JP2011153825A - Refrigerating air conditioner - Google Patents

Refrigerating air conditioner Download PDF

Info

Publication number
JP2011153825A
JP2011153825A JP2011114169A JP2011114169A JP2011153825A JP 2011153825 A JP2011153825 A JP 2011153825A JP 2011114169 A JP2011114169 A JP 2011114169A JP 2011114169 A JP2011114169 A JP 2011114169A JP 2011153825 A JP2011153825 A JP 2011153825A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
temperature
ejector
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011114169A
Other languages
Japanese (ja)
Inventor
Fumitake Unezaki
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011114169A priority Critical patent/JP2011153825A/en
Publication of JP2011153825A publication Critical patent/JP2011153825A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem on degradation of operation efficiency when a load medium of high temperature is heated, as a refrigerant state at an outlet of a radiator is gas, and a gas-liquid two phase refrigerant can not be prepared even when the refrigerant is decompressed, a function of a heat pump can not be exerted. <P>SOLUTION: In an expanding section 13a, a part of the refrigerant at the outlet of the radiator 2 flows therein, is expanded and decompressed to generate power, and flows out from the expanding section 13a. In a compressing section 13b, a saturated gas refrigerant coming out from an accumulator 7 flows therein, is compressed for pressure rising, and flows out from the compressing section 13b. The refrigerants flowing out from the expanding section 13a and the compressing section 13b are joined, and flow into a low pressure side of a high/low pressure heat exchanger 4. Thus a pressure of the refrigerant decompressed to a pressure Pe lower than a saturated pressure to an outside air temperature in a bypass circuit 8 can be raised to the saturated pressure or more to the outside air temperature by an expanding machine 13. The compression power of the compressor 1 can be reduced in comparison with a case when the pressure of the refrigerant of the bypass circuit 8 is raised by the compressor 1 from the state of pressure Pe, and the operation of high efficiency can be performed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、冷凍空調装置に係り、特にエジェクタなど膨張動力を回収する装置を備えるとともに給湯など高温の負荷媒体を生成する冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner, and more particularly to a refrigeration air conditioner that includes a device that recovers expansion power such as an ejector and that generates a high-temperature load medium such as hot water.

従来の高温を生成する冷凍空調装置として、冷媒として二酸化炭素を用い、冷却器によって冷媒温度を所定範囲内に収め、余剰冷媒量を抑えることでアキュムレータをなくすことができ、小型化を図ることができる。低温水又はダクト内の空気を高温まで沸き上げるものがある(例えば、特許文献1参照)。
またエジェクタを適用した冷凍空調装置として、エジェクタに流入する冷媒の一部を分岐して蒸発器に供給するバイパス回路を設けたものがある(例えば、特許文献2参照)。また、エジェクタをガスポンプとして使用し、2つの蒸発器を異なる温度で同時にあるいは単独で動作させるものがある(例えば、特許文献3参照)。
As a conventional refrigeration air conditioner that generates high temperatures, carbon dioxide is used as a refrigerant, the temperature of the refrigerant is kept within a predetermined range by a cooler, the accumulator can be eliminated by suppressing the amount of excess refrigerant, and miniaturization can be achieved. it can. There are some which boil low-temperature water or air in a duct to a high temperature (for example, see Patent Document 1).
Further, as a refrigeration air conditioner to which an ejector is applied, there is one provided with a bypass circuit that branches a part of the refrigerant flowing into the ejector and supplies it to the evaporator (for example, see Patent Document 2). In addition, there is a type in which an ejector is used as a gas pump and two evaporators are operated simultaneously or independently at different temperatures (for example, see Patent Document 3).

特開2004−3825号公報(4―5頁、図1)Japanese Patent Laying-Open No. 2004-3825 (page 4-5, FIG. 1) 特開2007−3166号公報(7―8頁、図1)JP 2007-3166 (page 7-8, FIG. 1) 特開2004−257694号公報(4―7頁、図1)JP 2004-257694 A (page 4-7, FIG. 1)

しかし、従来の冷凍空調装置(特許文献1)の場合には以下のような問題があった。従来の装置では、比較的低温の水を沸き上げる運転となるため、冷媒も低温水の温度に応じて低い温度まで冷却される。そこで放熱器出口の冷媒を減圧した場合、気液二相状態となり、外気から採熱可能な飽和温度となる圧力まで減圧すれば、蒸発器で採熱可能となり、ヒートポンプとして機能することができ、高効率の運転が実施されていた。しかし、給水温度が高い場合、例えば70℃給水で75℃まで沸き上げるような運転がなされる場合、放熱器出口の冷媒温度は給水温度より高く70℃以上となる。この状態から減圧しても気液二相とはならず、ガス状態のまま減圧される。ガス状態のまま減圧される場合、同一圧力の冷媒温度は気液二相状態よりも高くなるため、外気から採熱可能となる温度までに必要となる減圧量が大きくなる。そのため、蒸発器出口の冷媒を再度圧縮する場合の圧縮仕事が減圧量分増加し、運転効率が低下するという問題があった。また、ガス状態のまま減圧する場合、減圧後に外気から再熱できる熱量はガス比熱×ガス温度変化に比例する。従って外気から再熱する熱量を増加するには減圧後の冷媒温度を外気温度より低くし、外気との温度差を大きくする必要があるが、そのためにはさらに減圧幅を拡大する必要があり、その分圧縮仕事が増加し運転効率が却って低下するという問題があった。また減圧幅を縮小し圧縮動力を減少させる運転とすることもできるが、この場合は、外気からの採熱量が0となり、ヒートポンプとしての機能が得られず、圧縮機にて冷媒が受ける仕事によって加熱される分だけの熱量を放熱する運転となり、運転効率であるCOPがヒータ同等となる1まで低下するという問題があった。また減圧量を大きくする分、圧縮時の圧縮比が大きくなるので、圧縮機吐出温度が上昇する。吐出温度の上限制約を守るため状況によっては、減圧後のガス冷媒をさらに冷却し圧縮機吸入冷媒の温度を低下させるという運転が必要となり、COPが1より小さくなり、さらに運転効率が低下するという問題があった。
またこの課題を解決するには、冷媒の凝縮温度が70℃以上の運転を行い、放熱器での冷媒の液化を実現する必要があるが、そのためには通常の冷凍サイクルで用いられる高圧よりも高い圧力で運転する必要がある。通常機器の耐圧の問題、及び高圧ガス保安法の取り決めから、装置の設計圧力は、設計圧力に対する冷媒の飽和温度が65℃に設定されていることが多いが、上記の運転の場合は凝縮温度75℃程度の運転が求められ、その分設計圧力を高く設定し、耐圧強度が上昇するように機器を設計する必要がある。耐圧を確保するために配管やシェル、容器の肉厚を厚くすることが必要となり、装置の材料コストが上昇するという問題があった。
However, the conventional refrigeration air conditioner (Patent Document 1) has the following problems. In the conventional apparatus, since operation is performed to boil relatively low-temperature water, the refrigerant is also cooled to a low temperature according to the temperature of the low-temperature water. Therefore, when the refrigerant at the outlet of the radiator is depressurized, it becomes a gas-liquid two-phase state, and if it is depressurized to a pressure that becomes a saturation temperature at which heat can be collected from outside air, heat can be collected by the evaporator, and it can function as a heat pump. Highly efficient operation was carried out. However, when the feed water temperature is high, for example, when the operation is performed to boil up to 75 ° C. with 70 ° C. feed water, the refrigerant temperature at the radiator outlet is higher than the feed water temperature and is 70 ° C. or more. Even if the pressure is reduced from this state, it does not become a gas-liquid two-phase, and the pressure is reduced in the gas state. When the pressure is reduced in the gas state, the refrigerant temperature at the same pressure becomes higher than that in the gas-liquid two-phase state, so that the amount of pressure reduction required from the outside air to the temperature at which heat can be collected increases. Therefore, there has been a problem that the compression work when the refrigerant at the outlet of the evaporator is compressed again is increased by the amount of decompression, and the operation efficiency is lowered. Further, when the pressure is reduced in the gas state, the amount of heat that can be reheated from the outside air after the pressure reduction is proportional to the gas specific heat × the gas temperature change. Therefore, in order to increase the amount of heat reheated from the outside air, it is necessary to lower the refrigerant temperature after depressurization from the outside air temperature and increase the temperature difference from the outside air. As a result, there was a problem that the compression work increased and the operating efficiency decreased. The pressure reduction range can also be reduced to reduce the compression power, but in this case, the amount of heat collected from the outside air becomes 0, the function as a heat pump cannot be obtained, and the work that the refrigerant receives in the compressor There is a problem that the operation is performed to dissipate the amount of heat corresponding to the heating, and the COP, which is the operation efficiency, is reduced to 1, which is equivalent to the heater. Further, since the compression ratio at the time of compression increases as the amount of decompression increases, the compressor discharge temperature rises. Depending on the situation, the operation of further cooling the decompressed gas refrigerant and lowering the temperature of the refrigerant sucked into the compressor is required depending on the situation, so that the COP becomes smaller than 1 and the operation efficiency further decreases. There was a problem.
In order to solve this problem, it is necessary to operate the refrigerant at a condensation temperature of 70 ° C. or higher to realize the liquefaction of the refrigerant in the radiator, but for this purpose, it is more than the high pressure used in a normal refrigeration cycle. It is necessary to operate at high pressure. From the problem of pressure resistance of normal equipment and the arrangement of the high-pressure gas safety law, the design pressure of the apparatus is often set to a saturation temperature of the refrigerant with respect to the design pressure at 65 ° C. The operation at about 75 ° C. is required, and accordingly, the design pressure needs to be set high, and the device needs to be designed so that the pressure strength increases. In order to ensure pressure resistance, it is necessary to increase the thickness of pipes, shells, and containers, resulting in a problem that the material cost of the apparatus increases.

また、従来の別の冷凍空調装置(特許文献2)の場合には以下のような問題があった。エジェクタには蒸発器に供給される冷媒と同じ状態の冷媒が供給されるので、エジェクタで減圧される冷媒は気液二相状態となる。エジェクタでは減圧時に増速することで得られる運動エネルギを圧力エネルギに変換することで吸引する冷媒の昇圧を実現するが、気液二相冷媒が高速で流動するときに、密度の小さい気相の速度が速く、密度の大きい液相の速度が遅くなる。気液で速度差が生じるため、それにより気液界面に摩擦が生じ、この摩擦で失われる分だけ運動エネルギが損なわれ、圧力エネルギに変換できる量が低下する。即ち、エジェクタ内にて気液二相状態となるような状況でエジェクタを用いるため、エジェクタにおける動力回収効率が低下し運転効率が低下するという問題があった。   Further, in the case of another conventional refrigeration air conditioner (Patent Document 2), there are the following problems. Since the refrigerant in the same state as the refrigerant supplied to the evaporator is supplied to the ejector, the refrigerant decompressed by the ejector is in a gas-liquid two-phase state. In the ejector, the kinetic energy obtained by increasing the speed at the time of decompression is converted to pressure energy, so that the pressure of the sucked refrigerant is increased. However, when the gas-liquid two-phase refrigerant flows at high speed, The speed is high and the speed of the dense liquid phase is slow. Since a speed difference occurs between the gas and liquid, friction is generated at the gas-liquid interface, and the kinetic energy is lost by the amount lost by this friction, and the amount that can be converted into pressure energy is reduced. That is, since the ejector is used in a gas-liquid two-phase state in the ejector, there is a problem that the power recovery efficiency in the ejector is lowered and the operation efficiency is lowered.

また、従来の別の冷凍空調装置(特許文献3)の場合には以下のような問題があった。従来の装置では圧縮機から吐出される冷媒を用いてエジェクタに供給し、エジェクタをポンプとして活用している。しかし給湯運転など高温の負荷媒体を加熱する場合、圧縮機吐出の冷媒は負荷媒体の温度よりも高温であることで加熱能力は有するが、その冷媒の加熱能力を活用していないため、加熱能力が無駄になるという問題があった。   Further, in the case of another conventional refrigeration air conditioner (Patent Document 3), there are the following problems. In the conventional apparatus, the refrigerant discharged from the compressor is supplied to the ejector, and the ejector is used as a pump. However, when heating a high-temperature load medium such as in a hot water supply operation, the refrigerant discharged from the compressor has a heating capacity because it is higher than the temperature of the load medium, but the heating capacity of the refrigerant is not utilized. There was a problem that wasted.

この発明は、以上の課題を解決するためになされたもので、高温の負荷媒体を加熱する場合に、ヒートポンプの機能を実現させるとともに、高効率運転を実現する冷凍空調装置を得ることを目的とする。特に、装置の設計圧力に応じた飽和温度で規定される上限の凝縮温度の近傍、もしくはその温度より高温の負荷媒体を用いる場合に、ヒートポンプの機能を実現させることで、高効率運転を実現する装置とすることを目的とする。   This invention was made in order to solve the above-mentioned subject, and when heating a high-temperature load medium, while achieving the function of a heat pump, it aims at obtaining the refrigerating air-conditioner which realizes high efficiency operation. To do. In particular, high efficiency operation is realized by realizing the function of the heat pump when using a load medium in the vicinity of the upper limit condensing temperature defined by the saturation temperature according to the design pressure of the device, or when a load medium higher than that temperature is used. It is intended to be a device.

