JP4318369B2 - Screw type refrigerator - Google Patents

Screw type refrigerator Download PDF

Info

Publication number
JP4318369B2
JP4318369B2 JP2000047448A JP2000047448A JP4318369B2 JP 4318369 B2 JP4318369 B2 JP 4318369B2 JP 2000047448 A JP2000047448 A JP 2000047448A JP 2000047448 A JP2000047448 A JP 2000047448A JP 4318369 B2 JP4318369 B2 JP 4318369B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
screw
winding
continuous operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000047448A
Other languages
Japanese (ja)
Other versions
JP2001241787A (en
JP2001241787A5 (en
Inventor
和幸 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000047448A priority Critical patent/JP4318369B2/en
Publication of JP2001241787A publication Critical patent/JP2001241787A/en
Publication of JP2001241787A5 publication Critical patent/JP2001241787A5/ja
Application granted granted Critical
Publication of JP4318369B2 publication Critical patent/JP4318369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は半密閉構造および密閉構造のスクリュー式圧縮機を搭載した冷凍機に関する。
【0002】
【従来の技術】
図4は従来のスクリュー冷凍機の冷媒回路図である。図において、1は電動部1aと圧縮動作をするスクリューロータ部1bとから成るスクリュー式圧縮機、2は冷却水管2aと熱交換し凝縮作用をする水式熱交換器、3は膨張弁、4はブライン配管5と熱交換し蒸発作用をするブライン熱交換器で、前記スクリュー式圧縮機1、水式熱交換器2および膨張弁3等と共に冷媒配管6により連結されて冷媒回路を構成している。7は制御装置で、前記ブライン配管5の入口管5a温度を検出するブライン入口温度検出装置7a、および前記スクリュー式圧縮機1の電動部1aに設置され、巻線温度を検出する巻線保護用サーモスタット7bを備えている。
【0003】
次に、動作について説明する。図に示すように、スクリュー式圧縮機1、水式熱交換器2、膨張弁3、ブライン熱交換器4および冷媒配管6により接続して冷媒回路を構成した冷凍機において、この冷凍機は、ブライン入口温度検出装置7aにより検出されるブライン入口温度が制御装置7に伝えられ、制御装置7によって、冷凍機の冷媒容量調節を行う。
【0004】
この容量調節はブライン入口温度信号を受けた制御装置7により制御する。冷凍機は、ブライン入口温度に応じ容量制御を行うが、負荷が減少しブライン入口温度が制御目標温度以下となり、サーモ停止設定温度まで達すると、サーモ停止となり自動的に圧縮機は停止となる。この後、負荷が上昇し、ブライン入口温度がサーモ復帰温度まで上昇すると、再度圧縮機の運転を開始する。
【0005】
また、図5は、特開平8−291946号公報に示された従来のスクリュー式冷凍機の冷媒回路図である。図において、1はスクリュー圧縮機、2は外気と熱交換させ冷媒を凝縮させる空気熱交換器、4は冷水管5の冷水と熱交換し冷媒を蒸発させる水熱交換器、7は制御装置で、前記冷水管5出口管5b温度を検知する冷水温度検知装置7aと、前記空気熱交換器入口管2aの温度を検知する凝縮温度検知装置2b、前記スクリュー圧縮機1の冷媒吐出管6aの凝縮圧力を検知する第1凝縮圧力検知装置2cおよび、前記空気熱交換器2の冷媒出口管6bの凝縮圧力を検知する第2凝縮圧力検知装置2dを備えている。8は四方弁、9は前記空気熱交換器2に外気を送りこむファン、10はファン回転数を制御するインバータ、11は電磁弁である。
【0006】
次に、このように構成された第2の従来例のスクリュー式冷凍機の動作を説明する。2つの電磁弁11を有するスクリュー圧縮機1、ファン9を有する空気熱交換器2、水式熱交換器4、及びそれらを冷媒配管5で接続して回路を形成するスクリュー冷凍機において、制御装置7は、スクリュー圧縮機1の冷媒吐出管6aの凝縮圧力を検出する第1凝縮圧力検知装置2cおよび空気熱交換器2の冷媒出口管6の凝縮圧力を検知する第2凝縮圧力検知装置2によりそれぞれ凝縮圧力を検出して凝縮圧力が所定値(これを第一の設定値とする)になるように、空気熱交換器用のファン8を制御する。
【0007】
また、冷水管5出口管5b温度を検出して冷水温度が所定値になるように、圧縮機1を容量制御し、かつ第1凝縮圧力検知装置2cおよび第2凝縮圧力検知装置2eの凝縮圧力に前記第一の設定値より上に第二の設定値を設け、この第二の設定値によって、圧縮機1の容量制御を、冷水管5出口管5b温度による制御に優先して圧縮機1のロード電磁弁10又はアンロード電磁弁10を制御するものである。
【0008】
【発明が解決しようとする課題】
これら、従来のスクリュー式冷凍機は、以上のように構成されているので、負荷が減少し、サーモ停止した場合、ブライン入口温度がサーモ復帰設定温度まで上昇せねば運転を再開せず、負荷の急激な上昇に対応できないという問題があった。
【0009】
この発明は上記の問題を解決するためになされたもので、電動機へ複数の巻線サーモスタットを備えた圧縮機を使用し、負荷の減少に伴い圧縮機の吸込み冷媒ガス量が減少したことを、電動機巻線温度の上昇により検知し、サーモ停止を回避制御することによって、冷凍機の連続運転を行い、負荷の急増にも遅滞なく対応でき、かつブライン出口温度の安定した安価なスクリュー冷凍機を提供することを目的とする。
【0010】
【課題を解決するための手段】
この発明のスクリュー式冷凍機は、電動機部と圧縮動作をするスクリューロータ部とから成るスクリュー式圧縮機、水式熱交換器、ブライン配管を有するブライン熱交換器および膨張弁を冷媒配管により連結接続した冷媒回路と、前記スクリュー式圧縮機の電動機巻線温度の異常上昇を検知して圧縮機を保護する巻線保護用サーモスタット等の巻線保護手段とを備えたスクリュー式冷凍機において、前記巻線保護手段とは検知温度を異にして電動機巻線温度の巻線保護設定温度より低く設定した圧縮機連続運転温度を検知し圧縮機連続運転を継続させる圧縮機連続運転手段と、前記圧縮機連続運転手段の信号により冷凍機の連続運転を制御する制御手段と、を備え、前記圧縮機連続運転手段が前記圧縮機連続運転温度を検知し、前記巻線保護手段が前記巻線保護設定温度を検知していない状態となった場合には、前記制御手段は、前記スクリュー式圧縮機の運転容量を増大させるものである。
【0011】
また、この発明のスクリュー式冷凍機は、電動機部と圧縮動作をするスクリューロータ部とから成るスクリュー式圧縮機、水式熱交換器、ブライン配管を有するブライン熱交換器および膨張弁を冷媒配管により連結接続した冷媒回路と、前記スクリュー式圧縮機の電動機巻線温度の異常上昇を検知して圧縮機を保護する巻線保護用サーモスタット等の巻線保護手段とを備えたスクリュー式冷凍機において、ブライン配管の出口管温度を検知するブライン出口温度検出手段と、前記巻線保護手段とは検知温度を異にして電動機巻線温度の巻線保護設定温度より低く設定した温度を検知し圧縮機連続運転を継続させる圧縮機連続運転手段を設けた制御手段を備え、前記ブライン配管の出口管温度が所定の設定温度以下となって、前記スクリュー式圧縮機の運転容量を減少させた際、前記圧縮機連続運転手段が前記圧縮機連続運転温度を検知し、前記巻線保護手段が前記巻線保護設定温度を検知していない状態となった場合には、前記制御手段は、前記スクリュー式圧縮機の運転容量を増大させるものである。
【0012】
【発明の実施の形態】
実施の形態1.
以下、図1はこの発明の実施の形態1によるスクリュー式冷凍機を示す冷媒回路図である。図において、1は電動部1aと圧縮動作をするスクリューロータ部1bとから成るスクリュー式圧縮機、2は冷却水管2aと熱交換する水式熱交換器、3は膨張弁、4はブライン配管5と熱交換するブライン熱交換器で、前記スクリュー式圧縮機1、水式熱交換器2および膨張弁3等と共に冷媒配管6により連結されて冷媒回路を構成している。
【0013】
7は制御装置で、前記ブライン配管の出口管5b温度を検出し、圧縮機運転容量を連続的に低下させるブライン出口温度検出装置7c、および前記スクリュー式圧縮機1の電動部1aに設置され、巻線温度を検出し保護する巻線保護手段である、例えば105℃で巻線保護動作するよう設定された巻線保護用サーモスタット7bおよびこの巻線保護手段の設定温度よりは低く、かつスクリュー式圧縮機を連続運転させる設定温度、例えば70℃から90℃の範囲内の温度で連続運転を継続させる圧縮機連続運転手段である圧縮機連続運転用サーモスタット7dを備えている。
【0014】
次に、動作について説明する。冷凍機負荷側の要求能力が低下するにしたがって、ブラインの出入口温度差が減少する。ブライン出口温度検出装置7cによりブライン出口温度を検知し、この検出信号により制御装置7が、圧縮機運転容量を絞りこみ圧縮機1の運転容量を連続的に低下させる。この制御により冷凍機の冷媒循環量が低下する。この圧縮機を駆動する電動機は冷凍機を循環する冷媒ガスにより冷却されている。そのため、冷媒循環量が低下すると、必然的に電動機の冷却効果が低下し電動機の温度を上昇させることとなる。
【0015】
この時、電動機1aの巻線温度上昇限界の巻線保護温度を、例えば105℃に設定しておき、また、この巻線温度上昇温度より余裕を持たせた圧縮機連続運転設定温度である、例えば70℃から90℃の範囲の設定温度で作動するスクリュー式圧縮機連続運転用サーモスタット7dが作動し、この信号をうけて圧縮機1を連続運転させて圧縮機1の運転容量を上昇させる。
【0016】
次に、図2に示すスクリュー式冷凍機の制御フローチャートを説明する。図において、始めに、ステップ101において、冷凍機の運転を開始する。運転開始後ステップ102に進む。ステップ102では、ブライン配管のブライン出口検出温度TAがブライン出口設定温度TBと同じか小さい場合は、ステップ103に進み、圧縮機の運転容量を減少させる。又、ステップ102で、ブライン配管のブライン出口検出温度TAがブライン出口設定温度TBより大きい場合は、ステップ105に進み、圧縮機の運転容量を増大させる。ステップ103で運転容量を減少させ冷凍機の冷媒循環量を低下させると、必然的に電動機巻線の冷却効果が低下し電動機巻線温度は上昇する。
【0017】
