JP4039921B2 - Transcritical refrigerant cycle equipment - Google Patents

Transcritical refrigerant cycle equipment Download PDF

Info

Publication number
JP4039921B2
JP4039921B2 JP2002265365A JP2002265365A JP4039921B2 JP 4039921 B2 JP4039921 B2 JP 4039921B2 JP 2002265365 A JP2002265365 A JP 2002265365A JP 2002265365 A JP2002265365 A JP 2002265365A JP 4039921 B2 JP4039921 B2 JP 4039921B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
evaporator
gas cooler
rotary compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002265365A
Other languages
Japanese (ja)
Other versions
JP2004101107A (en
Inventor
兼三 松本
里  和哉
賢太郎 山口
一昭 藤原
正司 山中
晴久 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002265365A priority Critical patent/JP4039921B2/en
Priority to TW092121098A priority patent/TWI301188B/en
Priority to DE60329725T priority patent/DE60329725D1/en
Priority to EP08011094A priority patent/EP1970645B1/en
Priority to AT03019200T priority patent/ATE420326T1/en
Priority to AT08011093T priority patent/ATE446487T1/en
Priority to DK08011094.3T priority patent/DK1970645T3/en
Priority to DK08011093.5T priority patent/DK1970644T3/en
Priority to DE60329795T priority patent/DE60329795D1/en
Priority to EP08011093A priority patent/EP1970644B1/en
Priority to EP03019200A priority patent/EP1394479B1/en
Priority to DK08011092.7T priority patent/DK1970646T3/en
Priority to EP08011092A priority patent/EP1970646B1/en
Priority to ES03019200T priority patent/ES2319513T3/en
Priority to AT08011092T priority patent/ATE534004T1/en
Priority to DK03019200T priority patent/DK1394479T3/en
Priority to EP08011095A priority patent/EP1972870A3/en
Priority to DE60325675T priority patent/DE60325675D1/en
Priority to AT08011094T priority patent/ATE445814T1/en
Priority to US10/649,561 priority patent/US6945073B2/en
Priority to CNB031564488A priority patent/CN100498121C/en
Priority to CNB2006100567652A priority patent/CN100412465C/en
Priority to CNB2006100567667A priority patent/CN100370197C/en
Priority to CN 200610056767 priority patent/CN1818390B/en
Priority to KR1020030060069A priority patent/KR101006616B1/en
Publication of JP2004101107A publication Critical patent/JP2004101107A/en
Priority to US11/071,846 priority patent/US7168264B2/en
Priority to US11/071,845 priority patent/US7013664B2/en
Priority to US11/071,834 priority patent/US7220110B2/en
Priority to US11/071,835 priority patent/US7013672B2/en
Priority to US11/071,653 priority patent/US7101162B2/en
Priority to US11/071,861 priority patent/US7076968B2/en
Priority to US11/071,548 priority patent/US7051551B2/en
Application granted granted Critical
Publication of JP4039921B2 publication Critical patent/JP4039921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Description