この発明に係る冷凍空調装置は、第1の圧縮機、放熱器、膨張部、および高低圧熱交換器低圧部を順次環状に接続した冷凍サイクルと、前記放熱器と前記膨張部の間にて分岐し、前記膨張部と前記高低圧熱交換器低圧部の間にて合流するバイパス回路とを備え、このバイパス回路上に、前記高低圧熱交換器低圧部を流れる冷媒と熱交換を行う高低圧熱交換器高圧部、減圧装置、蒸発器、および前記膨張部によって駆動される第2の圧縮機を順次設け、前記放熱器は所定温度より高温の負荷媒体を加熱する場合に、前記圧縮機からのガス冷媒を冷却してガス状態のまま出力し、前記膨張部は前記放熱器からの冷媒をガス状態で入力し、前記第2の圧縮機は、前記蒸発器からの冷媒をガス状態で入力するものである。   The refrigeration air conditioner according to the present invention includes a refrigeration cycle in which a first compressor, a radiator, an expansion unit, and a high-low pressure heat exchanger low-pressure unit are sequentially connected in an annular manner, and between the radiator and the expansion unit. A bypass circuit that branches and joins between the expansion section and the low pressure section of the high / low pressure heat exchanger, and on the bypass circuit, a high flow that exchanges heat with the refrigerant flowing through the low pressure section of the high / low pressure heat exchanger. A low-pressure heat exchanger, a high-pressure unit, a decompression device, an evaporator, and a second compressor driven by the expansion unit are sequentially provided, and when the radiator heats a load medium having a temperature higher than a predetermined temperature, the compressor The refrigerant from the refrigerant is cooled and output in a gas state, the expansion unit inputs the refrigerant from the radiator in a gas state, and the second compressor supplies the refrigerant from the evaporator in a gas state. Input.

この発明は、バイパス回路及び高低圧熱交換器を介して、外気より高温である高低圧熱交換器に流入するガス冷媒を外気から得られる熱により加熱することが可能となるから、高温の負荷媒体を加熱する運転にて、放熱器出口がガスとなる運転条件であっても、冷凍サイクルをヒートポンプとして機能させることが可能となり、高効率の運転を実現できる。また、バイパス回路にて外気温度に対する飽和圧力よりも低い圧力まで減圧される冷媒を、外気温度に対する飽和圧力以上に昇圧できる。そのためバイパス回路の冷媒を外気温度に対する飽和圧力よりも低い圧力の状態から圧縮機で昇圧する場合に比べて、圧縮機の圧縮動力を低減でき、高効率の運転を実現できる。   In the present invention, it becomes possible to heat the gas refrigerant flowing into the high-low pressure heat exchanger that is higher in temperature than the outside air by the heat obtained from the outside air via the bypass circuit and the high-low pressure heat exchanger. In the operation of heating the medium, the refrigeration cycle can be made to function as a heat pump even under operating conditions in which the radiator outlet becomes gas, and a highly efficient operation can be realized. In addition, the refrigerant whose pressure is reduced to a pressure lower than the saturation pressure with respect to the outside air temperature in the bypass circuit can be increased to the saturation pressure or more with respect to the outside air temperature. Therefore, compared with the case where the pressure of the refrigerant in the bypass circuit is increased by the compressor from a pressure lower than the saturation pressure with respect to the outside air temperature, the compression power of the compressor can be reduced, and a highly efficient operation can be realized.

この発明の実施の形態1を示す冷凍空調装置の回路図である。1 is a circuit diagram of a refrigerating and air-conditioning apparatus showing Embodiment 1 of the present invention. この発明の実施の形態1を示す冷凍空調装置のエジェクタの構造と圧力変化を示した図である。It is the figure which showed the structure and pressure change of the ejector of the refrigerating and air-conditioning apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す冷凍空調装置の圧力とエンタルピの相関を示す図である。It is a figure which shows the correlation of the pressure and enthalpy of the refrigerating air-conditioning apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す冷凍空調装置の制御動作を示すフロー図である。It is a flowchart which shows the control action of the refrigerating air conditioner which shows Embodiment 1 of this invention. この発明の実施の形態2を示す冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus which shows Embodiment 2 of this invention. この発明の実施の形態3を示す冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus which shows Embodiment 3 of this invention. この発明の実施の形態4を示す冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus which shows Embodiment 4 of this invention.

実施の形態1.
以下、この発明の実施の形態1を図1に示す。図1はこの発明の冷凍空調装置の冷媒回路図であり、冷媒回路は圧縮機1、温水を加熱する負荷側熱交換器として作用する放熱器2、エジェクタ3、高低圧熱交換器4、減圧装置として作用する膨張弁5、熱源側熱交換器として作用する蒸発器6、アキュムレータ7で構成され、図示されるように環状に接続される。
即ち、圧縮機1、放熱器2、エジェクタ3、高低圧熱交換器4の低圧側(図1下側)の順で冷凍サイクルが構成され、高低圧熱交換器4の低圧側を出た冷媒が圧縮機1吸入側に戻される。また、放熱器2の出口で分配された一部の冷媒は、高低圧熱交換器4の高圧側(図1上側)、膨張弁5、蒸発器6、アキュムレータ7の順に接続されるバイパス回路8を流れ、アキュムレータ7を流出した飽和ガス冷媒はエジェクタ3の吸引部に戻される。
圧縮機1はインバータにより回転数が制御され容量制御されるタイプである。蒸発器6は送風機によって搬送される冷凍空調装置周囲の空気と熱交換を行う。エジェクタ3は膨張部での絞り開度が可変な構造となっている。膨張弁5は開度が可変に制御される電子膨張弁である。放熱器2、高低圧熱交換器4はプレート熱交換器であり、放熱器2では搬送される水やブラインなど負荷側熱媒体と冷媒との間で熱交換を行う。高低圧熱交換器4では高低圧の冷媒が熱交換を行い、高圧側から低圧側に熱が伝えられる。また高圧側流路と低圧側流路は一方の出口と一方の入口が近接する対向流的な構成となる。アキュムレータ7は、気液分離と余剰冷媒の貯留機能を持ち、アキュムレータ7で気液分離された後の飽和ガス冷媒がアキュムレータ7から流出しエジェクタ3に吸引される。この冷凍空調装置の冷媒としては例えばR410Aが用いられる。この装置の設計圧力は4.28MPaに設定され、その圧力に対する飽和温度は65℃であり、高圧を設計圧力という最も高い圧力で運転しても凝縮温度の上限は65℃となる。
Embodiment 1 FIG.
A first embodiment of the present invention is shown in FIG. FIG. 1 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to the present invention. The refrigerant circuit includes a compressor 1, a radiator 2 acting as a load-side heat exchanger for heating hot water, an ejector 3, a high-low pressure heat exchanger 4, and a reduced pressure. It comprises an expansion valve 5 acting as a device, an evaporator 6 acting as a heat source side heat exchanger, and an accumulator 7, which are connected in a ring shape as shown.
That is, the refrigeration cycle is configured in the order of the low pressure side (lower side in FIG. 1) of the compressor 1, the radiator 2, the ejector 3, and the high / low pressure heat exchanger 4, and the refrigerant that has exited the low pressure side of the high / low pressure heat exchanger 4. Is returned to the compressor 1 suction side. Further, a part of the refrigerant distributed at the outlet of the radiator 2 is connected to the high pressure side (the upper side in FIG. 1) of the high / low pressure heat exchanger 4, the expansion valve 5, the evaporator 6, and the accumulator 7 in this order. The saturated gas refrigerant flowing through the accumulator 7 is returned to the suction portion of the ejector 3.
The compressor 1 is a type in which the rotation speed is controlled by an inverter and the capacity is controlled. The evaporator 6 exchanges heat with the air around the refrigeration air conditioner conveyed by the blower. The ejector 3 has a structure in which the throttle opening at the expansion portion is variable. The expansion valve 5 is an electronic expansion valve whose opening degree is variably controlled. The radiator 2 and the high / low pressure heat exchanger 4 are plate heat exchangers, and the heat exchanger 2 performs heat exchange between the load side heat medium such as water and brine to be conveyed and the refrigerant. In the high / low pressure heat exchanger 4, the high / low pressure refrigerant exchanges heat, and heat is transferred from the high pressure side to the low pressure side. Further, the high-pressure channel and the low-pressure channel have a counterflow configuration in which one outlet and one inlet are close to each other. The accumulator 7 has a gas-liquid separation and excess refrigerant storage function, and the saturated gas refrigerant after the gas-liquid separation by the accumulator 7 flows out of the accumulator 7 and is sucked into the ejector 3. For example, R410A is used as the refrigerant of the refrigeration air conditioner. The design pressure of this device is set to 4.28 MPa, the saturation temperature for that pressure is 65 ° C., and the upper limit of the condensation temperature is 65 ° C. even if the high pressure is operated at the highest pressure, the design pressure.

装置には圧力センサ9aが圧縮機1吸入側、圧力センサ9bが圧縮機1吐出側に設けられており、それぞれ設置場所の冷媒圧力を計測する。
また温度センサ10aが圧縮機1吸入側、温度センサ10bが圧縮機1吐出側、温度センサ10cが放熱器2出口、温度センサ10dが高低圧熱交換器4の高圧側出口、温度センサ10eが蒸発器6の入口、温度センサ10fがエジェクタ3の出口(高低圧熱交換器4の低圧側入口)に設けられており、それぞれ設置場所の冷媒温度を計測する。また、温度センサ10gが放熱器2の負荷側熱媒体流路入口、温度センサ10hが放熱器2の負荷側熱媒体流路出口に設けられており、ここでの負荷側熱媒体の温度を計測する。また、温度センサ10iが装置周囲の外気温度を計測するために設けられる。
In the apparatus, a pressure sensor 9a is provided on the suction side of the compressor 1 and a pressure sensor 9b is provided on the discharge side of the compressor 1, and the refrigerant pressure at the installation location is measured.
Also, the temperature sensor 10a is the compressor 1 suction side, the temperature sensor 10b is the compressor 1 discharge side, the temperature sensor 10c is the radiator 2 outlet, the temperature sensor 10d is the high pressure side outlet of the high / low pressure heat exchanger 4, and the temperature sensor 10e is evaporated. A temperature sensor 10f is provided at the inlet of the heat exchanger 6 at the outlet of the ejector 3 (low pressure side inlet of the high / low pressure heat exchanger 4), and measures the refrigerant temperature at each installation location. Further, the temperature sensor 10g is provided at the load-side heat medium flow path inlet of the radiator 2, and the temperature sensor 10h is provided at the load-side heat medium flow path outlet of the radiator 2, and the temperature of the load-side heat medium here is measured. To do. A temperature sensor 10i is provided to measure the outside air temperature around the apparatus.

また、装置には、計測制御装置11が設けられており、この計測制御装置11は圧力センサ9、温度センサ10などの計測情報や、冷凍空調装置使用者から指示される運転内容に基づいて、圧縮機1の運転方法、蒸発器6の送風機風量、エジェクタ3の絞り開度、膨張弁5の開度などを制御する。なお、この計測制御装置11は、マイクロコンピュータやDSPなどのプロッセッサから構成される。   In addition, the apparatus is provided with a measurement control device 11, which is based on measurement information such as the pressure sensor 9 and the temperature sensor 10 and the operation content instructed by the user of the refrigeration air conditioner. The operation method of the compressor 1, the blower air volume of the evaporator 6, the throttle opening of the ejector 3, the opening of the expansion valve 5, and the like are controlled. The measurement control device 11 is composed of a processor such as a microcomputer or a DSP.

次に、この冷凍空調装置でのエジェクタ3の構造について説明する。図2はこの発明の実施の形態1を示す冷凍空調装置に使用されるエジェクタの構造と圧力変化の関係を表した図であり、図2(a)はエジェクタ3の構造を表しており、図2(b)は図2(a)におけるエジェクタ3の冷媒流れ方向位置に対応した圧力分布を示している。図2(b)において、横軸は図2(a)のエジェクタ3の冷媒流れ方向位置を表し、縦軸はエジェクタ3の各位置での圧力を表している。図において、エジェクタ3は、ニードル部42、ニードル部42を駆動する電磁コイル部41、ノズル部43、混合部44、ディフューザ部45から構成され、ノズル部43はさらに減圧部43aとノズル喉部43cと末広部43bから構成されている。したがって、本実施の形態のエジェクタ3は、ニードル部42を計測制御装置11からの指令により電磁コイル部41にて軸方向に駆動(移動)させてノズル喉部43cの流路面積を変えることができる構造であるので、絞り開度可変の絞り機構を備えたエジェクタである。   Next, the structure of the ejector 3 in this refrigeration air conditioner will be described. FIG. 2 is a diagram showing the relationship between the structure of the ejector used in the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention and the pressure change. FIG. 2 (a) shows the structure of the ejector 3. 2 (b) shows the pressure distribution corresponding to the refrigerant flow direction position of the ejector 3 in FIG. 2 (a). 2B, the horizontal axis represents the refrigerant flow direction position of the ejector 3 in FIG. 2A, and the vertical axis represents the pressure at each position of the ejector 3. In FIG. In the figure, the ejector 3 is composed of a needle part 42, an electromagnetic coil part 41 for driving the needle part 42, a nozzle part 43, a mixing part 44, and a diffuser part 45. The nozzle part 43 further includes a decompression part 43a and a nozzle throat part 43c. And the divergent portion 43b. Therefore, the ejector 3 of the present embodiment can change the flow path area of the nozzle throat portion 43c by driving (moving) the needle portion 42 in the axial direction by the electromagnetic coil portion 41 in response to a command from the measurement control device 11. Since this is a possible structure, the ejector has a throttle mechanism with a variable throttle opening.

