JP4115296B2 - Transcritical refrigerant cycle equipment - Google Patents

Transcritical refrigerant cycle equipment Download PDF

Info

Publication number
JP4115296B2
JP4115296B2 JP2003047232A JP2003047232A JP4115296B2 JP 4115296 B2 JP4115296 B2 JP 4115296B2 JP 2003047232 A JP2003047232 A JP 2003047232A JP 2003047232 A JP2003047232 A JP 2003047232A JP 4115296 B2 JP4115296 B2 JP 4115296B2
Authority
JP
Japan
Prior art keywords
refrigerant
gas cooler
fan
heat exchanger
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003047232A
Other languages
Japanese (ja)
Other versions
JP2004257611A (en
Inventor
兼三 松本
茂弥 石垣
晴久 山崎
正司 山中
一昭 藤原
恒久 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003047232A priority Critical patent/JP4115296B2/en
Publication of JP2004257611A publication Critical patent/JP2004257611A/en
Application granted granted Critical
Publication of JP4115296B2 publication Critical patent/JP4115296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンプレッサ、ガスクーラ、絞り手段及び蒸発器を順次接続して構成され、高圧側が超臨界圧力となる遷臨界冷媒サイクル装置に関するものである。
【0002】
【従来の技術】
従来のこの種冷媒サイクル装置は、ロータリコンプレッサ(コンプレッサ)、ガスクーラ、絞り手段(膨張弁等)及び蒸発器等を順次環状に配管接続して冷媒サイクル(冷媒回路)が構成されている。そして、ロータリコンプレッサの回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経てガスクーラに吐出される。このガスクーラにて冷媒ガスは放熱した後、絞り手段で絞られて蒸発器に供給される。そこで冷媒が蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮するものであった。
【0003】
ここで、近年では地球環境問題に対処するため、この種の冷媒サイクルにおいても、従来のフロンを用いずに自然冷媒である二酸化炭素(CO2)を冷媒として用い、高圧側を超臨界圧力として運転する遷臨界冷媒サイクルを用いた装置が開発されて来ている。
【0004】
このような遷臨界冷媒サイクル装置では、コンプレッサ内に液冷媒が戻って、液圧縮することを防ぐために、蒸発器の出口側とコンプレッサの吸込側との間の低圧側にアキュムレータを配設し、このアキュムレータに液冷媒を溜め、ガスのみをコンプレッサに吸い込ませる構成とされていた。そして、アキュムレータ内の液冷媒がコンプレッサに戻らないように絞り手段を調整していた(例えば、特許文献1参照)。
【0005】
【特許文献1】
特公平7−18602号公報
【0006】
しかしながら、冷媒サイクルの低圧側にアキュムレータを設けることは、その分多くの冷媒充填量を必要とする。また、液バックを防止するためには絞り手段の開度を小さくし、或いは、アキュムレータの容量を拡大しなければならず、冷却能力の低下や設置スペースの拡大を招く。そこで、係るアキュムレータを設けること無く、コンプレッサにおける液圧縮を解消するために、出願人は従来図4に示す冷媒サイクル装置の開発を試みた。
【0007】
図4において、10は内部中間圧型多段(2段)圧縮式ロータリコンプレッサを示しており、密閉容器12内の駆動要素としての電動要素14とこの電動要素14の回転軸16で駆動される第1の回転圧縮要素32及び第2の回転圧縮要素34を備えて構成されている。
【0008】
この場合の遷臨界冷媒サイクル装置の動作を説明する。コンプレッサ10の冷媒導入管94から吸い込まれた低圧の冷媒は、第1の回転圧縮要素32で圧縮されて中間圧となり、密閉容器12内に吐出される。その後、冷媒導入管92から出て中間冷却回路150Aに流入する。中間冷却回路150Aはガスクーラ154Aを通過するように設けられており、そこで、空冷方式により放熱される。ここで中間圧の冷媒はガスクーラ154Aにて熱が奪われる。
【0009】
その後、第2の回転圧縮要素34に吸い込まれて2段目の圧縮が行われて高温高圧の冷媒ガスとなり、冷媒吐出管96より外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されている。
【0010】
冷媒吐出管96から吐出された冷媒ガスはガスクーラ154Aに流入し、そこで空冷方式により放熱された後、内部熱交換器160を通過する。冷媒はそこで蒸発器157を出た低圧側の冷媒に熱を奪われて更に冷却される。その後、冷媒は膨張弁156にて減圧され、その過程でガス/液混合状態となり、次に蒸発器157に流入して蒸発する。蒸発器157から出た冷媒は内部熱交換器160を通過し、そこで前記高圧側の冷媒から熱を奪って加熱される。
【0011】
そして、内部熱交換器160で加熱された冷媒は冷媒導入管94からロータリコンプレッサ10の第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。このように、蒸発器157から出た冷媒を内部熱交換器160により高圧側の冷媒にて加熱することで過熱度を取ることができるようになり、低圧側にアキュムレータなどを設けること無く、コンプレッサ10に液冷媒が吸い込まれる液バックを確実に防止し、コンプレッサ10が液圧縮にて損傷を受ける不都合を回避することができるようになる。
【0012】
また、第1の回転圧縮要素32で圧縮された冷媒を中間冷却回路150Aを通過させることで、ガスクーラ154Aにて効果的に冷却することができ、第2の回転圧縮要素34における圧縮効率の向上を図ることができる。
【0013】
【発明が解決しようとする課題】
ここで、前記ガスクーラ154Aとしては従来では多数の熱交換用フィンと各フィンを貫通して設けられた冷媒配管と成るフィンアンドチューブタイプの熱交換器が用いられ、ファンにより係るガスクーラ154Aに通風して空冷する構成とされていた。しかしながら、このようなガスクーラ154Aを屋外設置の自動販売機のようは劣悪な環境で使用した場合、前記フィンがゴミ等により目詰まりを起こして、熱交換能力が低下すると云う問題が生じる。そこで、ガスクーラを全体が渦状に巻かれたロールドチューブオンシートタイプの熱交換器で構成することが考えられる。
【0014】
このロールドチューブオンシートタイプの熱交換器は、鋼板などの熱良導性の金属板上に冷媒配管を蛇行状に溶接固定し、その状態で全体を例えば矩形の渦巻き状に巻くことによって熱交換面積の確保とコンパクト化を図ったものであり、フィンアンドチューブタイプの熱交換器に比較してゴミなどによって目詰まりし難い利点がある。
【0015】
本発明は、係る従来の技術的課題を解決するために成されたものであり、高圧側が超臨界圧力となる冷媒サイクル装置において、ガスクーラをロールドチューブオンシートタイプの熱交換器にて構成し、該熱交換器の特性を生かしながら効率の改善を図ることを目的とする。
【0016】
【課題を解決するための手段】
即ち、本発明の遷臨界冷媒サイクル装置では、コンプレッサは、第1及び第2の圧縮要素を備え、ガスクーラは、熱良導性の板材と当該板材に取り付けられた冷媒配管とから成るロールドチューブオンシートタイプの熱交換器であって、このガスクーラは、全体が渦状となるように巻くことで組み立てられると共に、このガスクーラを空冷するためのファンと、第1の圧縮要素から吐出された冷媒を放熱させるための中間冷却回路を設け、ガスクーラをファンの空気吸込側に配置し、中間冷却回路をファンの空気吐出側に配置したので、中間冷却回路を流れる冷媒を、ガスクーラを空冷する通風により効果的に冷却することができるようになる。
【0017】