【0001】
【発明の属する技術分野】
本発明は、コンプレッサ、ガスクーラ、絞り手段及び蒸発器を順次接続して構成され、高圧側が超臨界圧力となる遷臨界冷媒サイクル装置に関するものである。
【0002】
【従来の技術】
従来のこの種冷媒サイクル装置は、ロータリコンプレッサ(コンプレッサ)、ガスクーラ、絞り手段(膨張弁等)及び蒸発器等を順次環状に配管接続して冷媒サイクル(冷媒回路)が構成されている。そして、ロータリコンプレッサの回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経てガスクーラに吐出される。このガスクーラにて冷媒ガスは放熱した後、絞り手段で絞られて蒸発器に供給される。そこで冷媒が蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮するものであった。
【0003】
ここで、近年では地球環境問題に対処するため、この種の冷媒サイクルにおいても、従来のフロンを用いずに自然冷媒である二酸化炭素(CO2)を冷媒として用い、高圧側を超臨界圧力として運転する遷臨界冷媒サイクルを用いた装置が開発されて来ている。
【0004】
このような遷臨界冷媒サイクル装置では、コンプレッサ内に液冷媒が戻って、液圧縮することを防ぐために、蒸発器の出口側とコンプレッサの吸込側との間の低圧側にレシーバタンクを配設し、このレシーバタンクに液冷媒を溜め、ガスのみをコンプレッサに吸い込ませる構成とされていた。そして、レシーバータンク内の液冷媒がコンプレッサに戻らないように絞り手段を調整していた(例えば、特許文献1参照)。
【0005】
【特許文献1】
特公平7−18602号公報
【0006】
しかしながら、冷媒サイクルの低圧側にレシーバータンクを設けることは、その分多くの冷媒充填量を必要とする。また、液バックを防止するためには絞り手段の開度を小さくし、或いは、レシーバータンクの容量を拡大しなければならず、冷却能力の低下や設置スペースの拡大を招く。そこで、係るレシーバータンクを設けること無く、コンプレッサにおける液圧縮を解消するために、出願人は従来図4に示す冷媒サイクル装置の開発を試みた。
【0007】
図4において、10は内部中間圧型多段(2段)圧縮式ロータリコンプレッサを示しており、密閉容器12内の電動要素14とこの電動要素14の回転軸16で駆動される第1の回転圧縮要素32及び第2の回転圧縮要素34を備えて構成されている。コンプレッサ10は冷媒導入管94から吸い込まれた冷媒ガスを第1の回転圧縮要素32で圧縮して密閉容器12内に吐出し、この密閉容器12内の中間圧の冷媒ガスを冷媒導入管92から中間冷却回路150Aに吐出する。
【0008】
中間冷却回路150Aはガスクーラ154を通過するように設けられており、そこで、冷媒ガスは空冷され、第2の回転圧縮要素34に吸い込まれて圧縮される。2段目の圧縮にて高圧となった冷媒ガスは、冷媒吐出管96から吐出され、ガスクーラ154で空冷される。このガスクーラ154から出た冷媒は内部熱交換器160にて蒸発器157を出た冷媒と熱交換した後、膨張弁156を経て蒸発器157に入り、蒸発して再度内部熱交換器160を経て冷媒導入管94から第1の回転圧縮要素32に吸い込まれる。
【0009】
この場合の動作を図3のp−h線図を参照して説明する。第1の回転圧縮要素32で圧縮されて中間圧となり、密閉容器12内に吐出された冷媒は(図3の▲2▼’の状態)、冷媒導入管92から出て中間冷却回路150Aに流入する。そしてこの中間冷却回路150Aが通過するガスクーラ154に流入し、そこで空冷方式により放熱される(図3の▲3▼の状態)。ここで中間圧の冷媒はガスクーラにて図3に示す如くエンタルピーをΔh1失う。
【0010】
その後、第2の回転圧縮要素34に吸い込まれて2段目の圧縮が行われて高圧高温の冷媒ガスとなり、冷媒吐出管96より外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されている(図3の▲4▼の状態)。
【0011】
冷媒吐出管96から吐出された冷媒ガスはガスクーラ154に流入し、そこで空冷方式により放熱された後(図3の▲5▼’の状態)、内部熱交換器160を通過する。冷媒はそこで低圧側の冷媒に熱を奪われて更に冷却される(図3の▲5▼の状態)。その後、冷媒は膨張弁156にて減圧され、その過程でガス/液混合状態となり(図3の▲6▼の状態。)、次に蒸発器157に流入して蒸発する(図3の▲1▼’’の状態)。蒸発器157から出た冷媒は内部熱交換器160を通過し、そこで前記高圧側の冷媒から熱を奪って加熱される(図3の▲1▼’の状態)。
【0012】
そして、内部熱交換器160で加熱された冷媒は冷媒導入管94からロータリコンプレッサ10の第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0013】
【発明が解決しようとする課題】
このように、図4の遷臨界冷媒サイクル装置でも蒸発器157から出た冷媒を内部熱交換器160により高圧側の冷媒にて加熱することで過熱度(図3の▲1▼’)を取ることができるので、レシーバータンクを廃止することも可能であるが、運転条件によっては余剰冷媒が生じるため、コンプレッサ10に液バックが起こり、液圧縮による損傷が発生する危険性があった。
【0014】
本発明は、係る従来の技術的課題を解決するために成されたものであり、高圧側が超臨界圧力となる遷臨界冷媒サイクル装置において、レシーバータンクを設けることなく、コンプレッサの液圧縮による損傷の発生を防止することを目的とする。
【0015】
【課題を解決するための手段】
即ち、本発明の遷臨界冷媒サイクル装置では、コンプレッサは密閉容器内に電動要素とこの電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されて吐出された冷媒を第2の回転圧縮要素に吸い込んで圧縮し、ガスクーラに吐出すると共に、第1の回転圧縮要素から吐出された冷媒をガスクーラにて放熱させるための中間冷却回路と、ガスクーラから出た第2の回転圧縮要素からの冷媒と蒸発器を出た冷媒とを熱交換させるための第1の内部熱交換器と、ガスクーラを出た中間冷却回路を流れる冷媒と第1の内部熱交換器を出た蒸発器からの冷媒とを熱交換させるための第2の内部熱交換器を備えているので、蒸発器から出た冷媒は第1の内部熱交換器でガスクーラを出た第2の回転圧縮要素からの冷媒と熱交換して熱を奪い、第2の内部熱交換器においてはガスクーラを出た中間冷却回路を流れる冷媒と熱交換して熱を奪うので、確実に冷媒の過熱度を確保してコンプレッサにおける液圧縮を回避できるようになる。
【0016】
一方、ガスクーラを出た第2の回転圧縮要素からの冷媒は、第1の内部熱交換器において蒸発器を出た冷媒に熱を奪われるので、それにより、冷媒の温度を下げられる。また、中間冷却回路を備えているので、コンプレッサの内部の温度を下げることができる。特にこの場合、中間冷却回路を流れる冷媒はガスクーラにて放熱した後、蒸発器からの冷媒に熱を与えて第2の回転圧縮要素に吸い込まれることになるので、第2の内部熱交換器を設けたことによるコンプレッサ内部の温度上昇は生じない。
【0017】
請求項2の発明では上記発明に加えて、冷媒として二酸化炭素を用いるので、環境問題にも寄与できるようになる。
【0018】
また、請求項3の発明の如く蒸発器における冷媒の蒸発温度が+12℃乃至−10℃である場合に極めて有効となる。
【0019】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の遷臨界冷媒サイクル装置に使用するコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図、図2は本発明の遷臨界冷媒サイクル装置の冷媒回路図である。尚、本発明の遷臨界冷媒サイクル装置は、自販機、空気調和機又は冷蔵庫、ショーケス等に使用されるものである。
【0020】
各図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式ロータリコンプレッサで、このコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)から成る回転圧縮機構部18にて構成されている。
【0021】
密閉容器12は底部をオイル溜めとし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0022】
電動要素14は所謂磁極集中巻き式のDCモータであり、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24はステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0023】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が狭持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を、180度の位相差を有して回転軸16に設けられた上下偏心部42、44により偏心回転される上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成されている。
【0024】
一方、上部支持部材54及び下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上部カバー66、下部カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0025】
尚、吐出消音室64と密閉容器12内とは、上下シリンダ38、40や中間仕切板36を貫通する連通路にて連通されており、連通路の上端には中間吐出管121が立設され、この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスが密閉容器12内に吐出される。
【0026】
そして、冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO2)が使用され、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)など既存のオイルが使用される。
【0027】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路60(上側は図示せず)、吐出消音室62、上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の図示しない吸込通路と連通する。この冷媒導入管92は後述する中間冷却回路150に設けられた第2の内部熱交換器162、ガスクーラ154を経てスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0028】
ここで、第2の内部熱交換器162はガスクーラ154を出た中間冷却回路150を流れる中間圧の冷媒と、後述する第1の内部熱交換器160を出た蒸発器157からの低圧側の冷媒とを熱交換させるためのものである。
【0029】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。この冷媒導入管94の他端は前記第2の内部熱交換器162に接続されている。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62と連通する。
【0030】
次に図2において、上述したコンプレッサ10は図2に示す冷媒回路の一部を構成する。即ち、コンプレッサ10の冷媒吐出管96はガスクーラ154の入口に接続される。そして、このガスクーラ154を出た配管は前述する第1の内部熱交換器160を通過する。この第1の内部熱交換器160はガスクーラ154から出た高圧側の冷媒と蒸発器157から出た低圧側の冷媒とを熱交換させるためのものである。
【0031】
第1の内部熱交換器160を通過した冷媒は絞り手段としての膨張弁156に至る。そして、膨張弁156の出口は蒸発器157の入口に接続され、蒸発器157を出た配管は第1の内部熱交換器160を経て前記第2の内部熱交換器162に至る。そして、第2の内部熱交換器162から出た配管は冷媒導入管94に接続される。
【0032】
以上の構成で次に図3のp−h線図(モリエル線図)を参照しながら本発明の遷臨界冷媒サイクル装置の動作を説明する。ターミナル20及び図示されない配線を介してコンプレッサ10の電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0033】
これにより、冷媒導入管94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧(図3の▲1▼の状態)の冷媒ガスは、ローラ48とベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる(図3の▲2▼の状態)。
【0034】
そして、密閉容器12内の中間圧の冷媒ガスは冷媒導入管92に入り、スリーブ144から出て中間冷却回路150に流入する。そして、この中間冷却回路150がガスクーラ154を通過する過程で空冷方式により放熱した後(図3の▲2▼’の状態)、第2の内部熱交換器162を通過する。冷媒はそこで低圧側の冷媒に熱を奪われて更に冷却される(図3の▲3▼の状態)。
【0035】
この状態を図3で説明すると、中間冷却回路150を流れる冷媒ガスはガスクーラ154において放熱し、このときエンタルピーをΔh1失う。更に、第2の内部熱交換器162にて低圧側の冷媒に熱を奪われて冷却され、エンタルピーをΔh3失う。このように、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスを中間冷却回路150を通過させることで、ガスクーラ154と第2の内部熱交換器162にて効果的に冷却することができるので、密閉容器12内の温度上昇を抑え、第2の回転圧縮要素34における圧縮効率も向上させることができるようになる。
【0036】
そして、冷却された中間圧の冷媒ガスは上部支持部材54に形成された図示しない吸込通路を経由して、図示しない吸込ポートから第2の回転圧縮要素34の上シリンダ38の低圧室側に吸入され、ローラ46とベーン50の動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62を経て冷媒吐出管96より外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されている(図3の▲4▼の状態)。
【0037】
冷媒吐出管96から吐出された冷媒ガスはガスクーラ154に流入し、そこで空冷方式により放熱した後(図3の▲5▼’の状態)、第1の内部熱交換器160を通過する。冷媒はそこで低圧側の冷媒に熱を奪われて更に冷却される(図3の▲5▼の状態)。
【0038】
この状態を図3で説明する。即ち、第1の内部熱交換器160が無い場合、膨張弁156入口における冷媒のエンタルピーは▲5▼’で示す状態となる。この場合には蒸発器157における冷媒温度が高くなる。一方、第1の内部熱交換器160にて低圧側の冷媒と熱交換させた場合には、冷媒のエンタルピーはΔh2だけ下がり、図3の▲5▼で示す状態となるため、図5の▲5▼’のエンタルピーより蒸発器157における冷媒温度が低くなる。そのため、第1の内部熱交換器160を設けた方が蒸発器157における冷媒ガスの冷却能力が向上する。
【0039】
従って、冷媒循環量を増やさずに所望の蒸発温度、例えば蒸発器157での蒸発温度を+12℃乃至−10℃の中高温域とすることを容易に達成することができるようになる。また、コンプレッサ10での消費電力の低減も図ることができるようになる。
【0040】
係る第1の内部熱交換器160で冷却された高圧側の冷媒ガスは膨張弁156に至る。尚、膨張弁156の入口では冷媒ガスはまだ気体の状態である。冷媒は膨張弁156における圧力低下により、ガス/液体の二相混合体とされ(図3の▲6▼の状態)、その状態で蒸発器157内に流入する。そこで冷媒は蒸発し、空気から吸熱することにより冷却作用を発揮する。
【0041】
その後、冷媒は蒸発器157から流出して(図3の▲1▼’’の状態)、第1の内部熱交換器160を通過する。そこで前記高圧側の冷媒から熱を奪い、加熱作用を受けた後(図3の▲1▼’の状態)、第2の内部熱交換器162に至る。そして、第2の内部熱交換器162で中間冷却回路150を流れる中間圧の冷媒から熱を奪い、更に加熱作用を受ける(図3の▲1▼の状態)。
【0042】
ここで、この状態を図3で説明する。蒸発器157で蒸発して低温となり、蒸発器157を出た冷媒は図3に示す▲1▼’’の状態であり、冷媒は完全に気体の状態ではなく液体が混在した状態である。そこで、第1の内部熱交換器160を通過させて高圧側の冷媒と熱交換させることで、冷媒のエンタルピーがΔh2上昇して、図3の▲1▼’に示す状態となる。これにより、冷媒は略完全に気体の状態となる。更に、第2の内部熱交換器162を通過させて、中間圧の冷媒と熱交換させることで、冷媒のエンタルピーがΔh3上昇して、図3の▲1▼に示す状態となり、冷媒は確実に過熱度が取れて完全に気体となる。
【0043】
これにより、蒸発器157から出た冷媒を確実にガス化させることができるようになる。特に、運転条件により余剰冷媒が発生するような場合においても、第1の内部熱交換器160と第2の内部熱交換器162により、二段階で低圧側冷媒を加熱しているので、レシーバータンクを設けること無く、コンプレッサ10に液冷媒が吸い込まれる液バックを確実に防止し、コンプレッサ10が液圧縮にて損傷を受ける不都合を回避することができるようになる。
【0044】
また、前述する如く第2の内部熱交換器162では、第1の内部熱交換器160で加熱された蒸発器157からの低圧の冷媒と第1の回転圧縮要素32で圧縮された中間圧の冷媒とを熱交換しており、これら冷媒は両方とも熱交換された後、コンプレッサ10に吸い込まれるため、コンプレッサ10内に入る熱収支は零となる。
【0045】
従って、コンプレッサ10の吐出温度や内部温度を上昇させずに過熱度を充分に確保することができるようになるので、遷臨界冷媒サイクル装置の信頼性の向上を図ることができるようになる。
【0046】
尚、第2の内部熱交換器162で加熱された冷媒は、冷媒導入管94からコンプレッサ10の第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0047】
このように、第1の回転圧縮要素32から吐出された冷媒をガスクーラ154にて放熱させるための中間冷却回路150と、ガスクーラ154から出た第2の回転圧縮要素34からの冷媒と蒸発器157を出た冷媒とを熱交換させるための第1の内部熱交換器160と、ガスクーラ154を出た中間冷却回路150を流れる冷媒と第1の内部熱交換器160を出た蒸発器157からの冷媒とを熱交換させるための第2の内部熱交換器162を備えることで、蒸発器157から出た冷媒は第1の内部熱交換器160でガスクーラ154を出た第2の回転圧縮要素34からの冷媒と熱交換して熱を奪い、第2の内部熱交換器162においてはガスクーラ154を出た中間冷却回路150を流れる冷媒と熱交換して熱を奪うので、確実に冷媒の過熱度を確保してコンプレッサ10における液圧縮を回避できるようになる。
【0048】
一方、ガスクーラ154を出た第2の回転圧縮要素34からの冷媒は、第1の内部熱交換器160において蒸発器157を出た冷媒に熱を奪われるので、それにより、冷媒温度を下げられる。それにより、蒸発器157における冷媒ガスの冷却能力が向上する。従って、冷媒循環量を増やさずに所望の蒸発温度を容易に達成することができるようになり、コンプレッサ10での消費電力の低減も図ることができるようになる。
【0049】
また、中間冷却回路150を備えているので、コンプレッサ10の内部の温度を下げることができる。特にこの場合、中間冷却回路150を流れる冷媒はガスクーラ154にて放熱した後、蒸発器157からの冷媒に熱を与えて第2の回転圧縮要素34に吸い込まれることになるので、第2の内部熱交換器162を設けたことによるコンプレッサ10内部の温度上昇は生じない。
【0050】
尚、実施例では二酸化炭素を冷媒として使用したが、請求項1の発明ではそれに限定されるものではなく、遷臨界冷媒サイクルにて使用可能な種々の冷媒が適用可能である。
【0051】
【発明の効果】
以上詳述した如く、本発明によればコンプレッサは、密閉容器内に電動要素とこの電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されて吐出された冷媒を第2の回転圧縮要素に吸い込んで圧縮し、ガスクーラに吐出すると共に、第1の回転圧縮要素から吐出された冷媒をガスクーラにて放熱させるための中間冷却回路と、ガスクーラから出た第2の回転圧縮要素からの冷媒と前記蒸発器を出た冷媒とを熱交換させるための第1の内部熱交換器と、ガスクーラを出た中間冷却回路を流れる冷媒と前記第1の内部熱交換器を出た蒸発器からの冷媒とを熱交換させるための第2の内部熱交換器を備えたので、蒸発器から出た冷媒は第1の内部熱交換器でガスクーラを出た第2の回転圧縮要素からの冷媒と熱交換して熱を奪い、第2の内部熱交換器においてはガスクーラを出た中間冷却回路を流れる冷媒と熱交換して熱を奪うので、確実に冷媒の過熱度を確保してコンプレッサにおける液圧縮を回避できるようになる。
【0052】
一方、ガスクーラを出た第2の回転圧縮要素からの冷媒は、第1の内部熱交換器において蒸発器を出た冷媒に熱を奪われるので、それにより、冷媒温度を下げられる。それにより、蒸発器における冷媒ガスの冷却能力が向上する。従って、冷媒循環量を増やさずに所望の蒸発温度を容易に達成することができるようになり、コンプレッサでの消費電力の低減も図ることができるようになる。
【0053】
また、中間冷却回路を備えているので、コンプレッサの内部の温度を下げることができる。特にこの場合、中間冷却回路を流れる冷媒はガスクーラにて放熱した後、蒸発器からの冷媒に熱を与えて第2の回転圧縮要素に吸い込まれることになるので、第2の内部熱交換器を設けたことによるコンプレッサ内部の温度上昇は生じない。
【0054】
請求項2の発明では上記発明に加えて、冷媒として二酸化炭素を用いるので、環境問題にも寄与できるようになる。
【0055】
また、請求項3の発明の如く蒸発器における冷媒の蒸発温度が+12℃乃至−10℃である場合に極めて有効となる。
【図面の簡単な説明】
【図1】本発明の遷臨界冷媒サイクル装置を構成する内部中間圧型多段圧縮式ロータリコンプレッサの縦断面図である。
【図2】本発明の遷臨界冷媒サイクル装置の冷媒回路図である。
【図3】図2及び図4の冷媒回路のp−h線図である。
【図4】従来の遷臨界冷媒サイクル装置の冷媒回路図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
12 密閉容器
14 電動要素
32 第1の回転圧縮要素
34 第2の回転圧縮要素
92、94 冷媒導入管
96 冷媒吐出管
150 中間冷却回路
154 ガスクーラ
156 膨張弁(絞り手段)
157 蒸発器
160 第1の内部熱交換器
162 第2の内部熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transcritical refrigerant cycle apparatus that is configured by sequentially connecting a compressor, a gas cooler, a throttle means, and an evaporator, and that has a high pressure side at a supercritical pressure.
[0002]
[Prior art]
In this type of conventional refrigerant cycle apparatus, a rotary compressor (compressor), a gas cooler, a throttle means (expansion valve, etc.), an evaporator, and the like are sequentially connected in an annular manner to form a refrigerant cycle (refrigerant circuit). Then, the refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the rotary compression element of the rotary compressor, and is compressed by the operation of the roller and the vane to become a high temperature and high pressure refrigerant gas. It is discharged to the gas cooler through the silencer chamber. The refrigerant gas radiates heat in the gas cooler, and is then squeezed by the squeezing means and supplied to the evaporator. Therefore, the refrigerant evaporates, and at that time, the cooling effect is exhibited by absorbing heat from the surroundings.
[0003]
Here, in recent years, in order to deal with global environmental problems, even in this type of refrigerant cycle, carbon dioxide (CO 2 ), which is a natural refrigerant, is used as a refrigerant without using conventional chlorofluorocarbon, and the high pressure side is used as a supercritical pressure. Devices using transcritical refrigerant cycles to operate have been developed.
[0004]
In such a transcritical refrigerant cycle device, a receiver tank is provided on the low pressure side between the outlet side of the evaporator and the suction side of the compressor in order to prevent the liquid refrigerant from returning into the compressor and liquid compression. The liquid refrigerant was stored in the receiver tank, and only the gas was sucked into the compressor. And the throttle means was adjusted so that the liquid refrigerant in a receiver tank may not return to a compressor (for example, refer to patent documents 1).
[0005]
[Patent Document 1]
Japanese Examined Patent Publication No. 7-18602 [0006]
However, providing a receiver tank on the low pressure side of the refrigerant cycle requires a larger amount of refrigerant filling. Further, in order to prevent liquid back, the opening of the throttle means must be reduced, or the capacity of the receiver tank must be increased, leading to a reduction in cooling capacity and an increase in installation space. Therefore, in order to eliminate the liquid compression in the compressor without providing such a receiver tank, the applicant tried to develop the refrigerant cycle apparatus shown in FIG.
[0007]
In FIG. 4, reference numeral 10 denotes an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor, and the first rotary compression element driven by the electric element 14 in the hermetic container 12 and the rotating shaft 16 of the electric element 14. 32 and a second rotary compression element 34. The compressor 10 compresses the refrigerant gas sucked from the refrigerant introduction pipe 94 by the first rotary compression element 32 and discharges the refrigerant gas into the sealed container 12. The intermediate pressure refrigerant gas in the sealed container 12 is discharged from the refrigerant introduction pipe 92. Discharge to the intermediate cooling circuit 150A.
[0008]
The intermediate cooling circuit 150A is provided so as to pass through the gas cooler 154, where the refrigerant gas is air-cooled and sucked into the second rotary compression element 34 and compressed. The refrigerant gas that has become high pressure due to the second-stage compression is discharged from the refrigerant discharge pipe 96 and is air-cooled by the gas cooler 154. The refrigerant that has exited the gas cooler 154 exchanges heat with the refrigerant that has exited the evaporator 157 in the internal heat exchanger 160, and then enters the evaporator 157 via the expansion valve 156, evaporates, and passes through the internal heat exchanger 160 again. The refrigerant is sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94.
[0009]
The operation in this case will be described with reference to the ph diagram of FIG. The refrigerant compressed by the first rotary compression element 32 to an intermediate pressure and discharged into the hermetic container 12 (state (2) in FIG. 3) exits from the refrigerant introduction pipe 92 and flows into the intermediate cooling circuit 150A. To do. Then, the intermediate cooling circuit 150A flows into the gas cooler 154 through which the heat is radiated by the air cooling system (state (3) in FIG. 3). Here, the intermediate pressure refrigerant loses Δh1 in the gas cooler as shown in FIG.
[0010]
After that, the second rotary compression element 34 is sucked into the second stage of compression and becomes high-pressure and high-temperature refrigerant gas, which is discharged to the outside through the refrigerant discharge pipe 96. At this time, the refrigerant is compressed to an appropriate supercritical pressure (state (4) in FIG. 3).
[0011]
The refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154, where it is dissipated by the air cooling method (state (5) in FIG. 3), and then passes through the internal heat exchanger 160. The refrigerant is further cooled by taking heat away from the refrigerant on the low-pressure side (state (5) in FIG. 3). Thereafter, the refrigerant is depressurized by the expansion valve 156, and in this process, a gas / liquid mixed state is obtained (the state of (6) in FIG. 3). ▼ '' state). The refrigerant discharged from the evaporator 157 passes through the internal heat exchanger 160, where it takes heat from the high-pressure side refrigerant and is heated (state (1) in FIG. 3).
[0012]
The refrigerant heated by the internal heat exchanger 160 repeats a cycle of being sucked into the first rotary compression element 32 of the rotary compressor 10 from the refrigerant introduction pipe 94.
[0013]
[Problems to be solved by the invention]
As described above, the transcritical refrigerant cycle apparatus of FIG. 4 also takes the degree of superheat ((1) of FIG. 3) by heating the refrigerant discharged from the evaporator 157 with the high-pressure side refrigerant by the internal heat exchanger 160. Therefore, it is possible to eliminate the receiver tank. However, depending on the operating conditions, surplus refrigerant is generated, so that there is a risk that liquid back occurs in the compressor 10 and damage due to liquid compression occurs.
[0014]
The present invention has been made to solve the conventional technical problem, and in a transcritical refrigerant cycle device in which the high pressure side is a supercritical pressure, the damage of the compressor due to liquid compression can be reduced without providing a receiver tank. The purpose is to prevent the occurrence.
[0015]
[Means for Solving the Problems]
That is, in the transcritical refrigerant cycle device of the present invention, the compressor includes an electric element and first and second rotary compression elements driven by the electric element in the hermetic container, and the compressor is compressed by the first rotary compression element. The refrigerant discharged in this way is sucked into the second rotary compression element, compressed, discharged to the gas cooler, and the refrigerant discharged from the first rotary compression element is radiated by the gas cooler, and from the gas cooler A first internal heat exchanger for exchanging heat between the refrigerant coming out of the second rotary compression element and the refrigerant coming out of the evaporator; the refrigerant flowing through the intermediate cooling circuit coming out of the gas cooler; and the first internal heat Since the second internal heat exchanger for exchanging heat with the refrigerant from the evaporator that has exited the exchanger is provided, the refrigerant that has exited from the evaporator has passed through the gas cooler through the first internal heat exchanger. Refrigerant from two rotary compression elements In the second internal heat exchanger, heat is exchanged with the refrigerant flowing through the intermediate cooling circuit that has exited the gas cooler, and heat is taken away. Compression can be avoided.
[0016]
On the other hand, the refrigerant from the second rotary compression element exiting the gas cooler is deprived of heat by the refrigerant exiting the evaporator in the first internal heat exchanger, thereby reducing the temperature of the refrigerant. Moreover, since the intermediate cooling circuit is provided, the temperature inside the compressor can be lowered. Particularly in this case, the refrigerant flowing through the intermediate cooling circuit dissipates heat in the gas cooler, and then heats the refrigerant from the evaporator and is sucked into the second rotary compression element. The temperature inside the compressor due to the provision does not occur.
[0017]
In the invention of claim 2, in addition to the above invention, carbon dioxide is used as a refrigerant, so that it can contribute to environmental problems.
[0018]
Further, the present invention is very effective when the evaporation temperature of the refrigerant in the evaporator is + 12 ° C. to −10 ° C. as in the third aspect of the invention.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a longitudinal section of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of a compressor used in the transcritical refrigerant cycle apparatus of the present invention. FIG. 2 is a side view and FIG. 2 is a refrigerant circuit diagram of the transcritical refrigerant cycle device of the present invention. The transcritical refrigerant cycle device of the present invention is used for vending machines, air conditioners or refrigerators, Shokes and the like.
[0020]
In each figure, reference numeral 10 denotes an internal intermediate pressure type multistage compression rotary compressor that uses carbon dioxide (CO 2 ) as a refrigerant. The compressor 10 includes a cylindrical sealed container 12 made of a steel plate, and an internal space of the sealed container 12. A first rotary compression element 32 (first stage) and a second rotary compression arranged at the upper side and the lower side of the electric element 14 and driven by the rotating shaft 16 of the electric element 14. The rotary compression mechanism 18 is composed of an element 34 (second stage).
[0021]
The sealed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a generally bowl-shaped end cap (lid body) 12B that closes the upper opening of the container body 12A. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring is omitted) 20 for supplying power to the electric element 14 is mounted in the mounting hole 12D. It has been.
[0022]
The electric element 14 is a so-called magnetic pole concentrated winding type DC motor, and is inserted into the stator 22 in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12, and is inserted inside the stator 22 with a slight gap therebetween. The rotor 24 is installed. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction. The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. Similarly to the stator 22, the rotor 24 is formed of a laminated body 30 of electromagnetic steel plates, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0023]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38 and a lower cylinder 40 disposed above and below the intermediate partition plate 36, and the upper and lower cylinders 38, The upper and lower rollers 46 and 48 are rotated eccentrically by upper and lower eccentric portions 42 and 44 provided on the rotary shaft 16 with a phase difference of 180 degrees, and the upper and lower cylinders are in contact with the upper and lower rollers 46 and 48. 38 and 40 are divided into a low pressure chamber side and a high pressure chamber side, respectively, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed to support the bearing of the rotary shaft 16. The upper support member 54 and the lower support member 56 are also used as the supporting members.
[0024]
On the other hand, the upper support member 54 and the lower support member 56 are respectively provided with a suction passage 60 (the upper suction passage is not shown) that communicates with the inside of the upper and lower cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed. Discharge silencing chambers 62 and 64 formed by closing the recessed portion with an upper cover 66 and a lower cover 68 are provided.
[0025]
The discharge silencer chamber 64 and the inside of the sealed container 12 are communicated with each other through a communication passage that penetrates the upper and lower cylinders 38 and 40 and the intermediate partition plate 36, and an intermediate discharge pipe 121 is provided upright at the upper end of the communication passage. The intermediate pressure refrigerant gas compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0026]
And, as the refrigerant, the above-mentioned carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, is used as the refrigerant, and the oil as the lubricating oil is, for example, mineral oil (mineral oil), Existing oils such as alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.
[0027]
On the side surface of the container main body 12A of the sealed container 12, the suction passage 60 (upper side is not shown) of the upper support member 54 and the lower support member 56, the discharge silencer chamber 62, the upper side of the upper cover 66 (on the lower end of the electric element 14). Sleeves 141, 142, 143, and 144 are welded and fixed at positions corresponding to (substantially corresponding positions). One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with a suction passage (not shown) of the upper cylinder 38. The refrigerant introduction pipe 92 reaches a sleeve 144 through a second internal heat exchanger 162 and a gas cooler 154 provided in an intermediate cooling circuit 150 (to be described later), and the other end is inserted and connected into the sleeve 144 to enter the sealed container 12. Communicate.
[0028]
Here, the second internal heat exchanger 162 has an intermediate-pressure refrigerant flowing through the intermediate cooling circuit 150 exiting the gas cooler 154 and a low-pressure side from the evaporator 157 exiting the first internal heat exchanger 160 described later. This is for exchanging heat with the refrigerant.
[0029]
In addition, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected in the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. The other end of the refrigerant introduction pipe 94 is connected to the second internal heat exchanger 162. In addition, a refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 communicates with the discharge silencer chamber 62.
[0030]
Next, in FIG. 2, the compressor 10 mentioned above comprises a part of refrigerant circuit shown in FIG. That is, the refrigerant discharge pipe 96 of the compressor 10 is connected to the inlet of the gas cooler 154. Then, the piping exiting the gas cooler 154 passes through the first internal heat exchanger 160 described above. The first internal heat exchanger 160 is for exchanging heat between the high-pressure refrigerant discharged from the gas cooler 154 and the low-pressure refrigerant discharged from the evaporator 157.
[0031]
The refrigerant that has passed through the first internal heat exchanger 160 reaches an expansion valve 156 as a throttle means. The outlet of the expansion valve 156 is connected to the inlet of the evaporator 157, and the piping exiting the evaporator 157 reaches the second internal heat exchanger 162 through the first internal heat exchanger 160. Then, the pipe exiting from the second internal heat exchanger 162 is connected to the refrigerant introduction pipe 94.
[0032]
Next, the operation of the transcritical refrigerant cycle apparatus of the present invention will be described with reference to the ph diagram (Mollier diagram) of FIG. When the stator coil 28 of the electric element 14 of the compressor 10 is energized via the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 rotate eccentrically in the upper and lower cylinders 38 and 40.
[0033]
As a result, the low pressure (state (1) in FIG. 3) sucked from the suction port (not shown) to the low pressure chamber side of the cylinder 40 via the suction passage 60 formed in the refrigerant introduction pipe 94 and the lower support member 56. The refrigerant gas is compressed by the operation of the roller 48 and the vane 52 to become an intermediate pressure, and is discharged from the intermediate discharge pipe 121 into the sealed container 12 through a communication path (not shown) from the high pressure chamber side of the lower cylinder 40. As a result, the inside of the sealed container 12 is at an intermediate pressure (state (2) in FIG. 3).
[0034]
The intermediate-pressure refrigerant gas in the sealed container 12 enters the refrigerant introduction pipe 92, exits the sleeve 144, and flows into the intermediate cooling circuit 150. Then, after the intermediate cooling circuit 150 dissipates heat by the air cooling method in the process of passing through the gas cooler 154 (state of (2) in FIG. 3), it passes through the second internal heat exchanger 162. The refrigerant is further cooled by taking heat away from the low-pressure side refrigerant (state (3) in FIG. 3).
[0035]
This state will be described with reference to FIG. 3. The refrigerant gas flowing through the intermediate cooling circuit 150 dissipates heat in the gas cooler 154, and at this time, enthalpy is lost by Δh1. Further, the second internal heat exchanger 162 is cooled by taking heat from the low-pressure side refrigerant, and loses enthalpy by Δh3. In this way, the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 is passed through the intermediate cooling circuit 150, so that the gas cooler 154 and the second internal heat exchanger 162 are effectively cooled. Therefore, the temperature rise in the sealed container 12 can be suppressed, and the compression efficiency in the second rotary compression element 34 can be improved.
[0036]
The cooled intermediate pressure refrigerant gas is sucked from a suction port (not shown) into a low pressure chamber side of the upper cylinder 38 of the second rotary compression element 34 via a suction passage (not shown) formed in the upper support member 54. Then, the second stage compression is performed by the operation of the roller 46 and the vane 50, and the refrigerant gas becomes a high-pressure and high-temperature refrigerant gas. The refrigerant is discharged from the refrigerant discharge pipe 96 to the outside. At this time, the refrigerant is compressed to an appropriate supercritical pressure (state (4) in FIG. 3).
[0037]
The refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154, where it dissipates heat by the air cooling system (state (5) in FIG. 3), and then passes through the first internal heat exchanger 160. The refrigerant is further cooled by taking heat away from the refrigerant on the low-pressure side (state (5) in FIG. 3).
[0038]
This state will be described with reference to FIG. That is, when there is no first internal heat exchanger 160, the enthalpy of the refrigerant at the inlet of the expansion valve 156 is in the state indicated by (5). In this case, the refrigerant temperature in the evaporator 157 increases. On the other hand, when heat is exchanged with the low-pressure side refrigerant in the first internal heat exchanger 160, the enthalpy of the refrigerant is lowered by Δh2 and becomes the state shown by (5) in FIG. The refrigerant temperature in the evaporator 157 is lower than the enthalpy of 5 ▼ ′. Therefore, the cooling capacity of the refrigerant gas in the evaporator 157 improves when the first internal heat exchanger 160 is provided.
[0039]
Therefore, it is possible to easily achieve a desired evaporation temperature, for example, an evaporation temperature in the evaporator 157 in the middle high temperature range of + 12 ° C. to −10 ° C. without increasing the refrigerant circulation rate. In addition, power consumption in the compressor 10 can be reduced.
[0040]
The high-pressure side refrigerant gas cooled by the first internal heat exchanger 160 reaches the expansion valve 156. Note that the refrigerant gas is still in a gaseous state at the inlet of the expansion valve 156. The refrigerant is converted into a gas / liquid two-phase mixture (state (6) in FIG. 3) due to the pressure drop in the expansion valve 156, and flows into the evaporator 157 in that state. Therefore, the refrigerant evaporates and exhibits a cooling action by absorbing heat from the air.
[0041]
Thereafter, the refrigerant flows out of the evaporator 157 (the state of (1) in FIG. 3) and passes through the first internal heat exchanger 160. Therefore, after taking heat from the refrigerant on the high-pressure side and receiving a heating action (state of (1) in FIG. 3), the refrigerant reaches the second internal heat exchanger 162. Then, the second internal heat exchanger 162 takes heat from the intermediate-pressure refrigerant flowing through the intermediate cooling circuit 150 and further receives a heating action (state (1) in FIG. 3).
[0042]
Here, this state will be described with reference to FIG. The refrigerant evaporates at the evaporator 157 to a low temperature, and the refrigerant exiting the evaporator 157 is in the state of (1) '' shown in FIG. 3, and the refrigerant is not in a completely gas state but in a liquid mixture. Therefore, by passing through the first internal heat exchanger 160 and exchanging heat with the refrigerant on the high pressure side, the enthalpy of the refrigerant increases by Δh2, and the state shown in (1) in FIG. Thereby, a refrigerant | coolant will be in a gas state substantially completely. Furthermore, by passing through the second internal heat exchanger 162 and exchanging heat with the intermediate pressure refrigerant, the enthalpy of the refrigerant rises by Δh3, and the state shown in (1) in FIG. The degree of superheat is taken and it becomes completely gas.
[0043]
As a result, the refrigerant discharged from the evaporator 157 can be reliably gasified. In particular, even when surplus refrigerant is generated due to operating conditions, the low pressure side refrigerant is heated in two stages by the first internal heat exchanger 160 and the second internal heat exchanger 162, so that the receiver tank Without providing a liquid back, the liquid back into which the liquid refrigerant is sucked into the compressor 10 can be surely prevented, and the disadvantage that the compressor 10 is damaged by the liquid compression can be avoided.
[0044]
As described above, in the second internal heat exchanger 162, the low-pressure refrigerant from the evaporator 157 heated by the first internal heat exchanger 160 and the intermediate pressure compressed by the first rotary compression element 32 are used. Since heat is exchanged with the refrigerant, and both of these refrigerants are heat exchanged and then sucked into the compressor 10, the heat balance entering the compressor 10 becomes zero.
[0045]
Accordingly, the degree of superheat can be sufficiently ensured without increasing the discharge temperature and the internal temperature of the compressor 10, and thus the reliability of the transcritical refrigerant cycle apparatus can be improved.
[0046]
Note that the refrigerant heated by the second internal heat exchanger 162 repeats a cycle of being sucked into the first rotary compression element 32 of the compressor 10 from the refrigerant introduction pipe 94.
[0047]
Thus, the intermediate cooling circuit 150 for radiating the refrigerant discharged from the first rotary compression element 32 by the gas cooler 154, the refrigerant from the second rotary compression element 34 exiting from the gas cooler 154, and the evaporator 157 The first internal heat exchanger 160 for exchanging heat with the refrigerant that has exited the refrigerant, the refrigerant that flows through the intermediate cooling circuit 150 that has exited the gas cooler 154, and the evaporator 157 that has exited the first internal heat exchanger 160 By providing the second internal heat exchanger 162 for exchanging heat with the refrigerant, the refrigerant discharged from the evaporator 157 is discharged from the gas cooler 154 by the first internal heat exchanger 160. The second internal heat exchanger 162 exchanges heat with the refrigerant flowing through the intermediate cooling circuit 150 exiting the gas cooler 154 to remove heat, so that the refrigerant is surely overheated. It becomes possible to avoid liquid compression in the compressor 10 to ensure.
[0048]
On the other hand, the refrigerant from the second rotary compression element 34 that has exited the gas cooler 154 is deprived of heat by the refrigerant that has exited the evaporator 157 in the first internal heat exchanger 160, thereby reducing the refrigerant temperature. . Thereby, the cooling capacity of the refrigerant gas in the evaporator 157 is improved. Therefore, a desired evaporation temperature can be easily achieved without increasing the refrigerant circulation rate, and the power consumption in the compressor 10 can be reduced.
[0049]
Moreover, since the intermediate cooling circuit 150 is provided, the temperature inside the compressor 10 can be lowered. Particularly in this case, the refrigerant flowing through the intermediate cooling circuit 150 dissipates heat in the gas cooler 154, and then heats the refrigerant from the evaporator 157 and is sucked into the second rotary compression element 34. The temperature increase inside the compressor 10 due to the provision of the heat exchanger 162 does not occur.
[0050]
In the embodiment, carbon dioxide is used as the refrigerant. However, the invention of claim 1 is not limited thereto, and various refrigerants that can be used in the transcritical refrigerant cycle are applicable.
[0051]
【The invention's effect】
As described above in detail, according to the present invention, the compressor includes an electric element in the hermetic container and first and second rotary compression elements driven by the electric element, and is compressed by the first rotary compression element. The refrigerant discharged in this way is sucked into the second rotary compression element, compressed, discharged to the gas cooler, and the refrigerant discharged from the first rotary compression element is radiated by the gas cooler, and from the gas cooler A first internal heat exchanger for exchanging heat between the refrigerant coming out of the second rotary compression element and the refrigerant coming out of the evaporator, the refrigerant flowing in the intermediate cooling circuit coming out of the gas cooler, and the first Since the second internal heat exchanger for exchanging heat with the refrigerant from the evaporator exiting the internal heat exchanger is provided, the refrigerant exiting the evaporator exited the gas cooler with the first internal heat exchanger Refrigerant and heat from the second rotary compression element In the second internal heat exchanger, heat is exchanged with the refrigerant flowing through the intermediate cooling circuit that has exited the gas cooler, and the heat is taken away. Can be avoided.
[0052]
On the other hand, since the refrigerant from the second rotary compression element that has exited the gas cooler is deprived of heat by the refrigerant that has exited the evaporator in the first internal heat exchanger, the refrigerant temperature is thereby lowered. Thereby, the cooling capacity of the refrigerant gas in the evaporator is improved. Therefore, a desired evaporation temperature can be easily achieved without increasing the refrigerant circulation rate, and the power consumption in the compressor can be reduced.
[0053]
Moreover, since the intermediate cooling circuit is provided, the temperature inside the compressor can be lowered. Particularly in this case, the refrigerant flowing through the intermediate cooling circuit dissipates heat in the gas cooler, and then heats the refrigerant from the evaporator and is sucked into the second rotary compression element. The temperature inside the compressor due to the provision does not occur.
[0054]
In the invention of claim 2, in addition to the above invention, carbon dioxide is used as a refrigerant, so that it can contribute to environmental problems.
[0055]
Further, the present invention is very effective when the evaporation temperature of the refrigerant in the evaporator is + 12 ° C. to −10 ° C. as in the third aspect of the invention.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an internal intermediate pressure multistage compression rotary compressor constituting a transcritical refrigerant cycle device of the present invention.
FIG. 2 is a refrigerant circuit diagram of the transcritical refrigerant cycle device of the present invention.
3 is a ph diagram of the refrigerant circuit of FIGS. 2 and 4. FIG.
FIG. 4 is a refrigerant circuit diagram of a conventional transcritical refrigerant cycle device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Multistage compression rotary compressor 12 Sealed container 14 Electric element 32 1st rotary compression element 34 2nd rotary compression element 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 150 Intermediate cooling circuit 154 Gas cooler 156 Expansion valve (throttle means)
157 Evaporator 160 First internal heat exchanger 162 Second internal heat exchanger

Claims (3)

コンプレッサ、ガスクーラ、絞り手段及び蒸発器を順次接続して構成され、高圧側が超臨界圧力となる冷媒サイクル装置であって、
前記コンプレッサは、密閉容器内に電動要素と該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮されて吐出された冷媒を前記第2の回転圧縮要素に吸い込んで圧縮し、前記ガスクーラに吐出すると共に、
前記第1の回転圧縮要素から吐出された冷媒を前記ガスクーラにて放熱させるための中間冷却回路と、
前記ガスクーラから出た前記第2の回転圧縮要素からの冷媒と前記蒸発器を出た冷媒とを熱交換させるための第1の内部熱交換器と、
前記ガスクーラを出た前記中間冷却回路を流れる冷媒と前記第1の内部熱交換器を出た前記蒸発器からの冷媒とを熱交換させるための第2の内部熱交換器とを備えることを特徴とする遷臨界冷媒サイクル装置。
A refrigerant cycle device configured by sequentially connecting a compressor, a gas cooler, a throttle means, and an evaporator, wherein the high pressure side is a supercritical pressure,
The compressor includes an electric element and first and second rotary compression elements driven by the electric element in a sealed container, and the refrigerant compressed and discharged by the first rotary compression element is the second. The rotary compression element is sucked and compressed, discharged to the gas cooler,
An intermediate cooling circuit for radiating the refrigerant discharged from the first rotary compression element with the gas cooler;
A first internal heat exchanger for exchanging heat between the refrigerant from the second rotary compression element exiting the gas cooler and the refrigerant exiting the evaporator;
And a second internal heat exchanger for exchanging heat between the refrigerant flowing through the intermediate cooling circuit exiting the gas cooler and the refrigerant from the evaporator exiting the first internal heat exchanger. A transcritical refrigerant cycle device.
前記冷媒として二酸化炭素を用いることを特徴とする請求項1の遷臨界冷媒サイクル装置。The transcritical refrigerant cycle apparatus according to claim 1, wherein carbon dioxide is used as the refrigerant. 前記蒸発器における冷媒の蒸発温度は+12℃乃至−10℃であることを特徴とする請求項1又は請求項2の遷臨界冷媒サイクル装置。The transcritical refrigerant cycle device according to claim 1 or 2, wherein an evaporation temperature of the refrigerant in the evaporator is + 12 ° C to -10 ° C.
JP2002265365A 2002-08-30 2002-09-11 Transcritical refrigerant cycle equipment Expired - Fee Related JP4039921B2 (en)

Priority Applications (32)

Application Number Priority Date Filing Date Title
JP2002265365A JP4039921B2 (en) 2002-09-11 2002-09-11 Transcritical refrigerant cycle equipment
TW092121098A TWI301188B (en) 2002-08-30 2003-08-01 Refrigeant cycling device and compressor using the same
AT08011094T ATE445814T1 (en) 2002-08-30 2003-08-25 COMPRESSOR
AT03019200T ATE420326T1 (en) 2002-08-30 2003-08-25 REFRIGERANT CIRCUIT AND COMPRESSOR
EP08011094A EP1970645B1 (en) 2002-08-30 2003-08-25 Compressor
DK08011094.3T DK1970645T3 (en) 2002-08-30 2003-08-25 Compressor
DE60325675T DE60325675D1 (en) 2002-08-30 2003-08-25 Refrigerant circuit and compressor
DE60329795T DE60329795D1 (en) 2002-08-30 2003-08-25 Compressor with oil accumulator
EP08011093A EP1970644B1 (en) 2002-08-30 2003-08-25 Compressor with oil accumulator
EP03019200A EP1394479B1 (en) 2002-08-30 2003-08-25 Refrigerant cycling device and compressor
DK08011092.7T DK1970646T3 (en) 2002-08-30 2003-08-25 Refrigerant circuitry and compressor using the same
EP08011092A EP1970646B1 (en) 2002-08-30 2003-08-25 Refrigerant cycling device and compressor using the same
ES03019200T ES2319513T3 (en) 2002-08-30 2003-08-25 REFRIGERANT AND COMPRESSOR CYCLING DEVICE.
AT08011092T ATE534004T1 (en) 2002-08-30 2003-08-25 REFRIGERANT CIRCUIT DEVICE AND COMPRESSOR THEREFOR
DK03019200T DK1394479T3 (en) 2002-08-30 2003-08-25 Refrigerant circuit device and compressor
EP08011095A EP1972870A3 (en) 2002-08-30 2003-08-25 Refrigerant cycling device and compressor using the same
DE60329725T DE60329725D1 (en) 2002-08-30 2003-08-25 compressor
DK08011093.5T DK1970644T3 (en) 2002-08-30 2003-08-25 Compressor with oil collecting chamber
AT08011093T ATE446487T1 (en) 2002-08-30 2003-08-25 COMPRESSOR WITH OIL ACCUMULATOR
US10/649,561 US6945073B2 (en) 2002-08-30 2003-08-26 Refrigerant cycling device and compressor using the same
CNB031564488A CN100498121C (en) 2002-08-30 2003-08-28 refrigerant circulation device
CNB2006100567652A CN100412465C (en) 2002-08-30 2003-08-28 Refrigerant cycling device
CNB2006100567667A CN100370197C (en) 2002-08-30 2003-08-28 Compressor for refrigerant cycling device
CN 200610056767 CN1818390B (en) 2002-08-30 2003-08-28 Compressor used in refrigerant cycling device
KR1020030060069A KR101006616B1 (en) 2002-08-30 2003-08-29 Refrigerant cycling device and compressor using the same
US11/071,861 US7076968B2 (en) 2002-08-30 2005-03-02 Refrigerant cycling device
US11/071,548 US7051551B2 (en) 2002-08-30 2005-03-02 Compressor
US11/071,834 US7220110B2 (en) 2002-08-30 2005-03-02 Compressor having a throttled-return passage connecting an oil accumulator to a seal container
US11/071,845 US7013664B2 (en) 2002-08-30 2005-03-02 Refrigerant cycling device
US11/071,835 US7013672B2 (en) 2002-08-30 2005-03-02 Refrigerant cycling device
US11/071,846 US7168264B2 (en) 2002-08-30 2005-03-02 Refrigerant cycling device
US11/071,653 US7101162B2 (en) 2002-08-30 2005-03-02 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265365A JP4039921B2 (en) 2002-09-11 2002-09-11 Transcritical refrigerant cycle equipment

Publications (2)

Publication Number Publication Date
JP2004101107A JP2004101107A (en) 2004-04-02
JP4039921B2 true JP4039921B2 (en) 2008-01-30

Family

ID=32264526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265365A Expired - Fee Related JP4039921B2 (en) 2002-08-30 2002-09-11 Transcritical refrigerant cycle equipment

Country Status (2)

Country Link
JP (1) JP4039921B2 (en)
CN (3) CN100412465C (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161659A (en) * 2004-12-07 2006-06-22 Hitachi Ltd Refrigerating cycle device
US7900468B2 (en) * 2007-07-11 2011-03-08 Liebert Corporation Method and apparatus for equalizing a pumped refrigerant system
JP5003439B2 (en) * 2007-11-30 2012-08-15 ダイキン工業株式会社 Refrigeration equipment
JP5125611B2 (en) * 2008-02-29 2013-01-23 ダイキン工業株式会社 Refrigeration equipment
CN102588291A (en) * 2011-01-11 2012-07-18 珠海格力电器股份有限公司 Spray liquid cooling device and compressor provided with same
CN102678571B (en) * 2011-03-11 2016-03-02 上海日立电器有限公司 A kind of rotor compressor pump housing cooling recirculation system
JP2012251485A (en) * 2011-06-03 2012-12-20 Fujitsu General Ltd Rotary compressor
JP5927633B2 (en) * 2012-11-06 2016-06-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
US9194615B2 (en) 2013-04-05 2015-11-24 Marc-Andre Lesmerises CO2 cooling system and method for operating same
US11656005B2 (en) 2015-04-29 2023-05-23 Gestion Marc-André Lesmerises Inc. CO2 cooling system and method for operating same
CN104848497A (en) * 2015-06-10 2015-08-19 广东志高暖通设备股份有限公司 Air conditioner
KR102339600B1 (en) * 2017-05-26 2021-12-15 엘지전자 주식회사 Rotary compressor
CN107806410A (en) * 2017-10-10 2018-03-16 珠海凌达压缩机有限公司 Rotary compressor and air-conditioning system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678582A (en) * 1992-08-21 1994-03-18 Sanyo Electric Co Ltd Controlling method for operation of compressor
CN2290823Y (en) * 1997-03-03 1998-09-09 刘仕英 Automatic defrost heat pump
JPH1163694A (en) * 1997-08-21 1999-03-05 Zexel Corp Refrigeration cycle
US6189335B1 (en) * 1998-02-06 2001-02-20 Sanyo Electric Co., Ltd. Multi-stage compressing refrigeration device and refrigerator using the device
JP2001091071A (en) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd Multi-stage compression refrigerating machine
JP3469832B2 (en) * 1999-10-28 2003-11-25 三洋電機株式会社 Multi-stage compression refrigeration equipment

Also Published As

Publication number Publication date
CN100370197C (en) 2008-02-20
CN1818390A (en) 2006-08-16
JP2004101107A (en) 2004-04-02
CN100412465C (en) 2008-08-20
CN1818390B (en) 2010-05-12
CN1818504A (en) 2006-08-16
CN1818514A (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP4039921B2 (en) Transcritical refrigerant cycle equipment
JP2005003239A (en) Refrigerant cycling device
JP4219198B2 (en) Refrigerant cycle equipment
JP4208620B2 (en) Refrigerant cycle equipment
JP4115296B2 (en) Transcritical refrigerant cycle equipment
JP2004184022A (en) Cooling medium cycle device
JP2004317073A (en) Refrigerant cycling device
JP3370027B2 (en) 2-stage compression type rotary compressor
JP4278402B2 (en) Refrigerant cycle equipment
JP2003254276A (en) Rotary compressor
JP4107926B2 (en) Transcritical refrigerant cycle equipment
JP2005127215A (en) Transition critical refrigerant cycle device
JP3370026B2 (en) 2-stage compression type rotary compressor
JP3291469B2 (en) Rotary compressor
JP4036772B2 (en) Transcritical refrigerant cycle equipment
JP3291470B2 (en) Rotary compressor
JP2004251492A (en) Refrigerant cycle device
JP4556934B2 (en) Compressor and refrigerant circuit device
JP2004170043A (en) Cooling device
JP2004251514A (en) Refrigerant cycle device
JP3695963B2 (en) Rotary compressor
JP2000104690A (en) Rotary compressor
JP2004270517A (en) Compressor and refrigerant cycle device
JP2004101114A (en) Transition critical refrigerant cycle apparatus
JP2004309012A (en) Refrigerant cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees