JP2004309012A - Refrigerant cycle device - Google Patents

Refrigerant cycle device Download PDF

Info

Publication number
JP2004309012A
JP2004309012A JP2003102688A JP2003102688A JP2004309012A JP 2004309012 A JP2004309012 A JP 2004309012A JP 2003102688 A JP2003102688 A JP 2003102688A JP 2003102688 A JP2003102688 A JP 2003102688A JP 2004309012 A JP2004309012 A JP 2004309012A
Authority
JP
Japan
Prior art keywords
refrigerant
compression element
discharged
closed container
rotary compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102688A
Other languages
Japanese (ja)
Inventor
Kentaro Yamaguchi
賢太郎 山口
Kenzo Matsumoto
兼三 松本
Kazuya Sato
里  和哉
Akifumi Fuuka
明文 富宇加
Hiromasa Aoki
啓真 青木
Midori Futagawame
緑 二川目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003102688A priority Critical patent/JP2004309012A/en
Publication of JP2004309012A publication Critical patent/JP2004309012A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant cycle device capable of improving the operating performance of a compressor and improving compression efficiency in a second compression element. <P>SOLUTION: A compressor 10 is provided with a motor element 14 serving as a driving element, and first and second rotary compression elements 32, 34 driven by the motor element 14, in a closed container 12, wherein a refrigerant compressed by the first rotary compression element 32 and discharged is sucked and compressed by the second rotary compression element 34 and discharged to a gas cooler 154. An intermediate cooling circuit 150 is provided for radiating heat of the refrigerant discharged from the first rotary compression element 32 in the intermediate cooling circuit 150. After radiating heat of the refrigerant discharged from the first rotary compression element 32, the refrigerant is discharged into the closed container 12, and the refrigerant in the closed container 12 is sucked into the second rotary compression element 34. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、コンプレッサ、ガスクーラ、絞り手段及び蒸発器を順次接続して冷媒回路が構成される冷媒サイクル装置に関するものである。
【0002】
【従来の技術】
従来のこの種冷媒サイクル装置は、コンプレッサ、例えば内部中間圧の多段(2段)圧縮式ロータリコンプレッサとガスクーラ、絞り手段(膨張弁等)及び蒸発器等を順次環状に配管接続して冷媒サイクル(冷媒回路)が構成されている。そして、ロータリコンプレッサの第1の回転圧縮要素(第1の圧縮要素)の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素(第2の圧縮要素)の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経てガスクーラに吐出される。このガスクーラにて冷媒ガスは放熱した後、絞り手段で絞られて蒸発器に供給される。そこで冷媒が蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮するものであった(例えば、特許文献1参照)。
