cogeneration system. In the figure, 1 is an engine, 2 is a generator, 3 is a cooling water heat exchanger, 5 is an exhaust gas heat exchanger, 7a and 7b are hot water pipes,
8 is a hot water tank, 9 is a load heat exchanger, 11.17 is a three-way valve,
12 is a heat storage tank, 14 is a first heat exchanger, and 15 is a second heat exchanger. Note that the same reference numerals in the figures indicate the same or corresponding parts. Patent applicant: Mitsubishi Electric Corporation, -゛ (2 others)

Claims (1)

【特許請求の範囲】[Claims]  エンジンを用いて発電機を駆動し発電を行うと共に、
上記エンジンの熱を冷却水および排ガスにより取出して
温水配管系統内に設けられた熱交換器、水槽および負荷
熱交換器を用いて熱回収し、この熱を熱源として冷暖房
および給湯を行うコージェネレーションシステムにおい
て、上記温水配管系統内に接続され、蓄熱用に供する第
1熱交換器および熱回収用に供する第2熱交換器を有す
る蓄熱槽と、負荷での利用熱量に応じて弁開度を調節し
、上記熱交換器から上記第1熱交換器へ循環水を供給し
たり、上記水槽から上記第2熱交換器へ循環水を供給し
たりあるいは上記熱交換器および上記水槽を接続する温
水配管系統から上記水槽および負荷熱交換器を接続する
温水配管系統へ直接温水を供給したりする三方弁とを備
えたことを特徴とするコージェネレーションシステム。
The engine is used to drive a generator to generate electricity, and
A cogeneration system that extracts heat from the engine using cooling water and exhaust gas, recovers the heat using a heat exchanger, water tank, and load heat exchanger installed in the hot water piping system, and uses this heat as a heat source for air conditioning, heating, and hot water supply. , a heat storage tank connected to the hot water piping system and having a first heat exchanger used for heat storage and a second heat exchanger used for heat recovery; and a valve opening degree adjusted according to the amount of heat used at the load. and hot water piping that supplies circulating water from the heat exchanger to the first heat exchanger, supplies circulating water from the water tank to the second heat exchanger, or connects the heat exchanger and the water tank. A cogeneration system characterized by comprising a three-way valve that supplies hot water directly from the system to a hot water piping system that connects the water tank and the load heat exchanger.
JP1118641A 1989-05-15 1989-05-15 Co-generation system Pending JPH02301651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1118641A JPH02301651A (en) 1989-05-15 1989-05-15 Co-generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1118641A JPH02301651A (en) 1989-05-15 1989-05-15 Co-generation system

Publications (1)

Publication Number Publication Date
JPH02301651A true JPH02301651A (en) 1990-12-13

Family

ID=14741573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118641A Pending JPH02301651A (en) 1989-05-15 1989-05-15 Co-generation system

Country Status (1)

Country Link
JP (1) JPH02301651A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2485930A (en) * 2010-10-29 2012-05-30 Tacoma Properties Llc Micro combined heat and power generation system having a means for mounting on a wall
GB2485929A (en) * 2010-10-29 2012-05-30 Tacoma Properties Llc Micro combined heat and power unit with heat exchanger diverter valve arrangement
GB2485928A (en) * 2010-10-29 2012-05-30 Tacoma Properties Llc Micro combined heat and power unit having a rectifier and inverter to convert alternator generator output to predetermined AC frequency
GB2485927A (en) * 2010-10-29 2012-05-30 Tacoma Properties Llc Micro combined heat and power unit having multiple heat exchangers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2485930A (en) * 2010-10-29 2012-05-30 Tacoma Properties Llc Micro combined heat and power generation system having a means for mounting on a wall
GB2485929A (en) * 2010-10-29 2012-05-30 Tacoma Properties Llc Micro combined heat and power unit with heat exchanger diverter valve arrangement
GB2485928A (en) * 2010-10-29 2012-05-30 Tacoma Properties Llc Micro combined heat and power unit having a rectifier and inverter to convert alternator generator output to predetermined AC frequency
GB2485927A (en) * 2010-10-29 2012-05-30 Tacoma Properties Llc Micro combined heat and power unit having multiple heat exchangers
GB2485927B (en) * 2010-10-29 2013-02-27 Sustainable Power Ltd Micro combined heat and power unit with internal combustion engine exhaust gas heat exchanger

Similar Documents

Publication Publication Date Title
US4876856A (en) Heat exchanging system
CN101135512B (en) Air-conditioning and electric power generating system and control method for the same
EP1188213B1 (en) Uninterruptible power supply utilizing thermal energy source
RU2534184C2 (en) Modular multiple-energy thermodynamic device
US7275382B2 (en) Cogeneration system
US20030213245A1 (en) Organic rankine cycle micro combined heat and power system
EP1669701A2 (en) Cogeneration system
US20020114985A1 (en) Stationary energy center
JP5636297B2 (en) Cogeneration system
US20180087786A1 (en) Energy management apparatus, system and method
US20070012058A1 (en) Cogeneration system
KR20010105235A (en) Multi Energy System
CN107461276B (en) A kind of small distributed cooling heating and power generation system
US7347057B1 (en) Control of dual-heated absorption heat-transfer machines
CN114068985A (en) Proton exchange membrane fuel cell combined cooling, heating and power system
KR20060112844A (en) Cogeneration system
JPH02301651A (en) Co-generation system
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
KR20180042985A (en) Trigeneration system
CN216213594U (en) Proton exchange membrane fuel cell combined cooling, heating and power system
JPH10121912A (en) Combustion turbine cycle system
KR20190080176A (en) Cng charging station with trigeneration system and operating method of that
JP3722439B2 (en) Hybrid thermoelectric supply system
CA2970144A1 (en) Energy management apparatus, system and method
JPH11351056A (en) Small-sized energy plant device