請求項2の発明の遷臨界冷媒サイクル装置では上記発明に加えて、ガスクーラの渦の軸方向にファンによる風が通過するように配置したので、目詰まり等による放熱効果の低下を未然に回避することができるようになる。
【0018】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の遷臨界冷媒サイクル装置に使用するコンプレッサの実施例として、第1の回転圧縮要素(第1の圧縮要素)32及び第2の回転圧縮要素(第2の圧縮要素)34を備えた内部中間圧型多段(2段)圧縮式のロータリコンプレッサ10の縦断面図、図2は本発明の遷臨界冷媒サイクル装置の冷媒回路図である。
【0019】
各図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式ロータリコンプレッサで、このコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された駆動要素としての電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)から成る回転圧縮機構部18にて構成されている。
【0020】
密閉容器12は底部をオイル溜めとし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0021】
電動要素14は所謂磁極集中巻き式のDCモータであり、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24はステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0022】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を、180度の位相差を有して回転軸16に設けられた上下偏心部42、44により偏心回転される上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成されている。
【0023】
一方、上部支持部材54及び下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上部カバー66、下部カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0024】
尚、吐出消音室64と密閉容器12内とは、上下シリンダ38、40や中間仕切板36を貫通する連通路にて連通されており、連通路の上端には中間吐出管121が立設され、この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスが密閉容器12内に吐出される。
【0025】
そして、冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO2)が使用され、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)など既存のオイルが使用される。
【0026】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路60(上側は図示せず)、吐出消音室62、上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の図示しない吸込通路と連通する。この冷媒導入管92は後述する中間冷却回路150を経てスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0027】
ここで、前述した中間冷却回路150は第1の回転圧縮要素32で圧縮された冷媒を冷却するためのものであり、前述した冷媒導入管92により全体が構成されている。この中間冷却回路150は後述するガスクーラ154を空冷するためのファン155による通風により空冷されるように配置される。この場合、中間冷却回路150の冷媒導入管92の一部は、多数の細片状若しくは針状の熱交換フィンを備えたスパイラルチューブ152にて構成されており、このスパイラルチューブ152がガスクーラ154を空冷するためのファン155の通風により空冷されるように配置される。
【0028】
即ち、実施例ではガスクーラ154はファン155の空気吸込側に配置されており、スパイラルチューブ152はファン155の空気吐出側に配置されている。
【0029】
このスパイラルチューブ152により、熱交換面積が大きくなるため、スパイラルチューブ152内を流れる冷媒は、ガスクーラ154のファン155による通風による冷却作用を効果的に受けて放熱することができるようになる。これにより、冷媒をより一層冷却して中間冷却回路150の放熱効果の改善を図ることができるようになる。
【0030】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62と連通する。
【0031】
次に図2において、上述したコンプレッサ10は図2に示す遷臨界冷媒サイクル装置の冷媒回路の一部を構成する。尚、実施例の冷媒サイクル装置は例えば自動販売機に適用されるものである。即ち、コンプレッサ10の冷媒吐出管96はガスクーラ154の入口に接続される。ここで、ガスクーラ154は図3に示すようにロールドチューブオンシートタイプの熱交換器154aから構成されており、係るガスクーラ154に対応して前述した空冷用のファン155が設置されている。ガスクーラ154を構成する熱交換器154aは、鋼板などの熱良導性の金属板154b(板材)とこの金属板154bに溶接して取り付けられた冷媒配管154c(この冷媒配管154cの一端が冷媒吐出管96に接続され、他端が内部熱交換器160への配管に接続される)とから成り、全体が矩形渦状に巻かれている。尚、ロールドチューブオンシートタイプの熱交換器154aの組立方法は、先ず、熱良導性の金属板154b上に蛇行状に冷媒配管154cを溶接固定し、この状態で全体が矩形の渦状となるように所定の間隔を存して巻くことで組み立てられる。
【0032】
このような方法で組み立てられた熱交換器154aを当該熱交換器154aの渦の軸方向にファン155からの風が通過するように設置する。これにより、コンパクトながら大成る熱交換面積を確保し、ガスクーラ154内に流入したコンプレッサ10の第2の回転圧縮要素34からの高温高圧の冷媒ガスを効果的に冷却することが出来るようになる。
【0033】
また、係る熱交換器154aは、従来のようなフィンチューブタイプの熱交換器に比較してゴミ等による目詰まりが生じ難いので、屋外設置の自動販売機などに使用される場合のような劣悪な環境下においても目詰まりによる熱交換能力の低下を未然に回避することができるようになる。更に、前述した如く中間冷却回路150を構成する冷媒導入管92の一部のスパイラルチューブ152がガスクーラ154を空冷するためのファン155の通風により空冷されるように配置しているので、中間冷却回路150を流れる冷媒も効果的に冷却することが出来るようになる。
【0034】
更にまた、中間冷却回路150の冷媒導入管92をガスクーラ154に取り付けないので、ガスクーラ154の組立作業性も悪化することが無くなる。
【0035】
そして、このガスクーラ154を出た配管は内部熱交換器160を通過する。この内部熱交換器160はガスクーラ154から出た高圧側の冷媒と蒸発器157から出た低圧側の冷媒とを熱交換させるためのものである。
【0036】
内部熱交換器160を通過した配管は絞り手段としての膨張弁156に至る。そして、膨張弁156の出口は蒸発器157の入口に接続され、蒸発器157を出た配管は内部熱交換器160を経て冷媒導入管94に接続される。
【0037】
以上の構成で次に本発明の遷臨界冷媒サイクル装置の動作を説明する。ターミナル20及び図示されない配線を介してコンプレッサ10の電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0038】
これにより、冷媒導入管94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧の冷媒ガスは、ローラ48とベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0039】
そして、密閉容器12内の中間圧の冷媒ガスはスリーブ144から出て冷媒導入管92に入り、中間冷却回路150を通過する。そして、冷媒はこの中間冷却回路150、特に、前述したスパイラルチューブ152内を通過する過程でガスクーラ154のファン155による通風により空冷方式で放熱する。このように、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスを中間冷却回路150を通過させることで効果的に冷却することができるので、密閉容器12内の温度上昇を抑え、第2の回転圧縮要素34における圧縮効率も向上させることができるようになる。
【0040】
そして、冷却された中間圧の冷媒ガスは上部支持部材54に形成された図示しない吸込通路を経由して、図示しない吸込ポートから第2の回転圧縮要素34の上シリンダ38の低圧室側に吸入され、ローラ46とベーン50の動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62を経て冷媒吐出管96より外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されている。
【0041】
冷媒吐出管96から吐出された冷媒ガスはガスクーラ154に流入し、そこでファン155により空冷方式で放熱した後、ガスクーラ154から出て内部熱交換器160を通過する。冷媒はそこで低圧側の冷媒に熱を奪われて更に冷却される。内部熱交換器160で冷却された高圧側の冷媒ガスは膨張弁156に至る。尚、膨張弁156の入口では冷媒ガスはまだ気体の状態である。冷媒は膨張弁156における圧力低下により、ガス/液体の二相混合体とされ、その状態で蒸発器157内に流入する。そこで冷媒は蒸発し、空気から吸熱することにより冷却作用を発揮する。
【0042】
以上のように、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスを、スパイラルチューブ152を備えた中間冷却回路150に流して放熱させ、密閉容器12内の温度上昇を抑えるという効果によって、第2の回転圧縮要素34における圧縮効率の向上を図ることができるようになり、加えて、第2の回転圧縮要素34で圧縮された冷媒ガスをロールドチューブオンシートタイプの熱交換器154aを備えたガスクーラ154にて冷却することで、放熱能力を維持することができるという効果によって、蒸発器157における冷却能力の向上を図ることができるようになる。
【0043】
その後、冷媒は蒸発器157から流出して、内部熱交換器160を通過する。そこで前記高圧側の冷媒から熱を奪い、加熱作用を受ける。このように、蒸発器157で蒸発して低温となり、蒸発器157を出た冷媒は完全に気体の状態ではなく液体が混在した状態となる場合もある。そこで、内部熱交換器160を通過させて高圧側の冷媒と熱交換させることで、冷媒は過熱度が取れて完全に気体となる。これにより、低圧側にアキュムレータを設けること無く、コンプレッサ10に液冷媒が吸い込まれる液バックを確実に防止し、コンプレッサ10が液圧縮にて損傷を受ける不都合を回避することができるようになる。
【0044】
尚、内部熱交換器160で加熱された冷媒は、冷媒導入管94からコンプレッサ10の第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0045】
このように、熱良導性の金属板154b(板材)と当該金属板154bに取り付けられた冷媒配管154cとから成り、全体が矩形の渦状に巻かれたロールドチューブオンシートタイプの熱交換器154aにてガスクーラ154を構成すると共に、第1の回転圧縮要素32から吐出された冷媒を放熱させるための中間冷却回路150を設け、この中間冷却回路150を、ガスクーラ154を空冷するためのファン155の通風により空冷されるように配置したので、中間冷却回路150を流れる冷媒を、ロールドチューブオンシートタイプのガスクーラ154を空冷するファン155の通風により効果的に冷却することができるようになる。
【0046】
これにより、ガスクーラ154の目詰まり等による放熱効果の低下を未然に回避しながら、中間冷却回路150における放熱効果を確保することができるようになる。また、このとき中間冷却回路150の配管をガスクーラ154の金属板154bに取り付ける必要が無いので、ガスクーラ154の構造の簡素化を図り、生産コストの低減を図ることができる。
【0047】
また、中間冷却回路150を構成する冷媒導入管92の一部を、多数の細片状若しくは針状の熱交換フィンを備えたスパイラルチューブ152にて構成し、このスパイラルチューブ152がガスクーラ154を空冷するためのファン155の通風により空冷されるように配置しているので、中間冷却回路150の放熱効果の改善も図ることができるようになる。
【0048】
尚、本実施例では中間冷却回路150の冷媒導入管92の少なくとも一部をスパイラルチューブ152にて構成し、このスパイラルチューブ152がガスクーラ154を空冷するためのファン155の通風により空冷されるように配置するものとしたが、これに限らず、例えば、中間冷却回路150を構成する冷媒導入管92の一部を、ガスクーラ154の熱交換器154aと一体に設けても良い。
【0049】
この場合には、前記金属板154b上に冷媒吐出管96に接続される前記冷媒配管154cとは独立して冷媒導入管92の一部(別体で構成する)を溶接固定し、全体を矩形渦状となるように巻くことで熱交換器154aを構成する。これにより、中間冷却回路150とガスクーラ154を含めた高圧側の一層の小型化を図り、遷臨界冷媒サイクル(実施例では自動販売機の冷媒サイクル)の設置スペースを更に縮小することができるようになるようになる。
【0050】
また、本実施例では二酸化炭素を冷媒として使用したが、冷媒はそれに限定されるものではなく、遷臨界冷媒サイクルにて使用可能な種々の冷媒が適用可能である。
【0051】
更に、本実施例ではコンプレッサ10は内部中間圧型の多段(2段)圧縮式ロータリコンプレッサを用いて説明したが、本発明に使用可能なコンプレッサはこれに限定されるものではなく、2段以上の圧縮要素を備えた多段圧縮式コンプレッサであれば本発明は有効である。
【0052】
【発明の効果】
以上詳述する如く本発明によれば、ガスクーラをロールドチューブオンシートタイプの熱交換器にて構成して目詰まり等による放熱効果の低下を未然に回避し、且つ、全体の小型化を図りながら、中間冷却回路における放熱効果を確保し、コンプレッサの運転効率の向上を図ることができるようになる。
【図面の簡単な説明】
【図1】 本発明の冷媒サイクル装置に使用する実施例のロータリコンプレッサの縦断面図である。
【図2】 本発明の冷媒サイクル装置の冷媒回路図である。
【図3】 ロールドチューブオンシートタイプの熱交換器の拡大図である。
【図4】 従来の冷媒サイクル装置の冷媒回路図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
12 密閉容器
14 電動要素
32 第1の回転圧縮要素
34 第2の回転圧縮要素
92、94 冷媒導入管
96 冷媒吐出管
150 中間冷却回路
152 スパイラルチューブ
154 ガスクーラ
154a 熱交換器
154b 金属板
154c 冷媒配管
155 ファン
156 膨張弁(絞り手段)
157 蒸発器
160 内部熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transcritical refrigerant cycle apparatus that is configured by sequentially connecting a compressor, a gas cooler, a throttle means, and an evaporator, and that has a high pressure side at a supercritical pressure.
[0002]
[Prior art]
In this type of conventional refrigerant cycle apparatus, a rotary compressor (compressor), a gas cooler, a throttle means (expansion valve, etc.), an evaporator, and the like are sequentially connected in an annular manner to form a refrigerant cycle (refrigerant circuit). Then, the refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the rotary compression element of the rotary compressor, and is compressed by the operation of the roller and the vane to become a high temperature and high pressure refrigerant gas. It is discharged to the gas cooler through the silencer chamber. The refrigerant gas radiates heat in the gas cooler, and is then squeezed by the squeezing means and supplied to the evaporator. Therefore, the refrigerant evaporates, and at that time, the cooling effect is exhibited by absorbing heat from the surroundings.
[0003]
Here, in recent years, in order to deal with global environmental problems, even in this type of refrigerant cycle, carbon dioxide (CO 2 ), which is a natural refrigerant, is used as a refrigerant without using conventional chlorofluorocarbon, and the high pressure side is used as a supercritical pressure. Devices using transcritical refrigerant cycles to operate have been developed.
[0004]
In such a transcritical refrigerant cycle device, in order to prevent the liquid refrigerant from returning and compressing into the compressor, an accumulator is disposed on the low pressure side between the outlet side of the evaporator and the suction side of the compressor, This accumulator is configured to store liquid refrigerant and suck only gas into the compressor. And the throttle means was adjusted so that the liquid refrigerant in an accumulator may not return to a compressor (for example, refer to patent documents 1).
[0005]
[Patent Document 1]
Japanese Examined Patent Publication No. 7-18602 [0006]
However, providing an accumulator on the low-pressure side of the refrigerant cycle requires a larger amount of refrigerant filling. Further, in order to prevent liquid back, the opening of the throttle means must be reduced or the capacity of the accumulator must be increased, leading to a reduction in cooling capacity and an increase in installation space. Therefore, in order to eliminate the liquid compression in the compressor without providing such an accumulator, the applicant tried to develop the refrigerant cycle apparatus shown in FIG.
[0007]
In FIG. 4, reference numeral 10 denotes an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor, and a first driven by an electric element 14 as a driving element in the hermetic container 12 and a rotating shaft 16 of the electric element 14. The rotary compression element 32 and the second rotary compression element 34 are provided.
[0008]
The operation of the transcritical refrigerant cycle device in this case will be described. The low-pressure refrigerant sucked from the refrigerant introduction pipe 94 of the compressor 10 is compressed by the first rotary compression element 32 to be an intermediate pressure, and is discharged into the sealed container 12. Thereafter, the refrigerant leaves the refrigerant introduction pipe 92 and flows into the intermediate cooling circuit 150A. The intermediate cooling circuit 150A is provided so as to pass through the gas cooler 154A, where it dissipates heat by an air cooling method. Here, the intermediate pressure refrigerant is deprived of heat by the gas cooler 154A.
[0009]
Thereafter, the second rotary compression element 34 is sucked into the second stage of compression and becomes a high-temperature and high-pressure refrigerant gas, which is discharged to the outside through the refrigerant discharge pipe 96. At this time, the refrigerant is compressed to an appropriate supercritical pressure.
[0010]
The refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154A, where it is radiated by the air cooling method, and then passes through the internal heat exchanger 160. The refrigerant is further cooled by taking heat away from the low-pressure side refrigerant that has left the evaporator 157. Thereafter, the refrigerant is depressurized by the expansion valve 156, and in this process, a gas / liquid mixed state is obtained, and then flows into the evaporator 157 to evaporate. The refrigerant coming out of the evaporator 157 passes through the internal heat exchanger 160, where it is heated by taking heat from the high-pressure side refrigerant.
[0011]
The refrigerant heated by the internal heat exchanger 160 repeats a cycle of being sucked into the first rotary compression element 32 of the rotary compressor 10 from the refrigerant introduction pipe 94. In this way, the refrigerant that has come out of the evaporator 157 is heated by the internal heat exchanger 160 with the high-pressure side refrigerant, so that the degree of superheat can be obtained, and the compressor can be provided without providing an accumulator or the like on the low-pressure side. The liquid back into which the liquid refrigerant is sucked into 10 can be reliably prevented, and the disadvantage that the compressor 10 is damaged by the liquid compression can be avoided.
[0012]
Further, by allowing the refrigerant compressed by the first rotary compression element 32 to pass through the intermediate cooling circuit 150A, it can be effectively cooled by the gas cooler 154A, and the compression efficiency of the second rotary compression element 34 is improved. Can be achieved.
[0013]
[Problems to be solved by the invention]
Here, as the gas cooler 154A, a fin-and-tube type heat exchanger comprising a number of fins for heat exchange and refrigerant piping provided through the fins is conventionally used, and the fan is used to ventilate the gas cooler 154A. And air-cooled. However, when such a gas cooler 154A is used in a poor environment like a vending machine installed outdoors, there arises a problem that the fins are clogged with dust or the like and the heat exchange capability is lowered. Therefore, it is conceivable to configure the gas cooler with a rolled tube on sheet type heat exchanger in which the whole is spirally wound.
[0014]
In this rolled tube on sheet type heat exchanger, a refrigerant pipe is welded and fixed in a meandering manner on a heat conductive metal plate such as a steel plate, and the whole is wound in a rectangular spiral shape in that state, for example. The replacement area is secured and the size is reduced, and there is an advantage that it is less likely to be clogged with dust or the like than a fin-and-tube heat exchanger.
[0015]
The present invention has been made to solve the conventional technical problem, and in a refrigerant cycle device in which the high pressure side is a supercritical pressure, the gas cooler is configured by a rolled tube on sheet type heat exchanger. An object of the present invention is to improve efficiency while taking advantage of the characteristics of the heat exchanger.
[0016]
[Means for Solving the Problems]
That is, in the transcritical refrigerant cycle apparatus of the present invention, the compressor includes first and second compression elements, and the gas cooler is a rolled tube including a thermally conductive plate material and a refrigerant pipe attached to the plate material. This is an on-sheet type heat exchanger, and the gas cooler is assembled by winding it in a spiral shape, and a fan for air-cooling the gas cooler and a refrigerant discharged from the first compression element an intermediate cooling circuit for dissipating provided, arranged gas cooler on the air suction side of the fan, since the place of the intermediate cooling circuit to the air discharge side of the fan, the refrigerant flowing through the intermediate cooling circuit, by ventilation for cooling the gas cooler It becomes possible to cool effectively.
[0017]
In addition to the above-described invention, the transcritical refrigerant cycle device according to the second aspect of the invention is arranged so that the wind by the fan passes in the axial direction of the vortex of the gas cooler, so that a reduction in the heat radiation effect due to clogging or the like is avoided. Will be able to.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment of a compressor used in the transcritical refrigerant cycle apparatus of the present invention, which includes a first rotary compression element (first compression element) 32 and a second rotary compression element (second compression element) 34. FIG. 2 is a longitudinal sectional view of the internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10 provided, and FIG. 2 is a refrigerant circuit diagram of the transcritical refrigerant cycle apparatus of the present invention.
[0019]
In each figure, reference numeral 10 denotes an internal intermediate pressure type multistage compression rotary compressor that uses carbon dioxide (CO 2 ) as a refrigerant. The compressor 10 includes a cylindrical sealed container 12 made of a steel plate, and an internal space of the sealed container 12. The electric element 14 as a driving element arranged and housed on the upper side, the first rotary compression element 32 (first stage) arranged on the lower side of the electric element 14 and driven by the rotating shaft 16 of the electric element 14 and the first The rotary compression mechanism section 18 is composed of two rotary compression elements 34 (second stage).
[0020]
The sealed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a generally bowl-shaped end cap (lid body) 12B that closes the upper opening of the container body 12A. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring is omitted) 20 for supplying power to the electric element 14 is mounted in the mounting hole 12D. It has been.
[0021]
The electric element 14 is a so-called magnetic pole concentrated winding type DC motor, and is inserted into the stator 22 in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12, and is inserted inside the stator 22 with a slight gap therebetween. The rotor 24 is installed. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction. The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. Similarly to the stator 22, the rotor 24 is formed of a laminated body 30 of electromagnetic steel plates, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0022]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38 and a lower cylinder 40 disposed above and below the intermediate partition plate 36, and the upper and lower cylinders 38, The upper and lower rollers 46 and 48 are rotated eccentrically by upper and lower eccentric portions 42 and 44 provided on the rotary shaft 16 with a phase difference of 180 degrees, and the upper and lower cylinders are in contact with the upper and lower rollers 46 and 48. 38 and 40 are divided into a low pressure chamber side and a high pressure chamber side, respectively, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed to support the bearing of the rotary shaft 16. The upper support member 54 and the lower support member 56 are also used as the supporting members.
[0023]
On the other hand, the upper support member 54 and the lower support member 56 are respectively provided with a suction passage 60 (the upper suction passage is not shown) that communicates with the inside of the upper and lower cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed. Discharge silencing chambers 62 and 64 formed by closing the recessed portion with an upper cover 66 and a lower cover 68 are provided.
[0024]
The discharge silencer chamber 64 and the inside of the sealed container 12 are communicated with each other through a communication passage that penetrates the upper and lower cylinders 38 and 40 and the intermediate partition plate 36, and an intermediate discharge pipe 121 is provided upright at the upper end of the communication passage. The intermediate pressure refrigerant gas compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0025]
And, as the refrigerant, the above-mentioned carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, is used as the refrigerant, and the oil as the lubricating oil is, for example, mineral oil (mineral oil), Existing oils such as alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.
[0026]
On the side surface of the container main body 12A of the sealed container 12, the suction passage 60 (upper side is not shown) of the upper support member 54 and the lower support member 56, the discharge silencer chamber 62, the upper side of the upper cover 66 (on the lower end of the electric element 14). Sleeves 141, 142, 143, and 144 are welded and fixed at positions corresponding to (substantially corresponding positions). One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with a suction passage (not shown) of the upper cylinder 38. The refrigerant introduction pipe 92 reaches the sleeve 144 via an intermediate cooling circuit 150 to be described later, and the other end is inserted and connected into the sleeve 144 to communicate with the sealed container 12.
[0027]
Here, the intermediate cooling circuit 150 described above is for cooling the refrigerant compressed by the first rotary compression element 32, and the entirety is constituted by the refrigerant introduction pipe 92 described above. The intermediate cooling circuit 150 is arranged to be air-cooled by ventilation by a fan 155 for air-cooling a gas cooler 154 to be described later. In this case, a part of the refrigerant introduction pipe 92 of the intermediate cooling circuit 150 is configured by a spiral tube 152 having a large number of strip-like or needle-like heat exchange fins, and this spiral tube 152 serves as a gas cooler 154. It arrange | positions so that it may air-cool by the ventilation of the fan 155 for air-cooling.
[0028]
That is, in the embodiment, the gas cooler 154 is disposed on the air suction side of the fan 155, and the spiral tube 152 is disposed on the air discharge side of the fan 155.
[0029]
Since the heat exchange area is increased by the spiral tube 152, the refrigerant flowing in the spiral tube 152 can be effectively radiated by receiving a cooling action by the ventilation of the fan 155 of the gas cooler 154. Thereby, the refrigerant can be further cooled to improve the heat dissipation effect of the intermediate cooling circuit 150.
[0030]
In addition, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected in the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. In addition, a refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 communicates with the discharge silencer chamber 62.
[0031]
Next, in FIG. 2, the compressor 10 mentioned above comprises a part of refrigerant circuit of the transcritical refrigerant cycle apparatus shown in FIG. In addition, the refrigerant cycle apparatus of an Example is applied to a vending machine, for example. That is, the refrigerant discharge pipe 96 of the compressor 10 is connected to the inlet of the gas cooler 154. Here, as shown in FIG. 3, the gas cooler 154 includes a rolled tube on sheet type heat exchanger 154 a, and the above-described air cooling fan 155 is installed corresponding to the gas cooler 154. A heat exchanger 154a constituting the gas cooler 154 includes a heat conductive metal plate 154b (plate material) such as a steel plate and a refrigerant pipe 154c attached to the metal plate 154b by welding (one end of the refrigerant pipe 154c is discharged from the refrigerant). The other end is connected to the pipe 96, and the other end is connected to the pipe to the internal heat exchanger 160), and the whole is wound in a rectangular spiral shape. The assembly method of the rolled tube on sheet type heat exchanger 154a is as follows. First, the refrigerant pipe 154c is welded and fixed in a meandering manner on the heat conductive metal plate 154b. It is assembled by winding with a predetermined interval.
[0032]
The heat exchanger 154a assembled by such a method is installed so that the wind from the fan 155 passes in the axial direction of the vortex of the heat exchanger 154a. Accordingly, a large heat exchange area is ensured despite being compact, and the high-temperature and high-pressure refrigerant gas from the second rotary compression element 34 of the compressor 10 that has flowed into the gas cooler 154 can be effectively cooled.
[0033]
Further, the heat exchanger 154a is less likely to be clogged with dust or the like as compared with the conventional fin tube type heat exchanger, so that the heat exchanger 154a is inferior as when used in a vending machine installed outdoors. Even in a difficult environment, it is possible to avoid a decrease in heat exchange capacity due to clogging. Further, as described above, since a part of the spiral tube 152 of the refrigerant introduction pipe 92 constituting the intermediate cooling circuit 150 is arranged to be cooled by the ventilation of the fan 155 for cooling the gas cooler 154, the intermediate cooling circuit is arranged. The refrigerant flowing through 150 can also be effectively cooled.
[0034]
Furthermore, since the refrigerant introduction pipe 92 of the intermediate cooling circuit 150 is not attached to the gas cooler 154, the assembly workability of the gas cooler 154 is not deteriorated.
[0035]
Then, the piping exiting this gas cooler 154 passes through the internal heat exchanger 160. The internal heat exchanger 160 is for exchanging heat between the high-pressure refrigerant coming out of the gas cooler 154 and the low-pressure refrigerant coming out of the evaporator 157.
[0036]
The pipe that has passed through the internal heat exchanger 160 reaches an expansion valve 156 as a throttle means. The outlet of the expansion valve 156 is connected to the inlet of the evaporator 157, and the pipe exiting the evaporator 157 is connected to the refrigerant introduction pipe 94 via the internal heat exchanger 160.
[0037]
Next, the operation of the transcritical refrigerant cycle apparatus of the present invention having the above configuration will be described. When the stator coil 28 of the electric element 14 of the compressor 10 is energized via the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 rotate eccentrically in the upper and lower cylinders 38 and 40.
[0038]
As a result, the low-pressure refrigerant gas sucked into the low-pressure chamber side of the cylinder 40 from the suction port (not shown) via the suction passage 60 formed in the refrigerant introduction pipe 94 and the lower support member 56 is transferred between the roller 48 and the vane 52. It is compressed by the operation to become an intermediate pressure, and is discharged from the intermediate discharge pipe 121 into the sealed container 12 through a communication path (not shown) from the high pressure chamber side of the lower cylinder 40. As a result, the inside of the sealed container 12 becomes an intermediate pressure.
[0039]
The intermediate-pressure refrigerant gas in the sealed container 12 exits the sleeve 144 and enters the refrigerant introduction pipe 92 and passes through the intermediate cooling circuit 150. The refrigerant dissipates heat in an air-cooling manner by passing air through the fan 155 of the gas cooler 154 in the course of passing through the intermediate cooling circuit 150, particularly the spiral tube 152 described above. Thus, since the refrigerant gas of intermediate pressure compressed by the first rotary compression element 32 can be effectively cooled by passing through the intermediate cooling circuit 150, the temperature rise in the sealed container 12 is suppressed, The compression efficiency in the second rotary compression element 34 can also be improved.
[0040]
The cooled intermediate pressure refrigerant gas is sucked from a suction port (not shown) into a low pressure chamber side of the upper cylinder 38 of the second rotary compression element 34 via a suction passage (not shown) formed in the upper support member 54. Then, the second stage compression is performed by the operation of the roller 46 and the vane 50, and the refrigerant gas becomes a high-pressure and high-temperature refrigerant gas, passes through a discharge port (not shown) from the high-pressure chamber side, and passes through a discharge silencer chamber 62 formed in the upper support member 54. The refrigerant is discharged from the refrigerant discharge pipe 96 to the outside. At this time, the refrigerant is compressed to an appropriate supercritical pressure.
[0041]
The refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154, where it dissipates heat by the fan 155 in an air cooling manner, and then exits the gas cooler 154 and passes through the internal heat exchanger 160. The refrigerant is further cooled by taking heat away from the low-pressure side refrigerant. The high-pressure side refrigerant gas cooled by the internal heat exchanger 160 reaches the expansion valve 156. Note that the refrigerant gas is still in a gaseous state at the inlet of the expansion valve 156. The refrigerant is made into a gas / liquid two-phase mixture due to the pressure drop in the expansion valve 156 and flows into the evaporator 157 in this state. Therefore, the refrigerant evaporates and exhibits a cooling action by absorbing heat from the air.
[0042]
As described above, the intermediate pressure refrigerant gas compressed by the first rotary compression element 32 is caused to flow through the intermediate cooling circuit 150 including the spiral tube 152 to dissipate heat, thereby suppressing the temperature rise in the sealed container 12. As a result, the compression efficiency of the second rotary compression element 34 can be improved, and in addition, the refrigerant gas compressed by the second rotary compression element 34 is used as a rolled tube on sheet type heat exchanger. By cooling with the gas cooler 154 provided with 154a, the cooling capacity of the evaporator 157 can be improved due to the effect of maintaining the heat dissipation capacity.
[0043]
Thereafter, the refrigerant flows out of the evaporator 157 and passes through the internal heat exchanger 160. Therefore, heat is taken from the high-pressure side refrigerant and is subjected to a heating action. In this way, the temperature of the evaporator 157 evaporates to a low temperature, and the refrigerant exiting the evaporator 157 may not be completely in a gaseous state but in a liquid mixture. Therefore, by passing through the internal heat exchanger 160 and exchanging heat with the high-pressure side refrigerant, the refrigerant is superheated and becomes completely gas. Thereby, without providing an accumulator on the low pressure side, it is possible to reliably prevent the liquid back into which the liquid refrigerant is sucked into the compressor 10, and to avoid the disadvantage that the compressor 10 is damaged by the liquid compression.
[0044]
The refrigerant heated by the internal heat exchanger 160 repeats a cycle of being sucked into the first rotary compression element 32 of the compressor 10 from the refrigerant introduction pipe 94.
[0045]
Thus, a rolled tube on sheet type heat exchanger comprising the heat conductive metal plate 154b (plate material) and the refrigerant pipe 154c attached to the metal plate 154b and wound entirely in a rectangular spiral shape. The gas cooler 154 is configured by 154a, and an intermediate cooling circuit 150 for dissipating the refrigerant discharged from the first rotary compression element 32 is provided. The intermediate cooling circuit 150 is provided with a fan 155 for air-cooling the gas cooler 154. Therefore, the refrigerant flowing through the intermediate cooling circuit 150 can be effectively cooled by the ventilation of the fan 155 that air-cools the rolled tube on sheet type gas cooler 154.
[0046]
As a result, the heat dissipation effect in the intermediate cooling circuit 150 can be ensured while avoiding a decrease in the heat dissipation effect due to clogging of the gas cooler 154 and the like. At this time, since it is not necessary to attach the pipe of the intermediate cooling circuit 150 to the metal plate 154b of the gas cooler 154, the structure of the gas cooler 154 can be simplified and the production cost can be reduced.
[0047]
Further, a part of the refrigerant introduction pipe 92 constituting the intermediate cooling circuit 150 is constituted by a spiral tube 152 having a large number of strip-like or needle-like heat exchange fins, and this spiral tube 152 cools the gas cooler 154 by air. Therefore, the heat dissipation effect of the intermediate cooling circuit 150 can be improved because the air is cooled by the ventilation of the fan 155.
[0048]
In this embodiment, at least a part of the refrigerant introduction pipe 92 of the intermediate cooling circuit 150 is constituted by a spiral tube 152, and the spiral tube 152 is air-cooled by ventilation of a fan 155 for air-cooling the gas cooler 154. However, the present invention is not limited to this. For example, a part of the refrigerant introduction pipe 92 constituting the intermediate cooling circuit 150 may be provided integrally with the heat exchanger 154a of the gas cooler 154.
[0049]
In this case, a part (configured separately) of the refrigerant introduction pipe 92 is welded and fixed independently of the refrigerant pipe 154c connected to the refrigerant discharge pipe 96 on the metal plate 154b, and the whole is rectangular. The heat exchanger 154a is configured by winding in a spiral shape. As a result, the high pressure side including the intermediate cooling circuit 150 and the gas cooler 154 can be further reduced in size, and the installation space for the transcritical refrigerant cycle (in the embodiment, the refrigerant cycle of the vending machine) can be further reduced. Become.
[0050]
In this embodiment, carbon dioxide is used as the refrigerant. However, the refrigerant is not limited thereto, and various refrigerants that can be used in the transcritical refrigerant cycle are applicable.
[0051]
Further, in the present embodiment, the compressor 10 is described using an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor, but the compressor usable in the present invention is not limited to this, and two or more stages are used. The present invention is effective if it is a multistage compression type compressor provided with a compression element.
[0052]
【The invention's effect】
As described above in detail, according to the present invention, the gas cooler is configured by a rolled tube on sheet type heat exchanger to prevent a reduction in heat radiation effect due to clogging and the like, and to reduce the overall size. However, the heat dissipation effect in the intermediate cooling circuit can be secured, and the operation efficiency of the compressor can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a rotary compressor of an embodiment used in a refrigerant cycle device of the present invention.
FIG. 2 is a refrigerant circuit diagram of the refrigerant cycle device of the present invention.
FIG. 3 is an enlarged view of a rolled tube on sheet type heat exchanger.
FIG. 4 is a refrigerant circuit diagram of a conventional refrigerant cycle device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Multistage compression rotary compressor 12 Airtight container 14 Electric element 32 1st rotation compression element 34 2nd rotation compression element 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 150 Intermediate cooling circuit 152 Spiral tube 154 Gas cooler 154a Heat exchanger 154b Metal plate 154c Refrigerant piping 155 Fan 156 Expansion valve (throttle means)
157 Evaporator 160 Internal heat exchanger

Claims (2)

コンプレッサ、ガスクーラ、絞り手段及び蒸発器を順次接続して構成され、高圧側が超臨界圧力となる冷媒サイクル装置であって、
前記コンプレッサは、第1及び第2の圧縮要素を備え、
前記ガスクーラは、熱良導性の板材と当該板材に取り付けられた冷媒配管とから成るロールドチューブオンシートタイプの熱交換器であって、
該ガスクーラは、全体が渦状となるように巻くことで組み立てられると共に、
該ガスクーラを空冷するためのファンと、前記第1の圧縮要素から吐出された冷媒を放熱させるための中間冷却回路を設け、
前記ガスクーラを前記ファンの空気吸込側に配置し、前記中間冷却回路を前記ファンの空気吐出側に配置したことを特徴とする遷臨界冷媒サイクル装置。
A refrigerant cycle device configured by sequentially connecting a compressor, a gas cooler, a throttle means, and an evaporator, wherein the high pressure side is a supercritical pressure,
The compressor comprises first and second compression elements;
The gas cooler is a rolled tube on sheet type heat exchanger composed of a thermally conductive plate material and a refrigerant pipe attached to the plate material,
The gas cooler is assembled by winding so that the whole is spiral,
A fan for air-cooling the gas cooler, an intermediate cooling circuit for radiating heat of the refrigerant discharged from the first compression element is provided,
The transcritical refrigerant cycle device, wherein the gas cooler is disposed on an air suction side of the fan, and the intermediate cooling circuit is disposed on an air discharge side of the fan .
前記ガスクーラの渦の軸方向に前記ファンによる風が通過するように配置したことを特徴とする請求項1の遷臨界冷媒サイクル装置。 2. The transcritical refrigerant cycle device according to claim 1 , wherein the fan is arranged so that the wind from the fan passes in the axial direction of the vortex of the gas cooler .
JP2003047232A 2003-02-25 2003-02-25 Transcritical refrigerant cycle equipment Expired - Fee Related JP4115296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047232A JP4115296B2 (en) 2003-02-25 2003-02-25 Transcritical refrigerant cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047232A JP4115296B2 (en) 2003-02-25 2003-02-25 Transcritical refrigerant cycle equipment

Publications (2)

Publication Number Publication Date
JP2004257611A JP2004257611A (en) 2004-09-16
JP4115296B2 true JP4115296B2 (en) 2008-07-09

Family

ID=33113532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047232A Expired - Fee Related JP4115296B2 (en) 2003-02-25 2003-02-25 Transcritical refrigerant cycle equipment

Country Status (1)

Country Link
JP (1) JP4115296B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333228C (en) * 2005-01-26 2007-08-22 清华大学 Microchannel slab internal heat exchanger of overcritical Co2 refrigerating circulation
JP2006266518A (en) * 2005-03-22 2006-10-05 Sanyo Electric Co Ltd Air conditioning system
JP4632897B2 (en) * 2005-08-12 2011-02-16 三洋電機株式会社 Refrigeration apparatus and cooling storage with refrigeration apparatus
JP2009024884A (en) * 2005-11-04 2009-02-05 Panasonic Corp Refrigerating cycle device and cold insulation cabinet
WO2009069732A1 (en) * 2007-11-30 2009-06-04 Daikin Industries, Ltd. Freezing apparatus
CN101946137B (en) * 2008-02-19 2013-08-28 开利公司 Refrigerant vapor compression system
JP5914845B2 (en) 2011-04-28 2016-05-11 パナソニックIpマネジメント株式会社 Refrigeration equipment
CN111706404B (en) * 2020-05-12 2022-08-30 中国核动力研究设计院 Supercritical carbon dioxide dry gas sealing device with spiral cooling structure and method

Also Published As

Publication number Publication date
JP2004257611A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4208620B2 (en) Refrigerant cycle equipment
JP4219198B2 (en) Refrigerant cycle equipment
TW200305687A (en) Multistage rotary compressor and refrigeration circuit system
KR20040041040A (en) Multi-stage compression type rotary compressor and cooling device
KR20060051710A (en) Compressor
JP4039921B2 (en) Transcritical refrigerant cycle equipment
JP4115296B2 (en) Transcritical refrigerant cycle equipment
JP2005146987A (en) Heat exchanger integral type horizontal compressor with built-in accumulator
JP2004317073A (en) Refrigerant cycling device
JP2004184022A (en) Cooling medium cycle device
JP3370027B2 (en) 2-stage compression type rotary compressor
JP2004308968A (en) Heat exchanger
JP2005127215A (en) Transition critical refrigerant cycle device
JP4278402B2 (en) Refrigerant cycle equipment
JP4107926B2 (en) Transcritical refrigerant cycle equipment
JP2001153476A (en) Refrigerating plant
JP2003161280A (en) Rotary compressor
JP4036772B2 (en) Transcritical refrigerant cycle equipment
JP3986338B2 (en) Refrigerant circuit using inverter-controlled compressor
JP2000104690A (en) Rotary compressor
JP2004170043A (en) Cooling device
JP2004309012A (en) Refrigerant cycle device
JP2001082368A (en) Two-stage compression type rotary compressor
JP2004270517A (en) Compressor and refrigerant cycle device
JP2006125377A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees