JPS6273058A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS6273058A
JPS6273058A JP21311585A JP21311585A JPS6273058A JP S6273058 A JPS6273058 A JP S6273058A JP 21311585 A JP21311585 A JP 21311585A JP 21311585 A JP21311585 A JP 21311585A JP S6273058 A JPS6273058 A JP S6273058A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
compressor
electric motor
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21311585A
Other languages
Japanese (ja)
Inventor
敏夫 高嶋
藤中 和仁
俊章 高根
淳 小林
大久保 勝寛
信男 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21311585A priority Critical patent/JPS6273058A/en
Publication of JPS6273058A publication Critical patent/JPS6273058A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷凍負荷に応じて電動機の回転速度が変えられ
る圧縮機を備えた冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a refrigeration system equipped with a compressor that can change the rotational speed of an electric motor depending on the refrigeration load.

(口1 従来の技術 従来、電動機とこの電動機で駆動される圧縮機とを密閉
容器に納めこの密閉容器を冷媒パイプにつないで冷凍サ
イクルの一部にした空気調和機において、この電動機の
回転速度が空調負荷に応じて変えられろものとして特公
昭60−12532号公報罠示されたものがある。
(Example 1) Conventional technology Conventionally, in an air conditioner in which an electric motor and a compressor driven by the electric motor are housed in a sealed container, and this sealed container is connected to a refrigerant pipe to form part of the refrigeration cycle, the rotational speed of the electric motor is There is a system disclosed in Japanese Patent Publication No. 12532/1983 that can be changed according to the air conditioning load.

この内容は空調負荷(室内温度と設定温度との差)が大
ぎい程、電動機の回転速度を速くして冷凍能力を大きく
させるものである。
The content of this is that the greater the air conditioning load (difference between indoor temperature and set temperature), the faster the rotational speed of the electric motor is to increase the refrigerating capacity.

(/埼  発明が解決しようとする問題点このように空
調負荷が大きい程電動機の回転数を速(すると、この電
動機の回転数の上昇にともなって電動機の巻線の温度が
上昇し絶縁不良をおこしたり、冷媒の温度上昇によって
圧縮機内のオイルが劣化するおそれがあった。
(/Sai) Problems to be Solved by the Invention In this way, as the air conditioning load increases, the rotation speed of the motor increases. There was a risk that the oil inside the compressor would deteriorate due to a rise in the temperature of the refrigerant.

本発明は圧縮機から吐出される冷媒の温度が高くなった
時に発生する電動機の巻線の絶縁不良やオイルの劣化を
防ぐことを目的としたものである。
The present invention aims to prevent poor insulation of motor windings and deterioration of oil that occur when the temperature of refrigerant discharged from a compressor becomes high.

に)問題点を解決するための手段 この目的を達成するために、本発明の冷凍装置は、圧縮
機を駆動する電動機の回転速度が冷凍負荷に応じて変え
られろようにすると共に、この圧縮機の冷媒温度上昇を
検知して、電動機の巻線の温度が設定値よりも高くなっ
た時には電動機の回転数を低くさせるようにしたもので
ある。
(b) Means for Solving the Problems In order to achieve this object, the refrigeration system of the present invention allows the rotational speed of the electric motor that drives the compressor to be changed in accordance with the refrigeration load, and This system detects a rise in the temperature of the refrigerant in the machine and lowers the rotational speed of the motor when the temperature of the motor windings becomes higher than a set value.

(ホ)作用 本発明の冷凍装置は、検出器で圧縮機の吐出側の冷媒の
温度を検知して、この冷媒の温度が上昇して電動機の巻
線が絶縁不良やオイルの劣化を起こしそうになった時に
は電動機の回転数を低くして電動機の巻線の温度並びに
冷媒の温度を下げるようにしたものである。
(E) Function The refrigeration system of the present invention uses a detector to detect the temperature of the refrigerant on the discharge side of the compressor, and the temperature of this refrigerant increases, causing poor insulation of the motor windings and deterioration of the oil. When this occurs, the rotational speed of the motor is lowered to lower the temperature of the motor windings as well as the temperature of the refrigerant.