【0003】
【特許文献1】
特公平7−18602号公報
【0004】
【発明が解決しようとする課題】
しかしながら、このような冷媒サイクル装置では、密閉容器内に吐出された冷媒ガスにより密閉容器内に設けられた駆動要素が温められてコンプレッサの運転性能が低下してしまう。
【0005】
更に、密閉容器内に吐出された冷媒により第2の回転圧縮要素が温められ、圧縮効率が低下する恐れがあった。これらにより、コンプレッサの成績係数(COP)が低下するという問題が生じていた。
【0006】
本発明は、係る従来の技術的課題を解決するために成されたものであり、コンプレッサの運転性能の向上を図ると共に、第2の圧縮要素における圧縮効率を改善することができる冷媒サイクル装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
即ち、本発明の冷媒サイクル装置では、コンプレッサは、密閉容器内に駆動要素とこの駆動要素にて駆動される第1及び第2の圧縮要素を備え、第1の圧縮要素で圧縮されて吐出された冷媒を第2の圧縮要素に吸い込んで圧縮し、ガスクーラに吐出すると共に、第1の圧縮要素から吐出された冷媒を放熱させるための中間冷却回路を備え、第1の圧縮要素から吐出された冷媒を中間冷却回路にて放熱させた後、密閉容器内に吐出し、当該密閉容器内の冷媒を第2の圧縮要素に吸い込ませるので、中間冷却回路にて温度低下した冷媒を密閉容器内に吐出することで、密閉容器内及び駆動要素を冷却することができるようになる。
【0008】
また、中間冷却回路にて放熱した冷媒ガスが第2の圧縮要素に吸い込まれるので、第2の圧縮要素の圧縮効率の改善を図ることができるようになる。
【0009】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の冷媒サイクル装置に使用するコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図、図2は本発明の冷媒サイクル装置の冷媒回路図である。
【0010】
各図において、10は二酸化炭素(CO)を冷媒として使用する内部中間圧型多段圧縮式ロータリコンプレッサで、このコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された駆動要素としての電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(第1の圧縮要素)及び第2の回転圧縮要素34(第2の圧縮要素)から成る回転圧縮機構部18にて構成されている。
【0011】
密閉容器12は底部をオイル溜めとし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0012】
電動要素14は所謂磁極集中巻き式のDCモータであり、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24はステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0013】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を、180度の位相差を有して回転軸16に設けられた上下偏心部42、44により偏心回転される上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成されている。
【0014】
一方、上部支持部材54及び下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上部カバー66、下部カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。また、上部支持部材54には吸込管122が形成されており、この吸込管122から密閉容器12内の冷媒が吸込通路、吸込ポートを介して第2の回転圧縮要素34のシリンダ38内に吸い込まれる。
【0015】
そして、冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO)が使用され、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)など既存のオイルが使用される。
【0016】
密閉容器12の容器本体12Aの側面には、ステータ22の上側(電動要素14の上側に略対応する位置)、下部支持部材56の吸込通路60、吐出消音室62及び吐出消音室64に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。そして、スリーブ141内には後述する中間冷却回路150からの冷媒を密閉容器12内に吐出するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は密閉容器12内と連通する。この冷媒導入管92は後述する中間冷却回路150に設けられたガスクーラ154を経てスリーブ144に至り、スリーブ144内に挿入接続されて他端は吐出消音室64と連通する。