ステップ104で、圧縮機用電動機の巻線温度Tが低温度側巻線サーモスタット設定温度TLと等しいか、又は圧縮機用電動機の巻線温度Tが低温度側巻線サーモスタット設定温度TLより大な場合は、ステップ105に進み、圧縮機の運転容量を増大させる。、ステップ105で圧縮機の運転容量を増大させ冷媒循環量を上昇させた後、ステップ106で圧縮機用電動機の巻線温度Tが低温度側巻線サーモスタット設定温度TLより小なる場合は、ステップ101に戻って当初の冷凍機容量での運転を始める。又、ステップ106で圧縮機用電動機の巻線温度Tが低温度側巻線サーモスタット設定温度TLより小でない場合は、ステップ107で圧縮機用電動機の巻線温度Tが高温度側巻線サーモスタット設定温度THと等しいか、又は圧縮機用電動機の巻線温度Tが高温度側巻線サーモスタット設定温度THより大なる場合は、ステップ108に進み冷凍機の運転を停止する。又、ステップ107で圧縮機用電動機の巻線温度Tが高温度側巻線サーモスタット設定温度THより小なる場合は、ステップ105に戻り圧縮機の運転容量を増大させる運転をする。
【0018】
次に、図3に示す圧縮機容量制御特性図により圧縮機の運転容量と冷媒循環量との関係を説明する。この場合の運転条件は、凝縮温度/蒸発温度は一定とする。図において、圧縮機運転容量を低下させた場合、冷媒循環量の低下率は電気入力の低下率より大きい。逆に、圧縮機運転容量を増大させた場合、冷媒循環量の増大率は、電気入力の増大率より大きい。そのため、容量制御運転時に電動機温度が上昇した場合、圧縮機の運転容量を増大させることで、電動機の冷却効果を増大させることができる。即ち、冷媒循環量と電気入力との交点P以上では電動機の冷却が良好に促進されるが、交点P以下では冷却不足となり冷却効果は期待できない。
【0019】
【発明の効果】
以上に述べたように、この発明のスクリュー式冷凍機は、電動機部と圧縮動作をするスクリューロータ部とから成るスクリュー式圧縮機、水式熱交換器、ブライン配管を有するブライン熱交換器および膨張弁を冷媒配管により連結接続した冷媒回路と、前記スクリュー式圧縮機の電動機巻線温度の異常上昇を検知して圧縮機を保護する巻線保護用サーモスタット等の巻線保護手段とを備えたスクリュー式冷凍機において、前記巻線保護手段とは検知温度を異にして電動機巻線温度の巻線保護設定温度より低く設定した圧縮機連続運転温度を検知し圧縮機連続運転を継続させる圧縮機連続運転手段と、前記圧縮機連続運転手段の信号により冷凍機の連続運転を制御する制御手段と、を備え、前記圧縮機連続運転手段が前記圧縮機連続運転温度を検知し、前記巻線保護手段が前記巻線保護設定温度を検知していない状態となった場合には、前記制御手段は、前記スクリュー式圧縮機の運転容量を増大させる構成としたから、圧縮器の連続運転を可能にし、負荷の急変にも迅速に追従する運転制御ができ、かつ冷凍機の容量制御を安価に実現できる効果を有する。
【0020】
また、この発明のスクリュー式冷凍機は、電動機部と圧縮動作をするスクリューロータ部とから成るスクリュー式圧縮機、水式熱交換器、ブライン配管を有するブライン熱交換器および膨張弁を冷媒配管により連結接続した冷媒回路と、前記スクリュー式圧縮機の電動機巻線温度の異常上昇を検知して圧縮機を保護する巻線保護用サーモスタット等の巻線保護手段とを備えたスクリュー式冷凍機において、ブライン配管の出口管温度を検知するブライン出口温度検出手段と、前記巻線保護手段とは検知温度を異にして電動機巻線温度の巻線保護設定温度より低く設定した温度を検知し圧縮機連続運転を継続させる圧縮機連続運転手段を設けた制御手段を備え、前記ブライン配管の出口管温度が所定の設定温度以下となって、前記スクリュー式圧縮機の運転容量を減少させた際、前記圧縮機連続運転手段が前記圧縮機連続運転温度を検知し、前記巻線保護手段が前記巻線保護設定温度を検知していない状態となった場合には、前記制御手段は、前記スクリュー式圧縮機の運転容量を増大させる構成としたから、ブライン出口温度の安定した制御を可能とた安価な冷凍機を提供できる効果を有する。
【図面の簡単な説明】
【図1】 この発明の実施の形態によるスクリュー式冷凍機を示す冷媒回路図である。
【図2】 この発明の実施の形態によるスクリュー式冷凍機の制御フローチャート図である。
【図3】 この発明の実施の形態によるスクリュー式冷凍機の容量制御特性図である。
【図4】 従来のスクリュー式冷凍機を示す冷媒回路図である。
【図5】 第2の従来例のによるスクリュー式冷凍機を示す冷媒回路図である。
【符号の説明】
1 スクリュー圧縮機、1a 電動機、1b スクリューロータ、2 凝縮器、3 膨張弁、4 蒸発器、5 冷媒配管、7 制御装置、7b 巻線保護手段、6c 圧縮機連続運転手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator equipped with a screw-type compressor having a semi-hermetic structure and a hermetic structure.
[0002]
[Prior art]
FIG. 4 is a refrigerant circuit diagram of a conventional screw refrigerator. In the figure, 1 is a screw type compressor comprising an electric part 1a and a screw rotor part 1b that performs a compression operation, 2 is a water heat exchanger that exchanges heat with the cooling water pipe 2a and performs a condensing action, 3 is an expansion valve, 4 Is a brine heat exchanger that exchanges heat with the brine pipe 5 and evaporates, and is connected to the screw compressor 1, the water heat exchanger 2 and the expansion valve 3 by the refrigerant pipe 6 to form a refrigerant circuit. Yes. A control device 7 is installed in the brine inlet temperature detection device 7a for detecting the temperature of the inlet pipe 5a of the brine pipe 5 and the motor unit 1a of the screw compressor 1 for winding protection for detecting the winding temperature. A thermostat 7b is provided.
[0003]
Next, the operation will be described. As shown in the figure, in a refrigerator that is connected by a screw compressor 1, a water heat exchanger 2, an expansion valve 3, a brine heat exchanger 4 and a refrigerant pipe 6 to form a refrigerant circuit, the refrigerator is The brine inlet temperature detected by the brine inlet temperature detection device 7a is transmitted to the control device 7, and the control device 7 adjusts the refrigerant capacity of the refrigerator.
[0004]
This capacity adjustment is controlled by the control device 7 that has received the brine inlet temperature signal. The refrigerator performs capacity control according to the brine inlet temperature. However, when the load decreases, the brine inlet temperature becomes equal to or lower than the control target temperature, and reaches the thermo-stop set temperature, the thermo-stop occurs and the compressor is automatically stopped. Thereafter, when the load increases and the brine inlet temperature rises to the thermo return temperature, the operation of the compressor is started again.
[0005]
FIG. 5 is a refrigerant circuit diagram of a conventional screw type refrigerator disclosed in Japanese Patent Laid-Open No. 8-291946. In the figure, 1 is a screw compressor, 2 is an air heat exchanger that exchanges heat with the outside air and condenses the refrigerant, 4 is a water heat exchanger that exchanges heat with cold water in the cold water pipe 5 and evaporates the refrigerant, and 7 is a control device. The cold water temperature detection device 7a for detecting the temperature of the cold water pipe 5 outlet tube 5b, the condensation temperature detection device 2b for detecting the temperature of the air heat exchanger inlet pipe 2a, and the condensation of the refrigerant discharge pipe 6a of the screw compressor 1 A first condensing pressure detecting device 2c for detecting pressure and a second condensing pressure detecting device 2d for detecting the condensing pressure of the refrigerant outlet pipe 6b of the air heat exchanger 2 are provided. 8 is a four-way valve, 9 is a fan for sending outside air to the air heat exchanger 2, 10 is an inverter for controlling the number of fan rotations, and 11 is a solenoid valve.
[0006]
Next, the operation of the screw refrigerator of the second conventional example configured as described above will be described. In a screw compressor 1 having two solenoid valves 11, an air heat exchanger 2 having a fan 9, a water heat exchanger 4, and a screw refrigerator that connects them with a refrigerant pipe 5 to form a circuit, a control device 7, the second condensing pressure detecting device for detecting a first condensing pressure sensing device 2c and the condensation pressure of the refrigerant outlet pipe 6 b of the air heat exchanger 2 for detecting the condensing pressure of the refrigerant discharge pipe 6a of the screw compressor 1 2 The condensing pressure is detected by d and the fan 8 for the air heat exchanger is controlled so that the condensing pressure becomes a predetermined value (this is the first set value).
[0007]
Further, the capacity of the compressor 1 is controlled so that the temperature of the chilled water pipe 5 outlet pipe 5b is detected and the chilled water temperature becomes a predetermined value, and the condensing pressure of the first condensing pressure detecting device 2c and the second condensing pressure detecting device 2e. The second set value is provided above the first set value, and the compressor 1 is given priority over the control of the capacity of the compressor 1 by the temperature of the cold water pipe 5 outlet pipe 5b by the second set value. The load solenoid valve 10 or the unload solenoid valve 10 is controlled.
[0008]
[Problems to be solved by the invention]
Since these conventional screw refrigerators are configured as described above, when the load is reduced and the thermo is stopped, the operation is not resumed unless the brine inlet temperature rises to the thermo return set temperature. There was a problem that it could not cope with the rapid rise.
[0009]
This invention was made in order to solve the above-mentioned problem, using a compressor equipped with a plurality of winding thermostats in an electric motor, and that the amount of refrigerant gas sucked in the compressor decreased with a decrease in load. By detecting the increase in the motor winding temperature and controlling to avoid stopping the thermostat, the refrigerator can be operated continuously, can respond to sudden increases in load without delay, and an inexpensive screw refrigerator with stable brine outlet temperature. The purpose is to provide.
[0010]
[Means for Solving the Problems]
The screw type refrigerator of the present invention includes a screw compressor comprising a motor part and a screw rotor part that performs a compression operation, a water heat exchanger, a brine heat exchanger having a brine pipe, and an expansion valve connected by refrigerant piping. In the screw type refrigerator comprising the above-described refrigerant circuit and winding protection means such as a winding protection thermostat for detecting an abnormal increase in the motor winding temperature of the screw compressor and protecting the compressor. Compressor continuous operation means for detecting a compressor continuous operation temperature which is lower than the winding protection set temperature of the motor winding temperature, different from the line protection means, and continuing the compressor continuous operation, and the compressor and a control means by a signal of continuous operation means for controlling the continuous operation of the refrigerator, and the compressor continuous operation means detects the compressor continuous operating temperature, protected the winding If the stage is a state does not detect the winding protection set temperature, said control means is to increase the operating capacity of the screw compressor.
[0011]
The screw refrigerator of the present invention includes a screw compressor comprising a motor section and a screw rotor section that performs a compression operation, a water heat exchanger, a brine heat exchanger having a brine pipe, and an expansion valve by a refrigerant pipe. In a screw type refrigerator having a coupled refrigerant circuit and winding protection means such as a winding protection thermostat for detecting an abnormal increase in the motor winding temperature of the screw compressor and protecting the compressor, The brine outlet temperature detecting means for detecting the outlet pipe temperature of the brine piping, and the winding protection means detect the temperature set lower than the winding protection set temperature of the motor winding temperature, and detect the temperature continuously. a control unit having a compressor continuous operation means to continue the operation, the outlet pipe temperature of the brine pipe is equal to or less than the predetermined set temperature, the screw When the operation capacity of the compressor is reduced, the compressor continuous operation means detects the compressor continuous operation temperature, and the winding protection means has not detected the winding protection set temperature. The control means increases the operating capacity of the screw compressor .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram showing a screw type refrigerator according to Embodiment 1 of the present invention. In the figure, 1 is a screw type compressor composed of an electric part 1a and a screw rotor part 1b that performs a compression operation, 2 is a water heat exchanger that exchanges heat with a cooling water pipe 2a, 3 is an expansion valve, 4 is a brine pipe 5 This is a brine heat exchanger that exchanges heat with the screw compressor 1, the water heat exchanger 2, the expansion valve 3, and the like, and is connected by a refrigerant pipe 6 to constitute a refrigerant circuit.
[0013]
7 is a control device, which is installed in the brine outlet temperature detection device 7c for detecting the temperature of the outlet pipe 5b of the brine pipe and continuously reducing the compressor operating capacity, and the electric part 1a of the screw compressor 1. Winding protection means for detecting and protecting the winding temperature, for example, a winding protection thermostat 7b set to perform a winding protection operation at 105 ° C., and a screw type lower than the set temperature of the winding protection means A compressor continuous operation thermostat 7d, which is a compressor continuous operation means for continuing the continuous operation at a set temperature for continuously operating the compressor, for example, a temperature within a range of 70 ° C. to 90 ° C., is provided.
