JP2005127215A - Transition critical refrigerant cycle device - Google Patents

Transition critical refrigerant cycle device Download PDF

Info

Publication number
JP2005127215A
JP2005127215A JP2003363167A JP2003363167A JP2005127215A JP 2005127215 A JP2005127215 A JP 2005127215A JP 2003363167 A JP2003363167 A JP 2003363167A JP 2003363167 A JP2003363167 A JP 2003363167A JP 2005127215 A JP2005127215 A JP 2005127215A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
sealed container
cooling
refrigerant cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003363167A
Other languages
Japanese (ja)
Inventor
Eiju Fukuda
栄寿 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003363167A priority Critical patent/JP2005127215A/en
Publication of JP2005127215A publication Critical patent/JP2005127215A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transition critical refrigerant cycle device capable of being miniaturized at low cost by simplifying a structure without installing a conventional heat exchanger for intercooling and a circuit for intercooling for connecting the same. <P>SOLUTION: This transition critical refrigerant device is constructed by connecting a compressor 10, a gas cooler 154, a restriction means 156 and an evaporator 157 in turn, and a high pressure side thereof gets super critical pressure. The compressor 10 is provided with a plurality of steps of compression elements 32, 34. Delivered refrigerant of a lower step compression element 32 of those compression elements is delivered in a hermetic vessel 12. A cooling means 13 for radiating heat of the refrigerant is provided in the hermetic vessel 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、コンプレッサ、ガスクーラ、絞り手段および蒸発器を順次接続して構成され、高圧側が超臨界圧力となる冷媒サイクル装置に関するものである。   The present invention relates to a refrigerant cycle device that is configured by sequentially connecting a compressor, a gas cooler, a throttle means, and an evaporator, and that has a high pressure side at a supercritical pressure.

従来のこの種冷媒サイクル装置は、例えばロータリコンプレッサ、ガスクーラ、絞り手段(膨張弁など)および蒸発器などを順次環状に配管接続して冷媒サイクル(冷媒回路)が構成されている。そして、ロータリコンプレッサの回転圧縮要素の吸込みポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経てガスクーラに吐出される。このガスクーラにて冷媒ガスは放熱した後、絞り手段で絞られて蒸発器に供給される。そこで冷媒が蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮するものであった。ここで、近年では地球環境問題に対処するため、この種の冷媒サイクルにおいても、従来のフロンを用いずに自然冷媒である二酸化炭素(CO2 )を冷媒として用い、高圧側を超臨界圧力として運転する遷臨界冷媒サイクルを用いた装置が開発されてきている。 In this type of conventional refrigerant cycle apparatus, for example, a rotary compressor, a gas cooler, a throttle means (expansion valve, etc.), an evaporator, and the like are sequentially connected in an annular manner to form a refrigerant cycle (refrigerant circuit). Then, the refrigerant gas is drawn into the low pressure chamber side of the cylinder from the suction port of the rotary compression element of the rotary compressor, and is compressed by the operation of the roller and the vane to become high temperature and high pressure refrigerant gas. It is discharged to the gas cooler through the silencer chamber. The refrigerant gas radiates heat in the gas cooler, and is then squeezed by the squeezing means and supplied to the evaporator. Therefore, the refrigerant evaporates, and at that time, the cooling effect is exhibited by absorbing heat from the surroundings. Here, in recent years, in order to deal with global environmental problems, even in this type of refrigerant cycle, carbon dioxide (CO 2 ), which is a natural refrigerant, is used as a refrigerant without using conventional chlorofluorocarbon, and the high pressure side is used as a supercritical pressure. Devices using transcritical refrigerant cycles to operate have been developed.

このような遷臨界冷媒サイクル装置では、コンプレッサ内に液冷媒が戻って、液圧縮することを防ぐために、蒸発器の出口側とコンプレッサの吸込側との間の低圧側にレシーバタンクを配設し、このレシーバタンクに液冷媒を溜め、ガスのみをコンプレッサに吸い込ませる構成とされていた。そして、レシーバータンク内の液冷媒がコンプレッサに戻らないように絞り手段を調整していた(例えば、特許文献1参照)。
また、レシーバータンクを設けることなく、コンプレッサにおける液圧縮を解消した図5に示したような遷臨界冷媒サイクル装置が提案されている。
In such a transcritical refrigerant cycle device, a receiver tank is provided on the low pressure side between the outlet side of the evaporator and the suction side of the compressor in order to prevent the liquid refrigerant from returning into the compressor and liquid compression. The liquid refrigerant is stored in the receiver tank, and only the gas is sucked into the compressor. And the throttle means was adjusted so that the liquid refrigerant in a receiver tank may not return to a compressor (for example, refer to patent documents 1).
Further, a transcritical refrigerant cycle apparatus as shown in FIG. 5 in which liquid compression in a compressor is eliminated without providing a receiver tank has been proposed.

図5において、10は内部中間圧型多段(2段)圧縮式ロータリコンプレッサを示しており、密閉容器12内の電動要素14とこの電動要素14の回転軸16で駆動される下段の回転圧縮要素32および上段の回転圧縮要素34を備えて構成されている。コンプレッサ10は冷媒導入管94から吸い込まれた冷媒ガスを下段の回転圧縮要素32で圧縮して密閉容器12内に吐出し、この密閉容器12内の中間圧の冷媒ガスを冷媒導入管92から一旦中間冷却回路150Aに吐出する。
中間冷却回路150Aは中間冷却用熱交換器(インタークーラ)150Bを通過するように設けられており、そこで、冷媒ガスは空冷され、上段の回転圧縮要素34に吸い込まれて圧縮される。2段目の圧縮にて高圧となった冷媒ガスは、冷媒吐出管96から吐出され、ガスクーラ154で空冷される。このガスクーラ154から出た冷媒は第1熱交換器160にて蒸発器157を出た冷媒と熱交換した後、膨張弁156を経て蒸発器157に入り、蒸発して再度内部熱交換器160を経て冷媒導入管94から下段の回転圧縮要素32に吸い込まれる。
この場合の動作を図3のp−h線図を参照して説明する。下段の回転圧縮要素32で圧縮されて(エンタルピーをΔh3得て)中間圧となり、密閉容器12内に吐出された冷媒は(図3の2の状態)、冷媒導入管92から出て中間冷却回路150Aに流入する。そして、この中間冷却回路150Aが通過する中間冷却用熱交換器150Bに流入し、そこで空冷方式により放熱される(図3の3の状態)。ここで中間圧の冷媒は中間冷却用熱交換器150Bにて図3に示すようにエンタルピーをΔh1失う。
その後、上段の回転圧縮要素34に吸い込まれて2段目の圧縮が行われて高圧高温の冷媒ガスとなり、冷媒吐出管96より外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されている(図3の4の状態)。
In FIG. 5, reference numeral 10 denotes an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor, and the lower rotary compression element 32 driven by the electric element 14 in the hermetic container 12 and the rotary shaft 16 of the electric element 14. And an upper rotary compression element 34. The compressor 10 compresses the refrigerant gas sucked from the refrigerant introduction pipe 94 by the lower rotary compression element 32 and discharges the refrigerant gas into the sealed container 12. The intermediate pressure refrigerant gas in the sealed container 12 is temporarily supplied from the refrigerant introduction pipe 92. Discharge to the intermediate cooling circuit 150A.
The intermediate cooling circuit 150A is provided so as to pass through an intermediate cooling heat exchanger (intercooler) 150B, where the refrigerant gas is air-cooled and sucked into the upper rotary compression element 34 and compressed. The refrigerant gas that has become high pressure due to the second-stage compression is discharged from the refrigerant discharge pipe 96 and is air-cooled by the gas cooler 154. The refrigerant that has exited the gas cooler 154 exchanges heat with the refrigerant that has exited the evaporator 157 in the first heat exchanger 160, and then enters the evaporator 157 via the expansion valve 156, evaporates, and passes through the internal heat exchanger 160 again. Then, the refrigerant is sucked from the refrigerant introduction pipe 94 into the lower rotary compression element 32.
The operation in this case will be described with reference to the ph diagram of FIG. The refrigerant is compressed by the lower rotary compression element 32 (obtains enthalpy Δh3) to an intermediate pressure, and the refrigerant discharged into the sealed container 12 (state 2 in FIG. 3) exits from the refrigerant introduction pipe 92 and is an intermediate cooling circuit. Flows into 150A. And it flows in into the heat exchanger 150B for intermediate cooling which this intermediate cooling circuit 150A passes, and is thermally radiated by an air cooling system there (3 state of FIG. 3). Here, the intermediate pressure refrigerant loses enthalpy Δh1 in the intermediate cooling heat exchanger 150B as shown in FIG.
Thereafter, the air is sucked into the upper rotary compression element 34 and compressed in the second stage to become high-pressure and high-temperature refrigerant gas, which is discharged to the outside through the refrigerant discharge pipe 96. At this time, the refrigerant is compressed to an appropriate supercritical pressure (state 4 in FIG. 3).

冷媒吐出管96から吐出された冷媒ガスはガスクーラ154に流入し、そこで空冷方式により放熱された後(図3の5’の状態)、第1熱交換器160を通過する。冷媒はそこで低圧側の冷媒に熱を奪われて更に冷却される(図3の5の状態)(エンタルピーをΔh2失う)。その後冷媒は膨張弁156にて減圧され、その過程でガス/液混合状態となり(図3の6の状態。)、次に、蒸発器157に流入して蒸発する(図3の1’の状態)。蒸発器157から出た冷媒は第1熱交換器160を通過し、そこで前記高圧側の冷媒から熱を奪って加熱される(図3の1の状態)(エンタルピーをΔh2得る)。
そして、第1熱交換器160で加熱された冷媒は冷媒導入管94からロータリコンプレッサ10の下段の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
特公平7−18602号公報
The refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154, where it is radiated by the air cooling method (in the state 5 ′ in FIG. 3), and then passes through the first heat exchanger 160. The refrigerant is then further cooled by taking heat away from the low-pressure side refrigerant (state 5 in FIG. 3) (losing enthalpy by Δh2). Thereafter, the refrigerant is depressurized by the expansion valve 156, and in this process, a gas / liquid mixed state is obtained (state 6 in FIG. 3), and then flows into the evaporator 157 and evaporates (state 1 ′ in FIG. 3). ). The refrigerant discharged from the evaporator 157 passes through the first heat exchanger 160, where it is deprived of heat from the high-pressure side refrigerant and heated (state 1 in FIG. 3) (obtains enthalpy Δh2).
The refrigerant heated by the first heat exchanger 160 repeats the cycle of being sucked into the rotary compression element 32 at the lower stage of the rotary compressor 10 from the refrigerant introduction pipe 94.
Japanese Patent Publication No. 7-18602

しかし図5に示した遷臨界冷媒サイクル装置は、密閉容器12内に吐出された中間圧の冷媒ガスを冷媒導入管92から中間冷却回路150Aに吐出し、中間冷却用熱交換器150Bで冷媒ガスを空冷した後、上段の回転圧縮要素34に吸い込んで圧縮するようになっているため、中間冷却用熱交換器(インタークーラ)150Bやそれを連結するための中間冷却用の回路150Aが必要になり、部品数が増大してコストアップになり小型化できない問題があった。   However, the transcritical refrigerant cycle apparatus shown in FIG. 5 discharges the intermediate-pressure refrigerant gas discharged into the sealed container 12 from the refrigerant introduction pipe 92 to the intermediate cooling circuit 150A, and the intermediate cooling heat exchanger 150B supplies the refrigerant gas. After the air is cooled, it is sucked into the upper rotary compression element 34 and compressed, so an intermediate cooling heat exchanger (intercooler) 150B and an intermediate cooling circuit 150A for connecting the same are required. As a result, the number of parts increases, resulting in an increase in cost and a problem that the size cannot be reduced.

本発明の目的は、従来の諸問題を解決して、中間冷却用熱交換器やそれを連結するための中間冷却用の回路を設置することなく、構造を簡単にして安価で小型化可能な遷臨界冷媒サイクル装置を提供することである。   The object of the present invention is to solve the conventional problems and to simplify the structure and to reduce the size and size without installing an intermediate cooling heat exchanger or an intermediate cooling circuit for connecting the heat exchanger. It is to provide a transcritical refrigerant cycle device.

前記課題を解決するための本発明の請求項1記載の遷臨界冷媒サイクル装置はコンプレッサ、ガスクーラ、絞り手段および蒸発器を順次接続して構成され、高圧側が超臨界圧力となる冷媒サイクル装置であって、
前記コンプレッサは、密閉容器内に複数段の圧縮要素を備え、これらの圧縮要素の内の下段の圧縮要素の吐出冷媒は前記密閉容器内に吐出され、この冷媒を放熱させるための冷却手段が前記密閉容器に設けられていることを特徴とする。
The transcritical refrigerant cycle apparatus according to claim 1 of the present invention for solving the above-mentioned problem is a refrigerant cycle apparatus configured by sequentially connecting a compressor, a gas cooler, a throttle means, and an evaporator, wherein the high pressure side has a supercritical pressure. And
The compressor includes a plurality of stages of compression elements in a sealed container, and the refrigerant discharged from the lower stage compression elements of these compression elements is discharged into the sealed container, and cooling means for radiating heat from the refrigerant It is provided in an airtight container.

本発明の請求項2記載の遷臨界冷媒サイクル装置は、請求項1記載の遷臨界冷媒サイクル装置において、前記冷却手段が前記密閉容器の外壁面に固定して設置された放熱面を有する空冷あるいは水冷装置であることを特徴とする。   The transcritical refrigerant cycle apparatus according to claim 2 of the present invention is the transcritical refrigerant cycle apparatus according to claim 1, wherein the cooling means has an air-cooling surface having a heat dissipating surface fixed to the outer wall surface of the sealed container, or It is a water cooling device.

本発明の請求項1記載の遷臨界冷媒サイクル装置は、コンプレッサ、ガスクーラ、絞り手段および蒸発器を順次接続して構成され、高圧側が超臨界圧力となる冷媒サイクル装置であって、前記コンプレッサは、密閉容器内に複数段の圧縮要素を備え、これらの圧縮要素の内の下段の圧縮要素の吐出冷媒[二酸化炭素(CO2 )やNOなど]は前記密閉容器内に吐出されるが、この冷媒を放熱させるための冷却手段が前記密閉容器に設けられているため、前記冷却手段で充分冷却できるので、中間冷却用熱交換器やそれを連結するための中間冷却用の回路を設置しなくてもよくなり、また密閉容器内の温度上昇が抑えられ、吐出温度の低減が図れ、電動要素への入力低減が図れるので回転圧縮要素における圧縮効率を向上でき、COPを向上させることができ、しかも構造を簡単にでき、安価で小型化可能となるという顕著な効果を奏する。 The transcritical refrigerant cycle apparatus according to claim 1 of the present invention is a refrigerant cycle apparatus configured by sequentially connecting a compressor, a gas cooler, a throttle means, and an evaporator, wherein the high pressure side becomes a supercritical pressure. A plurality of stages of compression elements are provided in the sealed container, and refrigerant (carbon dioxide (CO 2 ), NO, etc.) discharged from the lower stage of these compression elements is discharged into the sealed container. Because the cooling means for dissipating heat is provided in the sealed container, the cooling means can sufficiently cool, so there is no need to install an intermediate cooling heat exchanger or an intermediate cooling circuit for connecting it. In addition, the temperature rise in the sealed container can be suppressed, the discharge temperature can be reduced, and the input to the electric element can be reduced, so that the compression efficiency in the rotary compression element can be improved and the COP is improved. Rukoto can, moreover structure can turn easily achieves the remarkable effect that allows miniaturization at low cost.

本発明の請求項2記載の遷臨界冷媒サイクル装置は、前記冷却手段が前記密閉容器の外壁面に固定して設置された多数のフィンなどの放熱面を有する空冷装置あるいは水冷装置であるので、構造が簡単で、安価で、小型化可能となる上、放熱効果が高く前記下段の回転圧縮要素から前記密閉容器内部に吐出された冷媒を充分冷却できるというさらなる顕著な効果を奏する。   The transcritical refrigerant cycle device according to claim 2 of the present invention is an air cooling device or a water cooling device in which the cooling means has a heat radiating surface such as a large number of fins fixedly installed on the outer wall surface of the sealed container. The structure is simple, inexpensive, can be downsized, and has a further remarkable effect that the refrigerant discharged from the lower rotary compression element to the inside of the hermetic container can be sufficiently cooled with a high heat dissipation effect.

以下、図面により本発明の実施の形態を詳細に説明する。
(第1実施形態)
図1は本発明の遷臨界冷媒サイクル装置に使用するコンプレッサの実施例として、下段および上段の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図、図2は本発明の遷臨界冷媒サイクル装置の冷媒回路図である。なお、本発明の遷臨界冷媒サイクル装置は、自販機、空気調和機または冷蔵庫、ショーケースなどに使用されるものである。
各図において10は二酸化炭素(CO2 )を冷媒として使用する内部中間圧型多段圧縮式ロータリコンプレッサで、このコンプレッサ10は、例えば、アルミニウム系金属からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14およびこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される下段の回転圧縮要素32(1段目)および上段の回転圧縮要素34(2段目)から成る回転圧縮機構部18にて構成されている。
密閉容器12は底部をオイル溜めとし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a longitudinal side view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10 having lower and upper rotary compression elements 32 and 34 as an embodiment of a compressor used in the transcritical refrigerant cycle apparatus of the present invention. FIG. 2 is a refrigerant circuit diagram of the transcritical refrigerant cycle device of the present invention. The transcritical refrigerant cycle device of the present invention is used for vending machines, air conditioners or refrigerators, showcases, and the like.
In each figure, reference numeral 10 denotes an internal intermediate pressure type multistage compression rotary compressor that uses carbon dioxide (CO 2 ) as a refrigerant. The compressor 10 includes, for example, a cylindrical sealed container 12 made of an aluminum-based metal, and the sealed container 12. The electric element 14 arranged and housed on the upper side of the inner space of the electric element 14 and the lower rotary compression element 32 (first stage) which is arranged below the electric element 14 and is driven by the rotating shaft 16 of the electric element 14 and the upper stage The rotary compression mechanism unit 18 includes a rotary compression element 34 (second stage).
The sealed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a generally bowl-shaped end cap (lid body) 12B that closes the upper opening of the container body 12A. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring is omitted) 20 for supplying power to the electric element 14 is mounted in the mounting hole 12D. It has been.

容器本体12Aの外壁面には、下段の回転圧縮要素32から密閉容器12内部に吐出された冷媒を冷却するための冷却手段13が固定して設置されている。冷却手段13は、例えば、アルミニウム系金属からなる多数のフィン13Aを備えた空冷装置からなっている。   Cooling means 13 for cooling the refrigerant discharged from the lower rotary compression element 32 into the sealed container 12 is fixedly installed on the outer wall surface of the container body 12A. The cooling means 13 is composed of, for example, an air cooling device provided with a large number of fins 13A made of an aluminum-based metal.

電動要素14所謂磁極集中巻き式のDCモータであり、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステ―タ22と、このステ―タ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
ステ―タ22は、ドーナッツ状の電極鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステ―タコイル28を有している。また、ロータ24はステ―タ22と同様に電極鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
下段の回転圧縮要素32と上段の回転圧縮要素34との間には中間仕切板36が狭持されている。即ち、下段の回転圧縮要素32と上段の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を、180度の位相差を有して回転軸16に設けられた上下遍心部42、44により遍心回転される上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面および下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54および下部支持部材56にて構成されている。
The electric element 14 is a so-called magnetic pole concentrated winding type DC motor, and includes a stator 22 attached in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12 and a slight gap inside the stator 22. And a rotor 24 inserted and installed. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction.
The stator 22 includes a laminate 26 in which donut-shaped electrode steel plates are laminated, and a stator coil 28 wound around the teeth of the laminate 26 by a direct winding (concentrated winding) method. The rotor 24 is formed of a laminated body 30 of electrode steel plates like the stator 22, and is formed by inserting a permanent magnet MG into the laminated body 30.
An intermediate partition plate 36 is sandwiched between the lower rotary compression element 32 and the upper rotary compression element 34. That is, the lower rotary compression element 32 and the upper rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38 and a lower cylinder 40 disposed above and below the intermediate partition plate 36, and the upper and lower cylinders 38, 40. The upper and lower rollers 46 and 48 are rotated omnidirectionally by upper and lower omnidirectional portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees, and the upper and lower cylinders are in contact with the upper and lower rollers 46 and 48. 38 and 40 are divided into a low pressure chamber side and a high pressure chamber side, respectively, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed to support the bearing of the rotary shaft 16. An upper support member 54 and a lower support member 56 are also used as supporting members.

一方、上部支持部材54および下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上部カバー66、下部カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
尚、吐出消音室64と密閉容器12内とは、上下シリンダ38、40や中間仕切板36を貫通する連通路にて連通されており、連通路の上端には中間吐出管121が立設され、この中間吐出管121から下段の回転圧縮要素32で圧縮された中間圧の冷媒ガスが密閉容器12内に吐出される。
On the other hand, the upper support member 54 and the lower support member 56 are respectively provided with a suction passage 60 (the upper suction passage is not shown) that communicates with the inside of the upper and lower cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed. Discharge silencing chambers 62 and 64 formed by closing the recessed portion with an upper cover 66 and a lower cover 68 are provided.
The discharge silencer chamber 64 and the inside of the sealed container 12 are communicated with each other through a communication passage that penetrates the upper and lower cylinders 38 and 40 and the intermediate partition plate 36, and an intermediate discharge pipe 121 is provided upright at the upper end of the communication passage. The intermediate pressure refrigerant gas compressed by the lower rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the sealed container 12.

そして、冷媒としては地球環境にやさしく、可燃性および毒性などを考慮して自然冷媒である前述した二酸化炭素(CO2)が使用され、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)など既存のオイルが使用される。 And, as the refrigerant, the above-mentioned carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, is used as the refrigerant, and the oil as the lubricating oil is, for example, mineral oil (mineral oil), Existing oils such as alkylbenzene oil, ether oil, ester oil and PAG (polyalkyl glycol) are used.

密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路60(上側は図示せず)、吐出消音室62、上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ142および143が溶接固定されている。
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。この冷媒導入管94の他端は第1熱交換器160に接続されている。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62と連通する。
On the side surface of the container main body 12A of the sealed container 12, the suction passage 60 (upper side is not shown) of the upper support member 54 and the lower support member 56, the discharge silencer chamber 62, the upper side of the upper cover 66 (on the lower end of the electric element 14). The sleeves 142 and 143 are fixed by welding at positions corresponding to the substantially corresponding positions.
In addition, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected in the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. The other end of the refrigerant introduction pipe 94 is connected to the first heat exchanger 160. In addition, a refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 communicates with the discharge silencer chamber 62.

次に図2において、上述したコンプレッサ10は図2に示す冷媒回路の一部を構成する。即ち、コンプレッサ10の冷媒吐出管96はガスクーラ154の入口に接続される。そして、このガスクーラ154を出た配管は第1熱交換器160を通過する。第1熱交換器160はガスクーラ154から出た高圧側の冷媒と蒸発器157から出た低圧側の冷媒とを熱交換させるためのものである。
第1熱交換器160を通過した冷媒は絞り手段としての膨張弁156に至る。そして、膨張弁156の出口は蒸発器157の入口に接続され、蒸発器157を出た配管は第1熱交換器160を経て冷媒導入管94に接続される。
Next, in FIG. 2, the compressor 10 mentioned above comprises a part of refrigerant circuit shown in FIG. That is, the refrigerant discharge pipe 96 of the compressor 10 is connected to the inlet of the gas cooler 154. The piping that exits the gas cooler 154 passes through the first heat exchanger 160. The first heat exchanger 160 is for exchanging heat between the high-pressure refrigerant discharged from the gas cooler 154 and the low-pressure refrigerant discharged from the evaporator 157.
The refrigerant that has passed through the first heat exchanger 160 reaches an expansion valve 156 as a throttle means. The outlet of the expansion valve 156 is connected to the inlet of the evaporator 157, and the piping exiting the evaporator 157 is connected to the refrigerant introduction pipe 94 via the first heat exchanger 160.

以上の構成で次に図3のp−h線図(モリエル線図)を参照しながら本発明の遷臨界冷媒サイクル装置の動作を説明する。ターミナル20および図示されない配線を介してコンプレッサ10の電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
これにより、冷媒導入管94および下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧(図3の1の状態)の冷媒ガスは、ローラ48とベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる(図3の2の状態)。
密閉容器12内に吐出された冷媒は、冷却手段13により冷却された密閉容器12内で熱を奪われて冷却され、このときエンタルピーをΔh1失う(図3の3の状態)。密閉容器12内の温度上昇が抑えられ、吐出温度の低減が図れ、電動要素への入力低減が図れるので上段の回転圧縮要素34における圧縮効率を向上でき、COP向上させることができる。
Next, the operation of the transcritical refrigerant cycle apparatus of the present invention will be described with reference to the ph diagram (Mollier diagram) of FIG. When the stator coil 28 of the electric element 14 of the compressor 10 is energized via the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 rotate eccentrically in the upper and lower cylinders 38 and 40.
Accordingly, the refrigerant gas at a low pressure (state 1 in FIG. 3) sucked from the suction port (not shown) to the low pressure chamber side of the cylinder 40 via the suction passage 60 formed in the refrigerant introduction pipe 94 and the lower support member 56. Is compressed by the operation of the roller 48 and the vane 52 to become an intermediate pressure, and is discharged from the intermediate discharge pipe 121 into the sealed container 12 through the communication path (not shown) from the high pressure chamber side of the lower cylinder 40. Thereby, the inside of the sealed container 12 becomes an intermediate pressure (state 2 in FIG. 3).
The refrigerant discharged into the hermetic container 12 is deprived of heat and cooled in the hermetic container 12 cooled by the cooling means 13, and at this time, the enthalpy is lost by Δh1 (state 3 in FIG. 3). The temperature rise in the sealed container 12 can be suppressed, the discharge temperature can be reduced, and the input to the electric element can be reduced. Therefore, the compression efficiency in the upper rotary compression element 34 can be improved, and the COP can be improved.

そして、冷却された中間圧の冷媒ガスは上部支持部材54に形成された図示しない吸込通路を経由して、図示しない吸込ポートから上段の回転圧縮要素34の上シリンダ38の低圧室側に吸入され、ローラ46とベーン50の動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62を経て冷媒吐出管96より外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されている(図3の4の状態)。   The cooled intermediate pressure refrigerant gas is sucked into the low pressure chamber side of the upper cylinder 38 of the upper rotary compression element 34 from a suction port (not shown) via a suction passage (not shown) formed in the upper support member 54. The second stage compression is performed by the operation of the roller 46 and the vane 50 to form a high-pressure and high-temperature refrigerant gas, which passes through a discharge port (not shown) from the high-pressure chamber side and passes through a discharge silencer chamber 62 formed in the upper support member 54. It is discharged to the outside from the discharge pipe 96. At this time, the refrigerant is compressed to an appropriate supercritical pressure (state 4 in FIG. 3).

冷媒吐出管96から吐出された冷媒ガスはガスクーラ154に流入し、そこで空冷方式により放熱した後(図3の5’の状態)、第1熱交換器160を通過する。冷媒はそこで低圧側の冷媒に熱を奪われて更に冷却される(図3の5の状態)。
この状態を図3で説明する。即ち、第1熱交換器160がない場合、膨張弁156入口における冷媒のエンタルピーは5’で示す状態となる。この場合には蒸発器157における冷媒温度が高くなる。一方、第1熱交換器160にて低圧側の冷媒と熱交換させた場合には、冷媒のエンタルピーはΔh2だけ下がり、図3の5で示す状態となるため、図5の5’のエンタルピーより蒸発器157における冷媒温度が低くなる。そのため、第1熱交換器160を設けた方が蒸発器157における冷媒ガスの冷却能力が向上する。
従って、冷媒循環量を増やさずに所望の蒸発温度、例えば蒸発器157での蒸発温度を+12℃乃至−10℃の中高温域とすることを容易に達成することができるようになる。また、コンプレッサ10での消費電力の低減も図ることができるようになる。
The refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154, where it dissipates heat by the air cooling method (5 ′ state in FIG. 3), and then passes through the first heat exchanger 160. The refrigerant is further cooled by taking heat away from the low-pressure side refrigerant (state 5 in FIG. 3).
This state will be described with reference to FIG. That is, when there is no first heat exchanger 160, the enthalpy of the refrigerant at the inlet of the expansion valve 156 is in a state indicated by 5 ′. In this case, the refrigerant temperature in the evaporator 157 increases. On the other hand, when heat exchange is performed with the low-pressure side refrigerant in the first heat exchanger 160, the enthalpy of the refrigerant decreases by Δh2, and is in the state indicated by 5 in FIG. The refrigerant temperature in the evaporator 157 is lowered. Therefore, the cooling capacity of the refrigerant gas in the evaporator 157 improves when the first heat exchanger 160 is provided.
Therefore, it is possible to easily achieve a desired evaporation temperature, for example, an evaporation temperature in the evaporator 157 in the middle high temperature range of + 12 ° C. to −10 ° C. without increasing the refrigerant circulation rate. In addition, power consumption in the compressor 10 can be reduced.

第1熱交換器160で冷却された高圧側の冷媒ガスは膨張弁156に至る。膨張弁156の入口では冷媒ガスはまだ気体の状態である。冷媒は膨張弁156における圧力低下により、ガス/液体の二相混合体とされ(図3の6の状態)、その状態で蒸発器157内に流入する。そこで冷媒は蒸発し、空気から吸熱することにより冷却作用を発揮する。
その後、冷媒は蒸発器157から流出して(図3の1’の状態)、第1熱交換器160を通過する。そこで前記高圧側の冷媒から熱を奪い、加熱作用を受ける(図3の1の状態)。
ここで、この状態を図3で説明する。蒸発器157で蒸発して低温となり、蒸発器157を出た冷媒は図3に示す1’の状態であり、冷媒は完全に気体の状態ではなく液体が混在した状態である。そこで、第1熱交換器160を通過させて高圧側の冷媒と熱交換させることで、冷媒のエンタルピーがΔh2上昇して、図3の1に示す状態となる。これにより、冷媒は完全に気体の状態となる。
気体の状態となった冷媒は冷媒導入管94からコンプレッサ10の下段の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
The high-pressure side refrigerant gas cooled by the first heat exchanger 160 reaches the expansion valve 156. At the inlet of the expansion valve 156, the refrigerant gas is still in a gaseous state. The refrigerant is converted into a gas / liquid two-phase mixture (state 6 in FIG. 3) due to the pressure drop in the expansion valve 156, and flows into the evaporator 157 in that state. Therefore, the refrigerant evaporates and exhibits a cooling action by absorbing heat from the air.
Thereafter, the refrigerant flows out of the evaporator 157 (1 ′ state in FIG. 3) and passes through the first heat exchanger 160. Therefore, heat is taken from the refrigerant on the high-pressure side and is subjected to a heating action (state 1 in FIG. 3).
Here, this state will be described with reference to FIG. The evaporator 157 evaporates to a low temperature, and the refrigerant exiting the evaporator 157 is in the state 1 ′ shown in FIG. 3, and the refrigerant is not in a completely gas state but in a liquid mixture. Therefore, by passing through the first heat exchanger 160 and exchanging heat with the high-pressure side refrigerant, the enthalpy of the refrigerant is increased by Δh2, and the state shown in 1 of FIG. 3 is obtained. Thereby, a refrigerant | coolant will be in a gaseous state completely.
The refrigerant in the gaseous state repeats a cycle of being sucked from the refrigerant introduction pipe 94 into the lower rotary compression element 32 of the compressor 10.

(第2実施形態)
図4は本発明の遷臨界冷媒サイクル装置に使用するコンプレッサの他の実施例を示す。図4において図1に示した符号と同じ符号のものは同一のものを示すので説明を省略する。
図4に示した本発明の遷臨界冷媒サイクル装置は、第1実施形態に示した多数のフィン13Aを備えた空冷装置の替わりに、冷却手段13として、内部に冷却水を流す銅パイプなどの熱伝導性の高い金属性冷却パイプ13Bを容器本体12Aの外壁面に設置した水冷装置を用いた以外は、第1実施形態に示した本発明の遷臨界冷媒サイクル装置と同様になっている。第2実施形態に示した本発明の遷臨界冷媒サイクル装置の動作は図3のp−h線図を用いて第1実施形態に示した本発明の遷臨界冷媒サイクル装置の動作と同様に説明される。
図4に示した本発明の遷臨界冷媒サイクル装置は、密閉容器12内に吐出される冷媒を放熱させるための冷却手段13として、熱伝導性の高い金属性冷却パイプ13Bを容器本体12Aの外壁面に設置した水冷装置が密閉容器12に設けられているため、密閉容器12内に吐出される冷媒を冷却手段13で充分冷却できる。
(Second Embodiment)
FIG. 4 shows another embodiment of the compressor used in the transcritical refrigerant cycle apparatus of the present invention. In FIG. 4, the same reference numerals as those shown in FIG.
The transcritical refrigerant cycle apparatus of the present invention shown in FIG. 4 is a cooling means 13 instead of an air cooling apparatus having a large number of fins 13A shown in the first embodiment. Except for using a water cooling device in which a metallic cooling pipe 13B having a high thermal conductivity is installed on the outer wall surface of the container body 12A, it is the same as the transcritical refrigerant cycle device of the present invention shown in the first embodiment. The operation of the transcritical refrigerant cycle apparatus of the present invention shown in the second embodiment is described in the same manner as the operation of the transcritical refrigerant cycle apparatus of the present invention shown in the first embodiment using the ph diagram of FIG. Is done.
The transcritical refrigerant cycle apparatus of the present invention shown in FIG. 4 is a cooling means 13 for radiating the refrigerant discharged into the hermetic container 12, and a metallic cooling pipe 13B having high thermal conductivity is provided outside the container main body 12A. Since the water cooling device installed on the wall surface is provided in the sealed container 12, the cooling medium 13 can sufficiently cool the refrigerant discharged into the sealed container 12.

本発明では、上述した第1の実施の形態の空冷装置、第2の実施の形態の水冷装置を用いることにより密閉容器12内の温度上昇が抑えられ、吐出温度の低減が図れ、電動要素14への入力低減が図れるので回転圧縮要素32、34における圧縮効率を向上でき、COPを向上させることができる。   In the present invention, by using the air cooling device of the first embodiment and the water cooling device of the second embodiment described above, the temperature rise in the sealed container 12 can be suppressed, the discharge temperature can be reduced, and the electric element 14 can be reduced. Therefore, the compression efficiency in the rotary compression elements 32 and 34 can be improved, and the COP can be improved.

上記第1および第2の実施の形態の説明は、空冷装置や水冷装置を用いた例を示したが、空冷装置や水冷装置を用いた場合と同様な作用効果を有するものであれば冷却手段13はこれらに限定されず、例えば空冷装置と水冷装置の両者を併用することもできる。   In the above description of the first and second embodiments, an example using an air cooling device or a water cooling device has been shown. However, if the air cooling device and the water cooling device are used, the cooling means can be used. 13 is not limited to these. For example, both an air cooling device and a water cooling device can be used in combination.

尚、実施例では、可燃性および毒性の観点から安全で地球環境にやさしい自然冷媒である二酸化炭素を冷媒として使用したが、請求項1の発明ではそれに限定されるものではなく、遷臨界冷媒サイクルにて使用可能な種々の冷媒が適用可能である。   In the examples, carbon dioxide, which is a natural refrigerant that is safe and environmentally friendly from the viewpoint of flammability and toxicity, is used as the refrigerant. However, the invention of claim 1 is not limited thereto, and the transcritical refrigerant cycle is not limited thereto. Various refrigerants that can be used in the above are applicable.

上記実施の形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、あるいは範囲を減縮するものではない。また、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で例えば下記のような種々の変形が可能である。   The description of the above embodiment is for explaining the present invention, and does not limit the invention described in the claims or reduce the scope thereof. Moreover, each part structure of this invention is not restricted to the said embodiment, For example, the following various deformation | transformation are possible within the technical scope as described in a claim.

上記説明においては2段圧縮式ロータリコンプレッサについて説明したが、本発明はコンプレッサの形式は特に限定されず、具体的には、レシプロ式コンプレッサ、振動式コンプレッサ、マルチベーン式ロータリコンプレッサ、スクロール式コンプレッサなどであってもよく、また圧縮段数は少なくとも2段以上の多段圧縮であればよい。   In the above description, the two-stage compression type rotary compressor has been described. However, the present invention is not particularly limited in the type of the compressor, and specifically, a reciprocating compressor, a vibration type compressor, a multi-vane type rotary compressor, a scroll type compressor, etc. Further, the number of compression stages may be at least two or more stages.

また上記説明においては電動要素が密閉容器内に備えられている例について説明したが、電動要素は密閉容器外に備えられていてもよい。   In the above description, the example in which the electric element is provided in the sealed container has been described. However, the electric element may be provided outside the sealed container.

また上記説明においては蒸発器を出た冷媒を第1熱交換器を通過させて高圧側の冷媒と熱交換させることで完全に気体の状態とする例について説明したが、第1熱交換器を用いる代わりに蒸発器の出口側とコンプレッサの吸込側との間の低圧側にレシーバタンクを配設してもよい。   In the above description, the example in which the refrigerant exiting the evaporator passes through the first heat exchanger and exchanges heat with the refrigerant on the high-pressure side is completely gasified. However, the first heat exchanger is Instead of using, a receiver tank may be arranged on the low pressure side between the outlet side of the evaporator and the suction side of the compressor.

本発明の遷臨界冷媒サイクル装置は、コンプレッサ、ガスクーラ、絞り手段および蒸発器を順次接続して構成され、高圧側が超臨界圧力となる冷媒サイクル装置であって、前記コンプレッサは、密閉容器内に複数段の圧縮要素を備え、これらの圧縮要素の内の下段の圧縮要素の吐出冷媒は前記密閉容器内に吐出されるが、この冷媒を放熱させるための冷却手段が前記密閉容器に設けられているため、前記冷却手段で充分冷却できるので、中間冷却用熱交換器やそれを連結するための中間冷却用の回路を設置しなくてもよくなり、また密閉容器内の温度上昇が抑えられ、吐出温度の低減が図れ、電動要素への入力低減が図れるので回転圧縮要素における圧縮効率を向上でき、COPを向上させることができ、しかも構造を簡単にでき、安価で小型化可能となるので、産業上の利用価値が高い。   The transcritical refrigerant cycle apparatus of the present invention is a refrigerant cycle apparatus that is configured by sequentially connecting a compressor, a gas cooler, a throttle means, and an evaporator, and has a high-pressure side at a supercritical pressure. The compression refrigerant of the stage is provided, and the discharge refrigerant of the lower compression element among these compression elements is discharged into the sealed container, and the closed container is provided with cooling means for radiating heat of this refrigerant. Therefore, since the cooling means can sufficiently cool, it is not necessary to install an intermediate cooling heat exchanger or an intermediate cooling circuit for connecting it, and the temperature rise in the sealed container can be suppressed and the discharge can be prevented. The temperature can be reduced and the input to the electric element can be reduced, so that the compression efficiency of the rotary compression element can be improved, the COP can be improved, the structure can be simplified, and the cost can be reduced. Since the enabling, high utility value on the industry.

本発明の遷臨界冷媒サイクル装置に使用するコンプレッサの1実施の形態を示す説明図である。It is explanatory drawing which shows 1 embodiment of the compressor used for the transcritical refrigerant cycle apparatus of this invention. 図1に示したコンプレッサを備えた本発明の遷臨界冷媒サイクル装置の冷媒回路図である。It is a refrigerant circuit diagram of the transcritical refrigerant cycle device of the present invention provided with the compressor shown in FIG. 図2および図5の冷媒回路のp−h線図である。FIG. 6 is a ph diagram of the refrigerant circuit of FIGS. 2 and 5. 本発明の遷臨界冷媒サイクル装置に使用するコンプレッサの他の実施の形態を示す説明図である。It is explanatory drawing which shows other embodiment of the compressor used for the transcritical refrigerant cycle apparatus of this invention. 従来の遷臨界冷媒サイクル装置の冷媒回路図である。It is a refrigerant circuit diagram of the conventional transcritical refrigerant cycle device.

符号の説明Explanation of symbols

10 内部中間圧型多段(2段)圧縮式ロータリコンプレッサ
12 密閉容器
13 冷却手段
13A フィン
13B 冷却パイプ
14 電動要素
32 下段の回転圧縮要素
34 上段の回転圧縮要素
94 冷媒導入管
96 冷媒吐出管
154 ガスクーラー
156 膨張弁
157 蒸発器
160 第1熱交換器
DESCRIPTION OF SYMBOLS 10 Internal intermediate pressure type multistage (2 stage | paragraph) compression type rotary compressor 12 Airtight container 13 Cooling means 13A Fin 13B Cooling pipe 14 Electric element 32 Lower rotational compression element 34 Upper rotational compression element 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 154 Gas cooler 156 Expansion valve 157 Evaporator 160 First heat exchanger

Claims (2)

コンプレッサ、ガスクーラ、絞り手段および蒸発器を順次接続して構成され、高圧側が超臨界圧力となる冷媒サイクル装置であって、
前記コンプレッサは、密閉容器内に複数段の圧縮要素を備え、これらの圧縮要素の内の下段の圧縮要素の吐出冷媒は前記密閉容器内に吐出され、この冷媒を放熱させるための冷却手段が前記密閉容器に設けられていることを特徴とする遷臨界冷媒サイクル装置。
A refrigerant cycle device configured by sequentially connecting a compressor, a gas cooler, a throttle means and an evaporator, wherein the high pressure side is a supercritical pressure,
The compressor includes a plurality of stages of compression elements in a sealed container, and the refrigerant discharged from the lower stage compression elements of these compression elements is discharged into the sealed container, and cooling means for radiating heat from the refrigerant A transcritical refrigerant cycle device provided in an airtight container.
前記冷却手段が前記密閉容器の外壁面に固定して設置された放熱面を有する空冷あるいは水冷装置であることを特徴とする請求項1記載の遷臨界冷媒サイクル装置。 2. The transcritical refrigerant cycle apparatus according to claim 1, wherein the cooling means is an air cooling or water cooling apparatus having a heat radiation surface fixedly installed on an outer wall surface of the sealed container.
JP2003363167A 2003-10-23 2003-10-23 Transition critical refrigerant cycle device Pending JP2005127215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363167A JP2005127215A (en) 2003-10-23 2003-10-23 Transition critical refrigerant cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363167A JP2005127215A (en) 2003-10-23 2003-10-23 Transition critical refrigerant cycle device

Publications (1)

Publication Number Publication Date
JP2005127215A true JP2005127215A (en) 2005-05-19

Family

ID=34642569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363167A Pending JP2005127215A (en) 2003-10-23 2003-10-23 Transition critical refrigerant cycle device

Country Status (1)

Country Link
JP (1) JP2005127215A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226377A (en) * 2010-04-20 2011-11-10 Osaka Vacuum Ltd Control device of molecular pump device
JP2014079136A (en) * 2012-10-12 2014-05-01 Kubota Corp Liquid-cooled motor
CN104806527A (en) * 2015-05-21 2015-07-29 广东美芝制冷设备有限公司 Compressor assembly and heat pump system provided with same
CN105180305A (en) * 2015-09-16 2015-12-23 华南理工大学 Active reinforced cooling device suitable for air conditioner compressor shell
CN105443355A (en) * 2015-12-18 2016-03-30 华南理工大学 Auxiliary heat dissipation device applied to refrigerator compressor
WO2017145713A1 (en) * 2016-02-22 2017-08-31 旭硝子株式会社 Heat exchange unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226377A (en) * 2010-04-20 2011-11-10 Osaka Vacuum Ltd Control device of molecular pump device
JP2014079136A (en) * 2012-10-12 2014-05-01 Kubota Corp Liquid-cooled motor
CN104806527A (en) * 2015-05-21 2015-07-29 广东美芝制冷设备有限公司 Compressor assembly and heat pump system provided with same
CN105180305A (en) * 2015-09-16 2015-12-23 华南理工大学 Active reinforced cooling device suitable for air conditioner compressor shell
CN105180305B (en) * 2015-09-16 2018-01-05 华南理工大学 It is a kind of actively to strengthen heat abstractor suitable for air conditioner compressor housing
CN105443355A (en) * 2015-12-18 2016-03-30 华南理工大学 Auxiliary heat dissipation device applied to refrigerator compressor
WO2017145713A1 (en) * 2016-02-22 2017-08-31 旭硝子株式会社 Heat exchange unit
CN108700344A (en) * 2016-02-22 2018-10-23 Agc株式会社 Heat exchange unit

Similar Documents

Publication Publication Date Title
KR100950412B1 (en) Multi-stage compression type rotary compressor and cooling device
TW200305687A (en) Multistage rotary compressor and refrigeration circuit system
KR101043860B1 (en) Refrigerant cycle apparatus
JP2001091071A (en) Multi-stage compression refrigerating machine
JP4219198B2 (en) Refrigerant cycle equipment
JP4039921B2 (en) Transcritical refrigerant cycle equipment
EP1426710B1 (en) Refrigerant cycling device
JP4115296B2 (en) Transcritical refrigerant cycle equipment
JP2004317073A (en) Refrigerant cycling device
JP2005127215A (en) Transition critical refrigerant cycle device
JP4107926B2 (en) Transcritical refrigerant cycle equipment
JP4036772B2 (en) Transcritical refrigerant cycle equipment
JP4556934B2 (en) Compressor and refrigerant circuit device
JP3986338B2 (en) Refrigerant circuit using inverter-controlled compressor
JP2004170043A (en) Cooling device
JP2001082368A (en) Two-stage compression type rotary compressor
JP2004251492A (en) Refrigerant cycle device
JP2004270517A (en) Compressor and refrigerant cycle device
JP2004101114A (en) Transition critical refrigerant cycle apparatus
JP2004251514A (en) Refrigerant cycle device
JP2004309012A (en) Refrigerant cycle device
JP3625803B2 (en) Refrigerant circuit using CO2 refrigerant
JP2001124423A (en) Multi-stage compression refrigerating device
JP2003166489A (en) Manufacturing method for multi-stage compression type rotary compressor
JP2004271079A (en) Reversible refrigerant cycle device