【0017】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62と連通する。
【0018】
次に図2において、上述したコンプレッサ10は図2に示す冷媒回路の一部を構成する。即ち、コンプレッサ10の冷媒吐出管96はガスクーラ154の入口に接続される。そして、このガスクーラ154を出た配管は内部熱交換器160を通過する。この内部熱交換器160はガスクーラ154から出た高圧側の冷媒と蒸発器157から出た低圧側の冷媒とを熱交換させるためのものである。
【0019】
第1の内部熱交換器160を通過した冷媒は絞り手段としての膨張弁156に至る。そして、膨張弁156から出た配管は蒸発器157の入口に接続され、蒸発器157を出た配管は内部熱交換器160に至る。そして、内部熱交換器160から出た配管は冷媒導入管94に接続される。
【0020】
以上の構成で次に本発明の冷媒サイクル装置の動作を説明する。ターミナル20及び図示されない配線を介してコンプレッサ10の電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0021】
これにより、冷媒導入管94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧の冷媒ガスは、ローラ48とベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない吐出ポートを通り下部支持部材56に形成された吐出消音室64を経て冷媒導入管92に流入する。
【0022】
そして、冷媒ガスはスリーブ144から出て中間冷却回路150に流入する。この中間冷却回路150がガスクーラ154を通過する過程で空冷方式により放熱する。このように、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスを中間冷却回路150を通過させることで、ガスクーラ154にて効果的に冷却することができる。
【0023】
冷却された中間圧の冷媒ガスは容器本体12Aの側面のステータ22の上側に形成されたスリーブ141から密閉容器12内に吐出される。このように、第1の回転圧縮要素32にて圧縮されて吐出された冷媒ガスを中間冷却回路150にて放熱させた後、密閉容器12内に吐出するので、密閉容器12内を温度低下した冷媒ガスにて効果的に冷却することができるようになる。
【0024】
また、中間冷却回路150にて冷却された冷媒を容器本体12Aの側面のステータ22の上側に吐出させることで、この吐出された冷媒は電動要素14の周囲を通過して下側に設けられた第2の回転圧縮要素34に吸い込まれる。このため、電動要素14が中間冷却回路150にて放熱した冷媒ガスにより冷却されるので、電動要素14の運転性能が向上する。これにより、冷媒ガスの吸込・圧縮・吐出と云うコンプレッサとしての各性能を確保することができるようになり、電動要素14の信頼性の向上を図ることができるようになる。
【0025】
更に、中間冷却回路150にて冷却された冷媒ガスが第2の回転圧縮要素34に吸い込まれるので、第2の回転圧縮要素34における圧縮効率も改善することができるようになる。
【0026】
更にまた、中間冷却回路150にて放熱した冷媒が、一旦、密閉容器12内に吐出された後に、第2の回転圧縮要素34に吸い込まれるので、第2の回転圧縮要素34を密閉容器12内に吐出された冷媒にて冷却できるので、第2の回転圧縮要素34における圧縮効率をより一層向上させることができるようになる。
【0027】
これらにより、第2の回転圧縮要素34に吸い込まれる冷媒が密閉容器12内の熱によって冷媒が温められ、圧縮効率が低下する不都合が無くなるので、コンプレッサ10の成績係数(COP)の向上を図ることができる。
【0028】
上述の如くスリーブ141から密閉容器12内に吐出された冷媒ガスは上部支持部材54に形成され、密閉容器12内と連通する吸込管122より吸い込まれ、図示しない吸込ポートから第2の回転圧縮要素34の上シリンダ38の低圧室側に吸入され、ローラ46とベーン50の動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り、上部支持部材54に形成された吐出消音室62を経て冷媒吐出管96より外部に吐出される。
【0029】
冷媒吐出管96から吐出された冷媒ガスはガスクーラ154に流入し、そこで空冷方式により放熱した後、内部熱交換器160を通過する。冷媒はそこで低圧側の冷媒に熱を奪われて更に冷却される。
【0030】
この内部熱交換器160の存在により、ガスクーラ154を出て、内部熱交換器160を通過する冷媒は、低圧側の冷媒に熱を奪われるので、この分、当該冷媒の過冷却度が大きくなる。そのため、蒸発器157における冷却能力が向上する。
【0031】
係る内部熱交換器160で冷却された高圧側の冷媒ガスは膨張弁156に至る。冷媒は膨張弁156において圧力が低下して、蒸発器157内に流入する。そこで冷媒は蒸発し、空気から吸熱することにより冷却作用を発揮する。
【0032】