エジェクタ3は駆動流である圧力P1の冷媒E1を減圧部43a(X1〜X2)で減圧膨張させてノズル喉部43c(X2)で圧力P2の音速とし、更に末広部43b(X2〜X3)で超音速として圧力P3まで減圧させる。このとき、周囲のガス冷媒の吸引部入口3aからガス冷媒E4を吸引し、この吸引されたガス冷媒は、吸引混合部(X3〜X4)にて末広部43bを流出し超音速となった冷媒と混合されて冷媒E2となり、この混合された冷媒E2は、混合部44(X4〜X5)で圧力回復して圧力P4の状態となり、更にディフューザ部45(X5〜X6)で圧力P5まで圧力上昇して流出する。   The ejector 3 decompresses and expands the refrigerant E1 having the pressure P1, which is a driving flow, by the decompression unit 43a (X1 to X2) to obtain the sound velocity of the pressure P2 by the nozzle throat 43c (X2), and further by the divergent part 43b (X2 to X3) The pressure is reduced to a pressure P3 as a supersonic speed. At this time, the gas refrigerant E4 is sucked from the suction part inlet 3a of the surrounding gas refrigerant, and the sucked gas refrigerant flows out of the divergent part 43b in the suction mixing part (X3 to X4) and becomes supersonic. To the refrigerant E2, and the mixed refrigerant E2 recovers the pressure in the mixing unit 44 (X4 to X5) to the state of the pressure P4, and further increases to the pressure P5 in the diffuser unit 45 (X5 to X6). And then spill.

次に、この冷凍空調装置での運転動作について図1〜図3に基づいて説明する。図3は、この発明の実施の形態1を示す冷凍空調装置の圧力とエンタルピの関係を表した図であり、横軸はエンタルピを表し、縦軸は圧力を表す。ここで、本実施の形態の冷凍空調装置は搬送される水やブラインなど負荷側熱媒体と冷媒との間で熱交換し温熱を与える運転を行い、例えば熱源として温度5℃の外気から採熱し、70℃の温度で流入する水を75℃まで加熱して温熱を与える運転を行うものとする。入口の水温70℃は、前述した設計圧力に対する飽和温度65℃よりも高いため、水を加熱する際に冷媒を凝縮させながら熱交換することができず、冷媒は高温のガス状態のまま、水と熱交換することになる。   Next, the operation | movement operation | movement in this refrigeration air conditioner is demonstrated based on FIGS. 1-3. FIG. 3 is a diagram showing the relationship between the pressure and enthalpy of the refrigerating and air-conditioning apparatus showing Embodiment 1 of the present invention, in which the horizontal axis represents enthalpy and the vertical axis represents pressure. Here, the refrigerating and air-conditioning apparatus according to the present embodiment performs an operation of exchanging heat between the load-side heat medium such as water or brine to be conveyed and the refrigerant, and collecting heat from, for example, outside air having a temperature of 5 ° C. as a heat source. The water flowing at a temperature of 70 ° C. is heated to 75 ° C. to give the heat. Since the inlet water temperature of 70 ° C. is higher than the saturation temperature of 65 ° C. with respect to the aforementioned design pressure, heat cannot be exchanged while condensing the refrigerant when heating the water, and the refrigerant remains in a high temperature gas state. Heat exchange.

冷凍空調装置における冷媒の状態変化は以下のようになる。まず圧縮機1から吐出された高温・高圧のガス冷媒R1(圧力Pd:4MPa、温度118℃)は、放熱器2で水へ放熱して水を加熱しながら冷却され温度低下し、R2(圧力Pd:4MPa、温度71℃)のガス冷媒となる。
放熱器2を出た冷媒は一部の冷媒(全体の24%)が分岐されバイパス回路8に流れ、残りの多くの冷媒(全体の76%)がエジェクタ3に流入する。エジェクタ3へ流入した冷媒は、ノズル部43出口(図2のX3の位置)で状態R3(圧力Pe:0.8MPa、温度0℃)のほぼ乾き度1の飽和ガスになり、混合部44へ流入する。混合部44でエジェクタ3のガス冷媒の吸引部入口3aから流入するR4(圧力Pe:0.8MPa、温度0℃)のアキュムレータ7から流出する冷媒ガスと混合した後、R5(圧力Pe:0.8MPa、温度0℃)の状態となった冷媒はディフューザ45によりPeからPsまで圧力が回復し、状態R6(圧力Ps:2.0MPa、温度38℃)の状態となる。
エジェクタ3を流出した冷媒は、高低圧熱交換器4の低圧側に流入し、バイパス回路8に流れる高圧の冷媒と熱交換しながら加熱され、状態R7(圧力Ps:2.0MPa、温度66℃)の状態となり、圧縮機1に吸入される。
The state change of the refrigerant in the refrigeration air conditioner is as follows. First, the high-temperature / high-pressure gas refrigerant R1 (pressure Pd: 4 MPa, temperature 118 ° C.) discharged from the compressor 1 is cooled while the water is radiated to the water by the radiator 2 to heat the water, and the temperature decreases. (Pd: 4 MPa, temperature 71 ° C.).
A part of the refrigerant exiting the radiator 2 (24% of the whole) is branched and flows into the bypass circuit 8, and a large amount of the remaining refrigerant (76% of the whole) flows into the ejector 3. The refrigerant that has flowed into the ejector 3 becomes a saturated gas having a dryness of about 1 in the state R3 (pressure Pe: 0.8 MPa, temperature 0 ° C.) at the outlet of the nozzle portion 43 (position X3 in FIG. 2). Inflow. After mixing with the refrigerant gas flowing out from the accumulator 7 of R4 (pressure Pe: 0.8 MPa, temperature 0 ° C.) flowing in from the gas refrigerant suction section inlet 3a of the ejector 3 in the mixing section 44, R5 (pressure Pe: 0. The refrigerant that has reached a state of 8 MPa and a temperature of 0 ° C. recovers its pressure from Pe to Ps by the diffuser 45, and enters a state of R6 (pressure Ps: 2.0 MPa, temperature of 38 ° C.).
The refrigerant that has flowed out of the ejector 3 flows into the low-pressure side of the high-low pressure heat exchanger 4 and is heated while exchanging heat with the high-pressure refrigerant flowing in the bypass circuit 8, and is in a state R7 (pressure Ps: 2.0 MPa, temperature 66 ° C. ) And is sucked into the compressor 1.

一方、バイパス回路8を流れる冷媒は、高低圧熱交換器4の高圧側入口に流入し、エジェクタ3を出た冷媒と熱交換し、冷却、凝縮し、状態R8(圧力Pd:4.0MPa、温度51℃)の液冷媒となる。その後液冷媒は膨張弁5で減圧され状態R9(圧力Pe:0.8MPa、温度0℃)の低乾き度の二相冷媒となった後で、蒸発器6に流入し、蒸発器6にて温度5℃の外気から熱を授受し加熱、蒸発して状態R4(圧力Pe:0.8MPa、温度0℃)の飽和ガスとなり、その状態のままアキュムレータ7を通り、エジェクタ3に吸引される。   On the other hand, the refrigerant flowing through the bypass circuit 8 flows into the high-pressure side inlet of the high-low pressure heat exchanger 4, exchanges heat with the refrigerant exiting the ejector 3, cools and condenses, and the state R8 (pressure Pd: 4.0 MPa, It becomes a liquid refrigerant having a temperature of 51 ° C. Thereafter, the liquid refrigerant is depressurized by the expansion valve 5 to become a low dryness two-phase refrigerant in the state R9 (pressure Pe: 0.8 MPa, temperature 0 ° C.), and then flows into the evaporator 6. Heat is transferred from outside air at a temperature of 5 ° C., heated and evaporated to become a saturated gas in a state R4 (pressure Pe: 0.8 MPa, temperature 0 ° C.), and is sucked into the ejector 3 through the accumulator 7 in that state.

以上のような冷媒状態変化とすることで、エジェクタ3を出て圧縮機1に吸入されるガス冷媒の加熱が高低圧熱交換器4高圧側に流入するガス冷媒によって実施される。圧縮機1の吸入ガスを加熱するために高低圧熱交換器4高圧側にて冷却液化されたバイパス回路8を流れる冷媒は、その冷却熱量に対応した熱量を蒸発器6にて外気から吸熱し加熱される。バイパス流路を流れる冷媒のエンタルピは分岐前(状態R2)と合流前(状態R4)でほぼ同じ状態となる。
従って、本実施の形態の回路構成とすることで、エネルギーが一部間接的に外気⇒蒸発器6を流れるバイパス回路8の冷媒⇒高低圧熱交換器4の高圧側を流れるバイパス回路8の冷媒⇒高低圧熱交換器4の低圧側を流れる圧縮機1に吸入されるガス冷媒と伝えられることになり、結局外気よりも高温であるエジェクタ3を流出するガス冷媒を、外気から得られる熱により加熱することが可能となる。
By setting the refrigerant state change as described above, the gas refrigerant that exits the ejector 3 and is sucked into the compressor 1 is heated by the gas refrigerant that flows into the high-pressure side of the high-low pressure heat exchanger 4. The refrigerant flowing through the bypass circuit 8 liquefied by cooling on the high pressure side of the high / low pressure heat exchanger 4 to heat the suction gas of the compressor 1 absorbs heat corresponding to the cooling heat from the outside air by the evaporator 6. Heated. The enthalpy of the refrigerant flowing through the bypass channel is substantially the same before branching (state R2) and before merging (state R4).
Therefore, by using the circuit configuration of the present embodiment, the energy of the bypass circuit 8 flowing through the high-pressure side of the high-low pressure heat exchanger 4 ⇒ the refrigerant of the bypass circuit 8 in which the energy partially indirectly flows from the outside air ⇒ the evaporator 6 ⇒ Gas refrigerant sucked into the compressor 1 flowing on the low pressure side of the high / low pressure heat exchanger 4 is transmitted to the gas refrigerant flowing out of the ejector 3 that is higher in temperature than the outside air. It becomes possible to heat.

次に、この冷凍空調装置での制御動作について図4に基づいて説明する。まず、計測制御装置11は圧縮機1の回転数、蒸発器6送風量、エジェクタ3開度、膨張弁5開度を初期値に設定して運転を行う(ステップS401)。ここで計測制御装置11は蒸発器6送風量の初期設定値は温度センサ10iで検知される外気温度で決定され、外気温度が相対的に低い場合は熱交換能力が低いので、高風量、高い場合は熱交換能力が高いので低風量に設定される。   Next, the control operation in this refrigeration air conditioner will be described with reference to FIG. First, the measurement control device 11 operates by setting the rotation speed of the compressor 1, the air flow rate of the evaporator 6, the opening degree of the ejector 3, and the opening degree of the expansion valve 5 to initial values (step S401). Here, the measurement control device 11 determines the initial setting value of the air flow rate of the evaporator 6 based on the outside air temperature detected by the temperature sensor 10i. Since the heat exchange capacity is low when the outside air temperature is relatively low, the high air volume is high. In this case, since the heat exchange capacity is high, the air flow is set to be low.

そして、この状態で運転した後、計測制御装置11は装置運転状態に応じて各アクチュエータを制御する。まず圧縮機1の回転数は、温度センサ10hで検知される放熱器2出口の負荷側熱媒体温度である出口水温が予め設定された目標値、例えば75℃となるように制御される。圧縮機1の回転数が高いと、冷媒流量が増加するため装置の加熱能力が増加し、水がより加熱され、放熱器2出口の水温は上昇する。逆に、圧縮機1の回転数が低いと、放熱器2出口の水温は低下する。そこで計測制御装置11は放熱器2出口の水温と目標値とを比較し、水温が低い場合は圧縮機1の回転数を増加させ、水温が高い場合は圧縮機1の回転数を減少させる(ステップS402〜S404)。   And after driving | operating in this state, the measurement control apparatus 11 controls each actuator according to an apparatus operating state. First, the rotation speed of the compressor 1 is controlled so that the outlet water temperature, which is the load-side heat medium temperature at the outlet of the radiator 2 detected by the temperature sensor 10h, becomes a preset target value, for example, 75 ° C. When the rotation speed of the compressor 1 is high, the refrigerant flow rate increases, so that the heating capacity of the apparatus increases, the water is further heated, and the water temperature at the outlet of the radiator 2 rises. On the contrary, when the rotation speed of the compressor 1 is low, the water temperature at the outlet of the radiator 2 is lowered. Therefore, the measurement control device 11 compares the water temperature at the outlet of the radiator 2 with the target value, and increases the rotational speed of the compressor 1 when the water temperature is low, and decreases the rotational speed of the compressor 1 when the water temperature is high ( Steps S402 to S404).

次に、蒸発器6の送風量であるが、計測制御装置11はこの送風量を基本的に初期設定値にて運転する。ただし、運転条件によって、蒸発器6での冷媒圧力Peが上昇し、その上昇に伴い圧力センサ9bで検知される圧縮機1吐出冷媒の圧力Pdが上昇する場合があるので、計測制御装置11は吐出冷媒の圧力Pdと設計圧力を比較し、吐出冷媒の圧力Pdが過度に上昇し、設計圧力を超える状況が想定される場合には圧縮機1の保護のために風量を低下させる制御を行う。これにより、蒸発器6での冷媒圧力Peが低下し、その低下に伴い圧縮機1吐出冷媒の圧力Pdも低下させることができ、圧縮機1の保護が実現される(ステップS405)。   Next, although it is the ventilation volume of the evaporator 6, the measurement control apparatus 11 operates this ventilation volume by an initial setting value fundamentally. However, the refrigerant pressure Pe in the evaporator 6 increases depending on the operating conditions, and the pressure Pd of the refrigerant discharged from the compressor 1 detected by the pressure sensor 9b may increase with the increase. The discharge refrigerant pressure Pd is compared with the design pressure, and if the discharge refrigerant pressure Pd rises excessively and exceeds the design pressure, control is performed to reduce the air volume for protection of the compressor 1. . Thereby, the refrigerant | coolant pressure Pe in the evaporator 6 falls, the pressure Pd of the compressor 1 discharge refrigerant | coolant can also be lowered | hung with the fall, and protection of the compressor 1 is implement | achieved (step S405).

次に、エジェクタ3の開度と膨張弁5の開度であるが、計測制御装置11はこれら開度の制御は高低圧熱交換器4での熱交換状況と圧縮機1の吐出温度に基づいて制御する。次に、これらの開度制御時の動作を以下に示す。まずエジェクタ3の開度に応じてエジェクタ3を流れる冷媒流量が変化し、開度大であるほど冷媒流量が増加する。逆に冷媒流量が一定である場合は、エジェクタ3での圧力差が開度に応じて変化し、開度小の場合はその分の冷媒流量低下を補うようにエジェクタ3での圧力差(Pd−Ps)が拡大する。同様に膨張弁5の開度も同じ特性を持ち、開度大であるほど膨張弁5を通過する冷媒流量が増加し、流量一定である場合には、開度小であるほど膨張弁5での圧力差(Pd−Pe)が拡大する。   Next, the opening degree of the ejector 3 and the opening degree of the expansion valve 5, the measurement control device 11 controls the opening degree based on the heat exchange status in the high-low pressure heat exchanger 4 and the discharge temperature of the compressor 1. Control. Next, the operation at the time of opening control will be described below. First, the flow rate of refrigerant flowing through the ejector 3 changes according to the opening degree of the ejector 3, and the refrigerant flow rate increases as the opening degree increases. Conversely, when the refrigerant flow rate is constant, the pressure difference at the ejector 3 changes according to the opening, and when the opening is small, the pressure difference (Pd at the ejector 3 is compensated for the corresponding decrease in the refrigerant flow rate. -Ps) expands. Similarly, the opening degree of the expansion valve 5 has the same characteristics. When the opening degree is larger, the flow rate of the refrigerant passing through the expansion valve 5 increases. When the flow rate is constant, the smaller the opening degree, The pressure difference (Pd−Pe) increases.

そこで、エジェクタ3、膨張弁5の開度の合計開度に対する変化は以下のようになる。本装置では冷媒流量は圧縮機1の回転数で規定されるので回転数が変化しない場合、冷媒流量はほぼ同一となる。そのため合計開度が小さいほどエジェクタ3、膨張弁5での圧力差が拡大するようになるが、蒸発器6での冷媒圧力Peは、外気温度との熱交換が実現されるように動作するので、外気温度でほぼ決定されるようになり、開度制御による変化は小さい。そのため合計開度を小さくし、圧力差が拡大すると圧縮機1の吐出圧力であるPdが上昇する。圧縮機1の吐出圧力であるPdが上昇すると圧縮機1における圧縮仕事が増加するため圧縮機1の吐出温度も上昇する。   Therefore, the change of the opening degree of the ejector 3 and the expansion valve 5 with respect to the total opening degree is as follows. In this apparatus, since the refrigerant flow rate is defined by the rotation speed of the compressor 1, when the rotation speed does not change, the refrigerant flow volume is substantially the same. Therefore, the smaller the total opening, the larger the pressure difference between the ejector 3 and the expansion valve 5, but the refrigerant pressure Pe in the evaporator 6 operates so as to realize heat exchange with the outside air temperature. The temperature is almost determined by the outside air temperature, and the change due to the opening degree control is small. Therefore, when the total opening is reduced and the pressure difference is increased, the discharge pressure Pd of the compressor 1 increases. When Pd, which is the discharge pressure of the compressor 1, increases, the compression work in the compressor 1 increases, so the discharge temperature of the compressor 1 also increases.

ここで、放熱器2における熱交換特性を検討すると、放熱器2では冷媒はガス状態のまま変化するので冷媒が水に与えることのできる熱量は、冷媒の温度差、比熱、及び冷媒流量によって決定される。放熱器2での冷媒動作圧力である吐出圧力Pdが変化しても比熱、冷媒流量の変化は小さいため、吐出温度の増減に伴う温度差の変化が、冷媒の与えることのできる熱量に影響し、吐出温度が高いほど温度差は拡大し、吐出温度が低いほど温度差は縮小する。圧縮機1で同一の冷媒流量を搬送する場合、その流量において冷媒に与える熱量が増加するほど加熱能力が増加し、運転効率が上昇するため、計測制御装置11は高効率運転を狙って放熱器2での冷媒出入口温度差が拡大する運転、すなわち高吐出温度を狙った運転を実施する。ただし吐出温度には、圧縮機1などの各機器に許容される上限温度があるため、計測制御装置11はこの温度以下で信頼性を確保できる範囲で最も高吐出温度となる運転を実施する。例えば吐出温度の許容上限温度が120℃である場合、過渡的な変動による吐出温度上昇も考慮して、計測制御装置11は吐出温度118℃を目標温度として開度の制御を実施する。前述したように、合計開度が小さいほど吐出温度が上昇するので、現在の吐出温度を温度センサ10bで検知し(ステップS406)、計測制御装置11は吐出温度が目標温度より高い場合には、吐出温度を下げるために合計開度を大きく制御し、吐出温度が目標温度より低い場合には、吐出温度を上げるために合計開度を小さく制御することで目標値に近づける(ステップS407〜S408)。   Here, considering the heat exchange characteristics of the radiator 2, since the refrigerant changes in the gas state in the radiator 2, the amount of heat that the refrigerant can give to water is determined by the temperature difference of the refrigerant, the specific heat, and the refrigerant flow rate. Is done. Even if the discharge pressure Pd, which is the refrigerant operating pressure in the radiator 2, changes, the change in specific heat and refrigerant flow rate is small. Therefore, the change in temperature difference with the increase or decrease in discharge temperature affects the amount of heat that the refrigerant can give. The temperature difference increases as the discharge temperature increases, and the temperature difference decreases as the discharge temperature decreases. When the compressor 1 conveys the same refrigerant flow rate, the heating capacity increases and the operation efficiency increases as the amount of heat given to the refrigerant at the flow rate increases, so that the measurement control device 11 aims at high-efficiency operation. 2, an operation in which the refrigerant inlet / outlet temperature difference increases, that is, an operation aiming at a high discharge temperature is performed. However, since the discharge temperature has an upper limit temperature allowed for each device such as the compressor 1, the measurement control device 11 performs an operation with the highest discharge temperature within a range in which reliability can be secured below this temperature. For example, when the allowable upper limit temperature of the discharge temperature is 120 ° C., the measurement control device 11 controls the opening degree with the discharge temperature 118 ° C. as the target temperature in consideration of the discharge temperature increase due to the transient fluctuation. As described above, the smaller the total opening, the higher the discharge temperature. Therefore, the current discharge temperature is detected by the temperature sensor 10b (step S406), and the measurement control device 11 determines that the discharge temperature is higher than the target temperature. In order to lower the discharge temperature, the total opening degree is controlled to be large, and when the discharge temperature is lower than the target temperature, the total opening degree is controlled to be small in order to increase the discharge temperature to approach the target value (steps S407 to S408). .

なお、合計開度の制御により圧縮機1の吐出圧力Pdも変化するが、吐出圧力Pdに対しても圧縮機1などの各機器に許容される上限圧力が規定されている。そこで、吐出温度による制御を実施する際に、吐出圧力Pdが上限圧力を超えるような状況となる場合には、計測制御装置11は合計開度を大きく制御し、吐出圧力Pdの上昇を抑制する。   In addition, although the discharge pressure Pd of the compressor 1 also changes by control of a total opening degree, the upper limit pressure permitted to each apparatus, such as the compressor 1, is prescribed | regulated also with respect to the discharge pressure Pd. Therefore, when the control based on the discharge temperature is performed, if the discharge pressure Pd exceeds the upper limit pressure, the measurement control device 11 controls the total opening largely to suppress the increase in the discharge pressure Pd. .

次に、エジェクタ3、膨張弁5の開度の比に対する変化を以下に示す。開度比をエジェクタ3の開度/膨張弁5の開度と定義すると、開度比が大きくなるほどエジェクタ3に流れる冷媒流量が増加し、バイパス回路8に流れる冷媒流量が減少する。
開度比が大きくなり、エジェクタ3に流れる流量が増加するとエジェクタ3の作用による吸引冷媒の昇圧量が増加し、エジェクタ3から排出される冷媒の圧力Psが上昇する。またバイパス回路8を流れる冷媒流量が減少するため、外気から採熱する熱量が減少し、それにより高低圧熱交換器4における熱交換量も低下し、エジェクタ3を出たガス冷媒の加熱量が減少する。
逆に、開度比が小さくなり、エジェクタ3に流れる流量が減少するとエジェクタ3の作用による吸引冷媒の昇圧量が減少し、エジェクタ3から排出される冷媒の圧力Psが低下する。またバイパス回路8を流れる冷媒流量が増加するため、外気から採熱する熱量が増加し、それにより高低圧熱交換器4における熱交換量も増加し、エジェクタ3を出たガス冷媒の加熱量が増加する。
Next, the change with respect to the ratio of the opening degree of the ejector 3 and the expansion valve 5 is shown below. If the opening ratio is defined as the opening degree of the ejector 3 / the opening degree of the expansion valve 5, the refrigerant flow rate flowing through the ejector 3 increases and the refrigerant flow rate flowing through the bypass circuit 8 decreases as the opening ratio increases.
When the opening ratio increases and the flow rate flowing through the ejector 3 increases, the pressure increase of the suction refrigerant due to the action of the ejector 3 increases, and the pressure Ps of the refrigerant discharged from the ejector 3 increases. Further, since the flow rate of the refrigerant flowing through the bypass circuit 8 is reduced, the amount of heat collected from the outside air is reduced, thereby reducing the amount of heat exchange in the high and low pressure heat exchanger 4 and the amount of heating of the gas refrigerant exiting the ejector 3 is reduced. Decrease.
Conversely, when the opening ratio becomes smaller and the flow rate flowing through the ejector 3 decreases, the pressure increase amount of the suction refrigerant due to the action of the ejector 3 decreases, and the pressure Ps of the refrigerant discharged from the ejector 3 decreases. Further, since the flow rate of the refrigerant flowing through the bypass circuit 8 increases, the amount of heat collected from the outside air increases, thereby increasing the amount of heat exchange in the high / low pressure heat exchanger 4 and the amount of heat of the gas refrigerant exiting the ejector 3 is increased. To increase.

なお、開度比が大きくなりバイパス回路8の流量が低下しても、流量低下に相当する分だけ高低圧熱交換器4の高圧側でのエンタルピ差が拡大する場合には、トータルの熱交換量の低下幅は比較的小さくなる。高低圧熱交換器4の高圧側の温度は、低圧側の冷媒温度に近接するまで低下可能であるので、高低圧熱交換器4の高圧側の出口温度が低圧側入口の冷媒温度よりも高い場合には、バイパス回路8を流れる冷媒流量が低下しても、高低圧熱交換器4の高圧側の出口温度が低下し、熱交換量の低下幅は比較的小さくなる。この場合、エジェクタ3に流れる冷媒流量が増加することにより、エジェクタ3から排出される冷媒の圧力Psが上昇し、それにより圧縮機1での圧力差が低下し、圧縮仕事が減少する効果もあるため、装置の運転効率はバイパス回路8を流れる冷媒流量が低下させる、すなわち開度比を大きくさせても運転効率は大きく変化しない状態となる。   Even if the opening ratio increases and the flow rate of the bypass circuit 8 decreases, if the enthalpy difference on the high pressure side of the high and low pressure heat exchanger 4 increases by an amount corresponding to the decrease in the flow rate, the total heat exchange The amount of decrease is relatively small. Since the temperature on the high pressure side of the high / low pressure heat exchanger 4 can be lowered until it approaches the refrigerant temperature on the low pressure side, the outlet temperature on the high pressure side of the high / low pressure heat exchanger 4 is higher than the refrigerant temperature on the low pressure side inlet. In this case, even if the flow rate of the refrigerant flowing through the bypass circuit 8 decreases, the outlet temperature on the high pressure side of the high / low pressure heat exchanger 4 decreases, and the amount of decrease in the heat exchange amount becomes relatively small. In this case, an increase in the flow rate of the refrigerant flowing through the ejector 3 increases the pressure Ps of the refrigerant discharged from the ejector 3, thereby reducing the pressure difference in the compressor 1 and reducing the compression work. Therefore, the operating efficiency of the apparatus is in a state where the operating efficiency does not change greatly even if the flow rate of the refrigerant flowing through the bypass circuit 8 is reduced, that is, the opening ratio is increased.

一方、高低圧熱交換器4の高圧側の出口温度が低下し、低圧側入口の冷媒温度に近接している場合、バイパス回路8を流れる冷媒流量が低下すると、高圧側でのエンタルピ差が拡大できなくなるため、冷媒流量の低下がそのまま高低圧熱交換器4での熱交換量の低下につながる。この場合、圧縮機1の吸入圧力Psを上昇させる効果よりも、エジェクタ3を流出する冷媒の加熱量が低減することによる影響が大きく、運転効率が低下する。従って開度比を大きくすると運転効率が低下する。   On the other hand, when the outlet temperature on the high pressure side of the high / low pressure heat exchanger 4 decreases and is close to the refrigerant temperature on the low pressure side inlet, if the refrigerant flow rate flowing through the bypass circuit 8 decreases, the enthalpy difference on the high pressure side increases. Since it becomes impossible, the fall of a refrigerant | coolant flow volume will lead to the fall of the heat exchange amount in the high-low pressure heat exchanger 4 as it is. In this case, the effect of reducing the heating amount of the refrigerant flowing out of the ejector 3 is larger than the effect of increasing the suction pressure Ps of the compressor 1, and the operation efficiency is lowered. Therefore, when the opening ratio is increased, the operation efficiency is lowered.

また、開度比が小さくなり、バイパス回路8の流量が増加しても、高低圧熱交換器4の熱交換量は無尽蔵に増加するわけではなく、低圧側出口の冷媒によって規定される。冷媒流量が一定である場合、高低圧熱交換器4の熱交換量の増加に伴い、低圧側出口の冷媒温度も上昇する。ただし、低圧側出口の冷媒温度の上昇は高低圧熱交換器4の高圧側入口温度によって規制される。即ち、高圧側入口温度になれない。従って、高低圧熱交換器4の低圧側出口温度が高圧側入口温度に近接している場合に、開度比を低下させると、高低圧熱交換器4の熱交換量の増加がなされない一方で、エジェクタ3の吸引効果による圧縮機1の吸入圧力Psを上昇させる作用が小さくなるため、運転効率が低下する。
逆に、高低圧熱交換器4の低圧側出口温度と高圧側入口温度が近接していない場合は、開度比を低下させて、エジェクタ3の吸引効果による圧縮機1の吸入圧力Psを上昇させる作用を小さくしても、高低圧熱交換器4の熱交換量の増加がなされ、より多くの熱量が外気から吸熱できるようになるため、運転効率が上昇する効果があり、両者があいまって、開度比を小さくしても運転効率は大きく変化しない状態となる。
Further, even if the opening ratio becomes small and the flow rate of the bypass circuit 8 increases, the heat exchange amount of the high / low pressure heat exchanger 4 does not increase inexhaustively but is defined by the refrigerant at the low pressure side outlet. When the refrigerant flow rate is constant, the refrigerant temperature at the low-pressure side outlet also increases as the heat exchange amount of the high-low pressure heat exchanger 4 increases. However, the rise in the refrigerant temperature at the low-pressure side outlet is regulated by the high-pressure side inlet temperature of the high-low pressure heat exchanger 4. That is, the high pressure side inlet temperature cannot be reached. Accordingly, when the opening ratio is decreased when the low pressure side outlet temperature of the high / low pressure heat exchanger 4 is close to the high pressure side inlet temperature, the heat exchange amount of the high / low pressure heat exchanger 4 is not increased. Thus, since the action of raising the suction pressure Ps of the compressor 1 due to the suction effect of the ejector 3 is reduced, the operation efficiency is lowered.
Conversely, when the low-pressure side outlet temperature and the high-pressure side inlet temperature of the high / low pressure heat exchanger 4 are not close, the opening ratio is reduced and the suction pressure Ps of the compressor 1 due to the suction effect of the ejector 3 is increased. Even if the action is reduced, the heat exchange amount of the high / low pressure heat exchanger 4 is increased, and more heat can be absorbed from the outside air. Even if the opening ratio is reduced, the operating efficiency does not change greatly.

以上の特性に応じて、エジェクタ3と膨張弁5の開度比については、高低圧熱交換器4の出入口の温度差に基づいて、高効率運転を実現できるように制御を行う。まず高低圧熱交換器4の熱交換特性に応じて、高圧側入口と低圧側出口との温度差、及び高圧側出口と低圧側入口との温度差に対して、それぞれ温度の近接を判定する判定値を設ける。次に、高低圧熱交換器4の高圧側入口温度を温度センサ10c、低圧側出口温度を温度センサ10aで検知し、検知温度の温度差を求める。同様に高低圧熱交換器4の高圧側出口温度を温度センサ10d、低圧側入口温度を温度センサ10fで検知し、検知温度の温度差を求める(ステップS409)。
そして、高圧側入口と低圧側出口との温度差を判定値と比較し、高圧側入口と低圧側出口との温度差が判定値よりも小さい場合(ステップS410でYes)、計測制御装置11は開度比が小さくなりすぎて低圧側の温度状況によって高低圧熱交換器4の熱交換量が減少していると判断し、開度比を大きく制御する(ステップS411)。また高圧側出口と低圧側入口との温度差が判定値よりも小さい場合(ステップS412でYes)、計測制御装置11は開度比が大きくなりすぎて高圧側の温度状況によって高低圧熱交換器4の熱交換量が減少していると判断し、開度比を小さく制御する(ステップS413)。
In accordance with the above characteristics, the opening ratio between the ejector 3 and the expansion valve 5 is controlled based on the temperature difference between the inlet and outlet of the high / low pressure heat exchanger 4 so as to realize a high efficiency operation. First, according to the heat exchange characteristics of the high-low pressure heat exchanger 4, the temperature proximity between the high-pressure side inlet and the low-pressure side outlet and the temperature difference between the high-pressure side outlet and the low-pressure side inlet are determined. A judgment value is provided. Next, the high pressure side inlet temperature of the high / low pressure heat exchanger 4 is detected by the temperature sensor 10c, and the low pressure side outlet temperature is detected by the temperature sensor 10a, and a temperature difference between the detected temperatures is obtained. Similarly, the high-pressure side outlet temperature of the high-low pressure heat exchanger 4 is detected by the temperature sensor 10d and the low-pressure side inlet temperature is detected by the temperature sensor 10f, and the temperature difference between the detected temperatures is obtained (step S409).
Then, the temperature difference between the high-pressure side inlet and the low-pressure side outlet is compared with the determination value. If the temperature difference between the high-pressure side inlet and the low-pressure side outlet is smaller than the determination value (Yes in step S410), the measurement control device 11 It is determined that the opening ratio becomes too small and the heat exchange amount of the high-low pressure heat exchanger 4 is decreased due to the low-pressure temperature condition, and the opening ratio is controlled to be large (step S411). If the temperature difference between the high-pressure side outlet and the low-pressure side inlet is smaller than the determination value (Yes in step S412), the measurement control device 11 has an excessively large opening ratio, and the high-low pressure heat exchanger changes depending on the high-pressure side temperature condition. 4 is determined to be decreasing, and the opening ratio is controlled to be small (step S413).

なお、この実施の形態では、高低圧熱交換器4の出入口の各温度差がともに、判定値よりも大きい場合は(ステップS410でNoかつS412でNo)、開度比を変更しない運転としているが、より近接している側の状況を解消するように開度比の制御を行ってもよい。すなわち、出入口の各温度差と判定値との偏差を比較し、高圧側入口と低圧側出口との温度差と判定値との偏差の方が小さい場合には、開度比を大きく制御し、高圧側出口と低圧側入口との温度差と判定値との偏差の方が小さい場合には、開度比を小さく制御する。また高低圧熱交換器4の出入口の各温度差がともに、判定値よりも小さい場合は、開度比を変更しない運転としてもよいが、各温度差が判定値よりも大きい場合と同様に、より近接している側の状況を解消するように開度比の制御を行ってもよい。すなわち、出入口の各温度差と判定値との偏差を比較し、高圧側入口と低圧側出口との温度差の方がより近接して、判定値との偏差の方が大きい場合には、開度比を大きく制御し、高圧側出口と低圧側入口との温度差の方がより近接して、判定値との偏差の方が大きい場合には、開度比を小さく制御する。   In this embodiment, when both temperature differences at the inlet and outlet of the high-low pressure heat exchanger 4 are larger than the determination value (No in step S410 and No in S412), the opening ratio is not changed. However, the opening ratio may be controlled so as to eliminate the situation on the closer side. That is, when the deviation between the temperature difference between the inlet and outlet and the judgment value is compared, and the deviation between the temperature difference between the high-pressure side inlet and the low-pressure side outlet and the judgment value is smaller, the opening ratio is controlled to be large, When the difference between the temperature difference between the high-pressure side outlet and the low-pressure side inlet and the determination value is smaller, the opening ratio is controlled to be small. Moreover, when each temperature difference of the entrance / exit of the high-low pressure heat exchanger 4 is smaller than a judgment value, it is good also as a driving | operation which does not change an opening ratio, but similarly to the case where each temperature difference is larger than a judgment value, The opening ratio may be controlled so as to eliminate the situation on the closer side. That is, the temperature difference between each inlet / outlet and the judgment value is compared, and if the temperature difference between the high-pressure side inlet and the low-pressure side outlet is closer and the deviation from the judgment value is larger, the difference is opened. The degree ratio is controlled to be large, and when the temperature difference between the high-pressure side outlet and the low-pressure side inlet is closer and the deviation from the judgment value is larger, the opening ratio is controlled to be small.

また高低圧熱交換器4の高圧側出口の冷媒状態が気液二相状態である場合、すなわち高低圧熱交換器4の圧力である圧縮機1の吐出圧力を圧力センサ9bで検知し、検知圧力を換算して得られる飽和温度と、温度センサ10dで検知される高圧側出口温度がほぼ等しい温度となっている場合には、計測制御装置11は開度比が小さいと判定し、開度比を大きく制御する。高圧側出口が気液二相状態である場合、そこに含まれるガス冷媒はバイパス回路を流れる上で特に機能を果たさない冷媒となる。すなわち高低圧熱交換器4の高圧側では凝縮液化されない状態であるため、熱交換量としてはほとんど寄与しない。また蒸発器に流入する場合も、蒸発ガス化による熱交換が実施されないため、熱交換量としてはほとんど寄与しない。従って、高低圧熱交換器4の高圧側出口に存在するガス冷媒は、外気から吸熱するというバイパス回路8の目的を実現しない冷媒となる。一方、このガス冷媒の分がエジェクタ3に流れた場合、エジェクタ3による昇圧量が増加するため、圧縮機1の吸入圧力Psは上昇し、圧縮動力が低減し運転効率が上昇する。そこで、計測制御装置11は高低圧熱交換器4の高圧側出口にガス冷媒が流れるという無駄を回避するように、開度比を大きく制御し、高低圧熱交換器4に流れる冷媒流量を減少させる。これにより高圧側の冷媒凝縮が促進され出口にガス冷媒が混入しない過冷却状態となる運転を実施し、高効率の運転を実現する。   When the refrigerant state at the high-pressure side outlet of the high-low pressure heat exchanger 4 is a gas-liquid two-phase state, that is, the discharge pressure of the compressor 1, which is the pressure of the high-low pressure heat exchanger 4, is detected by the pressure sensor 9b. When the saturation temperature obtained by converting the pressure and the high-pressure side outlet temperature detected by the temperature sensor 10d are substantially equal, the measurement control device 11 determines that the opening ratio is small, and the opening degree The ratio is greatly controlled. When the high-pressure side outlet is in a gas-liquid two-phase state, the gas refrigerant contained therein is a refrigerant that does not particularly function when flowing through the bypass circuit. That is, since the high pressure side of the high / low pressure heat exchanger 4 is not condensed and liquefied, the heat exchange amount hardly contributes. Also, when flowing into the evaporator, heat exchange by evaporative gasification is not carried out, so that it hardly contributes as a heat exchange amount. Therefore, the gas refrigerant present at the high-pressure side outlet of the high-low pressure heat exchanger 4 is a refrigerant that does not realize the purpose of the bypass circuit 8 that absorbs heat from the outside air. On the other hand, when the amount of the gas refrigerant flows into the ejector 3, the amount of pressure increase by the ejector 3 increases, so that the suction pressure Ps of the compressor 1 increases, the compression power decreases, and the operation efficiency increases. Therefore, the measurement control device 11 controls the opening ratio largely so as to avoid the waste of the gas refrigerant flowing to the high pressure side outlet of the high / low pressure heat exchanger 4 and reduces the flow rate of the refrigerant flowing to the high / low pressure heat exchanger 4. Let As a result, the refrigerant condensation on the high-pressure side is promoted, and the operation is brought into a supercooling state in which no gas refrigerant is mixed into the outlet, thereby realizing a highly efficient operation.

なお、これらの圧縮機1の回転数制御や、エジェクタ3、膨張弁5の開度制御においては、目標値との偏差に基づくPID制御法などにより、制御量が決定される。   In the rotation speed control of the compressor 1 and the opening control of the ejector 3 and the expansion valve 5, the control amount is determined by a PID control method based on a deviation from the target value.

次に、この冷凍空調装置の構成及び制御によって得られる効果について説明する。まずバイパス回路8、及び高低圧熱交換器4を介して、外気より高温であるエジェクタ3を流出するガス冷媒を、外気から得られる熱により加熱することが可能となる。そのため、装置の設計圧力に対する飽和温度の近傍の温度、もしくはそれよりも高温である負荷媒体を加熱する運転にて、放熱器出口がガスとなる運転条件であっても、冷凍サイクルをヒートポンプとして機能させることが可能となり、高効率の運転を実現できる。   Next, the effect obtained by the configuration and control of this refrigeration air conditioner will be described. First, the gas refrigerant flowing out of the ejector 3 having a higher temperature than the outside air can be heated by the heat obtained from the outside air via the bypass circuit 8 and the high / low pressure heat exchanger 4. Therefore, the refrigeration cycle functions as a heat pump even in operating conditions where the radiator outlet becomes gas in the operation of heating the load medium that is near the saturation temperature with respect to the design pressure of the device or higher than that. It is possible to realize high-efficiency operation.

またエジェクタ3により、バイパス回路8にて外気温度に対する飽和圧力よりも低い圧力Peまで減圧される冷媒を、外気温度に対する飽和圧力以上に昇圧できる。そのためバイパス回路8の冷媒を圧力Peの状態から圧縮機1で昇圧する場合に比べて、圧縮機1の圧縮動力を低減でき、高効率の運転を実現できる。
またエジェクタ3での昇圧作用により、圧縮機1の運転圧縮比は小さくなり、そのため圧縮機1での吸入温度に対する吐出温度の上昇幅は低下する。従って上記のように上限吐出温度になるように制御を行った場合の吸入温度を高く運転することができる。エジェクタ3を流出した冷媒の加熱量も冷媒の温度差に比例して増加するため、圧縮機1の吸入温度が高温であればあるほど、より多くの加熱量を得ることができる。そのため吸熱量が増加したヒートポンプとして運転することができ、より高効率の運転を実現できる。
Further, the ejector 3 can increase the pressure of the refrigerant that is depressurized to a pressure Pe lower than the saturation pressure with respect to the outside air temperature by the bypass circuit 8 to the saturation pressure or more with respect to the outside air temperature. Therefore, compared with the case where the pressure of the refrigerant in the bypass circuit 8 is increased by the compressor 1 from the state of the pressure Pe, the compression power of the compressor 1 can be reduced, and a highly efficient operation can be realized.
Further, the operation compression ratio of the compressor 1 is reduced by the pressurizing action of the ejector 3, so that the increase range of the discharge temperature with respect to the suction temperature in the compressor 1 is reduced. Therefore, it is possible to operate at a higher intake temperature when the control is performed so as to reach the upper limit discharge temperature as described above. Since the heating amount of the refrigerant flowing out of the ejector 3 also increases in proportion to the temperature difference of the refrigerant, the higher the intake temperature of the compressor 1, the more heating amount can be obtained. Therefore, it can be operated as a heat pump with an increased amount of heat absorption, and a more efficient operation can be realized.

またエジェクタ3に流入する冷媒がガス状態であり、吸引される冷媒もガス状態となるので、エジェクタ3の減圧、昇圧過程において液冷媒が発生せず、エジェクタ3から排出される冷媒もガス冷媒となる。従ってエジェクタ3内の冷媒が気液二相状態となる状況でエジェクタを用いる場合よりも、液相が混在することによる効率低下が無く、エジェクタ3をより高効率に活用することが可能となり、さらなる効率向上効果が得られる。   Further, since the refrigerant flowing into the ejector 3 is in a gas state and the sucked refrigerant is also in a gas state, no liquid refrigerant is generated during the decompression and pressure increase processes of the ejector 3, and the refrigerant discharged from the ejector 3 is also a gas refrigerant. Become. Therefore, compared to the case where the ejector 3 is in a gas-liquid two-phase state, the efficiency in the liquid phase is not reduced and the ejector 3 can be used more efficiently than the case where the ejector 3 is in a gas-liquid two-phase state. Efficiency improvement effect is obtained.

なお、アキュムレータ7では気液分離を行うことで、エジェクタ3に吸引される冷媒への液相冷媒の混入を抑制できる。過渡的な変動があり、蒸発器6出口の冷媒が気液二相状態となっても、気液分離作用によりエジェクタ3に吸引される冷媒は常にガス状態とできるので、液相が混入することによる効率低下を抑制でき、より高効率の運転が可能となる。   The accumulator 7 performs gas-liquid separation, so that the liquid phase refrigerant can be prevented from being mixed into the refrigerant sucked by the ejector 3. Even if there is a transient fluctuation and the refrigerant at the outlet of the evaporator 6 is in a gas-liquid two-phase state, the refrigerant sucked into the ejector 3 by the gas-liquid separation action can always be in a gas state, so that the liquid phase is mixed in. It is possible to suppress a decrease in efficiency due to the above, and a more efficient operation is possible.

また、アキュムレータ7が配置されない構成であっても、同様の機能を膨張弁5の開度制御により実施できる。すなわち、膨張弁5の開度制御により蒸発器6出口の冷媒状態が過熱ガスとなるように制御させる。具体的には、蒸発器6出口の冷媒過熱度の目標値を定め、蒸発器6出入口の冷媒温度の温度差から求められる過熱度が目標値となるように計測制御装置11が膨張弁5の開度を制御する。このような制御を行うことで、エジェクタ3に吸引される冷媒は常にガス状態とでき、液相が混入することによる効率低下を抑制でき、より高効率の運転が可能となる。   Even if the accumulator 7 is not arranged, the same function can be implemented by controlling the opening degree of the expansion valve 5. That is, by controlling the opening degree of the expansion valve 5, the refrigerant state at the outlet of the evaporator 6 is controlled to become superheated gas. Specifically, the target value of the refrigerant superheat degree at the outlet of the evaporator 6 is determined, and the measurement control device 11 controls the expansion valve 5 so that the superheat degree obtained from the temperature difference of the refrigerant temperature at the inlet and outlet of the evaporator 6 becomes the target value. Control the opening. By performing such control, the refrigerant sucked into the ejector 3 can always be in a gas state, and a reduction in efficiency due to mixing of the liquid phase can be suppressed, so that a more efficient operation can be performed.

またエジェクタ3、及び膨張弁5の開度制御により圧縮機1出口の吐出温度が運転可能な最高温度とすることで、放熱器2での冷媒温度差を最大にすることができ、加熱能力を最大にすることができ、それと同時に装置の運転効率を高くすることができる。   In addition, by controlling the opening of the ejector 3 and the expansion valve 5 so that the discharge temperature at the outlet of the compressor 1 is the maximum operable temperature, the refrigerant temperature difference in the radiator 2 can be maximized, and the heating capacity can be increased. It can be maximized and at the same time the operating efficiency of the device can be increased.

またエジェクタ3、及び膨張弁5の開度制御により高低圧熱交換器4の高低圧出入口の冷媒温度差を適切に確保する運転を実施することで、高低圧熱交換器4での熱交換量の低下を抑制することができる。そのため、エジェクタ3を出た冷媒への加熱量を確保することができ、ヒートポンプとしての機能を適切に実現することで、より高効率の運転を実施できる。   In addition, the amount of heat exchange in the high / low pressure heat exchanger 4 is achieved by performing an operation to appropriately secure the refrigerant temperature difference between the high / low pressure inlet / outlet of the high / low pressure heat exchanger 4 by controlling the opening of the ejector 3 and the expansion valve 5 Can be suppressed. Therefore, it is possible to secure the amount of heating to the refrigerant that has exited the ejector 3, and it is possible to implement a more efficient operation by appropriately realizing the function as a heat pump.

なお、本実施の形態では、負荷側媒体の温水を加熱する構成を示したが、負荷側媒体を加熱する構成をこれに限るものではなく、他の場合にも適用可能である。例えば放熱器2として、空気を加熱するプレートフィン熱交換器を適用し、乾燥用途などとして、高温の空気を得るような装置に適用してもよい。また負荷媒体を加熱する放熱器2を延長配管で接続し、放熱器2以外の圧縮機1を含む部分と分離して配置するセパレータ形の装置構成としてもよい。   In addition, in this Embodiment, the structure which heats the hot water of a load side medium was shown, However, The structure which heats a load side medium is not restricted to this, It is applicable also in other cases. For example, a plate fin heat exchanger that heats air may be applied as the radiator 2 and may be applied to an apparatus that obtains high-temperature air for drying purposes. Moreover, it is good also as a separator type apparatus structure which connects the heat radiator 2 which heats a load medium by extension piping, and isolate | separates and arrange | positions from the part containing the compressor 1 other than the heat radiator 2. FIG.

また、エジェクタ3では、ニードル部42を電磁コイル部41にて軸方向に駆動(移動)させてノズル喉部43cの流路面積を可変可能としているが、エジェクタ3のノズルを固定開度のノズルとし、流量調整用の弁を別途設ける構成としてもよい。例えば、開度可変である第2の電子膨張弁をエジェクタ3の吸入側、もしくは下流側、もしくは並列に配置し、第2の電子膨張弁の開度制御により、上記のエジェクタ3の開度制御を代用する構成としてもよい。   In the ejector 3, the needle portion 42 is driven (moved) in the axial direction by the electromagnetic coil portion 41 so that the flow passage area of the nozzle throat portion 43 c can be varied, but the nozzle of the ejector 3 is a fixed opening nozzle. The flow rate adjusting valve may be separately provided. For example, a second electronic expansion valve having a variable opening degree is arranged on the suction side, the downstream side, or in parallel of the ejector 3, and the opening degree control of the ejector 3 is performed by controlling the opening degree of the second electronic expansion valve. It is good also as a structure which substitutes.

また、エジェクタ3、膨張弁5の開度制御では、合計開度と開度比を制御して目標とする状態が得られるように制御を行っているが、各開度にて個別に目標値を制御する方法を実施してもよい。例えば、エジェクタ3の開度制御により、圧縮機1の吐出温度が目標値になるように制御し、膨張弁5の開度制御により高低圧熱交換器4の出入口温度差を確保するように制御を行ってもよい。   Further, in the opening control of the ejector 3 and the expansion valve 5, the total opening and the opening ratio are controlled so as to obtain a target state. You may implement the method of controlling. For example, control is performed so that the discharge temperature of the compressor 1 becomes a target value by opening degree control of the ejector 3, and control is performed so as to secure the inlet / outlet temperature difference of the high / low pressure heat exchanger 4 by opening degree control of the expansion valve 5. May be performed.

また本実施の形態では減圧装置として膨張弁5を用いているが、膨張弁5の代わりに第2のエジェクタを用いてもよい。第2のエジェクタにより、蒸発器6を出た冷媒を吸引昇圧する構成とすることで、エジェクタ3の吸引圧力が上昇し、それにより圧縮機1の吸入圧力が上昇し、圧縮動力が低減するため、より高効率の運転を実施することができる。   In this embodiment, the expansion valve 5 is used as the pressure reducing device, but a second ejector may be used instead of the expansion valve 5. Since the second ejector is configured to suck and pressurize the refrigerant exiting the evaporator 6, the suction pressure of the ejector 3 increases, thereby increasing the suction pressure of the compressor 1 and reducing the compression power. More efficient operation can be performed.

また本実施の形態では、高温の負荷側媒体を加熱する運転方法について述べたが、本装置の構成にて、低温の負荷側媒体を加熱することにも適用できる。この場合、放熱器2にて冷媒が凝縮、液化しながら熱交換し、負荷側媒体に温熱を与える運転となる。そこで、エジェクタ3の開度を全閉、もしくは全閉近くの小さな開度に設定し、冷媒が主に、圧縮機1、放熱器2、高低圧熱交換器4の高圧側、膨張弁5、蒸発器6、アキュムレータ7、エジェクタ3、高低圧熱交換器4の低圧側、圧縮機1という順で流れるようにする。この場合、放熱器2で冷媒が液化され、蒸発器6では高圧液冷媒を減圧後の低圧二相冷媒を外気から吸熱して加熱する運転となり、通常のヒートポンプと同様の冷凍サイクルの動作となる。従ってこの場合はエジェクタ3による昇圧作用がなくても、高効率の運転が実現される。
エジェクタ3、膨張弁5の開度制御により、負荷側媒体の温度に応じて、適した冷凍サイクルを動作させることができるため、様々な運転条件に対応できる高効率な装置とすることができる。
In the present embodiment, the operation method for heating the high-temperature load-side medium has been described. However, the present embodiment can also be applied to heating the low-temperature load-side medium. In this case, the heat is exchanged while the refrigerant is condensed and liquefied in the radiator 2, and heat is applied to the load-side medium. Therefore, the opening degree of the ejector 3 is set to a fully closed state or a small opening degree near the fully closed state, and the refrigerant is mainly the compressor 1, the radiator 2, the high pressure side of the high / low pressure heat exchanger 4, the expansion valve 5, The evaporator 6, the accumulator 7, the ejector 3, the low pressure side of the high / low pressure heat exchanger 4, and the compressor 1 are flowed in this order. In this case, the refrigerant is liquefied by the radiator 2, and the evaporator 6 is operated to absorb the high-pressure liquid refrigerant after depressurizing the low-pressure two-phase refrigerant from outside air and heat it, and the operation of the refrigeration cycle is the same as that of a normal heat pump. . Therefore, in this case, a high-efficiency operation can be realized without the pressure increasing action by the ejector 3.
By controlling the opening degree of the ejector 3 and the expansion valve 5, a suitable refrigeration cycle can be operated according to the temperature of the load-side medium, so that a highly efficient device that can cope with various operating conditions can be obtained.

また本実施の形態で適用した冷媒はR410Aとしたが、他の冷媒でも同様に適用可能である。圧縮機1吐出圧力Pdが超臨界状態で動作するCO2などの冷媒も適用することができる。CO2冷媒の場合、高圧が超臨界状態で動作すると、冷媒の凝縮動作が無くなるが、放熱器2にて適度な低温まで冷却されると減圧後は、二相冷媒となり、R410A冷媒と同様に、蒸発、ガス化しながら外気から吸熱する運転が可能である。しかし、CO2を用いた装置にも設計圧力が存在し、その設計圧力に対し定められる温度より高い温度の負荷側媒体を加熱する場合、放熱器2出口の冷媒が高温となり、その冷媒を減圧しても二相状態とはならず、蒸発、ガス化しながら外気から吸熱するというヒートポンプの作用を果たせない条件が存在する。例えば、設計圧力が13MPaであり、高圧が13MPaで動作する場合、放熱器2出口温度が74℃以上となる場合、すなわち70℃程度以上の負荷側媒体を加熱する場合には、放熱器2出口の冷媒を減圧しても、二相状態ではなくガス状態となり、外気から吸熱することができなくなる。このような条件であっても、本実施の形態の構成を適用することで、ヒートポンプとして機能させることが可能であり、より高効率の運転を実施することができる。   Moreover, although the refrigerant | coolant applied in this Embodiment was R410A, other refrigerant | coolants are applicable similarly. A refrigerant such as CO 2 that operates in a supercritical state where the compressor 1 discharge pressure Pd is also applicable. In the case of a CO2 refrigerant, if the high pressure operates in a supercritical state, the refrigerant does not condense, but when cooled to a moderate low temperature in the radiator 2, it becomes a two-phase refrigerant after depressurization, and like the R410A refrigerant, Operation that absorbs heat from outside air while evaporating and gasifying is possible. However, the design pressure also exists in the apparatus using CO2, and when the load side medium having a temperature higher than the temperature determined for the design pressure is heated, the refrigerant at the outlet of the radiator 2 becomes high temperature, and the refrigerant is decompressed. However, there is a condition that the heat pump cannot perform the action of absorbing heat from the outside air while evaporating and gasifying. For example, when the design pressure is 13 MPa and the high pressure is 13 MPa, the radiator 2 outlet temperature is 74 ° C. or higher, that is, when the load-side medium of about 70 ° C. or higher is heated, the radiator 2 outlet Even if the refrigerant is depressurized, it becomes a gas state instead of a two-phase state, and heat cannot be absorbed from the outside air. Even under such conditions, by applying the configuration of the present embodiment, it is possible to function as a heat pump, and a more efficient operation can be performed.

実施の形態2.
以下この発明の実施の形態2を図5に示す。図5はこの発明の実施の形態2を示す冷凍空調装置の回路図である。図において、実施の形態1の図1と同一の部分には同一の符号を付し説明を省略する。
図5において、気液分離器12が放熱器2出口におけるエジェクタ3とバイパス回路8の分岐部に設けられる。気液分離器12は重力により液を分離する形式であり、気液分離器12の下方から流出する冷媒はバイパス回路8に流れ、気液分離器12の上方から流出するガス冷媒はエジェクタ3に流れる。
Embodiment 2. FIG.
A second embodiment of the present invention is shown in FIG. FIG. 5 is a circuit diagram of a refrigerating and air-conditioning apparatus showing Embodiment 2 of the present invention. In the figure, the same reference numerals are given to the same parts as those in FIG.
In FIG. 5, a gas-liquid separator 12 is provided at a branch portion of the ejector 3 and the bypass circuit 8 at the outlet of the radiator 2. The gas-liquid separator 12 is of a type that separates the liquid by gravity. The refrigerant flowing out from below the gas-liquid separator 12 flows to the bypass circuit 8, and the gas refrigerant flowing out from above the gas-liquid separator 12 flows to the ejector 3. Flowing.

次に、運転動作について説明する。まず放熱器2出口がガス状態で運転される場合であるが、この場合は実施の形態1と同様にエジェクタ3、バイパス回路8に対しガス冷媒がそのまま分配されるので、実施の形態1と同様の動作となる。   Next, the driving operation will be described. First, the radiator 2 outlet is operated in a gas state. In this case, since the gas refrigerant is distributed as it is to the ejector 3 and the bypass circuit 8 as in the first embodiment, the same as in the first embodiment. It becomes the operation.

次に放熱器2の出口が気液二相状態となる場合について説明する。放熱器2において、負荷側媒体である水の入口温度が高い場合は放熱器2出口の冷媒状態がガスとなるように熱交換されるが、水の温度が適度に低下した場合、放熱器2にて冷媒の凝縮が一部なされ、放熱器2出口の冷媒状態が気液二相状態となる場合が生じる。このとき、実施の形態1と同様の構成とすると、放熱器2を出た液冷媒の一部がそのままエジェクタ3に流入されることになる。エジェクタ3に液冷媒が混入すると、エジェクタ3内の冷媒状態が気液二相状態となるため、エジェクタの動力回収効率が低下する運転となる。また液冷媒そのものを膨張しても得られる動力回収量は少ないため、動力回収効率の低下の影響が大きく、装置の運転効率が低下する。   Next, a case where the outlet of the radiator 2 is in a gas-liquid two-phase state will be described. In the radiator 2, when the temperature of the inlet water of the load-side medium is high, heat exchange is performed so that the refrigerant state at the outlet of the radiator 2 becomes gas, but when the temperature of the water is appropriately reduced, the radiator 2 In some cases, the refrigerant is partially condensed and the refrigerant state at the outlet of the radiator 2 becomes a gas-liquid two-phase state. At this time, if the configuration is the same as that of the first embodiment, a part of the liquid refrigerant that has exited the radiator 2 flows into the ejector 3 as it is. When liquid refrigerant is mixed into the ejector 3, the refrigerant state in the ejector 3 becomes a gas-liquid two-phase state, so that the power recovery efficiency of the ejector is reduced. Further, since the power recovery amount obtained even if the liquid refrigerant itself is expanded is small, the influence of the reduction in power recovery efficiency is great, and the operation efficiency of the apparatus is reduced.

そこで、本実施の形態では放熱器2出口に気液分離器を配置し、放熱器2出口の冷媒状態が気液二相状態であってもエジェクタ3に液冷媒が混入しないようにする。これにより、液冷媒が混入することによるエジェクタ3の動力回収効率の低下を回避でき、装置の運転効率が上昇する。また液冷媒は蒸発器6で蒸発することにより外気から吸熱を得るために作用するため、液冷媒をより多くバイパス回路8に流れるようにすることで、外気からの吸熱量を増加でき、エジェクタ3を流出する冷媒の加熱量を増加することができる。これにより装置がヒートポンプとして動作するときの運転効率を高めることができる。   Therefore, in the present embodiment, a gas-liquid separator is disposed at the outlet of the radiator 2 so that the liquid refrigerant is not mixed into the ejector 3 even if the refrigerant state at the outlet of the radiator 2 is a gas-liquid two-phase state. Thereby, the fall of the motive power collection | recovery efficiency of the ejector 3 by liquid refrigerant mixing can be avoided, and the operating efficiency of an apparatus rises. Further, since the liquid refrigerant acts to obtain heat absorption from the outside air by evaporating in the evaporator 6, the amount of heat absorption from the outside air can be increased by allowing more liquid refrigerant to flow into the bypass circuit 8, and the ejector 3 The amount of heating of the refrigerant flowing out can be increased. Thereby, the operating efficiency when the apparatus operates as a heat pump can be increased.

なお、気液分離器12では、気液を完全に分離してガスをエジェクタ3、液を高低圧熱交換器4に流すのではなく、一部のガスはそのまま高低圧熱交換器4に流れるようにする。この冷媒分配状況はエジェクタ3、膨張弁5の開度制御により実現される。すなわち、前述したように仮に気液を完全に分離してバイパスに液冷媒のみが流れる状態で運転する場合、高低圧熱交換器4の高圧部で凝縮液化する冷媒が存在しないので、高圧の液冷媒が冷却し温度低下する運転となる。このとき、高低圧熱交換器4における低圧側の必要加熱量に対して、凝縮がなされない分高圧の液冷媒の冷却がより大きくなり、高低圧熱交換器4の高圧側出口温度が低圧側入口温度と近接する運転となる。この状態で、実施の形態1に示されるエジェクタ3、膨張弁5の開度制御を実施すると、計測制御装置11は、開度比が大きくなり過ぎて高圧側の温度状況によって高低圧熱交換器4での熱交換量が低下していると判断し、バイパス回路8に流れる冷媒流量が増加するように開度比を小さく制御する。制御前の時点で放熱器2出口の液冷媒は全てバイパス流路8に流れているので、追加して冷媒流量を増加させる場合はエジェクタ3に流れるガス冷媒の一部がバイパス回路8に流れる運転となり、前述したような気液分離状況となる。   In the gas-liquid separator 12, the gas / liquid is not completely separated and the gas flows to the ejector 3, and the liquid flows to the high / low pressure heat exchanger 4, but a part of the gas flows to the high / low pressure heat exchanger 4 as it is. Like that. This refrigerant distribution state is realized by opening control of the ejector 3 and the expansion valve 5. That is, as described above, when the operation is performed in a state in which the gas and liquid are completely separated and only the liquid refrigerant flows through the bypass, there is no refrigerant that condenses and liquefies in the high pressure portion of the high and low pressure heat exchanger 4. The refrigerant cools and the temperature decreases. At this time, with respect to the required amount of heat on the low pressure side in the high and low pressure heat exchanger 4, the cooling of the high pressure liquid refrigerant becomes larger by the amount that is not condensed, and the high pressure side outlet temperature of the high and low pressure heat exchanger 4 is low. The operation is close to the inlet temperature. In this state, when the opening degree control of the ejector 3 and the expansion valve 5 shown in the first embodiment is performed, the measurement control device 11 causes the opening / closing ratio to become too large, and the high / low pressure heat exchanger depends on the high temperature side temperature condition. 4 is determined to be low, and the opening ratio is controlled to be small so that the flow rate of the refrigerant flowing through the bypass circuit 8 increases. Since all of the liquid refrigerant at the outlet of the radiator 2 flows to the bypass flow path 8 before the control, when a refrigerant flow rate is additionally increased, part of the gas refrigerant flowing to the ejector 3 flows to the bypass circuit 8. Thus, the gas-liquid separation state as described above is obtained.

なお、運転制御については、上記の制御も含めて実施の形態1と同様の制御が実施される。制御時の動作も実施の形態1の場合と同様になり、同様の効果を得ることができる。   In addition, about operation control, control similar to Embodiment 1 is implemented including said control. The operation at the time of control is the same as that in the first embodiment, and the same effect can be obtained.

実施の形態3.
以下この発明の実施の形態3を図6に示す。図6はこの発明の実施の形態3を示す冷凍空調装置の回路図である。図において、実施の形態1の図1と同一の部分には同一の符号を付し説明を省略する。
図6において、気液分離器12が高低圧熱交換器4高圧側出口におけるエジェクタ3とバイパス回路8の分岐部に設けられる。気液分離器12は重力により液を分離する形式であり、気液分離器12の下方から流出する冷媒はバイパス回路8に流れ、気液分離器12の上方から流出する冷媒はエジェクタ3に流れる。
Embodiment 3 FIG.
A third embodiment of the present invention is shown in FIG. FIG. 6 is a circuit diagram of a refrigerating and air-conditioning apparatus showing Embodiment 3 of the present invention. In the figure, the same reference numerals are given to the same parts as those in FIG.
In FIG. 6, a gas-liquid separator 12 is provided at a branch portion between the ejector 3 and the bypass circuit 8 at the high-pressure side outlet of the high-low pressure heat exchanger 4. The gas-liquid separator 12 is a type that separates the liquid by gravity. The refrigerant flowing out from below the gas-liquid separator 12 flows to the bypass circuit 8, and the refrigerant flowing out from above the gas-liquid separator 12 flows to the ejector 3. .

次に、運転動作について説明する。実施の形態1と同様の運転条件となった場合、実施の形態1では放熱器2出口のガス冷媒を7割程度エジェクタ3に流し、高低圧熱交換器4の高圧側出口が過冷却状態となるようにしていたが、放熱器2出口のガス冷媒のエジェクタへの分岐が実施の形態3ではなくなり、全て高低圧熱交換器4に流れるようにするので、高低圧熱交換器4高圧側出口の冷媒状態は気液二相状態となる。そこで、本実施の形態では高低圧熱交換器4の高圧側出口に気液分離器を配置し、高低圧熱交換器4の高圧側出口の冷媒をエジェクタ3に分岐する際に、エジェクタ3への液冷媒の流入を阻止する。これにより、液冷媒が混入することによるエジェクタ3の動力回収効率の低下を回避でき、装置の運転効率が上昇する。また液冷媒は蒸発器6で蒸発することにより外気から吸熱を得るために作用するため、液冷媒をより多くバイパス回路8に流れるようにすることで、外気からの吸熱量を増加でき、エジェクタ3を流出する冷媒の加熱量を増加することができる。これにより装置がヒートポンプとして動作するときの運転効率を高めることができる。   Next, the driving operation will be described. In the case of the same operating conditions as in the first embodiment, in the first embodiment, about 70% of the gas refrigerant at the outlet of the radiator 2 is caused to flow into the ejector 3, and the high-pressure side outlet of the high-low pressure heat exchanger 4 is in a supercooled state. However, since the branching of the gas refrigerant at the outlet of the radiator 2 to the ejector is not in the third embodiment and all flows to the high / low pressure heat exchanger 4, the high / low pressure heat exchanger 4 has a high pressure side outlet. The refrigerant state is a gas-liquid two-phase state. Therefore, in the present embodiment, a gas-liquid separator is disposed at the high pressure side outlet of the high / low pressure heat exchanger 4, and when the refrigerant at the high pressure side outlet of the high / low pressure heat exchanger 4 is branched to the ejector 3, Inflow of liquid refrigerant. Thereby, the fall of the motive power collection | recovery efficiency of the ejector 3 by liquid refrigerant mixing can be avoided, and the operating efficiency of an apparatus rises. Further, since the liquid refrigerant acts to obtain heat absorption from the outside air by evaporating in the evaporator 6, the amount of heat absorption from the outside air can be increased by allowing more liquid refrigerant to flow into the bypass circuit 8, and the ejector 3 The amount of heating of the refrigerant flowing out can be increased. Thereby, the operating efficiency when the apparatus operates as a heat pump can be increased.

なお、運転制御については、上記の制御も含めて実施の形態1と同様の制御が実施される。制御時の動作も実施の形態1の場合と同様になり、同様の効果を得ることができる。   In addition, about operation control, control similar to Embodiment 1 is implemented including said control. The operation at the time of control is the same as that in the first embodiment, and the same effect can be obtained.

実施の形態4.
以下この発明の実施の形態4を図7に示す。図7はこの発明の実施の形態4を示す冷凍空調装置の回路図である。図において、実施の形態1の図1と同一の部分には同一の符号を付し説明を省略する。
図7において、膨張機13が放熱器2出口と高低圧熱交換器4低圧側入口の間に設けられる。膨張機13は、膨張部13aと圧縮部13bで構成され、膨張部13aで回収される膨張動力にて圧縮部13bを駆動する。膨張部13aでは放熱器2出口の冷媒の一部が流入し、膨張減圧して動力を発生して膨張部13aを流出する。圧縮部13bではアキュムレータ7を出た飽和ガス冷媒が流入し、圧縮昇圧した後で圧縮部13bを流出する。膨張部13aを流出した冷媒と圧縮部13bを流出した冷媒は合流し、その後高低圧熱交換器4の低圧側に流入する。
Embodiment 4 FIG.
A fourth embodiment of the present invention is shown in FIG. FIG. 7 is a circuit diagram of a refrigerating and air-conditioning apparatus showing Embodiment 4 of the present invention. In the figure, the same reference numerals are given to the same parts as those in FIG.
In FIG. 7, the expander 13 is provided between the radiator 2 outlet and the high-low pressure heat exchanger 4 low-pressure side inlet. The expander 13 includes an expansion unit 13a and a compression unit 13b, and drives the compression unit 13b with expansion power recovered by the expansion unit 13a. In the expansion part 13a, a part of the refrigerant at the outlet of the radiator 2 flows in, expands and depressurizes, generates power, and flows out of the expansion part 13a. In the compression unit 13b, the saturated gas refrigerant that has exited the accumulator 7 flows in, and after compression and pressure increase, flows out of the compression unit 13b. The refrigerant that has flowed out of the expansion portion 13a and the refrigerant that has flowed out of the compression portion 13b merge, and then flow into the low-pressure side of the high-low pressure heat exchanger 4.

本実施の形態における運転動作は実施の形態1と同様になり、冷凍サイクルの動作状況は図3に示されるものと同様となる。従ってバイパス回路8、及び高低圧熱交換器4を介して、外気より高温である高低圧熱交換器4に流入するガス冷媒を外気から得られる熱により加熱することが可能となる。そのため、高温の負荷媒体を加熱する運転にて、放熱器出口がガスとなる運転条件であっても、冷凍サイクルをヒートポンプとして機能させることが可能となり、高効率の運転を実現できる。   The operation in the present embodiment is the same as that in the first embodiment, and the operation state of the refrigeration cycle is the same as that shown in FIG. Therefore, the gas refrigerant flowing into the high / low pressure heat exchanger 4 having a higher temperature than the outside air can be heated by the heat obtained from the outside air via the bypass circuit 8 and the high / low pressure heat exchanger 4. For this reason, in the operation of heating the high-temperature load medium, the refrigeration cycle can be made to function as a heat pump even under operating conditions in which the radiator outlet becomes gas, and a highly efficient operation can be realized.

また膨張機13により、バイパス回路8にて外気温度に対する飽和圧力よりも低い圧力Peまで減圧される冷媒を、外気温度に対する飽和圧力以上に昇圧できる。そのためバイパス回路8の冷媒を圧力Peの状態から圧縮機1で昇圧する場合に比べて、圧縮機1の圧縮動力を低減でき、高効率の運転を実現できる。
また一般に膨張機13の動力回収効率はエジェクタよりも高いので、昇圧幅はエジェクタを適用する場合よりも大きくなり、より高効率な運転を実施することができる。
Further, the expander 13 can raise the pressure of the refrigerant, which is decompressed to a pressure Pe lower than the saturation pressure with respect to the outside air temperature, by the bypass circuit 8 to be higher than the saturation pressure with respect to the outside air temperature. Therefore, compared with the case where the pressure of the refrigerant in the bypass circuit 8 is increased by the compressor 1 from the state of the pressure Pe, the compression power of the compressor 1 can be reduced, and a highly efficient operation can be realized.
In general, since the power recovery efficiency of the expander 13 is higher than that of the ejector, the boosting width is larger than that in the case where the ejector is applied, and a more efficient operation can be performed.

1 圧縮機、2 放熱器、3 エジェクタ、3a 吸引部入口、4 高低圧熱交換器、5 膨張弁、6 蒸発器、7 アキュムレータ、8 バイパス回路、9a、9b 圧力センサ、10a、10b、10c、10d、10e、10f、10g、10h、10i 温度センサ、11 計測制御装置、12 気液分離器、13 膨張機、13a 膨張部、13b 圧縮部、41 電磁コイル部、42 ニードル部、43 ノズル部、43a 減圧部、43b 末広部、43c ノズル喉部、44 混合部、45 ディフューザ部。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Radiator, 3 Ejector, 3a Suction part inlet, 4 High-low pressure heat exchanger, 5 Expansion valve, 6 Evaporator, 7 Accumulator, 8 Bypass circuit, 9a, 9b Pressure sensor, 10a, 10b, 10c, 10d, 10e, 10f, 10g, 10h, 10i Temperature sensor, 11 Measurement control device, 12 Gas-liquid separator, 13 Expander, 13a Expansion unit, 13b Compression unit, 41 Electromagnetic coil unit, 42 Needle unit, 43 Nozzle unit, 43a Depressurization part, 43b Wide end part, 43c Nozzle throat part, 44 Mixing part, 45 Diffuser part.

Claims (1)

第1の圧縮機、放熱器、膨張部、および高低圧熱交換器低圧部を順次環状に接続した冷凍サイクルと、
前記放熱器と前記膨張部の間にて分岐し、前記膨張部と前記高低圧熱交換器低圧部の間にて合流するバイパス回路とを備え、
このバイパス回路上に、前記高低圧熱交換器低圧部を流れる冷媒と熱交換を行う高低圧熱交換器高圧部、減圧装置、蒸発器、および前記膨張部によって駆動される第2の圧縮機を順次設け、
前記放熱器は所定温度より高温の負荷媒体を加熱する場合に、前記圧縮機からのガス冷媒を冷却してガス状態のまま出力し、前記膨張部は前記放熱器からの冷媒をガス状態で入力し、前記第2の圧縮機は、前記蒸発器からの冷媒をガス状態で入力することを特徴とする冷凍空調装置。
A refrigeration cycle in which a first compressor, a radiator, an expansion section, and a high-low pressure heat exchanger low-pressure section are sequentially connected in an annular shape;
A bypass circuit that branches between the radiator and the expansion section, and merges between the expansion section and the high-low pressure heat exchanger low-pressure section;
On this bypass circuit, a high-low pressure heat exchanger for exchanging heat with the refrigerant flowing in the high-low pressure heat exchanger low-pressure section, a high-pressure section, a decompression device, an evaporator, and a second compressor driven by the expansion section One after another
When the heat radiator heats a load medium having a temperature higher than a predetermined temperature, the gas refrigerant from the compressor is cooled and output in a gas state, and the expansion unit inputs the refrigerant from the heat radiator in a gas state. And the said 2nd compressor inputs the refrigerant | coolant from the said evaporator in a gas state, The refrigeration air conditioner characterized by the above-mentioned.
JP2011114169A 2011-05-20 2011-05-20 Refrigerating air conditioner Pending JP2011153825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011114169A JP2011153825A (en) 2011-05-20 2011-05-20 Refrigerating air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011114169A JP2011153825A (en) 2011-05-20 2011-05-20 Refrigerating air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007335970A Division JP4931791B2 (en) 2007-12-27 2007-12-27 Refrigeration air conditioner

Publications (1)

Publication Number Publication Date
JP2011153825A true JP2011153825A (en) 2011-08-11

Family

ID=44539921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011114169A Pending JP2011153825A (en) 2011-05-20 2011-05-20 Refrigerating air conditioner

Country Status (1)

Country Link
JP (1) JP2011153825A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123265U (en) * 1983-02-09 1984-08-20 三菱重工業株式会社 Refrigeration equipment
JP2003074999A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigerating machine
JP2005300031A (en) * 2004-04-13 2005-10-27 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its controlling method
JP2006023004A (en) * 2004-07-07 2006-01-26 Daikin Ind Ltd Refrigeration unit
JP2006071257A (en) * 2004-08-06 2006-03-16 Daikin Ind Ltd Refrigeration cycle device
JP2007155277A (en) * 2005-12-08 2007-06-21 Valeo Thermal Systems Japan Corp Refrigerating cycle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123265U (en) * 1983-02-09 1984-08-20 三菱重工業株式会社 Refrigeration equipment
JP2003074999A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigerating machine
JP2005300031A (en) * 2004-04-13 2005-10-27 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its controlling method
JP2006023004A (en) * 2004-07-07 2006-01-26 Daikin Ind Ltd Refrigeration unit
JP2006071257A (en) * 2004-08-06 2006-03-16 Daikin Ind Ltd Refrigeration cycle device
JP2007155277A (en) * 2005-12-08 2007-06-21 Valeo Thermal Systems Japan Corp Refrigerating cycle

Similar Documents

Publication Publication Date Title
JP5452138B2 (en) Refrigeration air conditioner
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
EP2322875B1 (en) Refrigeration cycle device and air conditioner
WO2013080244A1 (en) Refrigerating/air-conditioning device
JP2006052934A (en) Heat exchange apparatus and refrigerating machine
US20170089617A1 (en) Gas heat-pump system
JP6019837B2 (en) Heat pump system
JP5018724B2 (en) Ejector refrigeration cycle
JP4931791B2 (en) Refrigeration air conditioner
CN103836847A (en) Refrigeration cycle apparatus and warm water producing apparatus having refrigeration cycle apparatus
JP4317793B2 (en) Cooling system
JP2012220162A (en) Refrigeration cycle method
JP2012247081A (en) Composite system cum power generation and heat pump
JP6388260B2 (en) Refrigeration equipment
JP4837150B2 (en) Refrigeration cycle equipment
JP5068342B2 (en) Refrigeration equipment
JP2007051841A (en) Refrigeration cycle device
JP2016090143A (en) Two-stage compression type refrigeration cycle, and its control device and control method
JP5318153B2 (en) Refrigeration air conditioner
JP5377528B2 (en) Refrigeration cycle equipment
JP2006145144A (en) Refrigerating cycle device
JP5660836B2 (en) Vapor compression heat pump
JP2011099626A (en) Refrigerating cycle device and hot water heating device using the same
JP3863555B2 (en) Refrigeration cycle equipment
JP2011153825A (en) Refrigerating air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611