JP2006132427A - Compressor for hot-water supply and hot-water supply cycle device - Google Patents

Compressor for hot-water supply and hot-water supply cycle device Download PDF

Info

Publication number
JP2006132427A
JP2006132427A JP2004321908A JP2004321908A JP2006132427A JP 2006132427 A JP2006132427 A JP 2006132427A JP 2004321908 A JP2004321908 A JP 2004321908A JP 2004321908 A JP2004321908 A JP 2004321908A JP 2006132427 A JP2006132427 A JP 2006132427A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
water supply
hot water
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004321908A
Other languages
Japanese (ja)
Other versions
JP4434924B2 (en
JP2006132427A5 (en
Inventor
Hideaki Maeyama
英明 前山
Eiji Sakamoto
英司 坂本
Shinichi Takahashi
真一 高橋
Naotaka Hattori
直隆 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004321908A priority Critical patent/JP4434924B2/en
Publication of JP2006132427A publication Critical patent/JP2006132427A/en
Publication of JP2006132427A5 publication Critical patent/JP2006132427A5/ja
Application granted granted Critical
Publication of JP4434924B2 publication Critical patent/JP4434924B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a compressor for hot-water supply free from reliability lowering caused by discharge gas of high temperature passing through an electric element section in hot-water supply operation at low outside temperature. <P>SOLUTION: The compressor 10 for hot-water supply comprises an inlet pipe 4 for directly introducing refrigerant of low pressure side to the compression element 2, a discharge pipe 5 for directly discharging high-pressure refrigerant compressed by the compression element 2 outside of a closed container 1 without discharging it into the closed container 1, a refrigerant re-introduction pipe 6 for introducing the refrigerant after heat exchange discharged from the discharge pipe 5 into the closed container 1 again and a refrigerant re-discharge pipe 7 for discharging the refrigerant passed through the electric element 3 outside of the closed container 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭酸ガス等の超臨界冷媒使用の給湯用圧縮機及び該圧縮機使用の給湯サイクル装置に関するものである。   The present invention relates to a hot water supply compressor using a supercritical refrigerant such as carbon dioxide gas and a hot water supply cycle apparatus using the compressor.

従来の炭酸ガス冷媒使用の圧縮機で、高圧シェルタイプの圧縮機においては、基本的に吐出管は1個所しかなく、圧縮要素で圧縮された冷媒は一度密閉容器内に吐出された後電動要素部を通過して、吐出管に達する冷媒ガス流路構成となっている(例えば、特許文献1参照)。
また、炭酸ガス冷媒使用の圧縮機で高圧シェルタイプ以外のものについては、中間圧シェル2段圧縮タイプの圧縮機が示されている。これは、冷媒導入管から下シリンダの低圧室側に吸入された低圧の冷媒ガスが圧縮されて中間圧となり、密閉容器内に吐出され、冷媒導入管から上シリンダの低圧室側に吸入され、圧縮され高温高圧の冷媒ガスとなり、冷媒吐出管から外部のガスクーラに流入する(例えば、特許文献2参照)。
また、従来の給湯サイクル装置については、圧縮機、ガスクーラ、膨張弁、蒸発機で構成されるものが一般的であるが、ガスクーラの構成は冷媒と水を対向流で流して熱交換する形となる。(例えば、非特許文献1参照)。
また、ガスクーラを分割する形としては、冷媒〜水の熱交換部と、冷凍機油〜水の熱交換部で分割した例が示されている。(例えば、特許文献3参照)。
In a conventional compressor using carbon dioxide gas refrigerant, in a high-pressure shell type compressor, there is basically only one discharge pipe, and the refrigerant compressed by the compression element is once discharged into the sealed container and then the electric element. The refrigerant gas flow path configuration reaches the discharge pipe through the section (see, for example, Patent Document 1).
Further, a compressor using a carbon dioxide gas refrigerant other than the high pressure shell type is shown as an intermediate pressure shell two-stage compression type compressor. This is because the low-pressure refrigerant gas sucked from the refrigerant introduction pipe to the low-pressure chamber side of the lower cylinder is compressed to an intermediate pressure, discharged into the sealed container, and sucked from the refrigerant introduction pipe to the low-pressure chamber side of the upper cylinder, The refrigerant gas is compressed into high-temperature and high-pressure refrigerant gas and flows into the external gas cooler from the refrigerant discharge pipe (see, for example, Patent Document 2).
In addition, a conventional hot water supply cycle device is generally configured by a compressor, a gas cooler, an expansion valve, and an evaporator, but the configuration of the gas cooler is configured to exchange heat by flowing a refrigerant and water in a counterflow. Become. (For example, refer nonpatent literature 1).
Moreover, as the form which divides | segments a gas cooler, the example divided | segmented into the heat exchange part of a refrigerant | coolant-water and the heat exchange part of refrigeration oil-water is shown. (For example, refer to Patent Document 3).

特開2003−262192(第4頁〜第6頁、図1)JP 2003-262192 (pages 4 to 6, FIG. 1) 特開2004−156539(第4頁〜第6頁、図1)JP-A-2004-156539 (pages 4 to 6, FIG. 1) 財団法人 ヒートポンプ・蓄熱センター編 「ノンフロン技術」オーム社、2004年2月1日、P40、図3.1.1“Non-Freon Technology” Ohm, February 1, 2004, p. 40, Fig. 3.1.1 特開2001−304701(第2頁、第3頁、図1)JP 2001-304701 (2nd page, 3rd page, FIG. 1)

まず、従来の高圧シェルタイプの圧縮機を従来の給湯サイクル装置に使用する場合の問題点について説明する。高圧シェルタイプの圧縮機の場合、圧縮要素で冷媒を圧縮する際に圧縮室内に適量の冷凍機油を混合させて圧縮要素内のシール性を保つ必要がある。圧縮要素内で圧縮された冷媒と冷凍機油の混合体は一度密閉容器内に吐出され、電動要素部を通過して、吐出管に達するまでの間に冷媒と冷凍機油が分離され、冷凍機油をほとんど含まない冷媒ガスが吐出管より吐出される。また、冷媒ガスが電動要素部を通過する際、電動要素部で発生した熱が冷媒ガスに移動することにより電動要素部が冷却される作用もある。   First, problems in using a conventional high-pressure shell type compressor in a conventional hot water supply cycle apparatus will be described. In the case of a high-pressure shell type compressor, it is necessary to maintain a sealing property in the compression element by mixing an appropriate amount of refrigeration oil in the compression chamber when the refrigerant is compressed by the compression element. The mixture of refrigerant and refrigerating machine oil compressed in the compression element is once discharged into the sealed container, and after passing through the electric element part, the refrigerant and refrigerating machine oil are separated until reaching the discharge pipe, Refrigerant gas which is hardly contained is discharged from the discharge pipe. Further, when the refrigerant gas passes through the electric element portion, the electric element portion is cooled by heat generated in the electric element portion moving to the refrigerant gas.

通常の温度範囲においては、上記の動作により、冷媒サイクルに冷凍機油を吐出しない、電動要素部の温度上昇を防止するという効果があるが、給湯用途においては、水を所定の温度まで沸き上げる必要があるため、機能上、所定の吐出温度まで上昇させなければならない。
図9は、例えば、理想ガスクーラ(ガスクーラ出口温度=給水温度、ピンチポイント温度差=0℃)、理想蒸発機(蒸発温度=外気温、吸入SH=5deg)と断熱効率60%の圧縮機を組み合わせた時において給水温度5℃の水を90℃まで沸き上げるのに必要な吐出温度の計算値を示す。図より、外気温が低いほど吐出圧力は低く吐出温度が高くなる傾向であることがわかる。例えば、外気温度が−20℃の時には、145℃の吐出ガス温度となる。
In the normal temperature range, the above operation has the effect of preventing refrigerating machine oil from being discharged into the refrigerant cycle and preventing the temperature of the electric element from rising. In hot water supply applications, it is necessary to boil water up to a predetermined temperature. Therefore, it must be raised to a predetermined discharge temperature in terms of function.
FIG. 9 shows, for example, an ideal gas cooler (gas cooler outlet temperature = feed water temperature, pinch point temperature difference = 0 ° C.), an ideal evaporator (evaporation temperature = outside air temperature, intake SH = 5 deg) and a compressor with a heat insulation efficiency of 60%. The calculated value of the discharge temperature required for boiling water with a feed water temperature of 5 ° C. up to 90 ° C. is shown. It can be seen from the figure that the lower the outside air temperature, the lower the discharge pressure and the higher the discharge temperature. For example, when the outside air temperature is −20 ° C., the discharge gas temperature is 145 ° C.

一般に、モータの絶縁材に使用されているPET等の材料の通常使用可能限界温度は、120℃〜130℃程度であることや、その他の樹脂材料についてもこの付近の温度を上回ると、化学反応や抽出等の問題があり、高温の吐出ガスをモータ部に通過させることは圧縮機や冷媒サイクルの信頼性を損なうため、吐出ガスが高温となる低外気温時の給湯運転が困難であるという問題があった。   In general, the normal usable limit temperature of materials such as PET used for motor insulation is about 120 ° C to 130 ° C, and other resin materials exceed the temperature in the vicinity of this. There is a problem such as extraction, and passing hot discharge gas to the motor section impairs the reliability of the compressor and refrigerant cycle, so it is difficult to perform hot water supply operation at low outside temperatures where the discharge gas becomes hot There was a problem.

上記の問題については、冷媒流量に対して熱交換する水量を少なめにすることで、吐出温度を低めに抑えることも可能であるが、これは、給湯サイクル装置の効率や単位冷媒流量当たりの給湯能力を大幅に落とすことになり、所定の効率や給湯能力を得ることが困難であるという問題があった。   Regarding the above problem, it is possible to keep the discharge temperature low by reducing the amount of water to be exchanged with respect to the refrigerant flow rate, but this is because of the efficiency of the hot water supply cycle device and the hot water supply per unit refrigerant flow rate. There was a problem that it would be difficult to obtain predetermined efficiency and hot water supply capacity because the capacity would be greatly reduced.

次に、高圧シェルタイプ以外の圧縮機として、従来の中間圧シェル2段圧縮タイプを従来の給湯サイクル装置に使用する場合について説明する。中間圧シェル2段圧縮タイプでは、第1圧縮要素と第2圧縮要素の二段階で圧縮仕事を行ない、第1圧縮要素からの吐出ガスが密閉容器内に開放されるため、電動要素の周りの温度は中間吐出温度となり、高温となる第2圧縮要素で圧縮された冷媒ガスは第2圧縮要素から密閉容器外へ直接的に吐出されるため、高圧シェルのように電動要素に高温のガスを通過させることはなく、上記の信頼性上の問題は回避できる。   Next, a case where a conventional intermediate pressure shell two-stage compression type is used in a conventional hot water supply cycle apparatus as a compressor other than the high pressure shell type will be described. In the intermediate pressure shell two-stage compression type, the compression work is performed in two stages of the first compression element and the second compression element, and the discharge gas from the first compression element is released into the sealed container. The temperature becomes the intermediate discharge temperature, and the refrigerant gas compressed by the second compression element, which becomes high temperature, is discharged directly from the second compression element to the outside of the sealed container. The above-mentioned reliability problem can be avoided.

しかし、中間圧二段圧縮タイプであっても、冷媒を圧縮する際に圧縮室内に適量の冷凍機油を混合させて圧縮要素内のシール性を保つことには変わりなく、圧縮要素内で圧縮された冷媒と冷凍機油の混合体は油分離手段を経ることなく密閉容器外へ吐出されることになる。冷媒回路内に多くの冷凍機油が吐出されると、ガスクーラや蒸発器での熱交換性能の低下、配管内での圧損の増加、冷媒ガスの熱が冷凍機油に移ることによる吐出温度の低下やガスクーラ内での冷媒と冷凍機油の比熱差による水加熱能力の低下等の問題があり、十分な給湯性能が得られにくいという問題があった。   However, even in the case of the intermediate pressure two-stage compression type, when compressing the refrigerant, an appropriate amount of refrigerating machine oil is mixed in the compression chamber to maintain the sealing performance in the compression element, and is compressed in the compression element. The mixture of the refrigerant and the refrigerating machine oil is discharged out of the sealed container without passing through the oil separation means. When a large amount of refrigeration oil is discharged into the refrigerant circuit, the heat exchange performance in the gas cooler or evaporator decreases, the pressure loss in the piping increases, the discharge temperature decreases due to the transfer of refrigerant gas heat to the refrigeration oil, There are problems such as a decrease in water heating capacity due to the specific heat difference between the refrigerant and the refrigerating machine oil in the gas cooler, and there is a problem that sufficient hot water supply performance is difficult to obtain.

本発明は、上記の課題を解決するためになされたもので、低外気温で給湯運転した際に、電動要素部に高温の吐出ガスが通過することによる信頼性低下がない給湯用圧縮機を得ることを目的とする。
また、給湯サイクル装置内に多量の冷凍機油を循環させることにより、ガスクーラや蒸発器での熱交換性能の低下、配管内での圧損の増加、冷媒ガスの熱が冷凍機油に移ることによる吐出温度の低下、ガスクーラ内での冷媒と冷凍機油の比熱差による水加熱能力の低下等の問題を生じない給湯用圧縮機を得ることを目的とする。
また、ガスクーラにおける水と冷媒との熱交換効率を高め、給湯性能を改善できる給湯用圧縮機を得ることを目的とする。
また、このような給湯用圧縮機を使用することにより、信頼性の高い、熱交換効率の高いガスクーラを持つ及び/又は多量の循環油のない給湯サイクル装置を得ることを目的とする。
The present invention has been made to solve the above-described problem, and has a hot water supply compressor that does not have a decrease in reliability due to high-temperature discharge gas passing through an electric element when a hot water supply operation is performed at a low outside air temperature. The purpose is to obtain.
Also, by circulating a large amount of refrigerating machine oil in the hot water supply cycle device, the heat exchange performance in the gas cooler and evaporator decreases, the pressure loss in the piping increases, the discharge temperature due to the heat of the refrigerant gas moving to the refrigerating machine oil It is an object of the present invention to obtain a hot water supply compressor that does not cause problems such as a decrease in water heating capacity due to a decrease in water heating capacity due to a specific heat difference between refrigerant and refrigeration oil in a gas cooler.
It is another object of the present invention to provide a hot water supply compressor that can improve the heat exchange efficiency between water and refrigerant in a gas cooler and improve hot water supply performance.
Another object of the present invention is to obtain a hot water supply cycle apparatus having a gas cooler with high reliability and high heat exchange efficiency and / or no large amount of circulating oil by using such a hot water supply compressor.

本発明は、密閉容器内に圧縮要素及び電動要素を有し、冷媒として超臨界冷媒を使用し、給湯用に用いる給湯用圧縮機であって、低圧側の冷媒を圧縮要素に直接導く吸入管と、圧縮要素で圧縮した高圧の冷媒を密閉容器内に放出することなく直接密閉容器外に吐出する吐出管と、吐出管より吐出され、熱交換後の冷媒を、密閉容器内に再度導く冷媒再導入管と、密閉容器内に再度導入し、電動要素を通過後の冷媒を密閉容器外に吐出する冷媒再吐出管とを備えた給湯用圧縮機である。
また、前記の給湯用圧縮機を有する給湯サイクル装置は、ガスクーラ内部において、給湯用の水が流通する水配管と、圧縮冷媒が流通する冷媒配管とが熱交換し、冷媒配管の冷媒により水配管の水の温度を上昇させるものであり、冷媒配管のうち、吐出管に接続する高温側冷媒配管がガスクーラの水配管の出口側と熱交換し、また、冷媒再吐出管に接続する低温側冷媒配管がガスクーラの水配管の入口側と熱交換するものである。
The present invention relates to a hot water supply compressor that has a compression element and an electric element in a hermetic container, uses a supercritical refrigerant as a refrigerant, and is used for hot water supply, and is a suction pipe that directly leads a low-pressure side refrigerant to the compression element And a discharge pipe that directly discharges the high-pressure refrigerant compressed by the compression element to the outside of the sealed container without releasing it into the sealed container, and a refrigerant that is discharged from the discharge pipe and guides the refrigerant after heat exchange into the sealed container again. A hot water supply compressor provided with a reintroduction pipe and a refrigerant redischarge pipe that reintroduces the refrigerant into the sealed container and discharges the refrigerant after passing through the electric element to the outside of the sealed container.
Further, the hot water supply cycle apparatus having the above hot water supply compressor is configured such that a water pipe through which water for hot water supply circulates and a refrigerant pipe through which compressed refrigerant circulates in the gas cooler, and the water pipe is supplied by the refrigerant of the refrigerant pipe. Among the refrigerant pipes, the high-temperature side refrigerant pipe connected to the discharge pipe exchanges heat with the outlet side of the water pipe of the gas cooler, and the low-temperature side refrigerant connected to the refrigerant re-discharge pipe The pipe exchanges heat with the inlet side of the water pipe of the gas cooler.

本発明の給湯用圧縮機は、吐出管により圧縮要素で圧縮した高圧の冷媒を密閉容器内に放出することなく直接密閉容器外に吐出し、給湯用圧縮機外で熱交換後に、冷媒再導入管により密閉容器内に再度導入し、電動要素を通過後に冷媒再吐出管より給湯用圧縮機外に吐出するので、低外気温のとき圧縮冷媒温度を高温としても、高温の吐出ガスは、電動要素を通過することがなく、電動要素を通過するのは給湯用圧縮機外で熱交換後の温度の低下した冷媒ガスであるため、電動要素の信頼性低下を防止できる。
また、本発明の給湯用圧縮機は、給湯用圧縮機外で熱交換後の温度の低下した冷媒ガスが電動要素を通過するので、電動要素の冷却効果がある。
また、本発明の給湯用圧縮機を有する給湯サイクル装置においては、冷媒ガスが、給湯用圧縮機の冷媒再導入管により密閉容器内に再度導入し、電動要素を通過後に冷媒再吐出管から吐出し、低温側冷媒配管によりガスクーラの水配管の入口側と熱交換するので、電動要素通過のときに冷凍機油が分離され、冷媒再吐出管以降の配管に出る冷凍機油は減少し、ガスクーラ、蒸発器での熱交換の低下、配管内での圧損の増加等が防止できる。
また、本発明の前記給湯用圧縮機を有する給湯サイクル装置においては、ガスクーラ内部において、給湯用圧縮機の吐出管に接続する高温側冷媒配管がガスクーラの水配管の出口側と熱交換し、また、低温側冷媒配管がガスクーラの水配管の入口側と熱交換する。高温側冷媒配管では多量の冷凍機油を含有するが、冷媒ガスは高温であり、比熱はそれほど大きくなく、冷媒ガスと冷凍機油の比熱の差が少ないため、熱交換性能への影響はほとんどないので、ガスクーラにおいて充分な熱交換性能を有する。
The compressor for hot water supply of the present invention discharges the high-pressure refrigerant compressed by the compression element by the discharge pipe directly to the outside of the sealed container without releasing it into the sealed container, and reintroduces the refrigerant after exchanging heat outside the hot water compressor. Since the pipe is reintroduced into the sealed container and passes through the electric element, it is discharged out of the compressor for hot water supply from the refrigerant re-discharge pipe, so even if the compressed refrigerant temperature is high at low outside temperatures, Since it is the refrigerant gas whose temperature has decreased after heat exchange outside the hot water supply compressor that does not pass through the element, the reliability of the electric element can be prevented from decreasing.
Further, the hot water supply compressor of the present invention has an effect of cooling the electric element because the refrigerant gas whose temperature has decreased after heat exchange outside the hot water supply compressor passes through the electric element.
Further, in the hot water supply cycle apparatus having the hot water supply compressor of the present invention, the refrigerant gas is reintroduced into the sealed container by the refrigerant reintroduction pipe of the hot water supply compressor, and is discharged from the refrigerant redischarge pipe after passing through the electric element. However, since heat is exchanged with the inlet side of the water pipe of the gas cooler by the low-temperature side refrigerant pipe, the refrigeration oil is separated when passing through the electric element, and the refrigeration oil that goes out to the pipe after the refrigerant re-discharge pipe is reduced. It is possible to prevent a decrease in heat exchange in the vessel and an increase in pressure loss in the piping.
Further, in the hot water supply cycle apparatus having the hot water supply compressor of the present invention, the high temperature side refrigerant pipe connected to the discharge pipe of the hot water supply compressor exchanges heat with the outlet side of the water pipe of the gas cooler inside the gas cooler. The low temperature side refrigerant pipe exchanges heat with the inlet side of the water pipe of the gas cooler. The high-temperature side refrigerant piping contains a large amount of refrigeration oil, but the refrigerant gas is hot, the specific heat is not so large, and the difference in specific heat between the refrigerant gas and the refrigeration oil is small, so there is almost no effect on the heat exchange performance. The gas cooler has sufficient heat exchange performance.

実施の形態1.
図1は、本発明の実施の形態1における高圧シェルタイプの給湯用圧縮機の断面図であり、図2は、図1の給湯用圧縮機を使用した給湯サイクル装置の構成図である。
図において、10は二酸化炭素のような超臨界冷媒使用の給湯用圧縮機である。給湯用圧縮機は、密閉容器1内には、下部に冷媒を圧縮する圧縮要素2、上部に回転子3aと固定子3bとからなる電動要素3及び底部に冷凍機油を溜める油溜り8を収容する。そして、圧縮要素2は、電動要素3による回転軸の回転により冷媒を圧縮する。
また、密閉容器1には、圧縮要素2に冷凍サイクルの低圧側の冷媒を取り込む吸入管2、圧縮要素2で圧縮した冷媒を給湯圧縮機外の後述のガスクーラ20に吐出する吐出管5、ガスクーラ20から冷媒を再導入する冷媒再導入管6及び冷媒をガスクーラ20に再吐出する冷媒再吐出管7が取付けられている。
ガスクーラ20は、水配管70と、圧縮冷媒を流通させ、この水配管70の水とそれぞれ熱交換を行う後述する高温側冷媒配管80及び同じく後述する低温側冷媒配管90とから構成する。
Embodiment 1 FIG.
1 is a cross-sectional view of a high-pressure shell type hot water supply compressor according to Embodiment 1 of the present invention, and FIG. 2 is a configuration diagram of a hot water supply cycle apparatus using the hot water supply compressor of FIG.
In the figure, reference numeral 10 denotes a hot water supply compressor using a supercritical refrigerant such as carbon dioxide. The compressor for hot water supply accommodates in a hermetic container 1 a compression element 2 for compressing refrigerant at the lower part, an electric element 3 composed of a rotor 3a and a stator 3b at the upper part, and an oil sump 8 for storing refrigerator oil at the bottom part. To do. The compression element 2 compresses the refrigerant by the rotation of the rotating shaft by the electric element 3.
Further, the sealed container 1 includes a suction pipe 2 that takes in the refrigerant on the low-pressure side of the refrigeration cycle into the compression element 2, a discharge pipe 5 that discharges the refrigerant compressed by the compression element 2 to a gas cooler 20 described later outside the hot water compressor, and a gas cooler. A refrigerant reintroduction pipe 6 that reintroduces the refrigerant from 20 and a refrigerant redischarge pipe 7 that redischarges the refrigerant to the gas cooler 20 are attached.
The gas cooler 20 is composed of a water pipe 70, a high-temperature side refrigerant pipe 80 (to be described later) and a low-temperature side refrigerant pipe 90 (to be described later) for exchanging heat with the water in the water pipe 70.

高温側冷媒配管80は、吐出管5と冷媒再導入管6に接続する配管で、ガスクーラ20内で配管内の冷媒がガスクーラ20の水配管70の高温側の水と熱交換を行い、また、低温側冷媒配管90は、冷媒再吐出管7と膨張弁30に接続する配管で、同じくガスクーラ20内で配管内の冷媒がガスクーラ20の水配管70の低温側の水と熱交換を行う。
そして、給湯用圧縮機10、ガスクーラ20、膨張弁30及び蒸発器40を配管で接続して給湯サイクル装置を構成する。
The high temperature side refrigerant pipe 80 is a pipe connected to the discharge pipe 5 and the refrigerant reintroduction pipe 6, and the refrigerant in the pipe exchanges heat with water on the high temperature side of the water pipe 70 of the gas cooler 20, The low temperature side refrigerant pipe 90 is a pipe connected to the refrigerant redischarge pipe 7 and the expansion valve 30. Similarly, the refrigerant in the pipe exchanges heat with the low temperature side water of the water pipe 70 of the gas cooler 20 in the gas cooler 20.
And the hot water supply compressor 10, the gas cooler 20, the expansion valve 30, and the evaporator 40 are connected with piping, and the hot water supply cycle apparatus is comprised.

次に、動作について説明する。
上記のように構成された給湯サイクル装置において、まず、圧縮機10の吸入管4より圧縮要素2内に低圧の冷媒ガスが導入され、圧縮要素2は電動要素3により発生した駆動力により圧縮動作を行う。その際、油溜まり8より冷凍機油を吸い上げて圧縮要素2内に供給することにより、圧縮要素2内のシール性を保ち所定の圧縮機性能を得る。その結果得られた高圧の冷媒ガスと冷凍機油の混合体は、吐出管5より密閉容器1外に吐出される。
Next, the operation will be described.
In the hot water supply cycle apparatus configured as described above, first, a low-pressure refrigerant gas is introduced into the compression element 2 from the suction pipe 4 of the compressor 10, and the compression element 2 is compressed by the driving force generated by the electric element 3. I do. At that time, the refrigerating machine oil is sucked up from the oil reservoir 8 and supplied into the compression element 2 to maintain the sealing performance in the compression element 2 and to obtain a predetermined compressor performance. The resulting mixture of high-pressure refrigerant gas and refrigerating machine oil is discharged out of the sealed container 1 through the discharge pipe 5.

吐出管5より吐出された高圧の冷媒ガスと冷凍機油の混合体は、高温側冷媒配管80によりガスクーラ20に入る。ガスクーラ20内では、高温側冷媒配管80内の高圧の冷媒ガス及び冷凍機油の混合体と高温側の水配管20内の水との間で熱交換が行われ、水配管20内の水温は上昇し、高温側冷媒配管80内の高圧の冷媒ガス及び冷凍機油の混合体は冷却される。熱交換後の冷却された高圧の冷媒ガス及び冷凍機油の混合体は冷媒再導入管6より給湯用圧縮機10の密閉容器1内の圧縮要素2と電動要素3の間に再導入される。   The mixture of the high-pressure refrigerant gas and the refrigerating machine oil discharged from the discharge pipe 5 enters the gas cooler 20 through the high temperature side refrigerant pipe 80. In the gas cooler 20, heat exchange is performed between the mixture of high-pressure refrigerant gas and refrigerating machine oil in the high-temperature side refrigerant pipe 80 and the water in the high-temperature side water pipe 20, and the water temperature in the water pipe 20 increases. Then, the mixture of the high-pressure refrigerant gas and the refrigerating machine oil in the high temperature side refrigerant pipe 80 is cooled. The cooled mixture of high-pressure refrigerant gas and refrigerating machine oil after the heat exchange is reintroduced between the compression element 2 and the electric element 3 in the hermetic container 1 of the hot water supply compressor 10 through the refrigerant reintroduction pipe 6.

密閉容器1内に再導入された高圧の冷媒ガス及び冷凍機油の混合体は、密閉容器1内にて電動要素3を通過して密閉容器1の上部に配置された冷媒再吐出管7に達する。この際、電動要素3を通過して冷媒再吐出管7に達するまでの間に主に電動要素3を中心として構成される後述の油分離機構により高圧の冷媒ガス及び凍機油の混合体に含まれる冷凍機油が分離され、冷媒再吐出管7には冷凍機油をほとんど含まない高圧の冷媒ガスが到達する。また、電動要素3を通過する際に電動要素3にて発生した熱は冷媒ガスに移動し、冷媒ガスは温度上昇し、電動要素3に対しては冷却効果を奏し電動要素3の大幅な温度上昇を防止する。冷媒再吐出管7に到達した冷凍機油をほとんど含まない高圧の冷媒ガスは、冷媒再吐出管7より密閉容器1外に吐出される。   The mixture of the high-pressure refrigerant gas and the refrigerating machine oil reintroduced in the sealed container 1 passes through the electric element 3 in the sealed container 1 and reaches the refrigerant re-discharge pipe 7 disposed on the upper part of the sealed container 1. . At this time, it is included in the mixture of the high-pressure refrigerant gas and the chiller oil by an oil separation mechanism, which will be described later, mainly composed of the electric element 3 until it passes through the electric element 3 and reaches the refrigerant re-discharge pipe 7. The refrigerating machine oil thus separated is separated, and the refrigerant re-discharge pipe 7 reaches the high-pressure refrigerant gas that hardly contains the refrigerating machine oil. Further, the heat generated in the electric element 3 when passing through the electric element 3 moves to the refrigerant gas, the temperature of the refrigerant gas rises, and the electric element 3 has a cooling effect and has a large temperature. Prevent the rise. The high-pressure refrigerant gas that contains almost no refrigeration oil reaching the refrigerant re-discharge pipe 7 is discharged from the refrigerant re-discharge pipe 7 to the outside of the sealed container 1.

冷媒再吐出管7より密閉容器1外に吐出された高圧の冷媒ガスは、低温側冷媒配管90によりガスクーラ20の低温側に入り、低温側冷媒配管90内の高圧の冷媒ガスと低温側の水配管70の水との間で熱交換が行われ、低温側の水配管70内の水温は上昇し高温側の水配管70に流れ、低温側冷媒配管90内の高圧の冷媒ガスは冷却される。低温側冷媒配管90にて十分に冷却された高圧の冷媒ガスは、膨張弁30、蒸発器40を通り低圧の冷媒ガスとして給湯用圧縮機10の吸入管4より給湯用圧縮要素10に吸入される。   The high-pressure refrigerant gas discharged from the refrigerant re-discharge pipe 7 to the outside of the sealed container 1 enters the low-temperature side of the gas cooler 20 through the low-temperature side refrigerant pipe 90, and the high-pressure refrigerant gas and the low-temperature side water in the low-temperature side refrigerant pipe 90. Heat is exchanged with the water in the pipe 70, the water temperature in the low temperature side water pipe 70 rises and flows into the high temperature side water pipe 70, and the high pressure refrigerant gas in the low temperature side refrigerant pipe 90 is cooled. . The high-pressure refrigerant gas sufficiently cooled in the low-temperature side refrigerant pipe 90 passes through the expansion valve 30 and the evaporator 40 and is sucked into the hot water supply compression element 10 from the suction pipe 4 of the hot water supply compressor 10 as a low pressure refrigerant gas. The

上記動作中での油分離について記載する。
一般に電動要素3の下側においては、冷凍機油を多量に含んだ冷媒ガスがあり、それが電動要素3を構成する回転子3aと固定子3bの間の隙間や回転子3aに構成された上下方向に連通する穴(図示せず)を通って電動要素3の下側の冷媒ガスが電動要素3の上側に上昇し、回転子3aの回転に伴う遠心力によって冷凍機油は外側に位置する固定子3bの方向に飛ばされることで分離され、回転子3aの回転中心付近に開口している冷媒再吐出管7には、冷凍機油をほとんど含まない冷媒ガスが到達することになる。また、電動要素3の上方で分離された冷凍機油は、固定子3bの外周と密閉容器1の隙間より電動要素3の下方に戻る。従って、図1のように冷媒再導入管6の密閉容器1内での開口部を、圧縮要素2と電動要素3の間で、回転子3aの外径よりも内側とすることにより、固定子3bの外周を通過して電動要素3の下側から上側に達する冷媒の流れが減少し、分離された冷凍機油が固定子3bの外周より電動要素3の下方に戻る機能を高めることで上記の油分離動作を確実に行うことができる。
The oil separation during the above operation will be described.
Generally, on the lower side of the electric element 3, there is a refrigerant gas containing a large amount of refrigerating machine oil, which is a gap between the rotor 3a and the stator 3b constituting the electric element 3 and the upper and lower parts formed in the rotor 3a. The refrigerant gas on the lower side of the electric element 3 rises to the upper side of the electric element 3 through a hole (not shown) communicating in the direction, and the refrigerating machine oil is fixed on the outside by the centrifugal force accompanying the rotation of the rotor 3a. Refrigerant gas containing almost no refrigerating machine oil reaches the refrigerant re-discharge pipe 7 separated by being blown in the direction of the child 3b and opened near the rotation center of the rotor 3a. Further, the refrigerating machine oil separated above the electric element 3 returns to the lower side of the electric element 3 through the gap between the outer periphery of the stator 3 b and the sealed container 1. Therefore, as shown in FIG. 1, the opening of the refrigerant re-introducing pipe 6 in the sealed container 1 is set inside the outer diameter of the rotor 3 a between the compression element 2 and the electric element 3. The refrigerant flow passing from the lower side to the upper side of the electric element 3 through the outer periphery of the electric element 3b decreases, and the function of the separated refrigeration oil returning from the outer periphery of the stator 3b to the lower part of the electric element 3 is enhanced. Oil separation operation can be performed reliably.

上記の油分離の能力には、冷凍機油と冷媒の密度差が関係する。冷凍機油の密度は一般に800〜1000kg/m3程度であり、高圧側の冷媒の密度は、温度によって大幅に異なり、概ね100〜1000kg/m3程度となる。冷媒ガスが高温の時は密度が小さく、低温になると密度が大きく液体に近い状態となる。従来の給湯用圧縮機において、油分離を行う高圧側の冷媒ガスは、圧縮要素2から吐出された直後であるため十分に高温であり、冷媒の密度は小さく冷媒と冷凍機油との分離には有利であるが、本発明の構成においては、圧縮要素2から吐出された高圧の冷媒ガスは、ガスクーラ20の高温側冷媒配管80にて冷却されるため、油分離能力を確保するためには、ガスクーラ20の高温側冷媒配管80を経て冷媒再導入管6に戻る高圧側の冷媒ガスの温度に制限が必要となる。 The oil separation capability is related to the density difference between the refrigeration oil and the refrigerant. The density of the refrigerating machine oil is generally about 800 to 1000 kg / m 3 , and the density of the refrigerant on the high pressure side varies greatly depending on the temperature, and is about 100 to 1000 kg / m 3 . When the refrigerant gas is high temperature, the density is small, and when the refrigerant gas is low temperature, the density is large and close to a liquid. In a conventional hot water supply compressor, the refrigerant gas on the high-pressure side that performs oil separation is sufficiently high because it is immediately after being discharged from the compression element 2, and the density of the refrigerant is small, so that the refrigerant and the refrigerating machine oil are separated. Although advantageous, in the configuration of the present invention, the high-pressure refrigerant gas discharged from the compression element 2 is cooled in the high-temperature side refrigerant pipe 80 of the gas cooler 20, so that in order to ensure oil separation capability, It is necessary to limit the temperature of the refrigerant gas on the high pressure side that returns to the refrigerant reintroduction pipe 6 through the high temperature side refrigerant pipe 80 of the gas cooler 20.

図3は、冷媒ガスと冷凍機油の密度比(冷媒密度/油密度)と油循環量の関係の実験値である。図3より冷媒ガスと冷凍機油の密度比が概ね0.5以上になると、油循環量が大幅に増加する傾向があることがわかる。従って、ガスクーラ20の高温側冷媒配管80を経て冷媒再導入管6に戻る高圧の冷媒ガスの温度は、密度比が0.5以下となるように制限する必要がある。   FIG. 3 shows experimental values of the relationship between the density ratio (refrigerant density / oil density) between refrigerant gas and refrigerating machine oil, and the amount of oil circulation. FIG. 3 shows that when the density ratio between the refrigerant gas and the refrigerating machine oil is approximately 0.5 or more, the amount of oil circulation tends to increase significantly. Therefore, the temperature of the high-pressure refrigerant gas that returns to the refrigerant reintroduction pipe 6 through the high temperature side refrigerant pipe 80 of the gas cooler 20 needs to be limited so that the density ratio is 0.5 or less.

前述のように、ガスクーラ20内の高温側冷媒配管80においては、冷媒ガス中に多量の冷凍機油を含む。ガスクーラ20内においては、高温の冷凍機油も水との熱交換を行なうが、冷凍機油の比熱が冷媒ガスの比熱に比べて小さ目となると、加熱能力低下やそれに伴う給湯効率の低下が懸念される。
図4は、冷媒ガスと冷凍機油の温度と比熱の関係を示す。図4に示すように、温度が20℃〜60℃の間で冷媒ガスの比熱が大幅に上昇することがわかる。冷媒ガス中に多量の冷凍機油を含むことによる加熱能力の低下を防止するためには、冷媒ガスの比熱が大幅に上昇する温度帯では冷媒ガス中に冷凍機油をほとんど含まない状態とする必要がある。
図5は、冷媒ガスと水の熱交換をTH線図上に表したものである。図5より冷媒ガスの比熱が急激に上昇する範囲の上限温度は、冷媒ガスと水の温度が再接近するピンチポイント温度に10℃を加えた程度の温度となる。つまり、ガスクーラ20の高温側冷媒配管80の出口温度(≒冷媒再導入管温度)はピンチポイント温度よりも10℃以上高温側であれば、加熱能力の低下を防止することができる。少なくともピンチポイント温度よりも高温であれば、加熱能力の大幅な低下を防止することができる。
As described above, the high temperature side refrigerant pipe 80 in the gas cooler 20 contains a large amount of refrigerating machine oil in the refrigerant gas. In the gas cooler 20, high-temperature refrigeration oil also exchanges heat with water. However, if the specific heat of the refrigeration oil becomes smaller than the specific heat of the refrigerant gas, there is a concern about a decrease in heating capacity and a resulting decrease in hot water supply efficiency. .
FIG. 4 shows the relationship between the temperature and specific heat of refrigerant gas and refrigeration oil. As shown in FIG. 4, it can be seen that the specific heat of the refrigerant gas significantly increases when the temperature is between 20 ° C. and 60 ° C. In order to prevent a decrease in heating capacity due to a large amount of refrigeration oil contained in the refrigerant gas, it is necessary to make the refrigerant gas contain almost no refrigeration oil in a temperature range where the specific heat of the refrigerant gas greatly increases. is there.
FIG. 5 shows the heat exchange of refrigerant gas and water on the TH diagram. As shown in FIG. 5, the upper limit temperature in the range in which the specific heat of the refrigerant gas suddenly rises is a temperature obtained by adding 10 ° C. to the pinch point temperature at which the refrigerant gas and water temperatures reapproach. That is, if the outlet temperature of the high temperature side refrigerant pipe 80 of the gas cooler 20 (≈refrigerant reintroduction pipe temperature) is 10 ° C. or more higher than the pinch point temperature, it is possible to prevent a reduction in heating capacity. If the temperature is at least higher than the pinch point temperature, it is possible to prevent a significant decrease in heating capacity.

本実施の形態の給湯用圧縮機は、圧縮要素2より吐出された高温の冷媒ガスは、吐出管5より密閉容器1外に吐出され、ガスクーラ20内で高温側冷媒配管80にて水配管70の水との熱交換により冷却された後、冷媒再導入管6にて密閉容器1内に入るため、給湯用圧縮機10の電動要素3を通過する冷媒ガスは、圧縮要素2より吐出された温度よりも低くなるため、低外気温の運転で圧縮要素2からの吐出ガス温度が高い状態であっても、電動要素3における冷媒ガス温度は低く、電動要素3に熱的な損傷を与えることがないため、低外気温においても給湯用圧縮機10の吐出温度の高い運転が実現できるという効果がある。   In the hot water supply compressor of the present embodiment, the high-temperature refrigerant gas discharged from the compression element 2 is discharged from the discharge pipe 5 to the outside of the sealed container 1, and the water pipe 70 is connected to the high-temperature side refrigerant pipe 80 in the gas cooler 20. The refrigerant gas passing through the electric element 3 of the hot water supply compressor 10 was discharged from the compression element 2 because the refrigerant re-introduced pipe 6 enters the sealed container 1 after being cooled by heat exchange with water. Since the temperature is lower than the temperature, the refrigerant gas temperature in the electric element 3 is low even when the discharge gas temperature from the compression element 2 is high in the operation of the low outside air temperature, and the electric element 3 is thermally damaged. Therefore, there is an effect that an operation with a high discharge temperature of the hot water supply compressor 10 can be realized even at a low outside air temperature.

また、本実施の形態の給湯用圧縮機は、冷媒再導入管6を圧縮要素2と電動要素3の間に配置したことで、電動要素3まわりにおける一般的な油分離手法により油分離することができるという効果がある。   In the hot water supply compressor according to the present embodiment, the refrigerant reintroducing pipe 6 is disposed between the compression element 2 and the electric element 3 so that the oil is separated by a general oil separation method around the electric element 3. There is an effect that can be.

また、本実施の形態の給湯用圧縮機は、冷媒再導入管6を回転子3aの外径よりも内側に開口させたので、油分離動作を確実に行なうことができるという効果がある。   In addition, the hot water supply compressor of the present embodiment has an effect that the oil separation operation can be reliably performed because the refrigerant reintroduction pipe 6 is opened inside the outer diameter of the rotor 3a.

また、本実施の形態の給湯サイクル装置は、冷媒再導入管6(冷媒再導入管6に向かうガスクーラ20出口)における冷媒ガス密度を油密度の50%以下とすることにより、給湯用圧縮機10において油分離能力を確保することができる。   Further, the hot water supply cycle apparatus of the present embodiment is configured so that the refrigerant gas density in the refrigerant reintroduction pipe 6 (the outlet of the gas cooler 20 toward the refrigerant reintroduction pipe 6) is 50% or less of the oil density, whereby the hot water supply compressor 10 is used. In this case, the oil separation ability can be secured.

また、本実施の形態の給湯サイクル装置は、冷媒再導入管6における冷媒ガス温度をピンチポイント温度以上とすることで、多量の冷凍機油を含んだ冷媒ガスをガスクーラ20の高温側冷媒配管80に流しても、水配管70の水を加熱する加熱能力の低下がほとんどなく、良好な性能を維持できるという効果がある。   In the hot water supply cycle apparatus of the present embodiment, the refrigerant gas temperature in the refrigerant reintroduction pipe 6 is set to the pinch point temperature or more, whereby the refrigerant gas containing a large amount of refrigeration oil is supplied to the high temperature side refrigerant pipe 80 of the gas cooler 20. Even if it flows, there is almost no decrease in the heating capacity for heating the water in the water pipe 70, and there is an effect that good performance can be maintained.

また、本実施の形態の給湯サイクル装置は、冷媒再導入管6を圧縮要素2と電動要素3の間に配置したことで、密閉容器1内に再導入された冷媒ガスは、電動要素3を通過して冷媒再吐出管7に達するため、電動要素3にて発生した熱は冷媒ガスに移動し、電動要素3を冷却する効果がある。   In the hot water supply cycle apparatus of the present embodiment, the refrigerant reintroduction pipe 6 is disposed between the compression element 2 and the electric element 3, so that the refrigerant gas reintroduced into the sealed container 1 Since it passes through and reaches the refrigerant re-discharge pipe 7, the heat generated in the electric element 3 moves to the refrigerant gas and has an effect of cooling the electric element 3.

実施の形態2.
図6は、本発明の実施の形態2を示す冷媒回路の構成を示す。実施の形態1においては、ガスクーラ20内において、低温側冷媒配管90と高温側冷媒配管80は互いにラップすることなくそれぞれ低温側の水配管70と高温側の水配管70と熱交換するように構成されていたが、本実施の形態においては低温側冷媒配管90と高温側冷媒配管80の一部をラップさせた例を示す。本実施の形態では、低温側冷媒配管90は高温側冷媒配管80の一部とラップする形となっているが、高温側冷媒配管80の全域とラップする形であってもよい。また、吐出管5と冷媒再導入管6の近傍には両者の冷媒を熱交換する冷媒−冷媒熱交換機50を配置し、吐出管5の冷媒吐出温度と冷媒再吐出管7の冷媒吐出温度の差を小さくしている。尚、冷媒―冷媒熱交換機50はなくても本構成は成立する。また、冷媒―冷媒熱交換機50は吐出管5と冷媒再吐出管7との間で熱交換してもよい。その他の構成は、実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 6 shows the configuration of the refrigerant circuit showing the second embodiment of the present invention. In the first embodiment, in the gas cooler 20, the low temperature side refrigerant pipe 90 and the high temperature side refrigerant pipe 80 are configured to exchange heat with the low temperature side water pipe 70 and the high temperature side water pipe 70 without wrapping each other. However, in the present embodiment, an example in which a part of the low temperature side refrigerant pipe 90 and the high temperature side refrigerant pipe 80 are wrapped is shown. In the present embodiment, the low temperature side refrigerant pipe 90 is wrapped with a part of the high temperature side refrigerant pipe 80, but may be wrapped with the entire area of the high temperature side refrigerant pipe 80. Further, a refrigerant-refrigerant heat exchanger 50 for exchanging heat between the two refrigerants is arranged in the vicinity of the discharge pipe 5 and the refrigerant reintroduction pipe 6, and the refrigerant discharge temperature of the discharge pipe 5 and the refrigerant discharge temperature of the refrigerant redischarge pipe 7 are set. The difference is reduced. Note that this configuration is established even without the refrigerant-refrigerant heat exchanger 50. Further, the refrigerant-refrigerant heat exchanger 50 may exchange heat between the discharge pipe 5 and the refrigerant re-discharge pipe 7. Other configurations are the same as those in the first embodiment.

図7は、ガスクーラ20内で、高温側冷媒配管80と低温側冷媒配管90とがラップしてそれぞれの冷媒が水配管70の水と熱交換することを説明するためのTH線図である。図7(a)は高温側冷媒配管80と低温側冷媒配管90がラップしない場合を示し、図7(b)は高温側冷媒配管80と低温側冷媒配管90がラップする場合を示す。尚、説明を簡単にするために、本実施の形態では冷媒―冷媒熱交換機50の効果により、ガスクーラ20の高温側冷媒配管80入口と低温側冷媒配管90入口の温度が同等となったとものとして説明する。
一般に、冷媒ガスと水の熱交換の効率は、両者の温度差が少ない方が熱交換効率はよくなるが、冷媒ガスと水の温度による比熱の変化が異なるため、たとえ電熱性能に優れたガスクーラであっても図7(a)のA、Bに示す部分では冷媒ガス温度と水温の差が生じ熱交換効率は悪化する傾向となる。図7(b)においては、冷媒ガス温度と水温の差が大きいA部において高温側冷媒配管80と低温側冷媒配管90がラップしている構成となるため、この部分では実質の冷媒流量が2倍となっており、TH線図上での水の傾きは2倍となる。これにより、冷媒ガスと水の温度差が小さくなり、A部の面積は減少し熱交換効率を高めることができる。これにより、ガスクーラ20の熱交換効率が改善され、給湯サイクルの効率を改善する効果がある。
FIG. 7 is a TH diagram for explaining that the high-temperature side refrigerant pipe 80 and the low-temperature side refrigerant pipe 90 wrap in the gas cooler 20 and each refrigerant exchanges heat with the water in the water pipe 70. FIG. 7A shows a case where the high temperature side refrigerant pipe 80 and the low temperature side refrigerant pipe 90 do not wrap, and FIG. 7B shows a case where the high temperature side refrigerant pipe 80 and the low temperature side refrigerant pipe 90 wrap. For the sake of simplicity, it is assumed in this embodiment that the temperature of the high temperature side refrigerant pipe 80 and the low temperature side refrigerant pipe 90 of the gas cooler 20 are equal due to the effect of the refrigerant-refrigerant heat exchanger 50. explain.
In general, the heat exchange efficiency of refrigerant gas and water is better when the temperature difference between the two is small, but the specific heat changes depending on the temperature of the refrigerant gas and water. Even if it exists, in the part shown to A and B of Fig.7 (a), the difference of refrigerant gas temperature and water temperature will arise, and it will become the tendency for heat exchange efficiency to deteriorate. In FIG. 7 (b), since the high temperature side refrigerant pipe 80 and the low temperature side refrigerant pipe 90 are wrapped in the portion A where the difference between the refrigerant gas temperature and the water temperature is large, the substantial refrigerant flow rate is 2 in this part. The slope of water on the TH diagram is doubled. Thereby, the temperature difference of refrigerant gas and water becomes small, the area of A part decreases, and heat exchange efficiency can be improved. Thereby, the heat exchange efficiency of the gas cooler 20 is improved, and the efficiency of the hot water supply cycle is improved.

しかし、上記の構成を実施するためには温度的な制約があり、低温側冷媒配管90の入口の冷媒温度は同部分の水の温度より所定温度以上高い必要がある。冷媒温度の方が低いと、熱は水から冷媒ガスに移動する形となり、ロスを生じてしまう。実際に高温側冷媒配管80と低温側冷媒配管90がラップする効果を得るためには、低温側冷媒配管90入口の冷媒ガス温度は同部分の水の温度より高い温度、例えば、水の沸き上げ温度以上または水の温度より5℃以上高い温度とする。   However, in order to implement the above configuration, there is a temperature limitation, and the refrigerant temperature at the inlet of the low temperature side refrigerant pipe 90 needs to be higher than the temperature of the water in the same portion by a predetermined temperature or more. If the refrigerant temperature is lower, heat is transferred from the water to the refrigerant gas, resulting in a loss. In order to actually obtain the effect of wrapping the high temperature side refrigerant pipe 80 and the low temperature side refrigerant pipe 90, the refrigerant gas temperature at the inlet of the low temperature side refrigerant pipe 90 is higher than the temperature of the water in the same portion, for example, boiling water The temperature is higher than the temperature or 5 ° C higher than the temperature of water.

上記制約のある中で低温側冷媒配管90と高温側冷媒配管80のラップ量を大きめにするためには低温側冷媒配管90の入口温度を高める必要がある。冷媒―冷媒熱交換機50により吐出管5と冷媒再導入管6の間で熱交換するため、低温側冷媒配管90の入口温度を高めることができ、高温側冷媒配管80と低温側冷媒配管90のラップ量を大きくすることができ性能改善効果を高めることができる。   In order to increase the amount of lap between the low temperature side refrigerant pipe 90 and the high temperature side refrigerant pipe 80, the inlet temperature of the low temperature side refrigerant pipe 90 needs to be increased. Since heat is exchanged between the discharge pipe 5 and the refrigerant reintroduction pipe 6 by the refrigerant-refrigerant heat exchanger 50, the inlet temperature of the low temperature side refrigerant pipe 90 can be increased, and the high temperature side refrigerant pipe 80 and the low temperature side refrigerant pipe 90 can be The wrap amount can be increased and the performance improvement effect can be enhanced.

本実施の形態の給湯サイクル装置においては、ガスクーラ20内の低温側冷媒配管90は高温側冷媒配管80の一部または全部とラップする配置とするので、水配管70との熱交換効率を高めることができる。   In the hot water supply cycle apparatus of the present embodiment, the low temperature side refrigerant pipe 90 in the gas cooler 20 is arranged so as to wrap with part or all of the high temperature side refrigerant pipe 80, so that the heat exchange efficiency with the water pipe 70 is increased. Can do.

また、本実施の形態の給湯サイクル装置においては、低温側冷媒配管90のガスクーラ20入口における冷媒温度は、低温側冷媒配管の入口側と熱交換する水配管70の水温度より所定の温度以上高いようにしたので、水配管70の水から冷媒ガスへと熱が移動することがなく、熱ロスを防止できる。   In the hot water supply cycle apparatus of the present embodiment, the refrigerant temperature at the gas cooler 20 inlet of the low temperature side refrigerant pipe 90 is higher than the water temperature of the water pipe 70 for heat exchange with the inlet side of the low temperature side refrigerant pipe by a predetermined temperature or more. Since it did in this way, heat does not move from the water of the water piping 70 to refrigerant gas, and heat loss can be prevented.

また、本実施の形態の給湯サイクル装置においては、吐出管5近傍の出側の高温側冷媒配管80と冷媒再導入管6近傍の入り側の高温側冷媒配管80との冷媒同士が熱交換する熱交換装置50を有するので、入り側の高温側冷媒配管8の冷媒の温度を上げることができ、ガスクーラ20において熱ロスが生じるのを防止できる。   Further, in the hot water supply cycle apparatus of the present embodiment, the refrigerant in the outlet high temperature side refrigerant pipe 80 near the discharge pipe 5 and the inlet side high temperature side refrigerant pipe 80 near the refrigerant reintroduction pipe 6 exchange heat. Since the heat exchange device 50 is provided, the temperature of the refrigerant in the high temperature side refrigerant pipe 8 on the entry side can be increased, and heat loss in the gas cooler 20 can be prevented.

また、本実施の形態の給湯サイクル装置においては、吐出管5近傍の出側の高温側冷媒配管80と冷媒再吐出管7近傍の出側の低温側冷媒配管90との冷媒同士が熱交換する熱交換装置50を有するので、出側の低温側冷媒配管90の冷媒の温度を上げることができ、ガスクーラ20において熱ロスが生じるのを防止できる。   In the hot water supply cycle apparatus of the present embodiment, the refrigerant in the outlet high temperature side refrigerant pipe 80 near the discharge pipe 5 and the outlet side low temperature refrigerant pipe 90 in the vicinity of the refrigerant redischarge pipe 7 exchange heat. Since the heat exchange device 50 is provided, the temperature of the refrigerant in the outlet-side low-temperature side refrigerant pipe 90 can be increased, and heat loss can be prevented from occurring in the gas cooler 20.

発明の実施の形態3.
本発明の実施の形態2に示した、ガスクーラ20内での低温側冷媒配管90と高温側冷媒配管80とのラップする構成は、外気温が低いほど効率改善効果が大きくなるが、高外気温においては吐出管5の温度が水の沸き上げ温度に近くなり、ラップ部を設けることによりロスになるケースがある。
図8は、本実施の形態3の冷媒回路の構成を示す。図において、ガスクーラ20内で、高圧側冷媒配管80の途中から分岐し、ガスクーラ20外の冷媒再導入管6に向かう高圧側冷媒配管80に接続するバイパス配管80aを設ける。また、この接続部にバルブである切替弁80bを配置し、バイパス配管80aをバルブ操作により選択的に冷媒再導入管6と接続できるようにする。その他の構成は、実施の形態2と同様である。
Embodiment 3 of the Invention
In the configuration where the low temperature side refrigerant pipe 90 and the high temperature side refrigerant pipe 80 wrap in the gas cooler 20 shown in the second embodiment of the present invention, the efficiency improvement effect increases as the outside air temperature decreases. There are cases where the temperature of the discharge pipe 5 is close to the boiling temperature of water and a loss is caused by providing a wrap portion.
FIG. 8 shows the configuration of the refrigerant circuit of the third embodiment. In the figure, a bypass pipe 80 a that branches from the middle of the high-pressure side refrigerant pipe 80 in the gas cooler 20 and is connected to the high-pressure side refrigerant pipe 80 toward the refrigerant reintroduction pipe 6 outside the gas cooler 20 is provided. In addition, a switching valve 80b, which is a valve, is arranged at this connection portion so that the bypass pipe 80a can be selectively connected to the refrigerant reintroduction pipe 6 by valve operation. Other configurations are the same as those of the second embodiment.

次に、動作について説明する。外気温が高いときは、吐出温度がそれほど上昇せず、吐出管5の冷媒の温度と水の沸き上げ温度の差が小さくなるため、高温側冷媒配管80の出口はバイパス配管80bを選択し、高圧側配管80と低圧側配管90をラップさせることによるロスを防止する。
一方、外気温が低いときは、吐出圧力は上がらないが吐出温度は大幅に上昇する傾向があるため、高温側冷媒配管80の区間を長めに取っても高温側冷媒配管80出口部の温度は沸き上げ温度以上である。従って、高圧側配管80の長さを長くした方がよく、末端部80aまで冷媒を流した方が効率改善効果は大きく、また本発明の主目的である冷媒再導入管6の温度を低減する効果も大きくなる。
Next, the operation will be described. When the outside air temperature is high, the discharge temperature does not rise so much, and the difference between the refrigerant temperature in the discharge pipe 5 and the water boiling temperature becomes small, so the outlet of the high temperature side refrigerant pipe 80 selects the bypass pipe 80b, Loss caused by wrapping the high-pressure side pipe 80 and the low-pressure side pipe 90 is prevented.
On the other hand, when the outside air temperature is low, the discharge pressure does not increase, but the discharge temperature tends to increase significantly. Therefore, even if the section of the high temperature side refrigerant pipe 80 is taken longer, the temperature of the outlet side of the high temperature side refrigerant pipe 80 is Above boiling temperature. Therefore, it is better to lengthen the high-pressure side pipe 80, and the effect of improving the efficiency is greater when the refrigerant flows to the end 80a, and the temperature of the refrigerant reintroduction pipe 6 which is the main object of the present invention is reduced. The effect is also increased.

本実施の形態の給湯サイクル装置によれば、高温側冷媒配管80は、ガスクーラ20内において途中から分岐し、ガスクーラ20外の冷媒再導入管6に戻る高温側冷媒配管80に接続するバイパス配管80aを有し、バルブ操作によりガスクーラ20からの出口を切換えることにより、低温側冷媒配管90と高温側冷媒配管80とのラップ配置の有無を選択可能とするので、外気温の高低によりバルブ操作によりガスクーラ20からの出口を切換えラップあり、なしを選択でき、熱ロスを防止し、熱交換効率を改善できる。   According to the hot water supply cycle apparatus of the present embodiment, the high temperature side refrigerant pipe 80 branches from the middle in the gas cooler 20 and is connected to the high temperature side refrigerant pipe 80 that returns to the refrigerant reintroduction pipe 6 outside the gas cooler 20. By switching the outlet from the gas cooler 20 by operating the valve, it is possible to select whether or not the low-temperature side refrigerant pipe 90 and the high-temperature side refrigerant pipe 80 are wrapped. With or without switching wraps, the exit from 20 can be selected to prevent heat loss and improve heat exchange efficiency.

本発明の実施の形態1における給湯用圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the compressor for hot water supply in Embodiment 1 of this invention. 図1の給湯用圧縮機を使用した給湯サイクルの構成を示す図である。It is a figure which shows the structure of the hot water supply cycle which uses the compressor for hot water supply of FIG. 冷媒ガス密度/冷凍機油密度と油循環量との関係を示す図である。It is a figure which shows the relationship between refrigerant gas density / refrigerator oil density, and the amount of oil circulation. 温度と冷媒ガスの比熱及び冷凍機油の比熱とを示す図である。It is a figure which shows temperature, the specific heat of refrigerant gas, and the specific heat of refrigeration oil. 冷媒と水の熱交換を示すTH線図である。It is a TH diagram which shows heat exchange of a refrigerant | coolant and water. 本発明の実施の形態2における給湯サイクルの構成を示す図である。It is a figure which shows the structure of the hot water supply cycle in Embodiment 2 of this invention. 本発明の実施の形態2における冷媒と水の熱交換を示すTH線図である。It is a TH diagram which shows heat exchange of the refrigerant | coolant and water in Embodiment 2 of this invention. 本発明の実施の形態3における給湯サイクルの構成を示す図である。It is a figure which shows the structure of the hot water supply cycle in Embodiment 3 of this invention. 水温を5℃から90℃に沸き上げるのに必要な外気温度と吐出温度との関係を示す図である。It is a figure which shows the relationship between the external air temperature required in order to boil water temperature from 5 degreeC to 90 degreeC, and discharge temperature.

符号の説明Explanation of symbols

1 密閉容器、2 圧縮要素、3 電動要素、3a 回転子、4 吸入管、5 吐出管、6 冷媒再導入管、7 冷媒再吐出管、10 給湯用圧縮機、20 ガスクーラ、30 膨張弁、40 蒸発器、50 熱交換装置、70 水配管、80 高温側冷媒配管、80a バイパス配管、80b バルブ、90 低温側冷媒配管。
DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Compression element, 3 Electric element, 3a Rotor, 4 Intake pipe, 5 Discharge pipe, 6 Refrigerant reintroduction pipe, 7 Refrigerant redischarge pipe, 10 Hot water supply compressor, 20 Gas cooler, 30 Expansion valve, 40 Evaporator, 50 heat exchanger, 70 water piping, 80 high temperature side refrigerant piping, 80a bypass piping, 80b valve, 90 low temperature side refrigerant piping.

Claims (11)

密閉容器内に圧縮要素及び電動要素を有し、冷媒として超臨界冷媒を使用し、給湯用に用いる給湯用圧縮機において、
低圧側の冷媒を圧縮要素に直接導く吸入管と、前記圧縮要素で圧縮した高圧の冷媒を前記密閉容器内に放出することなく直接前記密閉容器外に吐出する吐出管と、前記吐出管より吐出され、熱交換後の冷媒を、前記密閉容器内に再度導く冷媒再導入管と、前記密閉容器内に再度導入し、前記電動要素を通過後の冷媒を前記密閉容器外に吐出する冷媒再吐出管とを備えたことを特徴とする給湯用圧縮機。
In a hot water compressor having a compression element and an electric element in a sealed container, using a supercritical refrigerant as a refrigerant, and used for hot water supply,
A suction pipe that directly guides the low-pressure side refrigerant to the compression element; a discharge pipe that discharges the high-pressure refrigerant compressed by the compression element directly to the outside of the sealed container without being discharged into the sealed container; and a discharge pipe that discharges from the discharge pipe And a refrigerant reintroduction pipe for reintroducing the heat-exchanged refrigerant into the sealed container and a refrigerant re-discharge for re-introducing the refrigerant into the sealed container and discharging the refrigerant after passing through the electric element to the outside of the sealed container. A hot water compressor comprising a pipe.
前記圧縮要素を前記電動要素の下側に配置し、前記冷媒再導入管を、高さ方向で、前記圧縮要素と前記電動要素との間になるように前記密閉容器に取付けたことを特徴とする請求項1に記載の給湯用圧縮機。   The compression element is disposed on the lower side of the electric element, and the refrigerant reintroduction pipe is attached to the sealed container so as to be between the compression element and the electric element in the height direction. The hot water supply compressor according to claim 1. 前記冷媒再導入管は、前記電動要素を構成する回転子の外径よりも内側に開口したことを特徴とする請求項2に記載の給湯用圧縮機。   The hot water supply compressor according to claim 2, wherein the refrigerant reintroduction pipe is opened to an inner side than an outer diameter of a rotor constituting the electric element. 前記請求項1〜請求項3のいずれかの請求項に記載の給湯用圧縮機、ガスクーラ、膨張弁、蒸発器等を備えた給湯サイクル装置であって、
前記ガスクーラは、内部において、給湯用の水が流通する水配管と、圧縮冷媒が流通する冷媒配管とが熱交換し、前記冷媒配管の冷媒により前記水配管の水の温度を上昇させるものであり、
前記冷媒配管のうち、前記吐出管に接続する高温側冷媒配管が前記ガスクーラの前記水配管の出口側と熱交換し、また、前記冷媒再吐出管に接続する低温側冷媒配管が前記ガスクーラの前記水配管の入口側と熱交換することを特徴とする給湯サイクル装置。
A hot water supply cycle apparatus comprising the hot water supply compressor according to any one of claims 1 to 3, a gas cooler, an expansion valve, an evaporator, and the like.
In the gas cooler, heat is exchanged between a water pipe through which hot water is circulated and a refrigerant pipe through which a compressed refrigerant circulates, and the temperature of the water pipe is increased by the refrigerant in the refrigerant pipe. ,
Among the refrigerant pipes, a high-temperature side refrigerant pipe connected to the discharge pipe exchanges heat with an outlet side of the water pipe of the gas cooler, and a low-temperature side refrigerant pipe connected to the refrigerant re-discharge pipe is the A hot water supply cycle device that exchanges heat with an inlet side of a water pipe.
前記高温側冷媒配管の前記ガスクーラ出口における冷媒密度は、冷媒と共に流通する冷凍機油の冷凍機油密度の50%以下であることを特徴とする請求項4に記載の給湯サイクル装置。   The hot water supply cycle apparatus according to claim 4, wherein a refrigerant density at the gas cooler outlet of the high-temperature side refrigerant pipe is 50% or less of a refrigerating machine oil density of the refrigerating machine oil circulating along with the refrigerant. 前記高温側冷媒配管の前記ガスクーラ出口における冷媒温度は、ピンチポイントの冷媒温度よりも高いことを特徴とする請求項4に記載の給湯サイクル装置。   The hot water supply cycle apparatus according to claim 4, wherein the refrigerant temperature at the gas cooler outlet of the high temperature side refrigerant pipe is higher than a refrigerant temperature at a pinch point. 前記ガスクーラの前記低温側冷媒配管は前記高温側冷媒配管の一部または全部とラップする配置とすることを特徴とする請求項4〜6のいずれかの請求項に記載の給湯サイクル装置。   The hot water supply cycle apparatus according to any one of claims 4 to 6, wherein the low temperature side refrigerant pipe of the gas cooler is arranged to wrap with a part or all of the high temperature side refrigerant pipe. 前記高温側冷媒配管は、前記ガスクーラ内において途中から分岐し、前記ガスクーラ外の前記冷媒再導入管に戻る前記高温側冷媒配管に接続するバイパス配管を有し、バルブ操作により前記ガスクーラからの出口を切換えることにより、前記低温側冷媒配管と前記高温側冷媒配管とのラップ配置の有無を選択可能とすることを特徴とする請求項7に記載の給湯サイクル装置。   The high temperature side refrigerant pipe has a bypass pipe that branches from the middle in the gas cooler and connects to the high temperature side refrigerant pipe that returns to the refrigerant reintroduction pipe outside the gas cooler, and an outlet from the gas cooler is operated by a valve operation. The hot water supply cycle apparatus according to claim 7, wherein it is possible to select the presence or absence of a lap arrangement between the low temperature side refrigerant pipe and the high temperature side refrigerant pipe by switching. 前記低温側冷媒配管の前記ガスクーラ入口における冷媒温度は、前記入口側の低温側冷媒配管と熱交換する水配管の水温度より所定の温度以上高いことを特徴とする請求項7または請求項8に記載の給湯サイクル装置。   The refrigerant temperature at the gas cooler inlet of the low-temperature side refrigerant pipe is higher than a water temperature of a water pipe for heat exchange with the low-temperature side refrigerant pipe at the inlet side by a predetermined temperature or more. The hot water cycle apparatus described. 前記吐出管近傍の出側の前記高温側冷媒配管と前記冷媒再導入管近傍の入り側の前記高温側冷媒配管との冷媒同士が熱交換する熱交換装置を有することを特徴とした請求項7〜請求項9のいずれかの請求項に記載の給湯サイクル装置。   8. The heat exchange device according to claim 7, wherein the refrigerant exchanges heat between the high temperature side refrigerant pipe near the discharge pipe and the high temperature side refrigerant pipe near the refrigerant reintroduction pipe. The hot water supply cycle apparatus according to any one of claims 9 to 9. 前記吐出管近傍の出側の前記高温側冷媒配管と前記冷媒再吐出管近傍の出側の低温側冷媒配管との冷媒同士が熱交換する熱交換装置を有することを特徴とした請求項7〜請求項9のいずれかの請求項に記載の給湯サイクル装置。
8. A heat exchanging device for exchanging heat between the refrigerant in the high-temperature side refrigerant pipe near the discharge pipe and the low-temperature side refrigerant pipe near the refrigerant re-discharge pipe. The hot water supply cycle apparatus according to claim 9.
JP2004321908A 2004-11-05 2004-11-05 Compressor and hot water supply cycle device Expired - Fee Related JP4434924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321908A JP4434924B2 (en) 2004-11-05 2004-11-05 Compressor and hot water supply cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321908A JP4434924B2 (en) 2004-11-05 2004-11-05 Compressor and hot water supply cycle device

Publications (3)

Publication Number Publication Date
JP2006132427A true JP2006132427A (en) 2006-05-25
JP2006132427A5 JP2006132427A5 (en) 2007-02-08
JP4434924B2 JP4434924B2 (en) 2010-03-17

Family

ID=36726202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321908A Expired - Fee Related JP4434924B2 (en) 2004-11-05 2004-11-05 Compressor and hot water supply cycle device

Country Status (1)

Country Link
JP (1) JP4434924B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016041A (en) * 2012-07-05 2014-01-30 Denso Corp Hot-water supply apparatus
WO2014083673A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
WO2014083674A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
WO2014199479A1 (en) 2013-06-13 2014-12-18 三菱電機株式会社 Heat pump device
WO2015136595A1 (en) * 2014-03-10 2015-09-17 三菱電機株式会社 Heat pump system
JP5892261B2 (en) * 2012-11-30 2016-03-23 三菱電機株式会社 Refrigeration cycle apparatus and heat pump water heater
WO2016147389A1 (en) * 2015-03-19 2016-09-22 三菱電機株式会社 Heat pump system
US9482446B2 (en) 2012-09-25 2016-11-01 Mitsubishi Electric Corporation Heat pump water heater
EP3071904A4 (en) * 2013-10-31 2017-07-19 Emerson Climate Technologies, Inc. Heat pump system
US10495360B2 (en) 2015-07-03 2019-12-03 Mitsubishi Electric Corporation Heat pump device
US10508842B2 (en) 2015-07-03 2019-12-17 Mitsubishi Electric Corporation Heat pump device with separately spaced components
CN111255694A (en) * 2018-11-30 2020-06-09 南昌海立电器有限公司 Rotary compressor
CN111256380A (en) * 2018-11-30 2020-06-09 南昌海立电器有限公司 Air conditioning system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016041A (en) * 2012-07-05 2014-01-30 Denso Corp Hot-water supply apparatus
US9482446B2 (en) 2012-09-25 2016-11-01 Mitsubishi Electric Corporation Heat pump water heater
WO2014083673A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
WO2014083674A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
WO2014083900A1 (en) 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
WO2014083901A1 (en) 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
JPWO2014083900A1 (en) * 2012-11-30 2017-01-05 三菱電機株式会社 Compressor, refrigeration cycle device and heat pump hot water supply device
JP5892261B2 (en) * 2012-11-30 2016-03-23 三菱電機株式会社 Refrigeration cycle apparatus and heat pump water heater
EP2927622A4 (en) * 2012-11-30 2016-08-24 Mitsubishi Electric Corp Compressor, refrigeration cycle device, and heat pump hot-water supply device
JPWO2014083901A1 (en) * 2012-11-30 2017-01-05 三菱電機株式会社 Refrigeration cycle apparatus and heat pump water heater
EP2930449A4 (en) * 2012-11-30 2016-09-28 Mitsubishi Electric Corp Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP6075451B2 (en) * 2013-06-13 2017-02-08 三菱電機株式会社 Heat pump equipment
WO2014199479A1 (en) 2013-06-13 2014-12-18 三菱電機株式会社 Heat pump device
US10156384B2 (en) 2013-10-31 2018-12-18 Emerson Climate Technologies, Inc. Heat pump system
EP3071904A4 (en) * 2013-10-31 2017-07-19 Emerson Climate Technologies, Inc. Heat pump system
WO2015136595A1 (en) * 2014-03-10 2015-09-17 三菱電機株式会社 Heat pump system
JPWO2015136595A1 (en) * 2014-03-10 2017-04-06 三菱電機株式会社 Heat pump equipment
EP3128256A4 (en) * 2014-03-10 2017-12-27 Mitsubishi Electric Corporation Heat pump system
EP3273178A4 (en) * 2015-03-19 2018-12-26 Mitsubishi Electric Corporation Heat pump system
CN107429948A (en) * 2015-03-19 2017-12-01 三菱电机株式会社 Heat pump
WO2016147389A1 (en) * 2015-03-19 2016-09-22 三菱電機株式会社 Heat pump system
JPWO2016147389A1 (en) * 2015-03-19 2017-09-21 三菱電機株式会社 Heat pump system
US10401038B2 (en) 2015-03-19 2019-09-03 Mitsubishi Electric Corporation Heat pump system
CN107429948B (en) * 2015-03-19 2019-12-13 三菱电机株式会社 heat pump system
US10495360B2 (en) 2015-07-03 2019-12-03 Mitsubishi Electric Corporation Heat pump device
US10508842B2 (en) 2015-07-03 2019-12-17 Mitsubishi Electric Corporation Heat pump device with separately spaced components
CN111255694A (en) * 2018-11-30 2020-06-09 南昌海立电器有限公司 Rotary compressor
CN111256380A (en) * 2018-11-30 2020-06-09 南昌海立电器有限公司 Air conditioning system

Also Published As

Publication number Publication date
JP4434924B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP4434924B2 (en) Compressor and hot water supply cycle device
US20060168996A1 (en) Refrigerating device, refrigerator, compressor, and gas-liguid separator
US20070271956A1 (en) System and method for reducing windage losses in compressor motors
CN104956089B (en) Turbine system
KR101995219B1 (en) Method for operating a chiller
JP7159432B2 (en) compressor
JP2004061061A (en) Freezing cycle device and its operation method
JP2009204235A (en) Heat pump type water heater
WO2014083674A1 (en) Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP2010107181A (en) Refrigeration system
JP2002372318A (en) Heat pump device
JP4381458B2 (en) Oil separator
WO2014083900A1 (en) Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP2009257705A (en) Refrigerating apparatus
JP4591402B2 (en) Refrigeration equipment
JP2011027358A (en) Heater
JP2007187358A (en) Refrigerating system and cold insulation device
JP6150906B2 (en) Refrigeration cycle equipment
JP6327544B2 (en) Waste heat heat pump system
JP2005127215A (en) Transition critical refrigerant cycle device
JP4715436B2 (en) Cooling system and vending machine using the same
JP5176874B2 (en) Refrigeration equipment
JP3631244B2 (en) Heat pump equipment
WO2022249566A1 (en) Multi-stage compression refrigeration device
JP2010091206A (en) Refrigerating device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4434924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees