JPWO2015136595A1 - Heat pump equipment - Google Patents

Heat pump equipment Download PDF

Info

Publication number
JPWO2015136595A1
JPWO2015136595A1 JP2016507142A JP2016507142A JPWO2015136595A1 JP WO2015136595 A1 JPWO2015136595 A1 JP WO2015136595A1 JP 2016507142 A JP2016507142 A JP 2016507142A JP 2016507142 A JP2016507142 A JP 2016507142A JP WO2015136595 A1 JPWO2015136595 A1 JP WO2015136595A1
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
heat exchanger
pressure
heating operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016507142A
Other languages
Japanese (ja)
Other versions
JP6233499B2 (en
Inventor
啓輔 高山
啓輔 高山
森下 国博
国博 森下
徹 小出
徹 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015136595A1 publication Critical patent/JPWO2015136595A1/en
Application granted granted Critical
Publication of JP6233499B2 publication Critical patent/JP6233499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Abstract

本発明は、低加熱運転のときに密閉容器の内部に液冷媒が溜まることを抑制できるヒートポンプ装置を提供することを目的とする。本発明のヒートポンプ装置は、低圧冷媒を密閉容器内の圧縮要素へ導く第一吸入通路と、圧縮要素により圧縮された高圧冷媒を吐出する第一吐出通路と、第一吐出通路から吐出された後に熱交換をした高圧冷媒を圧縮せずに密閉容器の内部空間へ放出する第二吸入通路と、密閉容器の内部空間の高圧冷媒を吐出する第二吐出通路とを有する圧縮機と、第一吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第一熱交換器と、第二吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第二熱交換器と、高加熱運転と高加熱運転に比べて加熱能力が小さい低加熱運転とを行う制御手段と、を備え、制御手段は、低加熱運転のとき、第二吸入通路の冷媒の状態が過熱ガス状態になるように制御する。An object of this invention is to provide the heat pump apparatus which can suppress that a liquid refrigerant accumulates inside the airtight container at the time of a low heating operation. The heat pump device of the present invention includes a first suction passage that guides the low-pressure refrigerant to the compression element in the sealed container, a first discharge passage that discharges the high-pressure refrigerant compressed by the compression element, and after being discharged from the first discharge passage. A compressor having a second suction passage that discharges the high-pressure refrigerant that has undergone heat exchange to the internal space of the sealed container without compression, and a second discharge passage that discharges the high-pressure refrigerant in the internal space of the sealed container; A first heat exchanger that heats the target fluid with the heat of the high-pressure refrigerant discharged from the passage, a second heat exchanger that heats the target fluid with the heat of the high-pressure refrigerant discharged from the second discharge passage, and a high heating operation And a control means for performing a low heating operation having a smaller heating capacity than that of the high heating operation, and the control means is configured so that the state of the refrigerant in the second suction passage becomes an overheated gas state during the low heating operation. Control.

Description

本発明は、対象流体を加熱するヒートポンプ装置に関する。   The present invention relates to a heat pump device that heats a target fluid.

下記特許文献1には、次のような給湯サイクル装置が開示されている。給湯サイクル装置は、圧縮機、ガスクーラ、膨張弁、蒸発器等を備える。圧縮機は、密閉容器内に圧縮要素及び電動要素を有する。圧縮機は、低圧の冷媒を圧縮要素に直接導く吸入管と、圧縮要素で圧縮した高圧の冷媒を密閉容器内に放出することなく密閉容器外に吐出する吐出管と、吐出管より吐出され熱交換した後の冷媒を密閉容器内に再度導入する冷媒再導入管と、この冷媒再導入管より密閉容器内に導入され電動要素を通過した後の冷媒を密閉容器外に吐出する冷媒再吐出管とを備える。ガスクーラは、内部において、給湯用の水が流通する水配管と、圧縮冷媒が流通する冷媒配管とが熱交換することで、冷媒配管の冷媒により水配管の水の温度を上昇させるものである。冷媒配管のうち、吐出管に接続する高温側冷媒配管がガスクーラの水配管の出口側と熱交換し、冷媒再吐出管に接続する低温側冷媒配管がガスクーラの水配管の入口側と熱交換する。   Patent Document 1 below discloses a hot water supply cycle apparatus as follows. The hot water supply cycle apparatus includes a compressor, a gas cooler, an expansion valve, an evaporator, and the like. The compressor has a compression element and an electric element in a sealed container. The compressor includes a suction pipe that directly guides the low-pressure refrigerant to the compression element, a discharge pipe that discharges the high-pressure refrigerant compressed by the compression element to the outside of the sealed container without releasing it into the sealed container, and heat discharged from the discharge pipe. Refrigerant reintroduction pipe for reintroducing the refrigerant after replacement into the sealed container, and refrigerant redischarge pipe for discharging the refrigerant after being introduced into the sealed container from the refrigerant reintroduction pipe and passing through the electric element to the outside of the sealed container With. In the gas cooler, the temperature of water in the water pipe is increased by the refrigerant in the refrigerant pipe by exchanging heat between the water pipe through which hot water is circulated and the refrigerant pipe through which the compressed refrigerant is circulated. Of the refrigerant pipes, the high-temperature side refrigerant pipe connected to the discharge pipe exchanges heat with the outlet side of the water pipe of the gas cooler, and the low-temperature side refrigerant pipe connected to the refrigerant re-discharge pipe exchanges heat with the inlet side of the water pipe of the gas cooler. .

下記特許文献2には、次のようなヒートポンプ給湯機が開示されている。ヒートポンプ給湯機は、圧縮機、水冷媒熱交換器、膨張弁、蒸発器が環状に接続されたヒートポンプサイクルを有する。ヒートポンプ給湯機は、貯湯運転モードと湯張り運転モードとを有する。湯張り運転モードにおいては、ヒートポンプサイクルを動作させ、貯湯タンクから供給される水と、ヒートポンプサイクルの水冷媒熱交換器から流出する水とを、湯張り混合弁によって混合させ、混合させた水を浴槽に供給し、出湯温度を貯湯運転モードよりも低温とする。   The following Patent Document 2 discloses the following heat pump water heater. The heat pump water heater has a heat pump cycle in which a compressor, a water refrigerant heat exchanger, an expansion valve, and an evaporator are connected in an annular shape. The heat pump water heater has a hot water storage operation mode and a hot water operation mode. In the hot water filling operation mode, the heat pump cycle is operated, the water supplied from the hot water storage tank and the water flowing out of the water refrigerant heat exchanger of the heat pump cycle are mixed by the hot water mixing valve, and the mixed water is mixed. Supply to the bathtub and make the hot water temperature lower than the hot water storage operation mode.

日本特開2006−132427号公報Japanese Unexamined Patent Publication No. 2006-132427 日本特開2011−21828号公報Japanese Unexamined Patent Publication No. 2011-21828

特許文献1の装置で、特許文献2のような湯張り運転モードを実施すると、圧縮機の吐出圧力が臨界点以下になり、高温側冷媒配管で冷媒が気液二相状態まで凝縮し、密閉容器に気液二相冷媒が流入する可能性がある。吐出管は密閉容器の上部に付いている。気液二相冷媒が密閉容器に流入すると、密閉容器内で気液分離され、ガス冷媒のみが吐出管から流出する。その結果、密閉容器内に液冷媒が蓄積されてしまい、冷凍サイクル全体が冷媒不足になる。また、密閉容器内に溜まった液冷媒が、圧縮要素あるいは電動要素の熱で加熱されると、冷凍機油と混合している冷媒が蒸発することで、冷凍機油が発泡し、冷凍機油が冷媒とともに吐出管から流出する。その結果、密閉容器内の冷凍機油が不足するおそれがある。   When the hot water operation mode as in Patent Document 2 is performed with the apparatus of Patent Document 1, the discharge pressure of the compressor becomes below the critical point, and the refrigerant condenses to a gas-liquid two-phase state in the high-temperature side refrigerant pipe, and is sealed. Gas-liquid two-phase refrigerant may flow into the container. The discharge pipe is attached to the top of the sealed container. When the gas-liquid two-phase refrigerant flows into the sealed container, gas-liquid separation is performed in the sealed container, and only the gas refrigerant flows out from the discharge pipe. As a result, liquid refrigerant is accumulated in the sealed container, and the entire refrigeration cycle becomes insufficient. Further, when the liquid refrigerant accumulated in the sealed container is heated by the heat of the compression element or the electric element, the refrigerant mixed with the refrigerating machine oil evaporates, so that the refrigerating machine oil is foamed and the refrigerating machine oil is combined with the refrigerant. It flows out from the discharge pipe. As a result, the refrigerating machine oil in the sealed container may be insufficient.

本発明は、上述のような課題を解決するためになされたもので、低加熱運転のときに密閉容器の内部に液冷媒が溜まることを抑制できるヒートポンプ装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat pump device capable of suppressing liquid refrigerant from accumulating inside a sealed container during low heating operation.

本発明のヒートポンプ装置は、密閉容器と、密閉容器の内部に設けられた圧縮要素と、密閉容器の外部から吸入される低圧冷媒を密閉容器の内部空間へ放出せずに圧縮要素へ導く第一吸入通路と、圧縮要素により圧縮された高圧冷媒を密閉容器の内部空間へ放出せずに密閉容器の外部へ吐出する第一吐出通路と、第一吐出通路から吐出された後に熱交換をした高圧冷媒を圧縮せずに密閉容器の内部空間へ放出する第二吸入通路と、密閉容器の内部空間の高圧冷媒を圧縮せずに密閉容器の外部へ吐出する第二吐出通路とを有する圧縮機と、第一吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第一熱交換器と、第二吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第二熱交換器と、第二熱交換器を通過した高圧冷媒を膨張させて低圧冷媒にする膨張部と、膨張部を通過した低圧冷媒を蒸発させる蒸発器と、高加熱運転と、第一熱交換器及び第二熱交換器の合計の加熱量が高加熱運転に比べて小さい低加熱運転とを行う制御手段と、を備え、制御手段は、低加熱運転のとき、第二吸入通路の冷媒の状態が過熱ガス状態になるように制御するものである。   The heat pump device of the present invention includes a sealed container, a compression element provided inside the sealed container, and a first low-pressure refrigerant sucked from the outside of the sealed container that is led to the compression element without being discharged into the internal space of the sealed container. A suction passage, a first discharge passage that discharges high-pressure refrigerant compressed by the compression element to the outside of the sealed container without releasing it into the inner space of the sealed container, and a high pressure that exchanges heat after being discharged from the first discharge passage A compressor having a second suction passage that discharges the refrigerant to the inner space of the sealed container without compression, and a second discharge passage that discharges the high-pressure refrigerant in the inner space of the sealed container to the outside of the sealed container without being compressed. A first heat exchanger that heats the target fluid with the heat of the high-pressure refrigerant discharged from the first discharge passage; and a second heat exchanger that heats the target fluid with the heat of the high-pressure refrigerant discharged from the second discharge passage. , Expanded high-pressure refrigerant that passed through the second heat exchanger The total heating amount of the expansion part to be a low-pressure refrigerant, the evaporator that evaporates the low-pressure refrigerant that has passed through the expansion part, the high heating operation, and the first heat exchanger and the second heat exchanger is the high heating operation. And a control means for performing a low heating operation that is smaller than the control means, and the control means controls the refrigerant state in the second suction passage to be in an overheated gas state during the low heating operation.

本発明のヒートポンプ装置によれば、低加熱運転のときに密閉容器の内部に液冷媒が溜まることを抑制することが可能となる。   According to the heat pump device of the present invention, it is possible to suppress liquid refrigerant from accumulating inside the sealed container during low heating operation.

本発明の実施の形態1のヒートポンプ装置を示す構成図である。It is a block diagram which shows the heat pump apparatus of Embodiment 1 of this invention. 本発明の実施の形態1のヒートポンプ装置が備えるヒートポンプユニットを示す構成図である。It is a block diagram which shows the heat pump unit with which the heat pump apparatus of Embodiment 1 of this invention is provided. 本発明の実施の形態1のヒートポンプ装置の高加熱運転の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the high heating operation of the heat pump device of Embodiment 1 of the present invention. 本発明の実施の形態1のヒートポンプ装置の高加熱運転での第一熱交換器及び第二熱交換器での冷媒及び水の温度変化の一例を表す図である。It is a figure showing an example of the temperature change of the refrigerant | coolant and water in a 1st heat exchanger and a 2nd heat exchanger in the high heating operation of the heat pump apparatus of Embodiment 1 of this invention. 本発明の実施の形態1のヒートポンプ装置の高加熱運転での制御装置の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the control apparatus in the high heating operation of the heat pump apparatus of Embodiment 1 of this invention. 本発明の実施の形態1のヒートポンプ装置の低加熱運転の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the low heating operation of the heat pump device of Embodiment 1 of the present invention. 本発明の実施の形態1の低加熱運転での第一熱交換器及び第二熱交換器での冷媒及び水の温度変化の一例を表す図である。It is a figure showing an example of the temperature change of the refrigerant | coolant and water in the 1st heat exchanger and the 2nd heat exchanger in the low heating operation of Embodiment 1 of this invention. 本発明の実施の形態1のヒートポンプ装置の低加熱運転での制御装置の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the control apparatus in the low heating operation of the heat pump apparatus of Embodiment 1 of this invention. 本発明の実施の形態2のヒートポンプ装置の低加熱運転での制御装置の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the control apparatus in the low heating operation of the heat pump apparatus of Embodiment 2 of this invention. 本発明の実施の形態3のヒートポンプ装置の低加熱運転での制御装置の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the control apparatus in the low heating operation of the heat pump apparatus of Embodiment 3 of this invention. 本発明の実施の形態4のヒートポンプ装置が備えるヒートポンプユニットを示す構成図である。It is a block diagram which shows the heat pump unit with which the heat pump apparatus of Embodiment 4 of this invention is provided. 本発明の実施の形態4のヒートポンプ装置の低加熱運転での制御装置の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the control apparatus in the low heating operation of the heat pump apparatus of Embodiment 4 of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。また、本発明は、以降に示す各実施の形態のあらゆる組み合わせを含むものとする。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted. In addition, the present invention includes all combinations of the embodiments described below.

実施の形態1.
図1は、本発明の実施の形態1のヒートポンプ装置を示す構成図である。図1に示すように、本実施の形態1のヒートポンプ装置1は、水を加熱するヒートポンプユニット2と、貯湯タンク10と、制御装置50とを有する。貯湯タンク10は、上側が高温で下側が低温になる温度成層を形成して水を貯留する。貯湯タンク10の下部と、ヒートポンプユニット2の入口12とは、入口配管11を介して接続されている。入口配管11の途中には、ポンプ13が設置されている。貯湯タンク10の上部には、上部配管14の一端が接続されている。上部配管14の他端側は、二つに分岐して、給湯混合弁15の第一入口と風呂混合弁16の第一入口とにそれぞれ接続されている。ヒートポンプユニット2の出口17は、出口配管18を介して、上部配管14の途中の位置に接続されている。ヒートポンプユニット2の詳細については後述する。本実施の形態1では、加熱する対象流体が水である場合について説明するが、本発明における対象流体は、例えばブライン、不凍液など、水以外の流体でも良い。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram illustrating a heat pump apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the heat pump device 1 according to the first embodiment includes a heat pump unit 2 that heats water, a hot water storage tank 10, and a control device 50. The hot water storage tank 10 stores water by forming a temperature stratification in which the upper side is hot and the lower side is low. The lower part of the hot water storage tank 10 and the inlet 12 of the heat pump unit 2 are connected via an inlet pipe 11. A pump 13 is installed in the middle of the inlet pipe 11. One end of the upper pipe 14 is connected to the upper part of the hot water storage tank 10. The other end of the upper pipe 14 branches into two and is connected to the first inlet of the hot water mixing valve 15 and the first inlet of the bath mixing valve 16, respectively. The outlet 17 of the heat pump unit 2 is connected to a position in the middle of the upper pipe 14 via the outlet pipe 18. Details of the heat pump unit 2 will be described later. In the first embodiment, the case where the target fluid to be heated is water will be described. However, the target fluid in the present invention may be a fluid other than water, such as brine or antifreeze.

貯湯タンク10の下部には、水道等の水源からの水を供給する給水配管19が接続されている。給水配管19の途中には、水源圧力を所定圧力に減圧する減圧弁20が設置されている。給水配管19から水が流入することで、貯湯タンク10内は常に満水状態に維持される。貯湯タンク10と減圧弁20との間の給水配管19から給水配管21が分岐している。給水配管21の下流側は、二つに分岐して、給湯混合弁15の第二入口と風呂混合弁16の第二入口とにそれぞれ接続されている。給湯混合弁15の出口は、給湯配管22を介して、給湯栓23に接続されている。給湯配管22には、給湯流量検知手段24と、給湯温度センサ25とが設置されている。風呂混合弁16の出口は、風呂配管26を介して、浴槽27に接続されている。風呂配管26には、開閉弁28と、風呂温度センサ29とが設置されている。ヒートポンプユニット2の出口17の近傍の出口配管18には、ヒートポンプユニット2から出る水の温度であるヒートポンプ出口温度を検知するヒートポンプ出口温度センサ30が設置されている。ヒートポンプ出口温度センサ30は、ヒートポンプユニット2の内部の配管(後述する水流路48)に設けても良い。なお、以下の説明では、ヒートポンプユニット2に入る水の温度を「ヒートポンプ入口温度」と称する。   A water supply pipe 19 for supplying water from a water source such as a water supply is connected to the lower part of the hot water storage tank 10. A pressure reducing valve 20 for reducing the water source pressure to a predetermined pressure is installed in the middle of the water supply pipe 19. As water flows in from the water supply pipe 19, the interior of the hot water storage tank 10 is always kept full. A water supply pipe 21 branches from a water supply pipe 19 between the hot water storage tank 10 and the pressure reducing valve 20. The downstream side of the water supply pipe 21 branches in two and is connected to the second inlet of the hot water mixing valve 15 and the second inlet of the bath mixing valve 16, respectively. The outlet of the hot water supply mixing valve 15 is connected to a hot water tap 23 via a hot water supply pipe 22. A hot water supply flow rate detection means 24 and a hot water supply temperature sensor 25 are installed in the hot water supply pipe 22. The outlet of the bath mixing valve 16 is connected to a bathtub 27 via a bath pipe 26. An open / close valve 28 and a bath temperature sensor 29 are installed in the bath pipe 26. A heat pump outlet temperature sensor 30 that detects a heat pump outlet temperature, which is a temperature of water exiting the heat pump unit 2, is installed in the outlet pipe 18 in the vicinity of the outlet 17 of the heat pump unit 2. The heat pump outlet temperature sensor 30 may be provided in a pipe (water channel 48 described later) inside the heat pump unit 2. In the following description, the temperature of water entering the heat pump unit 2 is referred to as “heat pump inlet temperature”.

制御装置50は、例えばマイクロコンピュータ等により構成される制御手段である。制御装置50は、ROM(Read Only Memory)、RAM(Random Access Memory)、不揮発性メモリ等を含む記憶部、記憶部に記憶されたプログラムに基いて演算処理を実行する演算処理装置(CPU)、演算処理装置に対して外部の信号を入出力する入出力ポート、時刻を計時するタイマー等を備える。制御装置50は、ヒートポンプ装置1が備える各種のアクチュエータ及びセンサとそれぞれ電気的に接続される。また、制御装置50は、操作部60と相互に通信可能に接続される。使用者は、操作部60を操作することで、給湯温度、浴槽湯量、浴槽温度等を設定したり、浴槽湯張り時刻をタイマー予約したりすることができる。制御装置50は、各センサで検知される情報及び操作部60からの指示情報などに基づき、各アクチュエータの動作を記憶部に記憶されたプログラムに従って制御することにより、ヒートポンプ装置1の運転を制御する。   The control device 50 is a control means configured by, for example, a microcomputer. The control device 50 includes a ROM (Read Only Memory), a RAM (Random Access Memory), a storage unit including a nonvolatile memory, an arithmetic processing unit (CPU) that executes arithmetic processing based on a program stored in the storage unit, An input / output port for inputting / outputting external signals to / from the arithmetic processing unit, a timer for measuring time, and the like are provided. The control device 50 is electrically connected to various actuators and sensors included in the heat pump device 1. The control device 50 is connected to the operation unit 60 so as to communicate with each other. The user can set the hot water supply temperature, the amount of bath water, the bath temperature, etc., or can make a timer reservation for the bath hot water time by operating the operation unit 60. The control device 50 controls the operation of the heat pump device 1 by controlling the operation of each actuator according to the program stored in the storage unit based on the information detected by each sensor, the instruction information from the operation unit 60, and the like. .

次に、貯湯運転について説明する。貯湯運転は、貯湯タンク10内の貯湯量及び蓄熱量を増加させる運転である。貯湯運転時には、制御装置50は、ヒートポンプユニット2及びポンプ13を稼動する。貯湯運転では、貯湯タンク10の下部からポンプ13により導出された低温水が、入口配管11を通ってヒートポンプユニット2に送られ、ヒートポンプユニット2で加熱され、高温水になる。この高温水が、出口配管18及び上部配管14を通り、貯湯タンク10の上部に流入する。このような貯湯運転により、貯湯タンク10内に上側から高温水が溜まっていく。   Next, hot water storage operation will be described. The hot water storage operation is an operation for increasing the amount of hot water stored and the amount of heat stored in the hot water storage tank 10. During the hot water storage operation, the control device 50 operates the heat pump unit 2 and the pump 13. In the hot water storage operation, the low temperature water led out from the lower part of the hot water storage tank 10 by the pump 13 is sent to the heat pump unit 2 through the inlet pipe 11 and heated by the heat pump unit 2 to become high temperature water. This high-temperature water flows into the upper part of the hot water storage tank 10 through the outlet pipe 18 and the upper pipe 14. By such hot water storage operation, hot water is accumulated in the hot water storage tank 10 from above.

貯湯運転では、制御装置50は、ヒートポンプ出口温度センサ30で検知されるヒートポンプ出口温度が例えば65℃〜90℃程度になるように制御する。ヒートポンプユニット2を流れる水の流量が高くなるようにポンプ13を制御することでヒートポンプ出口温度が低下する。ヒートポンプユニット2を流れる水の流量が低くなるようにポンプ13を制御することでヒートポンプ出口温度が上昇する。また、貯湯運転では、制御装置50は、ヒートポンプユニット2が高加熱運転を行うように制御する。ヒートポンプユニット2の高加熱運転とは、ヒートポンプユニット2の加熱能力を所定の定格能力にする運転である。   In the hot water storage operation, the control device 50 controls the heat pump outlet temperature detected by the heat pump outlet temperature sensor 30 to be, for example, about 65 ° C. to 90 ° C. The heat pump outlet temperature is lowered by controlling the pump 13 so that the flow rate of the water flowing through the heat pump unit 2 is increased. The heat pump outlet temperature rises by controlling the pump 13 so that the flow rate of the water flowing through the heat pump unit 2 becomes low. In the hot water storage operation, the control device 50 controls the heat pump unit 2 so as to perform the high heating operation. The high heating operation of the heat pump unit 2 is an operation for setting the heating capacity of the heat pump unit 2 to a predetermined rated capacity.

次に、給湯運転について説明する。給湯運転は、給湯栓23に給湯する運転である。使用者が給湯栓23を開くと、給水配管19からの水が水源圧力により貯湯タンク10内の下部に流入することで、貯湯タンク10内の上部の高温水が上部配管14へ流出する。給湯混合弁15において、給水配管21から供給される低温水と、貯湯タンク10から上部配管14を通って供給される高温水とが混合される。この混合水が給湯配管22を通って給湯栓23から外部に放出される。このとき、混合水の通過が給湯流量検知手段24で検知されると、制御装置50は、給湯温度センサ25で検知される給湯温度が、使用者によって予め操作部60で設定された給湯温度設定値になるように、給湯混合弁15の混合比率を制御する。   Next, the hot water supply operation will be described. The hot water supply operation is an operation for supplying hot water to the hot water tap 23. When the user opens the hot-water tap 23, the water from the water supply pipe 19 flows into the lower part of the hot water storage tank 10 due to the water source pressure, so that the high-temperature water in the upper part of the hot water storage tank 10 flows out to the upper pipe 14. In the hot water supply mixing valve 15, the low temperature water supplied from the water supply pipe 21 and the high temperature water supplied from the hot water storage tank 10 through the upper pipe 14 are mixed. This mixed water is discharged to the outside from the hot water tap 23 through the hot water supply pipe 22. At this time, when the passage of the mixed water is detected by the hot water supply flow rate detection means 24, the control device 50 sets the hot water supply temperature detected by the hot water supply temperature sensor 25 in the operation section 60 in advance by the user. The mixing ratio of the hot water supply mixing valve 15 is controlled so as to be a value.

次に、湯張り運転について説明する。湯張り運転は、浴槽27に湯を溜める運転である。使用者が操作部60で湯張り運転の起動操作を実施した場合、または、タイマー予約された時刻になった場合に、湯張り運転が開始される。湯張り運転時には、制御装置50は、ヒートポンプユニット2及びポンプ13を稼動し、開閉弁28を開状態にする。給水配管19からの水が水源圧力により貯湯タンク10の下部に流入することで、貯湯タンク10の上部の高温水が上部配管14へ流出する。また、貯湯タンク10の下部からポンプ13により導出された低温水が、入口配管11を通ってヒートポンプユニット2に送られ、ヒートポンプユニット2で加熱される。ヒートポンプユニット2で加熱された水は、出口配管18を通り、上部配管14に流入する。貯湯タンク10から供給される高温水とヒートポンプユニット2で加熱された水とが上部配管14で合流し、風呂混合弁16に供給される。風呂混合弁16において、給水配管21から供給される低温水と、上部配管14を通って供給される湯とが混合される。この混合水は風呂配管26を通り、開閉弁28を通過し、浴槽27内へ放出される。このとき、制御装置50は、風呂温度センサ29で検知される給湯温度が、使用者によって予め操作部60で設定された浴槽温度設定値になるように、風呂混合弁16の混合比率を制御する。   Next, hot water filling operation will be described. The hot water filling operation is an operation in which hot water is accumulated in the bathtub 27. When the user performs the start operation of the hot water filling operation with the operation unit 60, or when the timer reserved time comes, the hot water filling operation is started. At the time of hot water filling operation, the control device 50 operates the heat pump unit 2 and the pump 13 to open the on-off valve 28. When water from the water supply pipe 19 flows into the lower part of the hot water storage tank 10 due to the water source pressure, the high-temperature water at the upper part of the hot water storage tank 10 flows out to the upper pipe 14. Further, the low temperature water led out from the lower part of the hot water storage tank 10 by the pump 13 is sent to the heat pump unit 2 through the inlet pipe 11 and heated by the heat pump unit 2. The water heated by the heat pump unit 2 passes through the outlet pipe 18 and flows into the upper pipe 14. The high temperature water supplied from the hot water storage tank 10 and the water heated by the heat pump unit 2 merge through the upper pipe 14 and are supplied to the bath mixing valve 16. In the bath mixing valve 16, low temperature water supplied from the water supply pipe 21 and hot water supplied through the upper pipe 14 are mixed. This mixed water passes through the bath pipe 26, passes through the on-off valve 28, and is discharged into the bathtub 27. At this time, the control device 50 controls the mixing ratio of the bath mixing valve 16 so that the hot water supply temperature detected by the bath temperature sensor 29 becomes the bathtub temperature set value set in advance by the user using the operation unit 60. .

このように、本実施の形態1の湯張り運転では、貯湯タンク10に貯えた高温水だけでなく、ヒートポンプユニット2で加熱した水を補助的に用いることで、浴槽27に湯を供給する。湯張り運転では、制御装置50は、ヒートポンプ出口温度センサ30で検知されるヒートポンプ出口温度が浴槽温度設定値よりも低くなるように制御する。また、湯張り運転では、制御装置50は、ヒートポンプユニット2が低加熱運転を行うように制御する。ヒートポンプユニット2の低加熱運転とは、ヒートポンプユニット2の加熱能力を高加熱運転に比べて低くする運転である。   Thus, in the hot water filling operation of the first embodiment, hot water is supplied to the bathtub 27 by using not only high-temperature water stored in the hot water storage tank 10 but also water heated by the heat pump unit 2. In the hot water operation, the control device 50 controls the heat pump outlet temperature detected by the heat pump outlet temperature sensor 30 to be lower than the bathtub temperature set value. In the hot water filling operation, the control device 50 controls the heat pump unit 2 to perform the low heating operation. The low heating operation of the heat pump unit 2 is an operation that lowers the heating capacity of the heat pump unit 2 compared to the high heating operation.

ここで、湯張り能力について説明する。湯張り能力とは、所定の浴槽容量、給水温度及び湯張り流量の条件下で、目標浴槽温度で浴槽を満たす場合に必要とされる単位時間当たりの熱エネルギーである。例えば、浴槽容量180L、給水温度9℃及び目標浴槽温度45℃とし、湯張り流量を10L/min〜20L/minとすると、標準的な湯張り能力は25kW〜50kWとなる。一方、ヒートポンプユニット2の定格加熱能力は、例えば4.5kW〜9kW程度である。ヒートポンプユニット2の加熱能力のみでは、標準的な湯張り能力を満足させることができない。標準的な湯張り能力を満足するには、貯湯タンク10に貯えた高温水を用いる必要がある。   Here, the hot water filling ability will be described. The hot water filling capacity is heat energy per unit time required when a bathtub is filled at a target bath temperature under the conditions of a predetermined bath capacity, feed water temperature, and hot water flow rate. For example, assuming that the bath capacity is 180 L, the feed water temperature is 9 ° C., the target bath temperature is 45 ° C., and the hot water flow rate is 10 L / min to 20 L / min, the standard hot water filling capacity is 25 kW to 50 kW. On the other hand, the rated heating capacity of the heat pump unit 2 is, for example, about 4.5 kW to 9 kW. Only the heating capacity of the heat pump unit 2 cannot satisfy the standard hot water filling capacity. In order to satisfy the standard hot water filling capacity, it is necessary to use hot water stored in the hot water storage tank 10.

ヒートポンプユニット2は、加熱能力を低くして運転するほど、COP(Coefficient Of Performance)が高くなる特性を有する。また、ヒートポンプユニット2は、ヒートポンプ出口温度が低くなるほどCOPが高くなる特性を有する。このため、低加熱運転のCOPは、高加熱運転のCOPより高くなる。低加熱運転のCOPをC1とし、高加熱運転のCOPをC2とし、湯張り運転の実質的なCOPである湯張りCOPをC3とし、湯張り能力に対するヒートポンプユニット2の低加熱運転の加熱能力の比率をRhpとすると、湯張りCOPは次式で表される。
C3=C1×Rhp+C2×(1−Rhp) ・・・(1)
The heat pump unit 2 has a characteristic that COP (Coefficient of Performance) becomes higher as the heating capacity is lowered. Moreover, the heat pump unit 2 has a characteristic that COP increases as the heat pump outlet temperature decreases. For this reason, the COP for the low heating operation is higher than the COP for the high heating operation. The COP of the low heating operation is C1, the COP of the high heating operation is C2, the hot water COP that is a substantial COP of the hot water operation is C3, and the heating capacity of the low heating operation of the heat pump unit 2 relative to the hot water capacity When the ratio is Rhp, the hot water filling COP is expressed by the following equation.
C3 = C1 * Rhp + C2 * (1-Rhp) (1)

上述したように、貯湯運転では高加熱運転を行う。すなわち、貯湯タンク10内の高温水は、高加熱運転で生成されたものである。したがって、湯張り運転で、ヒートポンプユニット2を稼動せず、貯湯タンク10に貯えた高温水だけを用いて浴槽27に湯を供給した場合には、湯張りCOPは高加熱運転のCOPに等しくなる。つまり、上記(1)式でRhp=0とすると、C3=C2となる。これに対し、本実施の形態1の湯張り運転によれば、低加熱運転を行い、ヒートポンプユニット2で加熱した水を補助的に用いることで、湯張りCOPを高加熱運転のCOPより高くすることができる。つまり、上記(1)式でRhp>0であるので、C3>C2となる。このように、本実施の形態1では、低加熱運転を伴う湯張り運転を行うことで、前述の湯張り能力を確保しつつ、湯張りCOPを向上することができる。また、湯張り運転時にヒートポンプユニット2を稼動することで、湯張りに必要な熱エネルギーの一部をまかなうことができる。このため、貯湯タンク10に確保すべき蓄熱量を削減できる。よって、貯湯タンク10からの放熱ロスを低減でき、全体としてのエネルギー効率をさらに向上できる。また、貯湯タンク10に確保すべき蓄熱量を削減できるため、貯湯タンク10の容量を減らすことができ、貯湯タンク10の小型化が図れる。   As described above, a high heating operation is performed in the hot water storage operation. That is, the high temperature water in the hot water storage tank 10 is generated by a high heating operation. Accordingly, when hot water is supplied to the bathtub 27 using only high-temperature water stored in the hot water storage tank 10 without operating the heat pump unit 2 in the hot water operation, the hot water COP is equal to the COP of the high heating operation. . That is, if Rhp = 0 in the above equation (1), C3 = C2. On the other hand, according to the hot water filling operation of the first embodiment, the low water heating operation is performed and the water heated by the heat pump unit 2 is used as an auxiliary to make the hot water filling COP higher than the COP of the high heating operation. be able to. That is, since Rhp> 0 in the above equation (1), C3> C2. As described above, in the first embodiment, by performing the hot water filling operation accompanied by the low heating operation, it is possible to improve the hot water filling COP while ensuring the aforementioned hot water filling ability. Moreover, by operating the heat pump unit 2 during the hot water filling operation, a part of the thermal energy necessary for the hot water filling can be covered. For this reason, the amount of heat stored in the hot water storage tank 10 can be reduced. Therefore, the heat dissipation loss from the hot water storage tank 10 can be reduced, and the energy efficiency as a whole can be further improved. Moreover, since the heat storage amount to be secured in the hot water storage tank 10 can be reduced, the capacity of the hot water storage tank 10 can be reduced, and the hot water storage tank 10 can be downsized.

図2は、本発明の実施の形態1のヒートポンプ装置1が備えるヒートポンプユニット2を示す構成図である。図2に示すように、ヒートポンプユニット2は、圧縮機3と、第一熱交換器4と、第二熱交換器5と、膨張弁6と、蒸発器7とを冷媒配管により接続した冷媒回路を備える。第一熱交換器4及び第二熱交換器5は、冷媒の熱で水を加熱する熱交換器である。蒸発器7は、空気と冷媒との熱交換を行う空気冷媒熱交換器で構成されている。ヒートポンプユニット2は、蒸発器7に送風する送風機8と、高圧冷媒と低圧冷媒との熱交換を行う高低圧熱交換器9とを更に備える。本実施の形態1では、冷媒として二酸化炭素を使用する。なお、本発明における蒸発器7は、空気と冷媒とを熱交換するものに限らず、例えば、地下水、太陽熱温水などと冷媒とを熱交換するものでも良い。   FIG. 2 is a configuration diagram showing the heat pump unit 2 included in the heat pump device 1 according to the first embodiment of the present invention. As shown in FIG. 2, the heat pump unit 2 includes a refrigerant circuit in which a compressor 3, a first heat exchanger 4, a second heat exchanger 5, an expansion valve 6, and an evaporator 7 are connected by a refrigerant pipe. Is provided. The first heat exchanger 4 and the second heat exchanger 5 are heat exchangers that heat water with the heat of the refrigerant. The evaporator 7 is composed of an air refrigerant heat exchanger that performs heat exchange between air and refrigerant. The heat pump unit 2 further includes a blower 8 that blows air to the evaporator 7 and a high-low pressure heat exchanger 9 that performs heat exchange between the high-pressure refrigerant and the low-pressure refrigerant. In the first embodiment, carbon dioxide is used as the refrigerant. In addition, the evaporator 7 in this invention is not restricted to what heat-exchanges air and a refrigerant | coolant, For example, you may exchange a heat | fever with a refrigerant | coolant and groundwater, solar hot water, etc., for example.

圧縮機3は、密閉容器31と、密閉容器31の内部に設けられた圧縮要素32及び電動要素33と、第一吸入通路34と、第一吐出通路35と、第二吸入通路36と、第二吐出通路37とを有する。電動要素33の下側に圧縮要素32が配置されている。密閉容器31の内部には、圧縮要素32と電動要素33との間の内部空間38と、電動要素33の上側の内部空間39とが設けられている。第一吸入通路34は、圧縮機3に吸入される低圧冷媒を密閉容器31の内部空間38,39へ放出せず、この低圧冷媒を直接圧縮要素32へ導く。圧縮要素32は、低圧冷媒を圧縮し、高圧冷媒にする。圧縮要素32は、電動要素33により駆動される。電動要素33は、固定子33a及び回転子33bを有する電動機である。圧縮要素32は、圧縮した高圧冷媒を第一吐出通路35へ吐出する。第一吐出通路35は、この高圧冷媒を密閉容器31の内部空間38,39へ放出せず、この高圧冷媒を密閉容器31の外部へ直接吐出する。第一吐出通路35から吐出された高圧冷媒は、冷媒流路40を通って、第一熱交換器4に流入する。第一熱交換器4にて水で冷却された高圧冷媒は、冷媒流路41及び第二吸入通路36を通り、圧縮機3に再吸入される。   The compressor 3 includes a sealed container 31, a compression element 32 and an electric element 33 provided inside the sealed container 31, a first suction passage 34, a first discharge passage 35, a second suction passage 36, And two discharge passages 37. A compression element 32 is disposed below the electric element 33. Inside the sealed container 31, an internal space 38 between the compression element 32 and the electric element 33 and an internal space 39 above the electric element 33 are provided. The first suction passage 34 does not discharge the low-pressure refrigerant sucked into the compressor 3 into the internal spaces 38 and 39 of the sealed container 31, and guides the low-pressure refrigerant directly to the compression element 32. The compression element 32 compresses the low-pressure refrigerant into a high-pressure refrigerant. The compression element 32 is driven by the electric element 33. The electric element 33 is an electric motor having a stator 33a and a rotor 33b. The compression element 32 discharges the compressed high-pressure refrigerant to the first discharge passage 35. The first discharge passage 35 does not discharge the high-pressure refrigerant to the internal spaces 38 and 39 of the sealed container 31, but directly discharges the high-pressure refrigerant to the outside of the sealed container 31. The high-pressure refrigerant discharged from the first discharge passage 35 passes through the refrigerant flow path 40 and flows into the first heat exchanger 4. The high-pressure refrigerant cooled with water in the first heat exchanger 4 passes through the refrigerant passage 41 and the second suction passage 36 and is re-inhaled into the compressor 3.

第二吸入通路36の出口は、電動要素33と圧縮要素32との間の内部空間38に位置する。第二吸入通路36は、圧縮機3に再吸入される高圧冷媒を圧縮せず、この高圧冷媒を電動要素33と圧縮要素32との間の内部空間38へ放出する。第二吐出通路37の入口は、電動要素33の上側の内部空間39に位置する。第二吸入通路36の出口から電動要素33と圧縮要素32との間の内部空間38へ放出された高圧冷媒は、電動要素33の回転子33bと固定子33aとの隙間等を通って、電動要素33の上側の内部空間39に至る。このとき、高温になっている電動要素33が高圧冷媒により冷却され、高圧冷媒は電動要素33の熱で加熱される。第二吐出通路37は、電動要素33の上側の内部空間39の高圧冷媒を圧縮せず、この高圧冷媒を密閉容器31の外部へ吐出する。   The outlet of the second suction passage 36 is located in the internal space 38 between the electric element 33 and the compression element 32. The second suction passage 36 does not compress the high-pressure refrigerant re-inhaled by the compressor 3 and discharges the high-pressure refrigerant to the internal space 38 between the electric element 33 and the compression element 32. The inlet of the second discharge passage 37 is located in the internal space 39 above the electric element 33. The high-pressure refrigerant discharged from the outlet of the second suction passage 36 to the internal space 38 between the electric element 33 and the compression element 32 passes through a gap between the rotor 33b and the stator 33a of the electric element 33 and the like. It reaches the internal space 39 above the element 33. At this time, the electric element 33 having a high temperature is cooled by the high-pressure refrigerant, and the high-pressure refrigerant is heated by the heat of the electric element 33. The second discharge passage 37 does not compress the high-pressure refrigerant in the internal space 39 above the electric element 33 and discharges the high-pressure refrigerant to the outside of the sealed container 31.

第二吐出通路37から吐出された高圧冷媒は、冷媒流路42を通って、第二熱交換器5に流入する。第二熱交換器5にて水で冷却された高圧冷媒は、冷媒流路43を通って、膨張弁6に至る。膨張弁6は、高圧冷媒を膨張させて低圧冷媒にする膨張部である。膨張弁6で膨張した低圧冷媒は、冷媒流路44を通って、蒸発器7に流入する。蒸発器7では、低圧冷媒は、送風機8によって導かれた外気と熱交換することで加熱され、蒸発する。蒸発器7を通過した低圧冷媒は、冷媒流路45を通って圧縮機3の第一吸入通路34に至り、圧縮機3に吸入される。高低圧熱交換器9は、冷媒流路43の途中の高圧冷媒と、冷媒流路45の途中の低圧冷媒とを熱交換させる。   The high-pressure refrigerant discharged from the second discharge passage 37 passes through the refrigerant flow path 42 and flows into the second heat exchanger 5. The high-pressure refrigerant cooled with water in the second heat exchanger 5 passes through the refrigerant flow path 43 and reaches the expansion valve 6. The expansion valve 6 is an expansion part that expands the high-pressure refrigerant to make it a low-pressure refrigerant. The low-pressure refrigerant expanded by the expansion valve 6 flows into the evaporator 7 through the refrigerant flow path 44. In the evaporator 7, the low-pressure refrigerant is heated and evaporated by exchanging heat with the outside air guided by the blower 8. The low-pressure refrigerant that has passed through the evaporator 7 reaches the first suction passage 34 of the compressor 3 through the refrigerant flow path 45 and is sucked into the compressor 3. The high-low pressure heat exchanger 9 exchanges heat between the high-pressure refrigerant in the refrigerant channel 43 and the low-pressure refrigerant in the refrigerant channel 45.

以下の説明では、圧縮要素32から吐出される冷媒の圧力を「圧縮要素吐出圧力」と称し、圧縮要素32に吸入される冷媒の圧力を「圧縮要素吸入圧力」と称し、圧縮要素32から吐出される冷媒の温度を「圧縮要素吐出温度」と称し、圧縮要素32に吸入される冷媒の温度を「圧縮要素吸入温度」と称する。第一吐出通路35から吐出される高圧冷媒の圧力は圧縮要素吐出圧力に等しい。第一吐出通路35から吐出された高圧冷媒は、第一熱交換器4を経由して第二吸入通路36に至るまでの圧力損失により、圧力が低下する。このため、密閉容器31の内部空間38の高圧冷媒の圧力は、第一吐出通路35から吐出される高圧冷媒の圧力すなわち圧縮要素吐出圧力に比べて、やや低くなる。   In the following description, the pressure of the refrigerant discharged from the compression element 32 is referred to as “compression element discharge pressure”, and the pressure of the refrigerant sucked into the compression element 32 is referred to as “compression element suction pressure”. The refrigerant temperature is referred to as “compression element discharge temperature”, and the refrigerant temperature drawn into the compression element 32 is referred to as “compression element suction temperature”. The pressure of the high-pressure refrigerant discharged from the first discharge passage 35 is equal to the compression element discharge pressure. The pressure of the high-pressure refrigerant discharged from the first discharge passage 35 decreases due to the pressure loss that reaches the second suction passage 36 via the first heat exchanger 4. For this reason, the pressure of the high-pressure refrigerant in the internal space 38 of the sealed container 31 is slightly lower than the pressure of the high-pressure refrigerant discharged from the first discharge passage 35, that is, the compression element discharge pressure.

ヒートポンプユニット2は、入口12から流入した水を第二熱交換器5に導く水流路46と、第二熱交換器5を通過した水を第一熱交換器4に導く水流路47と、第一熱交換器4を通過した水を出口17に導く水流路48とを更に備える。加熱運転時には、入口12から流入した水が水流路46を通って第二熱交換器5に流入し、第二熱交換器5内で冷媒の熱により加熱される。第二熱交換器5内で加熱された水は、第一熱交換器4に流入し、第一熱交換器4内で冷媒の熱により更に加熱される。第一熱交換器4内で更に加熱された水は、水流路48を通って出口17に至り、出口配管18へ流れる。   The heat pump unit 2 includes a water flow path 46 that guides water flowing from the inlet 12 to the second heat exchanger 5, a water flow path 47 that guides water that has passed through the second heat exchanger 5 to the first heat exchanger 4, A water flow path 48 that guides the water that has passed through the heat exchanger 4 to the outlet 17 is further provided. During the heating operation, water flowing from the inlet 12 flows into the second heat exchanger 5 through the water flow path 46 and is heated by the heat of the refrigerant in the second heat exchanger 5. The water heated in the second heat exchanger 5 flows into the first heat exchanger 4 and is further heated by the heat of the refrigerant in the first heat exchanger 4. The water further heated in the first heat exchanger 4 reaches the outlet 17 through the water channel 48 and flows to the outlet pipe 18.

第一吐出通路35または冷媒流路40には、圧縮要素吐出温度を検知する吐出温度センサ51が設けられている。第二吸入通路36または冷媒流路41には、第二吸入通路36の冷媒温度を検知する冷媒温度センサ52が設けられている。   The first discharge passage 35 or the refrigerant flow path 40 is provided with a discharge temperature sensor 51 that detects the compression element discharge temperature. A refrigerant temperature sensor 52 that detects the refrigerant temperature of the second suction passage 36 is provided in the second suction passage 36 or the refrigerant flow path 41.

次に、貯湯運転時の高加熱運転についてさらに説明する。前述したように、高加熱運転では、制御装置50は、第一熱交換器4から出る水の温度すなわちヒートポンプ出口温度を例えば65℃〜90℃程度に制御する。図3は、高加熱運転の圧力−エンタルピ線図である。図3中のAからHは、図2中のAからHに対応する。図3に示すように、冷媒は、圧縮要素32で、臨界圧力を超える圧力まで圧縮される(A→B)。この超臨界状態の高圧冷媒は、第一熱交換器4で冷却される(B→C)。第二吸入通路36から密閉容器31の内部空間38へ吸入される高圧冷媒の状態は図3中のCである。この高圧冷媒は、内部空間39へ至る間に電動要素33の熱で加熱される(C→D)。第二吐出通路37から吐出される高圧冷媒の状態は図3中のDである。この高圧冷媒は、第二熱交換器5で冷却される(D→E)。その後、高圧冷媒は、高低圧熱交換器9でさらに冷却される(E→F)。高低圧熱交換器9を通過した高圧冷媒は、膨張弁6で減圧され、低圧冷媒になる(F→G)。この低圧冷媒は、蒸発器7で蒸発する(G→H)。蒸発器7で蒸発した低圧冷媒は、高低圧熱交換器9で加熱される(H→A)。このような高加熱運転のヒートポンプ出口温度である65℃〜90℃は、冷媒である二酸化炭素の臨界温度に比較して十分に高い。高加熱運転では、圧縮要素吐出圧力、並びに、第一熱交換器4、密閉容器31及び第二熱交換器5の内部の冷媒の圧力は、臨界圧力を超える圧力になる。   Next, the high heating operation during the hot water storage operation will be further described. As described above, in the high heating operation, the control device 50 controls the temperature of the water exiting the first heat exchanger 4, that is, the heat pump outlet temperature, to about 65 ° C. to 90 ° C., for example. FIG. 3 is a pressure-enthalpy diagram of the high heating operation. A to H in FIG. 3 correspond to A to H in FIG. As shown in FIG. 3, the refrigerant is compressed by the compression element 32 to a pressure exceeding the critical pressure (A → B). The high-pressure refrigerant in the supercritical state is cooled by the first heat exchanger 4 (B → C). The state of the high-pressure refrigerant sucked into the internal space 38 of the sealed container 31 from the second suction passage 36 is C in FIG. This high-pressure refrigerant is heated by the heat of the electric element 33 while reaching the internal space 39 (C → D). The state of the high-pressure refrigerant discharged from the second discharge passage 37 is D in FIG. This high-pressure refrigerant is cooled by the second heat exchanger 5 (D → E). Thereafter, the high-pressure refrigerant is further cooled by the high-low pressure heat exchanger 9 (E → F). The high-pressure refrigerant that has passed through the high-low pressure heat exchanger 9 is decompressed by the expansion valve 6 and becomes low-pressure refrigerant (F → G). This low-pressure refrigerant evaporates in the evaporator 7 (G → H). The low-pressure refrigerant evaporated in the evaporator 7 is heated in the high-low pressure heat exchanger 9 (H → A). The heat pump outlet temperature in such a high heating operation, which is 65 ° C. to 90 ° C., is sufficiently higher than the critical temperature of carbon dioxide, which is a refrigerant. In the high heating operation, the compression element discharge pressure and the pressure of the refrigerant inside the first heat exchanger 4, the sealed container 31, and the second heat exchanger 5 are pressures exceeding the critical pressure.

図4は、高加熱運転での第一熱交換器4及び第二熱交換器5での冷媒及び水の温度変化の一例を表す図である。図4中のBからEは、図2及び図3中のBからEに対応する。図4の横軸は、第一熱交換器4及び第二熱交換器5の内部での位置を流路長の比で表す。すなわち、図4の横軸は、第一熱交換器4及び第二熱交換器5の水流路の全長を1とした場合の第二熱交換器5の水入口からの水流路長の比、あるいは第一熱交換器4及び第二熱交換器5の冷媒流路の全長を1とした場合の第二熱交換器5の冷媒出口からの冷媒流路長の比を表す。図4に示す例では、第二熱交換器5へ入る水の温度すなわちヒートポンプ入口温度は約9℃であり、第一熱交換器4から出る水の温度すなわちヒートポンプ出口温度は約65℃である。第一熱交換器4へ入る冷媒の温度すなわち圧縮要素吐出温度は約85℃である。   FIG. 4 is a diagram illustrating an example of temperature changes of the refrigerant and water in the first heat exchanger 4 and the second heat exchanger 5 in the high heating operation. B to E in FIG. 4 correspond to B to E in FIGS. The horizontal axis of FIG. 4 represents the position in the 1st heat exchanger 4 and the 2nd heat exchanger 5 by ratio of flow path length. That is, the horizontal axis of FIG. 4 represents the ratio of the water flow path length from the water inlet of the second heat exchanger 5 when the total length of the water flow paths of the first heat exchanger 4 and the second heat exchanger 5 is 1. Or the ratio of the refrigerant | coolant flow path length from the refrigerant | coolant exit of the 2nd heat exchanger 5 when the full length of the refrigerant | coolant flow path of the 1st heat exchanger 4 and the 2nd heat exchanger 5 is set to 1 is represented. In the example shown in FIG. 4, the temperature of water entering the second heat exchanger 5, that is, the heat pump inlet temperature, is about 9 ° C., and the temperature of water exiting the first heat exchanger 4, ie, the heat pump outlet temperature, is about 65 ° C. . The temperature of the refrigerant entering the first heat exchanger 4, that is, the compression element discharge temperature is about 85 ° C.

図5は、高加熱運転での制御装置50の制御動作を示すフローチャートである。高加熱運転では、制御装置50は、各アクチュエータを以下のように制御する。制御装置50は、ヒートポンプユニット2の加熱能力が定格能力になるように、圧縮機3を制御する(ステップS1)。ここで、加熱能力とは、第一熱交換器4及び第二熱交換器5の合計の、時間当たりの水加熱量である。制御装置50は、圧縮機3の容量を制御することで加熱能力を制御できる。制御装置50は、圧縮機3の駆動速度、駆動周波数等を制御することで圧縮機3の容量を制御できる。また、制御装置50は、ヒートポンプ出口温度センサ30で検知されるヒートポンプ出口温度が、65℃〜90℃の範囲にある、所定の加熱温度設定値になるように、ポンプ13による水流量を制御する。また、制御装置50は、必要な蒸発能力に応じて送風機8の送風量を制御する。蒸発能力とは、蒸発器7での空気から冷媒が吸収する熱量である。   FIG. 5 is a flowchart showing the control operation of the control device 50 in the high heating operation. In the high heating operation, the control device 50 controls each actuator as follows. The control device 50 controls the compressor 3 so that the heating capacity of the heat pump unit 2 becomes the rated capacity (step S1). Here, the heating capacity is the total amount of water heating per hour for the first heat exchanger 4 and the second heat exchanger 5. The control device 50 can control the heating capacity by controlling the capacity of the compressor 3. The control device 50 can control the capacity of the compressor 3 by controlling the driving speed, driving frequency, and the like of the compressor 3. Moreover, the control apparatus 50 controls the water flow rate by the pump 13 so that the heat pump outlet temperature detected by the heat pump outlet temperature sensor 30 becomes a predetermined heating temperature set value in the range of 65 ° C. to 90 ° C. . Moreover, the control apparatus 50 controls the ventilation volume of the air blower 8 according to required evaporation capability. The evaporation capacity is the amount of heat absorbed by the refrigerant from the air in the evaporator 7.

高加熱運転のとき、制御装置50は、圧縮要素吐出温度が目標値に一致するように、冷媒流量を膨張弁6で制御する。膨張弁6の開度を小さくして冷媒流量を低くするほど、圧縮要素吐出温度が高くなる。圧縮要素吐出温度は、図2及び図6中のBに設けた吐出温度センサ51で検知できる。制御装置50には、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータと、圧縮要素吐出温度の目標値との関係を定めたテーブルが記憶されている。圧縮要素吐出温度の目標値は、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータに応じて、最大のCOPが得られるように定められている。制御装置50は、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータと、上記テーブルとに基づいて、圧縮要素吐出温度の目標値を決定する。そして、制御装置50は、圧縮要素吐出温度が目標値に一致しているか否かを判断する(ステップS2)。制御装置50は、ステップS2で圧縮要素吐出温度が目標値に一致している場合には、ステップS1に戻る。ステップS2で圧縮要素吐出温度が目標値に一致していない場合には、制御装置50は、圧縮要素吐出温度が目標値に一致するように、冷媒流量を膨張弁6で制御する(ステップS3)。以上のように制御することで、高加熱運転のときのCOPを十分に高くすることができる。   During the high heating operation, the control device 50 controls the refrigerant flow rate with the expansion valve 6 so that the compression element discharge temperature matches the target value. The smaller the opening of the expansion valve 6 and the lower the refrigerant flow rate, the higher the compression element discharge temperature. The compression element discharge temperature can be detected by a discharge temperature sensor 51 provided at B in FIGS. 2 and 6. The control device 50 stores a table that defines the relationship between parameters such as the heat pump outlet temperature, the outside air temperature, the heating capacity, and the target value of the compression element discharge temperature. The target value of the compression element discharge temperature is determined so as to obtain the maximum COP according to parameters such as the heat pump outlet temperature, the outside air temperature, and the heating capacity. The control device 50 determines a target value of the compression element discharge temperature based on parameters such as the heat pump outlet temperature, the outside air temperature, and the heating capacity, and the table. Then, the control device 50 determines whether or not the compression element discharge temperature matches the target value (step S2). If the compression element discharge temperature matches the target value in step S2, the control device 50 returns to step S1. If the compression element discharge temperature does not match the target value in step S2, the control device 50 controls the refrigerant flow rate with the expansion valve 6 so that the compression element discharge temperature matches the target value (step S3). . By controlling as described above, the COP during the high heating operation can be made sufficiently high.

以下の説明では、蒸発器7から出る冷媒の過熱度を「蒸発器出口過熱度」と称する。圧縮要素吐出温度と、蒸発器出口過熱度とは、相関がある。このため、高加熱運転のとき、制御装置50は、上記ステップS2及びS3に代えて、蒸発器出口過熱度が目標値に一致するように、冷媒流量を膨張弁6で制御しても良い。膨張弁6の開度を小さくして冷媒流量を低くするほど、蒸発器7の出口の過熱度が大きくなる。蒸発器出口過熱度は、例えば、図2及び図6中のG及びHにそれぞれ温度センサを設け、その二つの温度センサの温度差として検知できる。この場合、制御装置50には、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータと、蒸発器出口過熱度の目標値との関係を定めたテーブルが記憶されている。蒸発器出口過熱度の目標値は、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータに応じて、最大のCOPが得られるように定められている。制御装置50は、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータと、上記テーブルとに基づいて、蒸発器出口過熱度の目標値を決定する。そして、制御装置50は、上記ステップS2に代えて、蒸発器出口過熱度が目標値に一致しているか否かを判断する。制御装置50は、蒸発器出口過熱度が目標値に一致している場合には、ステップS1に戻る。蒸発器出口過熱度が目標値に一致していない場合には、制御装置50は、上記ステップS3に代えて、蒸発器出口過熱度が目標値に一致するように、冷媒流量を膨張弁6で制御する。以上のように制御することで、高加熱運転のときのCOPを十分に高くすることができる。   In the following description, the degree of superheat of the refrigerant coming out of the evaporator 7 is referred to as “evaporator outlet superheat degree”. There is a correlation between the discharge temperature of the compression element and the degree of superheat of the evaporator outlet. For this reason, at the time of the high heating operation, the control device 50 may control the refrigerant flow rate with the expansion valve 6 so that the evaporator outlet superheat degree matches the target value, instead of the steps S2 and S3. The degree of superheat at the outlet of the evaporator 7 increases as the opening degree of the expansion valve 6 is reduced to lower the refrigerant flow rate. The evaporator outlet superheat degree can be detected as, for example, a temperature difference between the two temperature sensors provided with temperature sensors G and H in FIGS. In this case, the control device 50 stores a table that defines the relationship between parameters such as the heat pump outlet temperature, the outside air temperature, and the heating capacity and the target value of the evaporator outlet superheat degree. The target value of the evaporator outlet superheat degree is determined so as to obtain the maximum COP according to parameters such as the heat pump outlet temperature, the outside air temperature, and the heating capacity. The control device 50 determines a target value of the evaporator outlet superheat degree based on parameters such as the heat pump outlet temperature, the outside air temperature, the heating capacity, and the above table. And it replaces with said step S2 and the control apparatus 50 judges whether the evaporator exit superheat degree corresponds with target value. If the evaporator outlet superheat degree matches the target value, the control device 50 returns to step S1. When the evaporator outlet superheat degree does not coincide with the target value, the control device 50 replaces the refrigerant flow rate with the expansion valve 6 so that the evaporator outlet superheat degree coincides with the target value instead of step S3. Control. By controlling as described above, the COP during the high heating operation can be made sufficiently high.

次に、湯張り運転時の低加熱運転についてさらに説明する。低加熱運転では、制御装置50は、ヒートポンプ出口温度を例えば20℃〜30℃程度に制御する。図6は、低加熱運転の圧力−エンタルピ線図である。図6中のAからHは、図2中のAからHに対応する。図6に示すように、冷媒は、圧縮要素32で、臨界圧力以下の圧力まで圧縮される(A→B)。圧縮要素32で圧縮された後の高圧冷媒(図6中のB)は、過熱ガス状態である。この過熱ガス状態の高圧冷媒は、第一熱交換器4で冷却される(B→C)。第一熱交換器4で冷却された後の高圧冷媒(図6中のC)も、過熱ガス状態である。この高圧冷媒は、内部空間39へ至る間に電動要素33の熱で加熱される(C→D)。第二吐出通路37から吐出される高圧冷媒の状態は図6中のDである。この高圧冷媒は、第二熱交換器5で冷却されることで凝縮し、液化する(D→E)。その後、高圧冷媒は、高低圧熱交換器9でさらに冷却される(E→F)。高低圧熱交換器9を通過した高圧冷媒は、膨張弁6で減圧され、低圧冷媒になる(F→G)。この低圧冷媒は、蒸発器7で蒸発する(G→H)。蒸発器7で蒸発した低圧冷媒は、高低圧熱交換器9で加熱される(H→A)。このような低加熱運転のヒートポンプ出口温度である20℃〜30℃は、冷媒である二酸化炭素の臨界温度より低い。低加熱運転では、圧縮要素吐出圧力、並びに、第一熱交換器4、密閉容器31及び第二熱交換器5の内部の冷媒の圧力は、臨界圧力以下の圧力になる。   Next, the low heating operation during the hot water operation will be further described. In the low heating operation, the control device 50 controls the heat pump outlet temperature to about 20 ° C. to 30 ° C., for example. FIG. 6 is a pressure-enthalpy diagram of the low heating operation. A to H in FIG. 6 correspond to A to H in FIG. As shown in FIG. 6, the refrigerant is compressed by the compression element 32 to a pressure equal to or lower than the critical pressure (A → B). The high-pressure refrigerant (B in FIG. 6) after being compressed by the compression element 32 is in a superheated gas state. The high-pressure refrigerant in the superheated gas state is cooled by the first heat exchanger 4 (B → C). The high-pressure refrigerant (C in FIG. 6) after being cooled by the first heat exchanger 4 is also in the superheated gas state. This high-pressure refrigerant is heated by the heat of the electric element 33 while reaching the internal space 39 (C → D). The state of the high-pressure refrigerant discharged from the second discharge passage 37 is D in FIG. This high-pressure refrigerant is condensed and liquefied by being cooled by the second heat exchanger 5 (D → E). Thereafter, the high-pressure refrigerant is further cooled by the high-low pressure heat exchanger 9 (E → F). The high-pressure refrigerant that has passed through the high-low pressure heat exchanger 9 is decompressed by the expansion valve 6 and becomes low-pressure refrigerant (F → G). This low-pressure refrigerant evaporates in the evaporator 7 (G → H). The low-pressure refrigerant evaporated in the evaporator 7 is heated in the high-low pressure heat exchanger 9 (H → A). 20 to 30 degreeC which is the heat pump exit temperature of such a low heating operation is lower than the critical temperature of the carbon dioxide which is a refrigerant | coolant. In the low heating operation, the compression element discharge pressure and the pressure of the refrigerant inside the first heat exchanger 4, the sealed container 31, and the second heat exchanger 5 become pressures below the critical pressure.

図7は、低加熱運転での第一熱交換器4及び第二熱交換器5での冷媒及び水の温度変化の一例を表す図である。図7中のBからEは、図2及び図6中のBからEに対応する。図7の横軸の意味は、図4の横軸と同じである。図7に示す例では、第二熱交換器5へ入る水の温度すなわちヒートポンプ入口温度は約9℃であり、ヒートポンプ出口温度は約25℃である。第一熱交換器4へ入る冷媒の温度すなわち圧縮要素吐出温度は約45℃である。第二熱交換器5での冷媒の凝縮飽和温度は約22℃である。以下の説明では、第二熱交換器5での冷媒の凝縮飽和温度を単に「凝縮飽和温度」と称する。また、蒸発器7での冷媒の蒸発飽和温度を単に「蒸発飽和温度」と称する。   FIG. 7 is a diagram illustrating an example of temperature changes of the refrigerant and water in the first heat exchanger 4 and the second heat exchanger 5 in the low heating operation. 7 correspond to B to E in FIGS. 2 and 6. The meaning of the horizontal axis in FIG. 7 is the same as the horizontal axis in FIG. In the example shown in FIG. 7, the temperature of water entering the second heat exchanger 5, that is, the heat pump inlet temperature is about 9 ° C., and the heat pump outlet temperature is about 25 ° C. The temperature of the refrigerant entering the first heat exchanger 4, that is, the compression element discharge temperature is about 45 ° C. The condensation saturation temperature of the refrigerant in the second heat exchanger 5 is about 22 ° C. In the following description, the condensation saturation temperature of the refrigerant in the second heat exchanger 5 is simply referred to as “condensation saturation temperature”. Further, the evaporation saturation temperature of the refrigerant in the evaporator 7 is simply referred to as “evaporation saturation temperature”.

図8は、低加熱運転での制御装置50の制御動作を示すフローチャートである。低加熱運転では、制御装置50は、各アクチュエータを以下のように制御する。制御装置50は、ヒートポンプユニット2の加熱能力が、高加熱運転での加熱能力より低い能力、すなわち定格能力より低い能力になるように、圧縮機3を制御する(ステップS11)。このステップS11で、制御装置50は、高加熱運転に比べて、圧縮機3の容量を低くするように制御する。例えば、高加熱運転に比べて、圧縮機3の駆動速度、駆動周波数等を低くする。低加熱運転の冷媒流量は、高加熱運転の冷媒流量に比べて、低くなる。また、制御装置50は、ヒートポンプ出口温度センサ30で検知されるヒートポンプ出口温度が、20℃〜30℃の範囲にある、所定の加熱温度設定値になるように、ポンプ13による水流量を制御する。低加熱運転の水流量は、高加熱運転の水流量に比べて、高くなる。また、制御装置50は、必要な蒸発能力に応じて送風機8の送風量を制御する。   FIG. 8 is a flowchart showing the control operation of the control device 50 in the low heating operation. In the low heating operation, the control device 50 controls each actuator as follows. The control device 50 controls the compressor 3 so that the heating capacity of the heat pump unit 2 is lower than the heating capacity in the high heating operation, that is, lower than the rated capacity (step S11). In step S <b> 11, the control device 50 controls the capacity of the compressor 3 to be lower than that in the high heating operation. For example, the driving speed, driving frequency, etc. of the compressor 3 are lowered as compared with the high heating operation. The refrigerant flow rate in the low heating operation is lower than the refrigerant flow rate in the high heating operation. Moreover, the control apparatus 50 controls the water flow rate by the pump 13 so that the heat pump outlet temperature detected by the heat pump outlet temperature sensor 30 becomes a predetermined heating temperature set value in the range of 20 ° C. to 30 ° C. . The water flow rate in the low heating operation is higher than the water flow rate in the high heating operation. Moreover, the control apparatus 50 controls the ventilation volume of the air blower 8 according to required evaporation capability.

低加熱運転では、制御装置50は、密閉容器31の内部空間38に流入する冷媒の状態、すなわち第二吸入通路36の冷媒の状態が、過熱ガス状態になるように、冷媒流量を膨張弁6で制御する。このとき、膨張弁6の開度を小さくすると、冷媒流量が低くなり、かつ、第二吸入通路36の冷媒の過熱度が大きくなる。過熱度とは、過熱ガス(すなわち過熱蒸気)の温度と、飽和蒸気の温度との差である。過熱度がゼロより大きければ、冷媒の状態が過熱ガス状態になる。   In the low heating operation, the control device 50 sets the refrigerant flow rate to the expansion valve 6 so that the state of the refrigerant flowing into the internal space 38 of the sealed container 31, that is, the state of the refrigerant in the second suction passage 36 becomes a superheated gas state. To control. At this time, if the opening degree of the expansion valve 6 is decreased, the refrigerant flow rate is decreased, and the degree of superheat of the refrigerant in the second suction passage 36 is increased. The degree of superheat is the difference between the temperature of superheated gas (that is, superheated steam) and the temperature of saturated steam. If the degree of superheat is greater than zero, the refrigerant is in a superheated gas state.

本実施の形態1では、低加熱運転のとき、制御装置50は、後述の方法で、第二吸入通路36の冷媒の過熱度SHsiを推定する(ステップS12)。制御装置50は、その推定した過熱度SHsiと参照値αとを比較する(ステップS13)。参照値αはゼロ以上の所定値である。ステップS13で過熱度SHsiが参照値αに比べて大きい場合には、過熱度SHsiが十分大きく、第二吸入通路36の冷媒の状態を過熱ガス状態に確実に維持できると判断できる。この場合は、ステップS11に戻る。これに対し、ステップS13で過熱度SHsiが参照値α以下である場合には、過熱度SHsiが十分でないと判断できる。この場合には、制御装置50は、膨張弁6の開度を小さくすることで、過熱度SHsiを上昇させる(ステップS14)。これにより、第二吸入通路36の冷媒の状態を過熱ガス状態に確実に維持できる。   In the first embodiment, during the low heating operation, the control device 50 estimates the superheat degree SHsi of the refrigerant in the second suction passage 36 by a method described later (step S12). The control device 50 compares the estimated superheat degree SHsi with the reference value α (step S13). The reference value α is a predetermined value of zero or more. If the superheat degree SHsi is larger than the reference value α in step S13, it can be determined that the superheat degree SHsi is sufficiently large and the state of the refrigerant in the second suction passage 36 can be reliably maintained in the superheated gas state. In this case, the process returns to step S11. On the other hand, if the degree of superheat SHsi is equal to or less than the reference value α in step S13, it can be determined that the degree of superheat SHsi is not sufficient. In this case, the control device 50 increases the superheat degree SHsi by reducing the opening degree of the expansion valve 6 (step S14). Thereby, the state of the refrigerant in the second suction passage 36 can be reliably maintained in the superheated gas state.

次に、低加熱運転時に第二吸入通路36の冷媒の過熱度SHsiを推定する方法について説明する。第二吸入通路36の冷媒の過熱度SHsiは、凝縮飽和温度Tcと、第二吸入通路36の冷媒温度Ts2とから、次式により算出できる。
SHsi=Ts2−Tc ・・・(2)
Next, a method for estimating the superheat degree SHsi of the refrigerant in the second suction passage 36 during the low heating operation will be described. The degree of superheat SHsi of the refrigerant in the second suction passage 36 can be calculated from the condensation saturation temperature Tc and the refrigerant temperature Ts2 in the second suction passage 36 by the following equation.
SHsi = Ts2-Tc (2)

ヒートポンプ出口温度から凝縮飽和温度を推定する方法について、図7を参照して説明する。図7に示すように、冷媒が過熱ガスである領域及び冷媒が過冷却液である領域に比べて、冷媒が気液二相になる領域では、冷媒の熱伝達率が高く、冷媒から水への伝熱が促進される。このため、水温が上昇する領域の大部分は、気液二相領域である。低加熱運転は、高加熱運転に比べて、ヒートポンプ入口温度からヒートポンプ出口温度までの水温度変化が小さい。また、低加熱運転は、高加熱運転に比べて、水流量が高く、水の熱伝達率が高い。その結果、低加熱運転は、高加熱運転に比べて、ピンチポイントにおける冷媒と水との温度差が小さくなる。ピンチポイントとは、冷媒温度と水温度とが最も近くなるポイントである。過熱ガス領域では、流路方向に対する冷媒の温度変化の傾きは、図7中のB(第一熱交換器4の冷媒入口)に近いほど大きく、ピンチポイントに近いほど小さい。よって、流路方向に対する水の温度変化の傾きも、ピンチポイント付近では小さい。したがって、ピンチポイントでの水温Twpと、第一熱交換器4の水入口の水温Twgc1iとは、ほぼ等しいとみなせる。すなわち、次式が成り立つ。
Twp≒Twgc1i ・・・(3)
A method for estimating the condensation saturation temperature from the heat pump outlet temperature will be described with reference to FIG. As shown in FIG. 7, the refrigerant has a higher heat transfer coefficient in the gas-liquid two-phase region than the region where the refrigerant is superheated gas and the region where the refrigerant is supercooled liquid. Heat transfer is promoted. For this reason, most of the region where the water temperature rises is a gas-liquid two-phase region. In the low heating operation, the water temperature change from the heat pump inlet temperature to the heat pump outlet temperature is small compared to the high heating operation. In addition, the low heating operation has a higher water flow rate and a higher heat transfer rate than the high heating operation. As a result, the temperature difference between the refrigerant and water at the pinch point is smaller in the low heating operation than in the high heating operation. The pinch point is a point at which the refrigerant temperature and the water temperature are closest. In the superheated gas region, the gradient of the temperature change of the refrigerant with respect to the flow path direction is larger as it is closer to B (refrigerant inlet of the first heat exchanger 4) in FIG. Therefore, the inclination of the temperature change of the water with respect to the flow path direction is also small near the pinch point. Therefore, the water temperature Twp at the pinch point and the water temperature Twgc1i at the water inlet of the first heat exchanger 4 can be regarded as substantially equal. That is, the following equation holds.
Twp≈Twgc1i (3)

第一熱交換器4での熱交換量Qgc1は、冷媒の出入口の温度差で算出できる。すなわち、次式が成り立つ。
Qgc1=Gr×Cpr×(Td1−Ts2) ・・・(4)
ただし、Grは冷媒流量、Cprは冷媒の定圧比熱、Td1は圧縮要素吐出温度である。冷媒流量Grは、圧縮機3の容量及び外気温度などから推定できる。圧縮要素吐出温度Td1は、吐出温度センサ51で検知できる。
The heat exchange amount Qgc1 in the first heat exchanger 4 can be calculated by the temperature difference between the refrigerant inlet and outlet. That is, the following equation holds.
Qgc1 = Gr × Cpr × (Td1−Ts2) (4)
Where Gr is the refrigerant flow rate, Cpr is the constant pressure specific heat of the refrigerant, and Td1 is the compression element discharge temperature. The refrigerant flow rate Gr can be estimated from the capacity of the compressor 3 and the outside air temperature. The compression element discharge temperature Td1 can be detected by the discharge temperature sensor 51.

また、第一熱交換器4での熱交換量Qgc1は、冷媒と水の温度差から算出することもできる。すなわち、次式が成り立つ。
Qgc1=Agc1×Kgc1×ΔTgc1 ・・・(5)
ただし、Agc1は第一熱交換器4の伝熱面積、Kgc1は第一熱交換器4の熱通過率、ΔTgc1は第一熱交換器4での冷媒と水の温度差である。Agc1は固定値である。Kgc1は、ほぼ一定値とみなせる。ΔTgc1は、算術平均温度差とすると、次式で算出できる。
ΔTgc1=(Td1+Ts2)/2−(Two+Twgc1i)/2 ・・・(6)
ただし、Twoはヒートポンプ出口温度である。算術平均温度差は上記(6)式で簡易に算出できる。また、ΔTgc1として、対数平均温度差を用いても良い。その場合には、より正確にΔTgc1を算出できる。
The heat exchange amount Qgc1 in the first heat exchanger 4 can also be calculated from the temperature difference between the refrigerant and water. That is, the following equation holds.
Qgc1 = Agc1 × Kgc1 × ΔTgc1 (5)
However, Agc1 is the heat transfer area of the first heat exchanger 4, Kgc1 is the heat passage rate of the first heat exchanger 4, and ΔTgc1 is the temperature difference between the refrigerant and water in the first heat exchanger 4. Agc1 is a fixed value. Kgc1 can be regarded as a substantially constant value. ΔTgc1 can be calculated by the following equation, assuming an arithmetic average temperature difference.
ΔTgc1 = (Td1 + Ts2) / 2− (Two + Twgc1i) / 2 (6)
However, Two is the heat pump outlet temperature. The arithmetic average temperature difference can be easily calculated by the above equation (6). In addition, a logarithmic average temperature difference may be used as ΔTgc1. In that case, ΔTgc1 can be calculated more accurately.

上記(4)式、(5)式及び(6)式を連立することで、圧縮要素吐出温度Td1、第二吸入通路36の冷媒温度Ts2、及びヒートポンプ出口温度Twoに基づいて、第一熱交換器4の水入口の水温Twgc1iを推定できる。そのようにして推定したTwgc1iがピンチポイントでの水温Twpに等しいとみなすことで、ピンチポイントでの水温Twpを求めることができる。凝縮飽和温度Tcは、次式で算出できる。
Tc=Twp+ΔTp ・・・(7)
ただし、ΔTpはピンチポイントでの冷媒と水の温度差である。ピンチポイントでの冷媒と水の温度差ΔTpは、約1℃〜3℃程度である。上記(7)式で算出した凝縮飽和温度Tcを上記(2)式に代入することで第二吸入通路36の冷媒の過熱度SHsiを求めることができる。図8のステップS12では、以上のようにして、圧縮要素吐出温度Td1、第二吸入通路36の冷媒温度Ts2、及びヒートポンプ出口温度Twoに基づいて、第二吸入通路36の冷媒の過熱度SHsiを推定できる。
The first heat exchange is performed based on the compression element discharge temperature Td1, the refrigerant temperature Ts2 of the second suction passage 36, and the heat pump outlet temperature Two by combining the expressions (4), (5), and (6). The water temperature Twgc1i at the water inlet of the vessel 4 can be estimated. By assuming that Twgc1i thus estimated is equal to the water temperature Twp at the pinch point, the water temperature Twp at the pinch point can be obtained. The condensation saturation temperature Tc can be calculated by the following equation.
Tc = Twp + ΔTp (7)
However, ΔTp is the temperature difference between the refrigerant and water at the pinch point. The temperature difference ΔTp between the refrigerant and the water at the pinch point is about 1 ° C. to 3 ° C. By substituting the condensation saturation temperature Tc calculated by the above equation (7) into the above equation (2), the superheat degree SHsi of the refrigerant in the second suction passage 36 can be obtained. In step S12 of FIG. 8, as described above, the superheat degree SHsi of the refrigerant in the second suction passage 36 is set based on the compression element discharge temperature Td1, the refrigerant temperature Ts2 in the second suction passage 36, and the heat pump outlet temperature Two. Can be estimated.

また、第一熱交換器4の水入口の水温Twgc1iを推定する方法は、上記方法に代えて、次のようにしても良い。第一熱交換器4での熱交換量Qgc1は、水の出入口の温度差で算出できる。すなわち、次式が成り立つ。
Qgc1=Gw×Cpw×(Two−Twgc1i) ・・・(8)
ただし、Gwは水流量、Cpwは水の比熱である。水流量Gwは、ポンプ13の駆動速度から推定できる。あるいは流量センサで水流量Gwを検知しても良い。上記(4)式及び(5)式のいずれか一方と、上記(8)とを連立することで、圧縮要素吐出温度Td1、第二吸入通路36の冷媒温度Ts2、及びヒートポンプ出口温度Twoに基づいて、第一熱交換器4の水入口の水温Twgc1iを推定できる。そのようにして推定したTwgc1iがピンチポイントでの水温Twpに等しいとみなし、上記(7)式及び(2)式を用いることで、第二吸入通路36の冷媒の過熱度SHsiを推定できる。
The method for estimating the water temperature Twgc1i at the water inlet of the first heat exchanger 4 may be as follows instead of the above method. The heat exchange amount Qgc1 in the first heat exchanger 4 can be calculated by the temperature difference between the water inlet and outlet. That is, the following equation holds.
Qgc1 = Gw × Cpw × (Two−Twgc1i) (8)
However, Gw is a water flow rate and Cpw is the specific heat of water. The water flow rate Gw can be estimated from the driving speed of the pump 13. Alternatively, the water flow rate Gw may be detected by a flow rate sensor. Based on the compression element discharge temperature Td1, the refrigerant temperature Ts2 of the second suction passage 36, and the heat pump outlet temperature Two by combining any one of the formulas (4) and (5) with the formula (8). Thus, the water temperature Twgc1i at the water inlet of the first heat exchanger 4 can be estimated. By assuming that Twgc1i estimated in this way is equal to the water temperature Twp at the pinch point, the degree of superheat SHsi of the refrigerant in the second suction passage 36 can be estimated by using the above equations (7) and (2).

本実施の形態1では、第二吸入通路36の冷媒温度Ts2は、冷媒温度センサ52で検知できる。ただし、冷媒温度センサ52に代えて、密閉容器31の外表面などに設けた温度センサによって第二吸入通路36の冷媒温度Ts2を検知しても良い。   In the first embodiment, the refrigerant temperature Ts2 in the second suction passage 36 can be detected by the refrigerant temperature sensor 52. However, instead of the refrigerant temperature sensor 52, the refrigerant temperature Ts2 in the second suction passage 36 may be detected by a temperature sensor provided on the outer surface of the sealed container 31 or the like.

また、冷媒温度センサ52を設けずに、圧縮要素吐出温度Td1及びヒートポンプ出口温度Twoに基づいて、以下のようにして、第二吸入通路36の冷媒温度Ts2を推定してもよい。第一熱交換器4での熱交換量Qgc1は、圧縮要素吐出温度Td1とヒートポンプ出口温度Twoとの温度差に比例するとみなせる。このため、その比例係数をFとすると、次式が成り立つ。
Qgc1=F×(Td1−Two) ・・・(9)
上記(4)式及び(9)式を連立することで、圧縮要素吐出温度Td1及びヒートポンプ出口温度Twoに基づいて、第二吸入通路36の冷媒温度Ts2を推定できる。また、上記(8)式及び(9)式を連立することで、圧縮要素吐出温度Td1及びヒートポンプ出口温度Twoに基づいて、第一熱交換器4の水入口の水温Twgc1iを推定できる。そのようにして推定したTwgc1iがピンチポイントでの水温Twpに等しいとみなし、上記(7)式及び(2)式を用いることで、第二吸入通路36の冷媒の過熱度SHsiを推定できる。
Further, without providing the refrigerant temperature sensor 52, the refrigerant temperature Ts2 of the second suction passage 36 may be estimated as follows based on the compression element discharge temperature Td1 and the heat pump outlet temperature Two. The heat exchange amount Qgc1 in the first heat exchanger 4 can be regarded as being proportional to the temperature difference between the compression element discharge temperature Td1 and the heat pump outlet temperature Two. Therefore, if the proportionality coefficient is F, the following equation is established.
Qgc1 = F × (Td1−Two) (9)
By combining the above equations (4) and (9), the refrigerant temperature Ts2 of the second suction passage 36 can be estimated based on the compression element discharge temperature Td1 and the heat pump outlet temperature Two. Moreover, the water temperature Twgc1i at the water inlet of the first heat exchanger 4 can be estimated based on the compression element discharge temperature Td1 and the heat pump outlet temperature Two by combining the above equations (8) and (9). By assuming that Twgc1i estimated in this way is equal to the water temperature Twp at the pinch point, the degree of superheat SHsi of the refrigerant in the second suction passage 36 can be estimated by using the above equations (7) and (2).

上述した理論では、第一熱交換器4での熱交換量Qgc1を算出する際に、第二吸入通路36の冷媒が過熱ガス状態であることを前提にしている。このため、第二吸入通路36の冷媒が気液二相状態になったと仮定すると、第一熱交換器4での熱交換量Qgc1を実際より小さく推定することになる。第一熱交換器4での熱交換量Qgc1を実際より小さく推定することは、第一熱交換器4での冷媒と水の温度差ΔTgc1を実際より小さく推定することにつながる。第一熱交換器4での冷媒と水の温度差ΔTgc1を実際より小さく推定することは、第一熱交換器4の水入口の水温Twgc1iを実際より高く推定することにつながる。第一熱交換器4の水入口の水温Twgc1iを実際より高く推定することは、凝縮飽和温度Tcを実際より高く推定することにつながる。第二吸入通路36の冷媒の過熱度SHsiは、上記(2)式で算出される。このため、凝縮飽和温度Tcを実際より高く推定することは、第二吸入通路36の冷媒の過熱度SHsiを実際より小さく推定することにつながる。したがって、上述した理論によって推定した第二吸入通路36の冷媒の過熱度SHsiがゼロより大きくなるように制御すれば、第二吸入通路36の冷媒の状態を確実に過熱ガス状態に制御できる。   The theory described above assumes that the refrigerant in the second suction passage 36 is in a superheated gas state when calculating the heat exchange amount Qgc1 in the first heat exchanger 4. For this reason, assuming that the refrigerant in the second suction passage 36 is in a gas-liquid two-phase state, the heat exchange amount Qgc1 in the first heat exchanger 4 is estimated to be smaller than actual. Estimating the amount of heat exchange Qgc1 in the first heat exchanger 4 to be smaller than actual leads to estimating the temperature difference ΔTgc1 of refrigerant and water in the first heat exchanger 4 to be smaller than actual. Estimating the temperature difference ΔTgc1 between the refrigerant and water in the first heat exchanger 4 to be smaller than actual leads to estimating the water temperature Twgc1i at the water inlet of the first heat exchanger 4 higher than actual. Estimating the water temperature Twgc1i at the water inlet of the first heat exchanger 4 higher than actual leads to estimating the condensation saturation temperature Tc higher than actual. The superheat degree SHsi of the refrigerant in the second suction passage 36 is calculated by the above equation (2). For this reason, estimating the condensation saturation temperature Tc higher than actual leads to estimating the superheat degree SHsi of the refrigerant in the second suction passage 36 smaller than actual. Therefore, if the superheat degree SHsi of the refrigerant in the second suction passage 36 estimated by the above-described theory is controlled to be greater than zero, the state of the refrigerant in the second suction passage 36 can be reliably controlled to the superheated gas state.

図8のステップS12では、上述した方法に代えて、以下のようにして、蒸発飽和温度Te、圧縮要素吸入温度Ts1及び圧縮要素吐出温度Td1に基づいて、第二吸入通路36の冷媒の過熱度SHsiを推定しても良い。圧縮要素32での圧縮工程をポリトロープ変化とし、ポリトロープ指数をnとすると、次式が成り立つ。なお、ポリトロープ指数nは、冷媒の物性値及び圧縮機効率から定まる一定値とみなせる。
Td1=Ts1×(Pd1/Ps1)(n−1)/n ・・・(10)
ただし、Pd1は圧縮要素吐出圧力である。圧縮要素吸入温度Ts1は、図2及び図6中のAに温度センサを設けることで検知できる。圧縮要素吐出温度Td1は、図2及び図6中のBに設けた吐出温度センサ51で検知できる。
In step S12 of FIG. 8, instead of the method described above, the degree of superheat of the refrigerant in the second suction passage 36 based on the evaporation saturation temperature Te, the compression element suction temperature Ts1, and the compression element discharge temperature Td1 as follows. SHsi may be estimated. When the compression process in the compression element 32 is a polytropic change and the polytropic index is n, the following equation holds. The polytropic index n can be regarded as a constant value determined from the physical property value of the refrigerant and the compressor efficiency.
Td1 = Ts1 × (Pd1 / Ps1) (n−1) / n (10)
However, Pd1 is a compression element discharge pressure. The compression element suction temperature Ts1 can be detected by providing a temperature sensor at A in FIGS. The compression element discharge temperature Td1 can be detected by a discharge temperature sensor 51 provided at B in FIGS.

蒸発飽和温度Teは、図2及び図6中のGに温度センサを設けることで検知できる。その蒸発飽和温度Teに基づき、飽和温度と飽和圧力との関係から、蒸発飽和圧力Peを算出できる。蒸発器7での圧力損失を無視すれば、圧縮要素吸入圧力Ps1は蒸発飽和圧力Peに等しいとみなせる。また、蒸発飽和圧力Peから圧力損失の一定値を引くことで圧縮要素吸入圧力Ps1を算出しても良い。そのようにして求めた圧縮要素吸入圧力Ps1を上記(10)式に代入することで、蒸発飽和温度Te、圧縮要素吸入温度Ts1及び圧縮要素吐出温度Td1に基づいて、圧縮要素吐出圧力Pd1を算出できる。その圧縮要素吐出圧力Pd1に基づき、飽和温度と飽和圧力との関係から、凝縮飽和温度Tcを算出できる。このようにして算出した凝縮飽和温度Tcを上記(2)式に代入することで、第二吸入通路36の冷媒の過熱度SHsiを推定できる。   The evaporation saturation temperature Te can be detected by providing a temperature sensor at G in FIGS. Based on the evaporation saturation temperature Te, the evaporation saturation pressure Pe can be calculated from the relationship between the saturation temperature and the saturation pressure. If the pressure loss in the evaporator 7 is ignored, the compression element suction pressure Ps1 can be regarded as being equal to the evaporation saturation pressure Pe. Alternatively, the compression element suction pressure Ps1 may be calculated by subtracting a constant value of pressure loss from the evaporation saturation pressure Pe. The compression element discharge pressure Pd1 is calculated based on the evaporation saturation temperature Te, the compression element suction temperature Ts1, and the compression element discharge temperature Td1 by substituting the compression element suction pressure Ps1 thus determined in the above equation (10). it can. Based on the compression element discharge pressure Pd1, the condensation saturation temperature Tc can be calculated from the relationship between the saturation temperature and the saturation pressure. By substituting the condensation saturation temperature Tc calculated in this way into the above equation (2), the superheat degree SHsi of the refrigerant in the second suction passage 36 can be estimated.

本実施の形態1のヒートポンプ装置1によれば、以下のような効果が得られる。
(1)貯湯運転時すなわち高加熱運転時には、圧縮要素吐出圧力Pd1が超臨界圧になり、第一熱交換器4及び第二熱交換器5の冷媒は凝縮しない。このため、COPが最大になるように膨張弁6で冷媒流量を制御できる。
(2)湯張り運転時すなわち低加熱運転時には、第二吸入通路36の冷媒の状態が過熱ガス状態になるように制御することで、密閉容器31の内部空間38に気液二相冷媒が流入することを確実に防止できる。これにより、信頼性を高めつつ、冷媒流量を適正に制御できる。その結果、効率の良い運転ができる。
(3)ヒートポンプ出口温度センサ30、吐出温度センサ51及び冷媒温度センサ52等の温度センサの検知温度に基づいて、第二吸入通路36の冷媒の過熱度SHsiを推定できる。このため、高価な圧力センサを用いずに、低加熱運転時の第二吸入通路36の冷媒の状態が過熱ガス状態になるように制御できる。
(4)低加熱運転時にも密閉容器31への気液二相冷媒の流入を確実に防止できるので、密閉容器31に液冷媒が蓄積されない。密閉容器31に蓄積された液冷媒が圧縮要素32あるいは電動要素33により加熱されると、冷凍機油と混合している液冷媒が気化することで冷凍機油が発泡する。冷凍機油が発泡すると、冷凍機油がガス冷媒に混合し、冷凍機油がガス冷媒に伴って第二吐出通路37から流出する。その結果、密閉容器31内の冷凍機油が不足し、圧縮機3の摺動部の潤滑不良が生じる。また、第二熱交換器5に冷凍機油が滞留し、冷媒の伝熱が阻害されて、性能が低下する。これに対し、本実施の形態1によれば、密閉容器31に液冷媒が蓄積されないので、これらの弊害を確実に防止できる。
According to the heat pump device 1 of the first embodiment, the following effects can be obtained.
(1) During hot water storage operation, that is, during high heating operation, the compression element discharge pressure Pd1 becomes supercritical pressure, and the refrigerant in the first heat exchanger 4 and the second heat exchanger 5 is not condensed. For this reason, the refrigerant | coolant flow volume can be controlled with the expansion valve 6 so that COP may become the maximum.
(2) During the hot water filling operation, that is, the low heating operation, the gas-liquid two-phase refrigerant flows into the internal space 38 of the hermetic container 31 by controlling the refrigerant state of the second suction passage 36 to be the superheated gas state. Can be surely prevented. Thereby, it is possible to appropriately control the refrigerant flow rate while improving the reliability. As a result, efficient operation is possible.
(3) The superheat degree SHsi of the refrigerant in the second suction passage 36 can be estimated based on the detected temperatures of temperature sensors such as the heat pump outlet temperature sensor 30, the discharge temperature sensor 51, and the refrigerant temperature sensor 52. For this reason, it can control so that the state of the refrigerant | coolant of the 2nd suction passage 36 at the time of low heating operation may be in a superheated gas state, without using an expensive pressure sensor.
(4) Since the gas-liquid two-phase refrigerant can be reliably prevented from flowing into the sealed container 31 even during the low heating operation, the liquid refrigerant is not accumulated in the sealed container 31. When the liquid refrigerant accumulated in the hermetic container 31 is heated by the compression element 32 or the electric element 33, the liquid refrigerant mixed with the refrigerating machine oil is vaporized, so that the refrigerating machine oil is foamed. When the refrigerating machine oil is foamed, the refrigerating machine oil is mixed with the gas refrigerant, and the refrigerating machine oil flows out of the second discharge passage 37 along with the gas refrigerant. As a result, the refrigerating machine oil in the hermetic container 31 is insufficient, resulting in poor lubrication of the sliding portion of the compressor 3. Moreover, refrigeration oil stagnates in the 2nd heat exchanger 5, the heat transfer of a refrigerant | coolant is inhibited, and performance falls. On the other hand, according to the first embodiment, the liquid refrigerant is not accumulated in the sealed container 31, and these problems can be reliably prevented.

本発明は、上述した構成に限定されるものではなく、例えば以下のようにしても良い。圧縮要素吐出圧力Pd1を検知する圧力センサを設け、その圧力センサの値に基づいて、第二吸入通路36の冷媒の過熱度を制御しても良い。第一熱交換器4と第二熱交換器5とを接続する水流路47に温度センサを設け、第一熱交換器4の水入口の水温Twgc1iをその温度センサで検知しても良い。第二熱交換器5の冷媒流路の中間点に温度センサを設け、その温度センサで凝縮飽和温度Tcを直接検知してもよい。   The present invention is not limited to the configuration described above, and may be as follows, for example. A pressure sensor that detects the compression element discharge pressure Pd1 may be provided, and the degree of superheat of the refrigerant in the second suction passage 36 may be controlled based on the value of the pressure sensor. A temperature sensor may be provided in the water flow path 47 connecting the first heat exchanger 4 and the second heat exchanger 5, and the water temperature Twgc1i at the water inlet of the first heat exchanger 4 may be detected by the temperature sensor. A temperature sensor may be provided at an intermediate point of the refrigerant flow path of the second heat exchanger 5, and the condensation saturation temperature Tc may be directly detected by the temperature sensor.

本発明の効果は、本実施の形態1のように高加熱運転時の圧縮要素吐出圧力が臨界圧力を超える圧力になる冷媒(例えば二酸化炭素)を用いる場合に、特に顕著に発揮される。しかしながら、本発明は、高加熱運転時の圧縮要素吐出圧力が臨界圧力以下の圧力になる冷媒を用いる場合にも適用できる。そのような冷媒としては、例えば、R410A、R32、R22,R407C、プロパン、プロピレン、HFO−1234yf、HFO−1234ze、またはこれらの混合冷媒が挙げられる。   The effect of the present invention is particularly prominent when a refrigerant (for example, carbon dioxide) having a pressure at which the compression element discharge pressure during the high heating operation exceeds the critical pressure is used as in the first embodiment. However, the present invention can also be applied to the case of using a refrigerant whose compression element discharge pressure during high heating operation is a pressure equal to or lower than the critical pressure. Examples of such a refrigerant include R410A, R32, R22, R407C, propane, propylene, HFO-1234yf, HFO-1234ze, or a mixed refrigerant thereof.

高加熱運転時の圧縮要素吐出圧力が臨界圧力以下の圧力になる冷媒を用いる場合の一般的な設計手法は、定格能力で運転する高加熱運転時の条件に合わせて、第二吸入通路36の冷媒が過熱ガスになるように、第一熱交換器4と第二熱交換器5の大きさ(熱交換量)の比を設計するという手法である。しかしながら、このように設計した場合でも、低加熱運転時には、ヒートポンプ出口温度が低く、圧縮要素吐出圧力が低下し、第一熱交換器4及び第二熱交換器5でのエンタルピ差が減少するため、第二吸入通路36の冷媒が気液二相状態になり易い。これに対し、本発明を適用することで、上記と同様の効果が得られる。よって、高加熱運転時の圧縮要素吐出圧力が臨界圧力以下の圧力になる冷媒を用いる場合であっても本願発明を適用する意義がある。   A general design method in the case of using a refrigerant whose compression element discharge pressure at the time of high heating operation is a pressure equal to or lower than the critical pressure is that the second suction passage 36 is adjusted according to the conditions at the time of high heating operation that operates at the rated capacity. In this method, the ratio of the size (heat exchange amount) of the first heat exchanger 4 and the second heat exchanger 5 is designed so that the refrigerant becomes superheated gas. However, even in such a design, at the time of low heating operation, the heat pump outlet temperature is low, the compression element discharge pressure is lowered, and the enthalpy difference between the first heat exchanger 4 and the second heat exchanger 5 is reduced. The refrigerant in the second suction passage 36 is likely to be in a gas-liquid two-phase state. On the other hand, the same effects as described above can be obtained by applying the present invention. Therefore, it is meaningful to apply the present invention even when a refrigerant is used in which the discharge pressure of the compression element during high heating operation is a critical pressure or less.

実施の形態2.
次に、図9を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図9は、本発明の実施の形態2のヒートポンプ装置1の低加熱運転での制御装置50の制御動作を示すフローチャートである。図9のステップS11からステップS13は実施の形態1と同様であるので説明を省略する。本実施の形態2では、ステップS13で第二吸入通路36の冷媒の過熱度SHsiが参照値α以下である場合には、制御装置50は、圧縮機3の容量が大きくなるように圧縮機3を制御すること(例えば圧縮機3の駆動速度を速くすること)で、第二吸入通路36の冷媒の過熱度SHsiを上昇させる(ステップS15)。これにより、本実施の形態2では、第二吸入通路36の冷媒の状態をより確実に過熱ガス状態に維持することができる。本実施の形態2は、上述した事項以外は実施の形態1と同様であるので、これ以上の説明を省略する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. 9. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted. FIG. 9 is a flowchart showing the control operation of the control device 50 in the low heating operation of the heat pump device 1 according to the second embodiment of the present invention. Since step S11 to step S13 in FIG. In the second embodiment, when the superheat degree SHsi of the refrigerant in the second suction passage 36 is equal to or less than the reference value α in step S13, the control device 50 causes the compressor 3 to increase the capacity of the compressor 3. Is controlled (for example, by increasing the driving speed of the compressor 3), the superheat degree SHsi of the refrigerant in the second suction passage 36 is increased (step S15). Thereby, in the second embodiment, the state of the refrigerant in the second suction passage 36 can be more reliably maintained in the superheated gas state. Since the second embodiment is the same as the first embodiment except for the matters described above, further description is omitted.

実施の形態3.
次に、図10を参照して、本発明の実施の形態3について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図10は、本発明の実施の形態3のヒートポンプ装置1の低加熱運転での制御装置50の制御動作を示すフローチャートである。図10のステップS11からステップS13は実施の形態1と同様であるので説明を省略する。本実施の形態3では、ステップS13で第二吸入通路36の冷媒の過熱度SHsiが参照値α以下である場合には、制御装置50は、水流量が低くなるようにポンプ13を制御することで、第二吸入通路36の冷媒の過熱度SHsiを上昇させる(ステップS16)。水流量を低くすると、圧縮要素吐出圧力が上昇するが、圧力−エンタルピ線図の飽和蒸気線が左上に傾いているため、圧力が上昇するほど飽和ガスのエンタルピが小さくなる。その結果、過熱度SHsiが大きくなる。本実施の形態3によれば、第二吸入通路36の冷媒の状態をより確実に過熱ガス状態に維持することができる。本実施の形態3は、上述した事項以外は実施の形態1と同様であるので、これ以上の説明を省略する。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIG. 10. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted. FIG. 10 is a flowchart showing the control operation of the control device 50 in the low heating operation of the heat pump device 1 according to the third embodiment of the present invention. Since step S11 to step S13 of FIG. In the third embodiment, when the superheat degree SHsi of the refrigerant in the second suction passage 36 is equal to or less than the reference value α in step S13, the control device 50 controls the pump 13 so that the water flow rate becomes low. Thus, the superheat degree SHsi of the refrigerant in the second suction passage 36 is increased (step S16). When the water flow rate is lowered, the compression element discharge pressure increases. However, since the saturated vapor line in the pressure-enthalpy diagram is inclined to the upper left, the enthalpy of the saturated gas becomes smaller as the pressure increases. As a result, the degree of superheat SHsi increases. According to the third embodiment, the state of the refrigerant in the second suction passage 36 can be more reliably maintained in the superheated gas state. Since the third embodiment is the same as the first embodiment except for the matters described above, further description is omitted.

実施の形態4.
次に、図11及び図12を参照して、本発明の実施の形態4について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図11は、本発明の実施の形態4のヒートポンプ装置1が備えるヒートポンプユニット2を示す構成図である。図11に示すように、本実施の形態4のヒートポンプユニット2は、実施の形態1と同様の構成に加え、第一吐出通路35から第一熱交換器4を経由せずに第二吸入通路36へ冷媒を流すバイパス流路55と、このバイパス流路55に設けられたバイパス弁56とをさらに備える。バイパス流路55は、第一熱交換器4の冷媒流路をバイパスする流路である。バイパス弁56は、バイパス流路55を通る冷媒の量を可変にする流路制御要素である。バイパス弁56を閉じた状態では、第一吐出通路35から吐出された過熱ガス状態の冷媒がすべて第一熱交換器4を通る状態になる。すなわち、実施の形態1と同様の状態になる。これに対し、バイパス弁56を開いた状態では、第一吐出通路35から吐出された過熱ガス状態の冷媒は、第一熱交換器4の冷媒流路と、バイパス流路55とに分かれて流れる。そして、第一熱交換器4の冷媒流路を通過した冷媒と、バイパス流路55を通過した冷媒とが合流し、第二吸入通路36へ流れる。
Embodiment 4 FIG.
Next, the fourth embodiment of the present invention will be described with reference to FIG. 11 and FIG. 12. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. The description is omitted. FIG. 11 is a configuration diagram showing the heat pump unit 2 included in the heat pump device 1 according to the fourth embodiment of the present invention. As shown in FIG. 11, the heat pump unit 2 according to the fourth embodiment has a configuration similar to that of the first embodiment, and a second suction passage from the first discharge passage 35 without passing through the first heat exchanger 4. Further, a bypass passage 55 for flowing the refrigerant to 36 and a bypass valve 56 provided in the bypass passage 55 are further provided. The bypass channel 55 is a channel that bypasses the refrigerant channel of the first heat exchanger 4. The bypass valve 56 is a flow path control element that makes the amount of refrigerant passing through the bypass flow path 55 variable. When the bypass valve 56 is closed, all of the superheated gas refrigerant discharged from the first discharge passage 35 passes through the first heat exchanger 4. That is, the state is the same as in the first embodiment. On the other hand, when the bypass valve 56 is opened, the superheated refrigerant discharged from the first discharge passage 35 flows separately into the refrigerant flow path of the first heat exchanger 4 and the bypass flow path 55. . Then, the refrigerant that has passed through the refrigerant flow path of the first heat exchanger 4 and the refrigerant that has passed through the bypass flow path 55 merge and flow to the second suction passage 36.

図12は、本発明の実施の形態4のヒートポンプ装置1の低加熱運転での制御装置50の制御動作を示すフローチャートである。図12のステップS11からステップS13は実施の形態1と同様であるので説明を省略する。本実施の形態4では、ステップS13で第二吸入通路36の冷媒の過熱度SHsiが参照値α以下である場合には、制御装置50は、バイパス弁56の開度が大きくなるようにバイパス弁56を制御することで、第二吸入通路36の冷媒の過熱度SHsiを上昇させる(ステップS17)。すなわち、ステップS17では、バイパス弁56が閉じている場合にはバイパス弁56を所定の開度に開き、バイパス弁56がすでに開いている場合にはバイパス弁56の開度を大きくする。バイパス弁56の開度を大きくすると、バイパス流路55を通過する冷媒の割合が上昇する。バイパス流路55を通過した過熱ガス状態の冷媒は、熱交換していないので、第一熱交換器4の冷媒流路を通過した冷媒より高温である。したがって、バイパス弁56の開度を大きくし、バイパス流路55を通過する冷媒の割合を上昇させることで、第二吸入通路36の冷媒の過熱度SHsiが上昇する。このような構成により、本実施の形態4では、第二吸入通路36の冷媒の状態をより確実に過熱ガス状態に維持することができる。本実施の形態4は、上述した事項以外は実施の形態1と同様であるので、これ以上の説明を省略する。   FIG. 12 is a flowchart showing the control operation of control device 50 in the low heating operation of heat pump device 1 according to the fourth embodiment of the present invention. Since step S11 to step S13 in FIG. In the present fourth embodiment, when the superheat degree SHsi of the refrigerant in the second suction passage 36 is equal to or less than the reference value α in step S13, the control device 50 causes the bypass valve 56 to increase the opening degree of the bypass valve 56. By controlling 56, the superheat degree SHsi of the refrigerant in the second suction passage 36 is increased (step S17). That is, in step S17, when the bypass valve 56 is closed, the bypass valve 56 is opened to a predetermined opening, and when the bypass valve 56 is already open, the opening of the bypass valve 56 is increased. When the opening degree of the bypass valve 56 is increased, the ratio of the refrigerant passing through the bypass passage 55 increases. Since the refrigerant in the superheated gas state that has passed through the bypass flow path 55 has not exchanged heat, it is at a higher temperature than the refrigerant that has passed through the refrigerant flow path of the first heat exchanger 4. Therefore, the degree of superheat SHsi of the refrigerant in the second suction passage 36 is increased by increasing the opening degree of the bypass valve 56 and increasing the ratio of the refrigerant passing through the bypass flow path 55. With such a configuration, in the fourth embodiment, the state of the refrigerant in the second suction passage 36 can be more reliably maintained in the superheated gas state. Since the fourth embodiment is the same as the first embodiment except for the matters described above, further description is omitted.

1 ヒートポンプ装置、3 圧縮機、4 第一熱交換器、5 第二熱交換器、6 膨張弁、7 蒸発器、8 送風機、9 給水温度、9 高低圧熱交換器、10 貯湯タンク、11 入口配管、12 入口、13 ポンプ、14 上部配管、15 給湯混合弁、16 風呂混合弁、17 出口、18 出口配管、19 給水配管、20 減圧弁、21 給水配管、22 給湯配管、23 給湯栓、24 給湯流量検知手段、25 給湯温度センサ、26 風呂配管、27 浴槽、28 開閉弁、29 風呂温度センサ、30 ヒートポンプ出口温度センサ、31 密閉容器、32 圧縮要素、33 電動要素、33a 固定子、33b 回転子、34 第一吸入通路、35 第一吐出通路、36 第二吸入通路、37 第二吐出通路、38,39 内部空間、40,41,42,43,44,45 冷媒流路、46,47,48 水流路、50 制御装置、51 吐出温度センサ、52 冷媒温度センサ、55 バイパス流路、56 バイパス弁、60 操作部 DESCRIPTION OF SYMBOLS 1 Heat pump apparatus, 3 Compressor, 4 1st heat exchanger, 5 2nd heat exchanger, 6 Expansion valve, 7 Evaporator, 8 Blower, 9 Feed water temperature, 9 High / low pressure heat exchanger, 10 Hot water tank, 11 Inlet Piping, 12 inlet, 13 pump, 14 upper piping, 15 hot water mixing valve, 16 bath mixing valve, 17 outlet, 18 outlet piping, 19 water supply piping, 20 pressure reducing valve, 21 water supply piping, 22 hot water piping, 23 hot water tap, 24 Hot water flow rate detection means, 25 Hot water temperature sensor, 26 Bath piping, 27 Bathtub, 28 On-off valve, 29 Bath temperature sensor, 30 Heat pump outlet temperature sensor, 31 Airtight container, 32 Compression element, 33 Electric element, 33a Stator, 33b Rotation 34, first suction passage, 35 first discharge passage, 36 second suction passage, 37 second discharge passage, 38, 39 internal space, 40, 41 42, 43, 44 and 45 refrigerant passages, 46, 47, 48 water passage, 50 control unit, 51 a discharge temperature sensor, 52 a refrigerant temperature sensor, 55 bypass passage, 56 bypass valve, 60 an operation unit

本発明のヒートポンプ装置は、密閉容器と、密閉容器の内部に設けられた圧縮要素と、密閉容器の外部から吸入される低圧冷媒を密閉容器の内部空間へ放出せずに圧縮要素へ導く第一吸入通路と、圧縮要素により圧縮された高圧冷媒を密閉容器の内部空間へ放出せずに密閉容器の外部へ吐出する第一吐出通路と、第一吐出通路から吐出された後に熱交換をした高圧冷媒を圧縮せずに密閉容器の内部空間へ放出する第二吸入通路と、密閉容器の内部空間の高圧冷媒を圧縮せずに密閉容器の外部へ吐出する第二吐出通路とを有する圧縮機と、第一吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第一熱交換器と、第二吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第二熱交換器と、第二熱交換器を通過した高圧冷媒を膨張させて低圧冷媒にする膨張部と、膨張部を通過した低圧冷媒を蒸発させる蒸発器と、高加熱運転と、第一熱交換器及び第二熱交換器の合計の加熱量が高加熱運転に比べて小さい低加熱運転とを行う制御手段と、を備え、制御手段は、低加熱運転のとき、第二吸入通路の冷媒の状態が過熱ガス状態になるように制御し、高加熱運転のときには圧縮要素から吐出される冷媒の圧力が臨界圧力を超える圧力になるとともに第一熱交換器から出る対象流体の温度が冷媒の臨界温度を超える温度になり、低加熱運転のときには圧縮要素から吐出される冷媒の圧力が臨界圧力以下の圧力になるとともに第一熱交換器から出る対象流体の温度が臨界温度より低い温度になるものである。
The heat pump device of the present invention includes a sealed container, a compression element provided inside the sealed container, and a first low-pressure refrigerant sucked from the outside of the sealed container that is led to the compression element without being discharged into the internal space of the sealed container. A suction passage, a first discharge passage that discharges high-pressure refrigerant compressed by the compression element to the outside of the sealed container without releasing it into the inner space of the sealed container, and a high pressure that exchanges heat after being discharged from the first discharge passage A compressor having a second suction passage that discharges the refrigerant to the inner space of the sealed container without compression, and a second discharge passage that discharges the high-pressure refrigerant in the inner space of the sealed container to the outside of the sealed container without being compressed. A first heat exchanger that heats the target fluid with the heat of the high-pressure refrigerant discharged from the first discharge passage; and a second heat exchanger that heats the target fluid with the heat of the high-pressure refrigerant discharged from the second discharge passage. , Expanded high-pressure refrigerant that passed through the second heat exchanger The total heating amount of the expansion part to be a low-pressure refrigerant, the evaporator that evaporates the low-pressure refrigerant that has passed through the expansion part, the high heating operation, and the first heat exchanger and the second heat exchanger is the high heating operation. Control means for performing a low heating operation that is smaller than the control means, and the control means controls the refrigerant state in the second suction passage to be in a superheated gas state during the low heating operation, and during the high heating operation. The pressure of the refrigerant discharged from the compression element exceeds the critical pressure, and the temperature of the target fluid exiting the first heat exchanger exceeds the critical temperature of the refrigerant. During low heating operation, the refrigerant is discharged from the compression element. that the temperature of the target fluid exiting the first heat exchanger with the refrigerant pressure becomes critical pressure below the pressure is shall such to a temperature lower than the critical temperature.

Claims (7)

密閉容器と、前記密閉容器の内部に設けられた圧縮要素と、前記密閉容器の外部から吸入される低圧冷媒を前記密閉容器の内部空間へ放出せずに前記圧縮要素へ導く第一吸入通路と、前記圧縮要素により圧縮された高圧冷媒を前記密閉容器の内部空間へ放出せずに前記密閉容器の外部へ吐出する第一吐出通路と、前記第一吐出通路から吐出された後に熱交換をした高圧冷媒を圧縮せずに前記密閉容器の内部空間へ放出する第二吸入通路と、前記密閉容器の内部空間の高圧冷媒を圧縮せずに前記密閉容器の外部へ吐出する第二吐出通路とを有する圧縮機と、
前記第一吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第一熱交換器と、
前記第二吐出通路から吐出された高圧冷媒の熱で前記対象流体を加熱する第二熱交換器と、
前記第二熱交換器を通過した高圧冷媒を膨張させて低圧冷媒にする膨張部と、
前記膨張部を通過した低圧冷媒を蒸発させる蒸発器と、
高加熱運転と、前記第一熱交換器及び前記第二熱交換器の合計の加熱量が前記高加熱運転に比べて小さい低加熱運転とを行う制御手段と、
を備え、
前記制御手段は、前記低加熱運転のとき、前記第二吸入通路の冷媒の状態が過熱ガス状態になるように制御するヒートポンプ装置。
A hermetic container, a compression element provided inside the hermetic container, and a first suction passage for guiding low-pressure refrigerant sucked from the outside of the hermetic container to the compression element without releasing the refrigerant into the inner space of the hermetic container The high pressure refrigerant compressed by the compression element is discharged to the outside of the sealed container without being discharged into the inner space of the sealed container, and heat exchange is performed after being discharged from the first discharge path. A second suction passage for discharging the high-pressure refrigerant into the inner space of the sealed container without compressing, and a second discharge passage for discharging the high-pressure refrigerant in the inner space of the sealed container to the outside of the sealed container without compressing. A compressor having,
A first heat exchanger that heats the target fluid with the heat of the high-pressure refrigerant discharged from the first discharge passage;
A second heat exchanger for heating the target fluid with the heat of the high-pressure refrigerant discharged from the second discharge passage;
An expansion section that expands the high-pressure refrigerant that has passed through the second heat exchanger into a low-pressure refrigerant;
An evaporator for evaporating the low-pressure refrigerant that has passed through the expansion section;
Control means for performing a high heating operation and a low heating operation in which the total heating amount of the first heat exchanger and the second heat exchanger is smaller than the high heating operation;
With
The said control means is a heat pump apparatus which controls so that the state of the refrigerant | coolant of said 2nd suction passage may be in a superheated gas state at the time of the said low heating driving | operation.
前記高加熱運転のときには前記圧縮要素から吐出される冷媒の圧力が臨界圧力を超える圧力になり、前記低加熱運転のときには前記圧縮要素から吐出される冷媒の圧力が臨界圧力以下の圧力になる請求項1に記載のヒートポンプ装置。   The pressure of the refrigerant discharged from the compression element becomes higher than the critical pressure during the high heating operation, and the pressure of the refrigerant discharged from the compression element becomes lower than the critical pressure during the low heating operation. Item 2. The heat pump device according to Item 1. 前記制御手段は、前記高加熱運転のとき、前記圧縮要素から吐出される冷媒の温度または前記蒸発器から出る冷媒の過熱度が目標値になるように、前記膨張部により冷媒流量を制御する請求項1または請求項2に記載のヒートポンプ装置。   The said control means controls the refrigerant | coolant flow volume by the said expansion part so that the temperature of the refrigerant | coolant discharged from the said compression element or the superheat degree of the refrigerant | coolant which exits from the said evaporator becomes a target value at the time of the said high heating operation. The heat pump device according to claim 1 or claim 2. 前記制御手段は、前記低加熱運転のとき、前記圧縮要素から吐出される冷媒の温度と、前記第二吸入通路の冷媒の温度と、前記第一熱交換器から出る前記対象流体の温度とに基づいて、前記第二吸入通路の冷媒の過熱度を推定し、その推定結果に基づいて、前記膨張部の開度、前記圧縮機の容量、及び前記対象流体の流量のうちの少なくとも一つを制御する請求項1から請求項3のいずれか一項に記載のヒートポンプ装置。   The control means, during the low heating operation, to the temperature of the refrigerant discharged from the compression element, the temperature of the refrigerant in the second suction passage, and the temperature of the target fluid exiting from the first heat exchanger On the basis of the degree of superheat of the refrigerant in the second suction passage, and based on the estimation result, at least one of the opening of the expansion section, the capacity of the compressor, and the flow rate of the target fluid is calculated. The heat pump device according to any one of claims 1 to 3, which is controlled. 前記制御手段は、前記低加熱運転のとき、前記圧縮要素に吸入される冷媒の温度と、前記圧縮要素から吐出される冷媒の温度と、前記蒸発器の蒸発飽和温度とに基づいて、前記第二吸入通路の冷媒の過熱度を推定し、その推定結果に基づいて、前記膨張部の開度、前記圧縮機の容量、及び前記対象流体の流量のうちの少なくとも一つを制御する請求項1から請求項3のいずれか一項に記載のヒートポンプ装置。   The control means, during the low heating operation, based on the temperature of the refrigerant sucked into the compression element, the temperature of the refrigerant discharged from the compression element, and the evaporation saturation temperature of the evaporator. 2. The degree of superheat of the refrigerant in the two suction passages is estimated, and based on the estimation result, at least one of the opening of the expansion section, the capacity of the compressor, and the flow rate of the target fluid is controlled. The heat pump device according to claim 3. 前記第一吐出通路から前記第一熱交換器を経由せずに前記第二吸入通路へ冷媒を流すバイパス流路と、
前記バイパス流路を通る冷媒の量を可変にする流路制御要素と、
を備え、
前記制御手段は、前記低加熱運転のとき、前記第二吸入通路の冷媒の状態が過熱ガス状態になるように、前記バイパス流路を通る冷媒の量を前記流路制御要素により制御する請求項1から請求項3のいずれか一項に記載のヒートポンプ装置。
A bypass passage for flowing a refrigerant from the first discharge passage to the second suction passage without going through the first heat exchanger;
A flow path control element for varying the amount of refrigerant passing through the bypass flow path;
With
The said control means controls the quantity of the refrigerant | coolant which passes along the said bypass flow path by the said flow-path control element so that the state of the refrigerant | coolant of a said 2nd suction passage may be in a superheated gas state at the time of the said low heating operation. The heat pump device according to any one of claims 1 to 3.
貯湯タンクを備え、
前記制御手段は、前記第一熱交換器及び前記第二熱交換器で加熱された水を前記貯湯タンクに流入させる貯湯運転のときは前記高加熱運転を行い、前記第一熱交換器及び前記第二熱交換器で加熱された水を浴槽へ供給する湯張り運転のときは前記低加熱運転を行う請求項1から請求項6のいずれか一項に記載のヒートポンプ装置。
Equipped with a hot water storage tank,
The control means performs the high heating operation during hot water storage operation in which water heated by the first heat exchanger and the second heat exchanger flows into the hot water storage tank, and the first heat exchanger and the The heat pump device according to any one of claims 1 to 6, wherein the low heating operation is performed during a hot water supply operation in which water heated by the second heat exchanger is supplied to a bathtub.
JP2016507142A 2014-03-10 2014-03-10 Heat pump equipment Active JP6233499B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056149 WO2015136595A1 (en) 2014-03-10 2014-03-10 Heat pump system

Publications (2)

Publication Number Publication Date
JPWO2015136595A1 true JPWO2015136595A1 (en) 2017-04-06
JP6233499B2 JP6233499B2 (en) 2017-11-22

Family

ID=54071075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016507142A Active JP6233499B2 (en) 2014-03-10 2014-03-10 Heat pump equipment

Country Status (3)

Country Link
EP (1) EP3128256A4 (en)
JP (1) JP6233499B2 (en)
WO (1) WO2015136595A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627630A (en) * 2016-03-01 2016-06-01 田幼华 Heat pump system
CN108278751B (en) * 2017-12-26 2021-11-16 广东申菱环境系统股份有限公司 Energy-saving air conditioning system with sensible heat and latent heat double recovery function
WO2022119436A1 (en) * 2020-12-01 2022-06-09 Daikin Research & Development Malaysia Sdn. Bhd. An apparatus for heating water

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512325Y1 (en) * 1970-11-07 1976-01-23
JPS5534540Y2 (en) * 1976-05-17 1980-08-15
JPH0473553A (en) * 1990-07-10 1992-03-09 Sanyo Electric Co Ltd Freezer device
JPH07294025A (en) * 1994-04-21 1995-11-10 Nippon Kentetsu Co Ltd Refrigerator
JPH09196477A (en) * 1996-01-17 1997-07-31 Tokyo Gas Co Ltd Compression type refrigerator and method for controlling the operation thereof
JP2005134070A (en) * 2003-10-31 2005-05-26 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006132427A (en) * 2004-11-05 2006-05-25 Mitsubishi Electric Corp Compressor for hot-water supply and hot-water supply cycle device
JP2009133547A (en) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp Refrigerating cycle apparatus
JP2010216687A (en) * 2009-03-13 2010-09-30 Daikin Ind Ltd Heat pump system
JP2011021828A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Heat pump water heater
JP2014016041A (en) * 2012-07-05 2014-01-30 Denso Corp Hot-water supply apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512325Y1 (en) * 1970-11-07 1976-01-23
JPS5534540Y2 (en) * 1976-05-17 1980-08-15
JPH0473553A (en) * 1990-07-10 1992-03-09 Sanyo Electric Co Ltd Freezer device
JPH07294025A (en) * 1994-04-21 1995-11-10 Nippon Kentetsu Co Ltd Refrigerator
JPH09196477A (en) * 1996-01-17 1997-07-31 Tokyo Gas Co Ltd Compression type refrigerator and method for controlling the operation thereof
JP2005134070A (en) * 2003-10-31 2005-05-26 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006132427A (en) * 2004-11-05 2006-05-25 Mitsubishi Electric Corp Compressor for hot-water supply and hot-water supply cycle device
JP2009133547A (en) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp Refrigerating cycle apparatus
JP2010216687A (en) * 2009-03-13 2010-09-30 Daikin Ind Ltd Heat pump system
JP2011021828A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Heat pump water heater
JP2014016041A (en) * 2012-07-05 2014-01-30 Denso Corp Hot-water supply apparatus

Also Published As

Publication number Publication date
EP3128256A4 (en) 2017-12-27
WO2015136595A1 (en) 2015-09-17
JP6233499B2 (en) 2017-11-22
EP3128256A1 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP5452138B2 (en) Refrigeration air conditioner
CN105247302B (en) Air-conditioning device
US10845095B2 (en) Air-conditioning apparatus
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
JP5349686B2 (en) Refrigeration cycle equipment
JP5240332B2 (en) Refrigeration equipment
WO2015125743A1 (en) Air-conditioning device
JP4883201B2 (en) Heat source unit
JP2017044454A (en) Refrigeration cycle device and control method for the same
JP2005291622A (en) Refrigerating cycle device and its control method
JP2013002744A (en) Refrigerating cycle device and hot water heating device having the same
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
JP2014016079A (en) Heat pump
JP6038382B2 (en) Air conditioner
JP2007093100A (en) Control method of heat pump water heater, and heat pump water heater
JP4442237B2 (en) Air conditioner
JP6233499B2 (en) Heat pump equipment
JP6267952B2 (en) Refrigeration cycle equipment
JP6288146B2 (en) Refrigeration equipment
JP2010060181A (en) Refrigeration system
JP2011027358A (en) Heater
JP2006194537A (en) Heat pump device
JP6024241B2 (en) Heat pump system
JP2017161164A (en) Air-conditioning hot water supply system
WO2017138243A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171009

R150 Certificate of patent or registration of utility model

Ref document number: 6233499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250