(へ)実施例 第1図において、(1)は分離型空気調和機で室内ユニ
ット(2)と、室外ユニッ) (Blと、両ユニットを
結ぶユニット間配管(2)とから構成されている。室内
ユニット囚には冷房運転時に蒸発器として作用し暖房運
転時に凝縮器として作用する室内熱交換器(3)が内蔵
されている。
(F) Example In Fig. 1, (1) is a separate air conditioner, which is composed of an indoor unit (2), an outdoor unit (BL), and inter-unit piping (2) that connects both units. The indoor unit has a built-in indoor heat exchanger (3) that acts as an evaporator during cooling operation and as a condenser during heating operation.

一方、室外ユニツ) (Blには冷媒圧縮装置(4)と
、四方弁(5)と、冷房運転時に凝縮器として作用し暖
房運転時に蒸発器として作用する室外熱交換器(6)と
減圧装置(7)と、ストレーナ(8)と、マフラ(9)
とが内蔵されている。
On the other hand, outdoor unit) (Bl includes a refrigerant compression device (4), a four-way valve (5), an outdoor heat exchanger (6) that acts as a condenser during cooling operation and an evaporator during heating operation, and a pressure reduction device. (7), strainer (8), and muffler (9)
is built-in.

圧縮装置(4)は第2図に示すように密閉容器00)に
電動機Q11と、圧縮機a3とが内蔵されている。(1
3)は電動機α1)と圧縮機α2との間の空間(14)
に配設された感温素子で、圧縮機α2から吐出された冷
媒の温度を検知するものである。尚、圧縮機(121か
ら吐出された冷媒は電動機01)の回転子α9と固定子
(1b)との隙間(1ηを通って密閉容器αQ内の上方
に導びかれ吐出管08より排出される。この時、電動機
α1)の巻線が冷媒によって冷やされる。そして冷房運
転時に例えば電源周波数を30Hz〜85Hzに可変さ
せ電動機(11)の回転数を変えて、冷凍能力を132
0m/h〜2750m/hに可変させることができる。
As shown in FIG. 2, the compression device (4) includes an electric motor Q11 and a compressor a3 built into a closed container 00). (1
3) is the space (14) between the electric motor α1) and the compressor α2
This is a temperature sensing element disposed in the compressor α2 to detect the temperature of the refrigerant discharged from the compressor α2. The refrigerant discharged from the compressor (121) passes through the gap (1η) between the rotor α9 and the stator (1b) of the electric motor 01, is guided upward into the closed container αQ, and is discharged from the discharge pipe 08. At this time, the windings of the electric motor α1) are cooled by the refrigerant. Then, during cooling operation, for example, the power frequency is varied from 30Hz to 85Hz and the rotational speed of the electric motor (11) is changed to increase the refrigeration capacity to 132Hz.
It can be varied from 0 m/h to 2750 m/h.

又、暖房運転時に電源周波数を30Hz〜125Hzに
可変出来る周波数出力電源装置からの入力で冷凍能力を
135 am/h 〜410 om/hに可変できるも
のである。
Furthermore, the refrigeration capacity can be varied from 135 am/h to 410 om/h by inputting from a frequency output power supply device that can vary the power frequency from 30 Hz to 125 Hz during heating operation.

減圧装置(7)には以下に述べるような部品が接続され
ている。(19は第1減圧素子■と、開閉弁01)とを
並列につないだ並列回路である。この開閉弁0])は冷
房運転時並びに暖房運転時に圧縮装置(4)へ入力され
る周波数が50Hz以上になった場合(高負荷時)に開
放される。そして、第1減圧素子■へ暖房運転時の低負
荷時(圧縮装置(4)に入力される周波数が50Hz以
下になった場合)に冷媒を流す。
The following components are connected to the pressure reducing device (7). (19 is a parallel circuit in which the first pressure reducing element (2) and the on-off valve 01) are connected in parallel. This on-off valve 0]) is opened when the frequency input to the compression device (4) becomes 50 Hz or higher (during high load) during cooling operation and heating operation. Then, refrigerant is caused to flow into the first pressure reducing element (2) during low load during heating operation (when the frequency input to the compression device (4) becomes 50 Hz or less).

■は並列回路α場と直列につながれた第2減圧素子で、
冷房並びに暖房運転時に冷媒が流れる。
■ is the second pressure reducing element connected in series with the parallel circuit α field,
Refrigerant flows during cooling and heating operations.