[0014]
Next, the operation will be described. As the required capacity on the refrigerator load side decreases, the inlet / outlet temperature difference of the brine decreases. The brine outlet temperature detection device 7c detects the brine outlet temperature, and the control device 7 squeezes the compressor operating capacity by this detection signal to continuously reduce the operating capacity of the compressor 1. This control reduces the refrigerant circulation rate of the refrigerator. The electric motor that drives the compressor is cooled by the refrigerant gas circulating in the refrigerator. For this reason, when the refrigerant circulation amount is reduced, the cooling effect of the electric motor is inevitably reduced and the temperature of the electric motor is increased.
[0015]
At this time, the winding protection temperature at the winding temperature rise limit of the electric motor 1a is set to 105 ° C., for example, and is the compressor continuous operation set temperature with a margin from the winding temperature rise temperature. For example, a screw compressor continuous operation thermostat 7d that operates at a set temperature in the range of 70 ° C. to 90 ° C. operates, and receives this signal to continuously operate the compressor 1 to increase the operation capacity of the compressor 1.
[0016]
Next, a control flowchart of the screw refrigerator shown in FIG. 2 will be described. In the figure, first, in step 101, the operation of the refrigerator is started. Proceed to step 102 after the start of operation. In step 102, if the brine outlet detected temperature T A of the brine pipe is less than or equal brine outlet set temperature T B, the process proceeds to step 103, reducing the operating capacity of the compressor. Further, in step 102, if the brine outlet detected temperature T A of the brine pipe is greater than the brine outlet set temperature T B, the process proceeds to step 105, to increase the operating capacity of the compressor. If the operating capacity is reduced in step 103 and the refrigerant circulation amount of the refrigerator is reduced, the cooling effect of the motor winding is inevitably reduced and the motor winding temperature rises.
[0017]
In step 104, the winding temperature T of the compressor motor is equal to the low temperature side winding thermostat set temperature TL , or the compressor motor winding temperature T is lower than the low temperature side winding thermostat set temperature TL . If so, the process proceeds to step 105 and the operating capacity of the compressor is increased. In Step 105, after increasing the operating capacity of the compressor and increasing the refrigerant circulation amount, in Step 106, if the winding temperature T of the compressor motor is lower than the low temperature side winding thermostat set temperature TL , Returning to step 101, operation at the initial refrigerator capacity is started. If the winding temperature T of the compressor motor is not lower than the low temperature side thermostat set temperature TL in step 106, the winding temperature T of the compressor motor is set to the high temperature side winding thermostat in step 107. or equal to the set temperature T H, or if winding temperature T of the compressor motor larger made of a high temperature winding thermostat set temperature T H stops the operation of the refrigerator proceeds to step 108. Moreover, winding temperature T of the compressor electric motor in step 107, if the small made of a high temperature winding thermostat set temperature T H, the operation of increasing the operating capacity of the compressor returns to step 105.
[0018]
Next, the relationship between the operating capacity of the compressor and the refrigerant circulation amount will be described with reference to the compressor capacity control characteristic diagram shown in FIG. The operating condition in this case is that the condensation temperature / evaporation temperature is constant. In the figure, when the compressor operating capacity is reduced, the rate of decrease in the refrigerant circulation rate is greater than the rate of decrease in electrical input. Conversely, when the compressor operating capacity is increased, the increase rate of the refrigerant circulation rate is greater than the increase rate of the electric input. Therefore, when the motor temperature rises during the capacity control operation, the cooling effect of the motor can be increased by increasing the operation capacity of the compressor. That is, the cooling of the motor is favorably promoted above the intersection P between the refrigerant circulation amount and the electric input, but the cooling effect is insufficient below the intersection P, and a cooling effect cannot be expected.
[0019]
【The invention's effect】
As described above, the screw-type refrigerator of the present invention includes a screw compressor including a motor portion and a screw rotor portion that performs a compression operation, a water heat exchanger, a brine heat exchanger having a brine pipe, and an expansion. Screw having a refrigerant circuit in which valves are connected and connected by refrigerant piping, and winding protection means such as a thermostat for winding protection that detects an abnormal rise in the motor winding temperature of the screw compressor and protects the compressor In the compressor type refrigerator, the compressor continuous operation for detecting the compressor continuous operation temperature which is lower than the winding protection set temperature of the motor winding temperature with the detection temperature being different from the winding protection means and continuing the compressor continuous operation. and operation means, and control means for controlling the continuous operation of the refrigerator by a signal of the compressor continuous operation means, said compressor continuous operation means the compressor continuous operating temperature And knowledge, when said winding protection means is in a state of not detecting the winding protection set temperature, the control means, from and configured to increase the operating capacity of the screw compressor, the compression This makes it possible to perform continuous operation of the refrigerator, to perform operation control that quickly follows sudden changes in load, and to achieve capacity control of the refrigerator at low cost.
[0020]
The screw refrigerator of the present invention includes a screw compressor comprising a motor section and a screw rotor section that performs a compression operation, a water heat exchanger, a brine heat exchanger having a brine pipe, and an expansion valve by a refrigerant pipe. In a screw type refrigerator having a coupled refrigerant circuit and winding protection means such as a winding protection thermostat for detecting an abnormal increase in the motor winding temperature of the screw compressor and protecting the compressor, The brine outlet temperature detecting means for detecting the outlet pipe temperature of the brine piping, and the winding protection means detect the temperature set lower than the winding protection set temperature of the motor winding temperature, and detect the temperature continuously. a control unit having a compressor continuous operation means to continue the operation, the outlet pipe temperature of the brine pipe is equal to or less than the predetermined set temperature, the screw When the operation capacity of the compressor is reduced, the compressor continuous operation means detects the compressor continuous operation temperature, and the winding protection means has not detected the winding protection set temperature. In addition, since the control means is configured to increase the operating capacity of the screw compressor , it has an effect of providing an inexpensive refrigerator capable of stably controlling the brine outlet temperature.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing a screw refrigerator according to an embodiment of the present invention.
FIG. 2 is a control flowchart of the screw refrigerator according to the embodiment of the present invention.
FIG. 3 is a capacity control characteristic diagram of the screw refrigerator according to the embodiment of the present invention.
FIG. 4 is a refrigerant circuit diagram showing a conventional screw refrigerator.
FIG. 5 is a refrigerant circuit diagram showing a screw refrigerator according to a second conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Screw compressor, 1a Electric motor, 1b Screw rotor, 2 Condenser, 3 Expansion valve, 4 Evaporator, 5 Refrigerant piping, 7 Control apparatus, 7b Winding protection means, 6c Compressor continuous operation means.

Claims (2)

電動機部と圧縮動作をするスクリューロータ部とから成るスクリュー式圧縮機、水式熱交換器、ブライン配管を有するブライン熱交換器および膨張弁を冷媒配管により連結接続した冷媒回路と、前記スクリュー式圧縮機の電動機巻線温度の異常上昇を検知して圧縮機を保護する巻線保護用サーモスタット等の巻線保護手段とを備えたスクリュー式冷凍機において、
前記巻線保護手段とは検知温度を異にして電動機巻線温度の巻線保護設定温度より低く設定した圧縮機連続運転温度を検知し圧縮機連続運転を継続させる圧縮機連続運転手段と、
前記圧縮機連続運転手段の信号により冷凍機の連続運転を制御する制御手段と、
を備え、
前記圧縮機連続運転手段が前記圧縮機連続運転温度を検知し、前記巻線保護手段が前記巻線保護設定温度を検知していない状態となった場合には、
前記制御手段は、
前記スクリュー式圧縮機の運転容量を増大させることを特徴とするスクリュー式冷凍機。
A screw compressor composed of an electric motor section and a screw rotor section that performs compression operation, a water heat exchanger, a brine heat exchanger having a brine pipe, and a refrigerant circuit in which an expansion valve is connected by a refrigerant pipe, and the screw compression In a screw type refrigerator equipped with winding protection means such as a winding protection thermostat for detecting an abnormal rise in the motor winding temperature of the machine and protecting the compressor,
Compressor continuous operation means for detecting the compressor continuous operation temperature that is set lower than the winding protection set temperature of the motor winding temperature by differently detecting the winding temperature and continuing the compressor continuous operation ,
Control means for controlling the continuous operation of the refrigerator by a signal of the compressor continuous operation means ;
With
When the compressor continuous operation means detects the compressor continuous operation temperature and the winding protection means has not detected the winding protection set temperature,
The control means includes
An operating capacity of the screw compressor is increased .
電動機部と圧縮動作をするスクリューロータ部とから成るスクリュー式圧縮機、水式熱交換器、ブライン配管を有するブライン熱交換器および膨張弁を冷媒配管により連結接続した冷媒回路と、前記スクリュー式圧縮機の電動機巻線温度の異常上昇を検知して圧縮機を保護する巻線保護用サーモスタット等の巻線保護手段とを備えたスクリュー式冷凍機において、
ブライン配管の出口管温度を検知するブライン出口温度検出手段と、前記巻線保護手段とは検知温度を異にして電動機巻線温度の巻線保護設定温度より低く設定した圧縮機連続運転温度を検知し圧縮機連続運転を継続させる圧縮機連続運転手段を設けた制御手段を備え、
前記ブライン配管の出口管温度が所定の設定温度以下となって、前記スクリュー式圧縮機の運転容量を減少させた際、
前記圧縮機連続運転手段が前記圧縮機連続運転温度を検知し、前記巻線保護手段が前記巻線保護設定温度を検知していない状態となった場合には、
前記制御手段は、前記スクリュー式圧縮機の運転容量を増大させることを特徴とするスクリュー式冷凍機。
A screw compressor composed of an electric motor section and a screw rotor section that performs compression operation, a water heat exchanger, a brine heat exchanger having a brine pipe, and a refrigerant circuit in which an expansion valve is connected by a refrigerant pipe, and the screw compression In a screw type refrigerator equipped with winding protection means such as a winding protection thermostat for detecting an abnormal rise in the motor winding temperature of the machine and protecting the compressor,
The brine outlet temperature detection means for detecting the outlet pipe temperature of the brine piping and the winding protection means detect the compressor continuous operation temperature set lower than the winding protection set temperature of the motor winding temperature, with a different detection temperature. And a control means provided with a compressor continuous operation means for continuing the compressor continuous operation,
When the outlet pipe temperature of the brine pipe is equal to or lower than a predetermined set temperature and the operating capacity of the screw compressor is reduced,
When the compressor continuous operation means detects the compressor continuous operation temperature and the winding protection means has not detected the winding protection set temperature,
The screw type refrigerator is characterized in that the control means increases an operating capacity of the screw compressor .
JP2000047448A 2000-02-24 2000-02-24 Screw type refrigerator Expired - Lifetime JP4318369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000047448A JP4318369B2 (en) 2000-02-24 2000-02-24 Screw type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000047448A JP4318369B2 (en) 2000-02-24 2000-02-24 Screw type refrigerator

Publications (3)

Publication Number Publication Date
JP2001241787A JP2001241787A (en) 2001-09-07
JP2001241787A5 JP2001241787A5 (en) 2006-11-09
JP4318369B2 true JP4318369B2 (en) 2009-08-19

Family

ID=18569697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000047448A Expired - Lifetime JP4318369B2 (en) 2000-02-24 2000-02-24 Screw type refrigerator

Country Status (1)

Country Link
JP (1) JP4318369B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682683B2 (en) * 2005-04-27 2011-05-11 株式会社豊田自動織機 Electric motor control device for electric compressor
CN113639452B (en) * 2020-04-27 2023-02-28 青岛海尔空调电子有限公司 Compressor control method for heat exchange system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157962A (en) * 1981-03-24 1982-09-29 Ebara Mfg Screw refrigerating plant
JPS6273058A (en) * 1985-09-26 1987-04-03 三洋電機株式会社 Refrigerator
JPS6269767U (en) * 1985-10-21 1987-05-01
JPH04268164A (en) * 1991-02-22 1992-09-24 Sharp Corp Air conditioner
JPH05106907A (en) * 1991-10-17 1993-04-27 Hitachi Ltd Air conditioner
JPH05126443A (en) * 1991-10-31 1993-05-21 Sanyo Electric Co Ltd Controller of refrigerator
JPH06257869A (en) * 1993-03-09 1994-09-16 Kobe Steel Ltd Heat pump
EP0730128B1 (en) * 1995-02-06 1999-06-23 Carrier Corporation Fuzzy logic control of liquid injection for motor cooling
JPH08291946A (en) * 1995-04-21 1996-11-05 Ebara Corp Screw freezer
US6032472A (en) * 1995-12-06 2000-03-07 Carrier Corporation Motor cooling in a refrigeration system
JP3899444B2 (en) * 1997-03-25 2007-03-28 三菱電機株式会社 Cooling system

Also Published As

Publication number Publication date
JP2001241787A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
EP1826513B1 (en) Refrigerating air conditioner
CN108317758B (en) Refrigeration cycle device
JP2012072920A (en) Refrigeration apparatus
JP4475660B2 (en) Refrigeration equipment
JP4559241B2 (en) Refrigeration equipment
JP4767133B2 (en) Refrigeration cycle equipment
JP2004020064A (en) Method for controlling multi-chamber type air conditioner
JPH0849930A (en) Heat pump equipment
JP3445861B2 (en) Air conditioner
JP5113776B2 (en) Refrigeration equipment
JP3868265B2 (en) Air conditioner
JP2016166710A (en) Air-conditioning system
JP4318369B2 (en) Screw type refrigerator
KR100625568B1 (en) Multi type air conditioner
JPH04222341A (en) Operation controller for air conditioner
JP2001280259A (en) Refrigerant compressor
JP3558788B2 (en) Air conditioner and control method thereof
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JP2010112682A (en) Heat pump cycle device
JP4151523B2 (en) Multi-type air conditioner
AU2018411936A1 (en) Hot water supply apparatus
JP2522116B2 (en) Operation control device for air conditioner
JP2536337B2 (en) Operation control device for air conditioner
JPH07111181B2 (en) Compressor capacity control device
JP2003254631A (en) Refrigeration unit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4318369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term