JPH09196477A - Compression type refrigerator and method for controlling the operation thereof - Google Patents

Compression type refrigerator and method for controlling the operation thereof

Info

Publication number
JPH09196477A
JPH09196477A JP8005398A JP539896A JPH09196477A JP H09196477 A JPH09196477 A JP H09196477A JP 8005398 A JP8005398 A JP 8005398A JP 539896 A JP539896 A JP 539896A JP H09196477 A JPH09196477 A JP H09196477A
Authority
JP
Japan
Prior art keywords
evaporator
compressor
pressure
temperature
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8005398A
Other languages
Japanese (ja)
Inventor
Takeshi Yokoyama
武 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP8005398A priority Critical patent/JPH09196477A/en
Publication of JPH09196477A publication Critical patent/JPH09196477A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the superheating or frosting, freezing, etc., at the time of low or high load and to conduct the efficient operation in a compression type refrigerator. SOLUTION: A pressure reducing valve 7 for controlling the pressure (temperature) of the outlet of an evaporator 4 is inserted between the evaporator 4 and a compressor 1 to throttle the valve 7 at the time of low or high load, and the pressure and temperature of the evaporator 4 are regulated to prevent the superheating, frosting or freezing. Further, in addition to the valve 7, the opening of the valve 3 and the number of revolutions of a prime mover 1a are independently controlled to control the superheat degree of the evaporator 4 and the temperature of material to be cooled. Accordingly, the efficient operation can be conducted, and energy conservation is attempted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、着霜、凍結防止
及び効率よく運転を行うことができる圧縮式冷凍機の構
成とこの運転制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a compression refrigerator capable of preventing frost formation, freezing and operating efficiently, and an operation control method thereof.

【0002】[0002]

【従来の技術】 圧縮式冷凍機は、図2に示すように、
圧縮機1で冷媒を圧縮して凝縮器2に導き、ここで冷媒
蒸気を凝縮させて膨脹弁3に導くと共に、この膨脹弁3
で冷媒の膨脹量を制御しながら蒸発器4で冷媒の蒸発を
行わせることにより、冷房或いは冷凍を行う構成であ
る。図中1aは圧縮機1を駆動するための原動機(モー
タ)、5は圧縮機1をバイパスするバイパス回路、6は
このバイパス回路5に挿入したバイパス弁である。
2. Description of the Related Art As shown in FIG.
The compressor 1 compresses the refrigerant and guides it to the condenser 2, where the refrigerant vapor is condensed and guided to the expansion valve 3, and the expansion valve 3
With the configuration in which the refrigerant is evaporated by the evaporator 4 while controlling the expansion amount of the refrigerant by, cooling or freezing is performed. In the figure, 1a is a prime mover (motor) for driving the compressor 1, 5 is a bypass circuit for bypassing the compressor 1, and 6 is a bypass valve inserted in the bypass circuit 5.

【0003】上記従来の圧縮式冷凍機の場合、膨脹弁3
で蒸発器4の出口の圧力を調整することにより、蒸発器
4の過熱度を一定に制御し、原動機1aの回転数制御又
は原動機1aの発停(駆動又は停止の繰り返し)によ
り、冷媒の循環容量を制御して負荷変動に対応するとい
う制御方法がとられている。
In the case of the above conventional compression refrigerator, the expansion valve 3
By adjusting the pressure at the outlet of the evaporator 4, the degree of superheat of the evaporator 4 is controlled to be constant, and the circulation of the refrigerant is controlled by controlling the rotation speed of the prime mover 1a or starting (stopping or repeating) the prime mover 1a. A control method has been adopted in which the capacity is controlled to cope with load fluctuations.

【0004】[0004]

【発明が解決しようとする課題】 しかし、上記従来の
圧縮式冷凍機及びこの運転制御方法においては、次のよ
うな欠点がある。 1.原動機1aの使用できる回転数範囲には限界があ
り、回転数を一定以下には落とせない。それが容量制御
の下限になる。一方、この下限以下の低負荷で運転する
と、膨脹弁3の過熱度制御により、膨脹弁3が絞られ、
蒸発器4の圧力、温度が許容限度を超えて低下してしま
う。この場合、例えば空調機では蒸発器4の着霜、冷水
発生機では冷水の凍結を招く。
However, the above-mentioned conventional compression refrigerator and this operation control method have the following drawbacks. 1. There is a limit to the number of revolutions that can be used by the prime mover 1a, and the number of revolutions cannot be reduced below a certain value. That is the lower limit of capacity control. On the other hand, when operating at a low load below this lower limit, the expansion valve 3 is throttled by the superheat control of the expansion valve 3,
The pressure and temperature of the evaporator 4 fall below the allowable limit. In this case, for example, frosting of the evaporator 4 occurs in an air conditioner, and cold water freezes in a cold water generator.

【0005】2.従来、上記着霜や凍結の危険がある場
合には、原動機1aを発停させることにより容量制御を
行っているが、この発停を行うと発生冷熱が大きく変動
する。
[0005] 2. Conventionally, when there is a danger of frost formation or freezing, capacity control is performed by starting and stopping the prime mover 1a, but when this starting and stopping is performed, the generated cold heat greatly fluctuates.

【0006】3.上記2の欠点を解消する目的で、図2
のようにバイパス回路5を設けてこのバイパス回路5内
をバイパスする容量を制御することにより原動機1aの
回転数を一定に維持しながら蒸発器4に流れる冷媒量を
減らすという方法もあるが、この場合、特にマルチ式エ
アコンでは効率が悪い。
[0006] 3. For the purpose of eliminating the above-mentioned disadvantages of FIG.
There is also a method of reducing the amount of refrigerant flowing to the evaporator 4 while maintaining the rotation speed of the prime mover 1a constant by providing the bypass circuit 5 and controlling the capacity for bypassing the inside of the bypass circuit 5 as described above. In this case, the efficiency is poor, especially for multi-type air conditioners.

【0007】4.原動機1aが回転数制御機能を持って
いない場合、容量制御は原動機1aの発停により行って
いるが、この制御方式の場合も、上記2及び3に記述し
たと同様の問題が発生する。
[0007] 4. When the prime mover 1a does not have the rotation speed control function, the capacity control is performed by starting and stopping the prime mover 1a, but in the case of this control method, the same problems as described in 2 and 3 above occur.

【0008】5.起動時や高負荷時等で蒸発器4の圧力
が高すぎる場合、原動機1aが過負荷状態になる。
[0008] 5. When the pressure of the evaporator 4 is too high at the time of startup or high load, the prime mover 1a becomes overloaded.

【0009】6.圧縮式冷凍機では、a.圧縮機1の液
圧縮防止のために蒸発器4の出口の過熱度の制御がで
き、b.循環冷媒の容量制御ができ、c.蒸発器4の周
辺の被冷却体を一定の状態、つまり着霜や凍結を防ぐた
めに蒸発器4の温度制御ができることが望ましく、この
ために、従来は膨脹弁3の開度と原動機1aの回転数制
御を組み合わせて行うか、又は膨脹弁3の開度とバイパ
ス弁6を組み合わせて行う制御の2方式だけであって、
夫々独立しての制御は行ってはいない。このため、上記
a〜cの制御を独立して行うためには、3つの制御装置
が必要になる。
6. In the compression refrigerator, a. The degree of superheat at the outlet of the evaporator 4 can be controlled to prevent liquid compression of the compressor 1, b. The capacity of the circulating refrigerant can be controlled, and c. It is desirable to be able to control the temperature of the evaporator 4 in a certain state, that is, to prevent frosting and freezing of the object to be cooled around the evaporator 4, and for this reason, conventionally, the opening degree of the expansion valve 3 and the rotation of the prime mover 1a are conventionally. There are only two types of control, that is, a combination of numerical control or a combination of the opening degree of the expansion valve 3 and the bypass valve 6,
They are not individually controlled. Therefore, three control devices are required in order to independently control the above ac.

【0010】[0010]

【課題を解決するための手段】 本発明は、上記した1
〜6の課題を解決するのが目的であって、その構成は次
のとおりである。 1.冷媒循環系路において、蒸発器と圧縮機間に減圧弁
を挿入し、低負荷時又は高負荷時にこの減圧弁を絞るこ
とにより、前記蒸発器の圧力及び温度を調整すると共
に、前記圧縮機の吸入圧力を調整して、前記圧縮機の駆
動用原動機の負荷を軽減するように構成して成る圧縮式
冷凍機。
Means for Solving the Problems The present invention provides the above-mentioned 1
The purpose is to solve the problems of (6) to (6), and the configuration is as follows. 1. In the refrigerant circulation system, a pressure reducing valve is inserted between the evaporator and the compressor, and the pressure and temperature of the evaporator are adjusted by squeezing the pressure reducing valve when the load is low or high, and A compression type refrigerator configured to reduce the load on a prime mover for driving the compressor by adjusting the suction pressure.

【0011】2.圧縮機、凝縮器、膨脹弁、蒸発器を経
由する冷媒循環系路において、前記蒸発器と圧縮機間に
減圧弁を挿入し、低負荷時又は高負荷時にこの減圧弁を
絞ることにより、前記蒸発器の圧力及び温度を調整する
と共に、前記圧縮機の吸入圧力を調整する、前記膨脹弁
を制御することにより、前記蒸発器出口の過熱度を調整
する、前記圧縮機の駆動用原動機の回転数を制御するこ
とにより、被冷却体の温度を調整する、ことを特徴とす
る圧縮式冷凍機の運転制御方法。
2. By inserting a pressure reducing valve between the evaporator and the compressor in the refrigerant circulation path passing through the compressor, the condenser, the expansion valve, and the evaporator, and reducing the pressure reducing valve at the time of low load or high load, Adjusting the pressure and temperature of the evaporator, adjusting the suction pressure of the compressor, controlling the expansion valve to control the degree of superheat at the outlet of the evaporator, rotation of the prime mover for driving the compressor A method for controlling the operation of a compression refrigerator, wherein the temperature of the cooled object is adjusted by controlling the number.

【0012】[0012]

【作用】[Action]

構成1の場合 原動機が回転数制御機能付の場合には、この回転数制御
で負荷変動に対応し、回転数制御範囲を超えた場合に
は、減圧弁を絞ることにより、圧縮機の吸入圧力を制御
すると共に、圧縮機を経由して流れる冷媒の循環量を減
少させて蒸発器の圧力、温度を一定に保ち、且つ、原動
機の負荷を軽減する。原動機が回転数制御機能を持たな
い場合には、減圧弁を絞ることにより、低負荷又は高負
荷に対応し、原動機の発停は行わない。
In the case of configuration 1, when the prime mover has a rotation speed control function, this rotation speed control responds to load fluctuations, and when it exceeds the rotation speed control range, the pressure reducing valve is throttled to reduce the suction pressure of the compressor. Is controlled, the circulation amount of the refrigerant flowing through the compressor is reduced to keep the pressure and temperature of the evaporator constant, and the load on the prime mover is reduced. When the prime mover does not have the rotation speed control function, the pressure reducing valve is throttled to cope with a low load or a high load, and the prime mover is not started or stopped.

【0013】構成2の場合 蒸発器出口の過熱度を膨脹弁で制御し、被冷却体の温度
を原動機の回転数で制御し、蒸発器の圧力(温度)と圧
縮機の吸入圧力を減圧弁で夫々独立に制御する。但し、
これらの制御は、夫々単独で行うことが原則であるが、
条件によっては、組み合わせて制御することにより、よ
り効率的な運転が可能になる。
In the case of configuration 2, the degree of superheat at the outlet of the evaporator is controlled by an expansion valve, the temperature of the object to be cooled is controlled by the rotation speed of the prime mover, and the pressure (temperature) of the evaporator and the suction pressure of the compressor are reduced valves. To control each independently. However,
In principle, each of these controls is performed independently,
Depending on the conditions, more efficient operation can be achieved by controlling them in combination.

【0014】[0014]

【発明の実施の形態】 図1に基づいて請求項1及び2
記載の発明の実施例を詳述する。図1は圧縮式冷凍機の
冷媒の循環系路を示し、1は圧縮機、1aは回転数制御
機能付原動機、2は凝縮器、3は膨脹弁、4は蒸発器、
7は減圧弁である。
DETAILED DESCRIPTION OF THE INVENTION Claims 1 and 2 based on FIG.
The embodiments of the described invention will be described in detail. FIG. 1 shows a refrigerant circulation path of a compression refrigerator, 1 is a compressor, 1a is a prime mover with a rotation speed control function, 2 is a condenser, 3 is an expansion valve, 4 is an evaporator,
Reference numeral 7 is a pressure reducing valve.

【0015】上記実施例の場合、通常の負荷変動に際し
ては原動機1aの回転数制御で対応し、この回転数制御
範囲を超えた低負荷時又は高負荷時には減圧弁7を絞る
ことにより蒸発器4の圧力(温度)を制御して着霜、凍
結等のトラブルを防止する。又、膨脹弁3の開度によ
り、蒸発器4の出口の過熱度を制御し、原動機1aの回
転数制御により循環する冷媒の量を制御して被冷却体の
温度を制御する。
In the case of the above-described embodiment, a normal load fluctuation is dealt with by controlling the rotation speed of the prime mover 1a, and at the time of a low load or a high load exceeding the rotation speed control range, the pressure reducing valve 7 is throttled to reduce the evaporator 4a. Controls the pressure (temperature) to prevent problems such as frost and freezing. Further, the degree of superheat at the outlet of the evaporator 4 is controlled by the opening degree of the expansion valve 3, and the amount of the circulating refrigerant is controlled by controlling the rotation speed of the prime mover 1a to control the temperature of the object to be cooled.

【0015】なお、上記実施例は、回転数制御機能付原
動機の場合であるが、定回転数の原動機の場合には、減
圧弁7により蒸発器4の圧力(温度)を制御し、膨脹弁
3により蒸発器4の出口の過熱度を制御する。上記実施
例の制御は、夫々単独の制御例であるが、これらの制御
を組み合わせて制御することも可能である。各制御は負
荷を検出し、この負荷に基づいてコントローラが行う。
The above embodiment is a case of a prime mover with a rotation speed control function. However, in the case of a prime mover with a constant rotation speed, the pressure (temperature) of the evaporator 4 is controlled by the pressure reducing valve 7 to expand the expansion valve. The superheat degree at the outlet of the evaporator 4 is controlled by 3. Although the controls in the above-described embodiments are examples of independent control, it is also possible to control these controls in combination. Each control detects a load, and the controller performs it based on this load.

【0016】[0016]

【発明の効果】 本発明は以上のように、減圧弁を蒸発
器と圧縮機間に挿入し、低負荷時又は高負荷時にこの減
圧弁を絞ることにより、蒸発器の圧力(温度)を制御し
て着霜或いは凍結又は過熱を防止することができる。
又、減圧弁、膨脹弁、原動機の回転数の3つの要素を夫
々独立に制御することにより、蒸発器の圧力(温度)及
び蒸発器出口の過熱度、被冷却体の温度を夫々制御する
ことができる。よって、圧縮式冷凍機において、効率的
な運転による省エネ化が可能であると共に、運転制御装
置の簡素化が可能である。
As described above, according to the present invention, the pressure (temperature) of the evaporator is controlled by inserting the pressure reducing valve between the evaporator and the compressor and squeezing the pressure reducing valve at the time of low load or high load. As a result, frost formation, freezing or overheating can be prevented.
In addition, the pressure reducing valve, the expansion valve, and the rotational speed of the prime mover are independently controlled to control the evaporator pressure (temperature), the evaporator outlet superheat degree, and the temperature of the cooled object. You can Therefore, in the compression type refrigerator, energy can be saved by efficient operation, and the operation control device can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を圧縮式冷凍機に実施した例の説明
図。
FIG. 1 is an explanatory diagram of an example in which the present invention is applied to a compression refrigerator.

【図2】 従来の圧縮式冷凍機の説明図。FIG. 2 is an explanatory diagram of a conventional compression refrigerator.

【符号の説明】[Explanation of symbols]

1 圧縮機 1a 回転数制御機能付原動機 2 凝縮器 3 膨脹弁 4 蒸発器 7 減圧弁 1 Compressor 1a Motor with rotation speed control function 2 Condenser 3 Expansion valve 4 Evaporator 7 Pressure reducing valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒循環系路において、蒸発器と圧縮機
間に減圧弁を挿入し、低負荷時又は高負荷時にこの減圧
弁を絞ることにより、前記蒸発器の圧力及び温度を調整
すると共に、前記圧縮機の吸入圧力を調整して、前記圧
縮機の駆動用原動機の負荷を軽減するように構成して成
る圧縮式冷凍機。
1. A pressure reducing valve is inserted between an evaporator and a compressor in a refrigerant circulation path, and the pressure reducing valve is throttled at the time of low load or high load to adjust the pressure and temperature of the evaporator. A compression refrigerator that is configured to reduce a load on a driving motor of the compressor by adjusting a suction pressure of the compressor.
【請求項2】 圧縮機、凝縮器、膨脹弁、蒸発器を経由
する冷媒循環系路において、前記蒸発器と圧縮機間に減
圧弁を挿入し、低負荷時又は高負荷時にこの減圧弁を絞
ることにより、前記蒸発器の圧力及び温度を調整すると
共に、前記圧縮機の吸入圧力を調整する、 前記膨脹弁を制御することにより、前記蒸発器出口の過
熱度を調整する、 前記圧縮機の駆動用原動機の回転数を制御することによ
り、 被冷却体の温度を調整する、 ことを特徴とする圧縮式冷凍機の運転制御方法。
2. A pressure reducing valve is inserted between the evaporator and the compressor in a refrigerant circulation system passing through the compressor, the condenser, the expansion valve, and the evaporator, and the pressure reducing valve is operated under low load or high load. Adjusting the pressure and temperature of the evaporator by squeezing, adjusting the suction pressure of the compressor, adjusting the superheat degree of the evaporator outlet by controlling the expansion valve, A method for controlling the operation of a compression refrigerator, wherein the temperature of an object to be cooled is adjusted by controlling the rotation speed of a driving prime mover.
JP8005398A 1996-01-17 1996-01-17 Compression type refrigerator and method for controlling the operation thereof Pending JPH09196477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8005398A JPH09196477A (en) 1996-01-17 1996-01-17 Compression type refrigerator and method for controlling the operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8005398A JPH09196477A (en) 1996-01-17 1996-01-17 Compression type refrigerator and method for controlling the operation thereof

Publications (1)

Publication Number Publication Date
JPH09196477A true JPH09196477A (en) 1997-07-31

Family

ID=11610052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8005398A Pending JPH09196477A (en) 1996-01-17 1996-01-17 Compression type refrigerator and method for controlling the operation thereof

Country Status (1)

Country Link
JP (1) JPH09196477A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167575A (en) * 2004-12-15 2006-06-29 Mitsubishi Electric Corp Voc recovery apparatus
JP2008209016A (en) * 2007-02-23 2008-09-11 Fuji Electric Retail Systems Co Ltd Cooling system
JP2010515007A (en) * 2006-12-29 2010-05-06 キャリア コーポレイション Standby type variable frequency compressor drive unit
JP2012229838A (en) * 2011-04-25 2012-11-22 Taikisha Ltd Fluid cooling means and fluid cooling device
JP2013002710A (en) * 2011-06-15 2013-01-07 Denso Corp Refrigerating cycle device
JPWO2015136595A1 (en) * 2014-03-10 2017-04-06 三菱電機株式会社 Heat pump equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167575A (en) * 2004-12-15 2006-06-29 Mitsubishi Electric Corp Voc recovery apparatus
JP2010515007A (en) * 2006-12-29 2010-05-06 キャリア コーポレイション Standby type variable frequency compressor drive unit
JP2008209016A (en) * 2007-02-23 2008-09-11 Fuji Electric Retail Systems Co Ltd Cooling system
JP2012229838A (en) * 2011-04-25 2012-11-22 Taikisha Ltd Fluid cooling means and fluid cooling device
JP2013002710A (en) * 2011-06-15 2013-01-07 Denso Corp Refrigerating cycle device
JPWO2015136595A1 (en) * 2014-03-10 2017-04-06 三菱電機株式会社 Heat pump equipment

Similar Documents

Publication Publication Date Title
KR930004380B1 (en) Energy efficient air conditioning system
US8813511B2 (en) Control system for operating condenser fans
US4230470A (en) Air conditioning system
JP2936961B2 (en) Air conditioner
JP2001091087A (en) Method for controlling refrigerator of absorption heater chiller
US6467292B1 (en) Control system for compressed gas refrigeration dryers
CN111578467A (en) Control method of air conditioning system and air conditioning system
CN113137691A (en) Control method of magnetic suspension air conditioning unit
JP4167190B2 (en) Refrigeration system and operation method thereof
JPH09196477A (en) Compression type refrigerator and method for controlling the operation thereof
JP2000046423A (en) Natural circulation cooling apparatus
CN111609520A (en) Control method of variable frequency air conditioner
JP2019138626A (en) Air conditioner
JP2003232554A (en) Air conditioner
JPH02290471A (en) Air-conditioner
JPH01314840A (en) Water-cooling type air conditioner
JP3854388B2 (en) Heating capacity control method and apparatus for multi-room air conditioner
KR20180065314A (en) Turbo chiller system and Method for controlling it
JPS6396450A (en) Controller for refrigerating facility
JPS58221349A (en) Refrigeration cycle device
JP2600815B2 (en) Heat pump system
JP3874262B2 (en) Refrigeration system combining absorption and compression
KR100349711B1 (en) Outdoor fan control device of multi air conditioner
JPH01208666A (en) Refrigerating plant
JP2003042505A (en) Air conditioner and method of controlling its operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040824

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041209

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20041222

RD04 Notification of resignation of power of attorney

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD02 Notification of acceptance of power of attorney

Effective date: 20050121

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Effective date: 20050323

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426

A521 Written amendment

Effective date: 20050624

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050816

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050818

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090826

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090826

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100826

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110826

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120826

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250