そして冷房運転時は四方弁(5)を実線状態として冷媒
を第1図実線矢印の如く流す。一方暖房運転時は四方弁
(5)を破線状態とする。この時室内の空調負荷が小さ
く圧縮装置 (41内の電動機(11)に入力されろ周
波数が30Hz〜50Hzの間で制御されている時は開
閉弁c!1)を閉じて冷媒を破線矢印の如く流す。又、
室内の空調負荷が大きく圧縮装置(4)内の電動機(I
llに入力される周波数が50〜125Hzの間で制御
されている時には開閉弁(21)を開放して、第2減圧
素子のからの流れ出た冷媒を一点鎖線矢印の如く第1減
圧素子(201をバイパスして室外熱交換器(6)へ流
す。
During cooling operation, the four-way valve (5) is set to the solid line state to allow the refrigerant to flow as shown by the solid line arrow in FIG. On the other hand, during heating operation, the four-way valve (5) is set to the broken line state. At this time, when the indoor air conditioning load is small and the frequency input to the electric motor (11) in 41 is controlled between 30Hz and 50Hz, the on-off valve c!1) is closed and the refrigerant is transferred to the direction indicated by the broken line arrow. Let it flow. or,
The electric motor (I) in the compressor (4) has a large indoor air conditioning load.
When the frequency input to ll is controlled between 50 and 125 Hz, the on-off valve (21) is opened and the refrigerant flowing out from the second pressure reducing element is transferred to the first pressure reducing element (201) as indicated by the dashed-dotted arrow. is bypassed and flows to the outdoor heat exchanger (6).

冷房並びに暖房運転開始時に圧縮袋!(4)内の電動機
(161に入力される電源周波数は室内温度と設定温度
との差(ΔT)に応じて下表のように設定さ第3図は圧
縮装置(4)内の電動機(11)の運転制御の処理手順
を示すフローチャートである。
Compression bag when starting cooling or heating operation! The power frequency input to the electric motor (161 in ) is a flowchart showing the processing procedure of operation control.

この第3図において、空気調和機(1)の運転が開始さ
れると、室温(Tα)の測定と設定温度(TI)の検知
とが行なわれTαとTIとの差(ΔT)を求める。次い
でΔTに対応する電源周波数(前記表参照)に基づいて
圧縮機(1カが駆動される(ステップ30〜ステツプ3
5)。
In FIG. 3, when the air conditioner (1) starts operating, the room temperature (Tα) is measured and the set temperature (TI) is detected, and the difference (ΔT) between Tα and TI is determined. Next, one compressor is driven based on the power supply frequency (see the table above) corresponding to ΔT (steps 30 to 3).
5).

このように圧縮機(14が駆動されると、圧縮機Q21
の運転時間を3分間以上継続させろための3分りイマー
をスタートさせる。そして3分後に圧縮装置(4)に取
り付けた感温素子(131で圧縮機(1zから吐出され
た冷媒の温度(Tc)を検知して、この温度Tcが12
6℃以上か以下かの判別が行なわれる(ステップ36〜
ステツプ37)。
When the compressor (14) is driven in this way, the compressor Q21
Starts the 3-minute timer to keep the machine running for at least 3 minutes. After 3 minutes, the temperature sensing element (131) attached to the compressor (4) detects the temperature (Tc) of the refrigerant discharged from the compressor (1z).
A determination is made as to whether the temperature is above or below 6°C (step 36~
Step 37).

この判別の結果冷媒温度Tcが126℃以上であれば電
動機α1)の巻線が設定値よりも高くなっているとみな
して圧縮機C12を停止させ電動機α1)の巻線が絶縁
不良をおこすのを防ぐ。この停止から3分後にステップ
Gυに戻る(ステップ38〜ステツプ40)。この判別
の結果Tcが126℃以下であれば、3分後に再び冷媒
の温度(Tc)を検知してこの温度Tcが110℃以上
か以下かの判別が行なわれる(ステップ41〜ステツプ
43)。
As a result of this determination, if the refrigerant temperature Tc is 126°C or higher, it is assumed that the winding of the motor α1) is higher than the set value, and the compressor C12 is stopped to prevent insulation failure in the winding of the motor α1). prevent. Three minutes after this stop, the process returns to step Gυ (steps 38 to 40). If the result of this determination is that Tc is 126°C or lower, the temperature (Tc) of the refrigerant is detected again after 3 minutes and it is determined whether this temperature Tc is 110°C or higher or lower (steps 41 to 43).

この判別の結果、冷媒温度Tcが110’C以上であれ
ば電動機(Il+に入力されている現在の周波数よりも
5Hz低下させる。そして、電動機の回転数を落して圧
縮機αつ内の冷媒の温度を下げる。その後この周波数の
上昇を禁止してステップGυへ友る(ステップ44〜ス
テツプ45)。この判別の結果、冷媒温度Tcが110
℃以下であれば次に冷媒温度が100℃以上か以Fかの
判別を行なう。
As a result of this determination, if the refrigerant temperature Tc is 110'C or higher, the frequency is lowered by 5 Hz than the current frequency input to the motor (Il+). The temperature is lowered. After that, this frequency increase is prohibited and the process proceeds to step Gυ (steps 44 to 45). As a result of this determination, the refrigerant temperature Tc is 110
If it is below 100°C, then it is determined whether the refrigerant temperature is above 100°C or below.

この判別の結果が100’C以上であれば、電動機α1
)に入力されている現在の周波数を保持してステップG
υに戻る(ステップ46)。又、100°C以下であれ
ば周波数を上昇させるよう指令してステップ(3)に戻
る(ステップ47)。
If the result of this determination is 100'C or more, the electric motor α1
) and step G, keeping the current frequency input in
Return to υ (step 46). If the temperature is below 100°C, a command is given to increase the frequency and the process returns to step (3) (step 47).

第4図並びに第5図はこの空気調和機の冷房運転中の圧
縮機の冷媒温度と運転周波数と、この空気調和機で冷房
されている室の温度との関係を示す図で、第4図は通常
運転時の状態を示し、冷媒の温度が略1100C〜10
0℃となるよう運転周波数を定めて、電動機aυの巻線
が設定値よりも高くならないようにさせている。第5図
は、過負荷運転時の状態を示し、冷媒の温度が110°
Cを越えると運転周波数を低下させる。又1周波数を低
下させても冷媒の温度が126℃を越えるような時には
圧縮機を停止させろ。そして圧縮機を停止させてから3
分後に再び圧縮機を運転させる。尚、この時空調負荷は
小さくなっていないので、圧縮機の運転周波数は一旦8
5FIzとなるものの、冷媒温度が110°C以上であ
るため8011zK低下される。
Figures 4 and 5 are diagrams showing the relationship between the refrigerant temperature and operating frequency of the compressor during cooling operation of this air conditioner and the temperature of the room being cooled by this air conditioner. indicates the state during normal operation, and the temperature of the refrigerant is approximately 1100C to 10
The operating frequency is determined so that the temperature is 0°C, so that the winding of the motor aυ does not rise above the set value. Figure 5 shows the state during overload operation, where the temperature of the refrigerant is 110°.
If it exceeds C, the operating frequency will be lowered. Also, if the temperature of the refrigerant exceeds 126°C even if the frequency is lowered by one level, stop the compressor. Then, after stopping the compressor,
Run the compressor again after a minute. In addition, since the air conditioning load has not decreased at this time, the operating frequency of the compressor is temporarily reduced to 8.
Although it becomes 5 FIz, it is lowered by 8011zK because the refrigerant temperature is 110°C or higher.

(ト)  発明の効果 以上述べたように本発明の冷凍装置によれば、空調負荷
が大きく電動機の回転数が高くなってこの電動機の巻線
の温度が設定値よりも高くなった時には、電動機の回転
数を低くしたものである。
(G) Effects of the Invention As described above, according to the refrigeration system of the present invention, when the air conditioning load is large and the rotational speed of the motor is high and the temperature of the windings of this motor becomes higher than the set value, the motor The rotation speed is lowered.

従って電動機の巻線の発熱量が減少して巻線の絶縁不良
の発生を防ぐことができろ。
Therefore, the amount of heat generated in the motor windings is reduced, and the occurrence of insulation defects in the windings can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の冷凍装置を示すもので第1図は同装置の
冷媒回路図、第2図は同装置に組み込まれた圧縮機の縦
断面図、第3図は同装置の処理手順を示すフローチャー
ト、第4図は同装置の通常運転時における室内温度と運
転周波数と冷媒温度との関係を示す説明図、第5図は同
じ(過負荷運転時の室内温度と運転周波数と冷媒温度と
の関係を示す説明図である。 14+・・・圧縮機、 01)・・・電動機。 !l1il  図 第2図 第5図 第4図
The drawings show the refrigeration system of the present invention; Figure 1 is a refrigerant circuit diagram of the system, Figure 2 is a vertical sectional view of the compressor incorporated in the system, and Figure 3 is a process procedure of the system. Flow chart, Figure 4 is an explanatory diagram showing the relationship between indoor temperature, operating frequency, and refrigerant temperature during normal operation of the device, and Figure 5 is the same (explanatory diagram showing the relationship between indoor temperature, operating frequency, and refrigerant temperature during overload operation). It is an explanatory diagram showing the relationship. 14+... Compressor, 01)... Electric motor. ! l1il Figure 2 Figure 5 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)電動機とこの電動機で駆動される圧縮機とを密閉
容器に納め、この密閉容器を冷媒パイプにつないで冷凍
サイクルの一部にした冷凍装置において、前記電動機の
回転速度を冷凍負荷に応じて変えられるようにすると共
に、この電動機の巻線の温度が設定値よりも高くなった
時にはこの電動機の回転数を下げる制御手段を備えたこ
とを特徴とする冷凍装置。
(1) In a refrigeration system in which an electric motor and a compressor driven by the electric motor are housed in an airtight container, and this airtight container is connected to a refrigerant pipe to form part of a refrigeration cycle, the rotational speed of the electric motor is adjusted according to the refrigeration load. 1. A refrigeration system characterized by comprising control means for lowering the rotational speed of the motor when the temperature of the windings of the motor becomes higher than a set value.
JP21311585A 1985-09-26 1985-09-26 Refrigerator Pending JPS6273058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21311585A JPS6273058A (en) 1985-09-26 1985-09-26 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21311585A JPS6273058A (en) 1985-09-26 1985-09-26 Refrigerator

Publications (1)

Publication Number Publication Date
JPS6273058A true JPS6273058A (en) 1987-04-03

Family

ID=16633829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21311585A Pending JPS6273058A (en) 1985-09-26 1985-09-26 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6273058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241787A (en) * 2000-02-24 2001-09-07 Mitsubishi Electric Corp Screw type refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241787A (en) * 2000-02-24 2001-09-07 Mitsubishi Electric Corp Screw type refrigerator

Similar Documents

Publication Publication Date Title
US3913342A (en) Motor compressor control
US6092378A (en) Vapor line pressure control
JPS58129172A (en) Cooling facility
US20210302055A1 (en) Systems and methods for communication in hvac system
US20210333031A1 (en) Systems and/or methods for controlling a compressor and/or a fan motor
JP3187167B2 (en) Air conditioner
JPS6273058A (en) Refrigerator
US4262488A (en) System and method for controlling the discharge temperature of a high pressure stage of a multi-stage centrifugal compression refrigeration unit
JPS59189243A (en) Defrosting control device of air conditioner
JPH0370943A (en) Operation controller for air conditioner
JPH09196477A (en) Compression type refrigerator and method for controlling the operation thereof
JPH022064B2 (en)
JP3485579B2 (en) Refrigerator control device
JPH01305267A (en) Refrigerator
JPS62178852A (en) Refrigerator
JPH0289962A (en) Control of number of revolution of blower in refrigerating machine of air-cooling type
JPS63233245A (en) Air conditioner
JPH086951B2 (en) air conditioner
JP3301823B2 (en) Air conditioner
JPH0820140B2 (en) Oil recovery operation control device for air conditioner
JPS61276661A (en) Controller for refrigeration cycle
JPH07234046A (en) Air conditioner
JP2960211B2 (en) Pressure sensor destruction prevention control device for air conditioner
JPH0526435Y2 (en)
JPH0220906B2 (en)