このとき、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスを中間冷却回路150を通過させて、密閉容器12内に吐出することで、密閉容器12内及び第2の回転圧縮要素34の冷媒の温度上昇を抑えるという効果と、第2の回転圧縮要素34で圧縮された冷媒ガスを、内部熱交換器160を通過させて、膨張弁156前の冷媒の過冷却度が大きくなるという効果によって、蒸発器157における冷媒の冷却能力が向上する。
【0033】
その後、冷媒は蒸発器157から流出して、内部熱交換器160を通過する。そこで前記高圧側の冷媒から熱を奪い、加熱作用を受けた後、冷媒導入管94からコンプレッサ10の第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0034】
このように、第1の回転圧縮要素32から吐出された冷媒を放熱させるための中間冷却回路150を備え、第1の回転圧縮要素32から吐出された冷媒を中間冷却回路150にて放熱させた後、密閉容器12内に吐出し、当該密閉容器12内の冷媒を第2の回転圧縮要素34に吸い込ませるので、密閉容器12内に吐出された冷媒により、密閉容器12内を冷却することができるようになる。
【0035】
また、中間冷却回路150にて冷却された冷媒を容器本体12Aの側面のステータ22の上側に吐出させることで、この吐出された冷媒は電動要素14の周囲を通過して下側に設けられた第2の回転圧縮要素34に吸い込まれる。このため、電動要素14が中間冷却回路150にて放熱た冷媒ガスにより冷却されるので、電動要素14の運転性能が向上する。これにより、冷媒ガスの吸込・圧縮・吐出と云うコンプレッサとしての各性能を確保することができるようになる。
【0036】
更に、中間冷却回路150にて冷却された冷媒ガスが第2の回転圧縮要素34に吸い込まれるので、第2の回転圧縮要素34における圧縮効率も改善することができるようになる。
【0037】
更にまた、中間冷却回路150にて放熱した冷媒が、一旦、密閉容器12内に吐出された後に、第2の回転圧縮要素34に吸い込まれるので、第2の回転圧縮要素34を密閉容器12内に吐出された冷媒にて冷却することができ、第2の回転圧縮要素34における圧縮効率をより一層向上させることができるようになる。
【0038】
尚、本実施例では、コンプレッサとして多段(2段)圧縮式ロータリコンプレッサ10を使用したが、本発明に使用可能なコンプレッサはこれに限らず、第1及び第2の圧縮要素を備えた内部中間圧型のコンプレッサであれば可能である。
【0039】
また、実施例では、二酸化炭素を冷媒として使用したが、これに限らず、他の冷媒、例えばフッ素系の冷媒や炭化水素系の冷媒など該存の冷媒を用いても構わない。
【0040】
【発明の効果】
以上詳述する如く、本発明の冷媒サイクル装置によれば、コンプレッサは、密閉容器内に駆動要素とこの駆動要素にて駆動される第1及び第2の圧縮要素を備え、第1の圧縮要素で圧縮されて吐出された冷媒を第2の圧縮要素に吸い込んで圧縮し、ガスクーラに吐出すると共に、第1の圧縮要素から吐出された冷媒を放熱させるための中間冷却回路を備え、第1の圧縮要素から吐出された冷媒を中間冷却回路にて放熱させた後、密閉容器内に吐出し、当該密閉容器内の冷媒を第2の圧縮要素に吸い込ませるので、中間冷却回路にて温度低下した冷媒を密閉容器内に吐出することで、密閉容器内を冷却することができるようになる。これにより、密閉容器内の温度上昇を抑えることができるようになる。
【0041】
また、中間冷却回路にて放熱した冷媒ガスにより駆動要素も冷却されるので、駆動要素の運転性能が向上する。これにより、冷媒ガスの吸込・圧縮・吐出と云うコンプレッサとしての各性能を確保することができるようになり、駆動要素の信頼性の向上を図ることができるようになる。
【0042】
更に、中間冷却回路にて冷却された冷媒ガスが第2の圧縮要素に吸い込まれるので、第2の圧縮要素における圧縮効率も改善することができるようになる。
【0043】
更にまた、中間冷却回路にて放熱した冷媒が、一旦、密閉容器内に吐出された後に、第2の圧縮要素に吸い込まれるので、第2の圧縮要素を密閉容器内に吐出された冷媒にて冷却することができるので、第2の圧縮要素における圧縮効率をより一層向上させることができるようになる。
【0044】
総じて、コンプレッサの成績係数の向上を図ることができるようになる。
【図面の簡単な説明】
【図1】本発明の冷媒サイクル装置を構成する内部中間圧型多段圧縮式ロータリコンプレッサの縦断面図である。
【図2】本発明の冷媒サイクル装置の冷媒回路図である。
【符号の説明】
10 コンプレッサ
12 密閉容器
12A 容器本体
12B エンドキャップ
14 電動要素
16 回転軸
22 ステータ
32 第1の回転圧縮要素
34 第2の回転圧縮要素
92、94 冷媒導入管
96 冷媒吐出管
122 吸込管
141、142、143、144 スリーブ
150 中間冷却回路
154 ガスクーラ
156 膨張弁
157 蒸発器
160 内部熱交換器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerant cycle device in which a compressor, a gas cooler, a throttle device, and an evaporator are sequentially connected to form a refrigerant circuit.
[0002]
[Prior art]
This type of conventional refrigerant cycle device is configured such that a compressor, for example, a multi-stage (two-stage) compression type rotary compressor having an internal intermediate pressure, a gas cooler, a throttle means (expansion valve, etc.), an evaporator, and the like are sequentially connected in a ring-like manner to form a refrigerant cycle ( Refrigerant circuit). Refrigerant gas is drawn into the low-pressure chamber side of the cylinder from the suction port of the first rotary compression element (first compression element) of the rotary compressor, and is compressed by the operation of the rollers and the vanes to become an intermediate pressure, thereby forming a high-pressure chamber of the cylinder. From the side, it is discharged into the closed container through the discharge port and the discharge muffling chamber. Then, the intermediate-pressure refrigerant gas in the closed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element (second compression element), and the second-stage compression is performed by the operation of the roller and the vane. Is performed to form a high-temperature and high-pressure refrigerant gas, which is discharged from the high-pressure chamber through a discharge port and a discharge muffling chamber to a gas cooler. After the refrigerant gas radiates heat in this gas cooler, it is throttled by throttle means and supplied to the evaporator. Then, the refrigerant evaporates, and at that time, absorbs heat from the surroundings to exert a cooling function (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Publication No. 7-18602
[Problems to be solved by the invention]
However, in such a refrigerant cycle device, the driving element provided in the closed container is heated by the refrigerant gas discharged into the closed container, and the operating performance of the compressor is reduced.
[0005]
Further, the second rotary compression element is heated by the refrigerant discharged into the closed container, and the compression efficiency may be reduced. As a result, there has been a problem that the coefficient of performance (COP) of the compressor is reduced.
[0006]
The present invention has been made to solve such a conventional technical problem, and aims to improve the operation performance of a compressor and to provide a refrigerant cycle device capable of improving the compression efficiency of a second compression element. The purpose is to provide.
[0007]
[Means for Solving the Problems]
That is, in the refrigerant cycle device of the present invention, the compressor includes the driving element and the first and second compression elements driven by the driving element in the closed container, and is compressed and discharged by the first compression element. The intermediate refrigerant circuit for sucking the compressed refrigerant into the second compression element, discharging the refrigerant to the gas cooler, and radiating the refrigerant discharged from the first compression element, and discharging the refrigerant discharged from the first compression element. After releasing the refrigerant in the intermediate cooling circuit, the refrigerant is discharged into the closed container, and the refrigerant in the closed container is sucked into the second compression element. By discharging, the inside of the closed container and the drive element can be cooled.
[0008]
Further, since the refrigerant gas radiated in the intermediate cooling circuit is sucked into the second compression element, the compression efficiency of the second compression element can be improved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional side view of an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of a compressor used in the refrigerant cycle device of the present invention. FIG. 2 is a refrigerant circuit diagram of the refrigerant cycle device of the present invention.
[0010]
In each of the drawings, reference numeral 10 denotes an internal intermediate pressure type multistage compression type rotary compressor using carbon dioxide (CO 2 ) as a refrigerant. The compressor 10 includes a cylindrical hermetic container 12 made of a steel plate and an inner space of the hermetic container 12. An electric element 14 as a driving element disposed and housed on the upper side, and a first rotary compression element 32 (first compression element) disposed below the electric element 14 and driven by the rotating shaft 16 of the electric element 14. And the second rotary compression element 34 (second compression element).
[0011]
The closed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (lid) 12B that closes an upper opening of the container body 12A. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring omitted) 20 for supplying electric power to the electric element 14 is mounted in the mounting hole 12D. Have been.
[0012]
The electric element 14 is a so-called magnetic pole concentrated winding type DC motor, and is inserted into the stator 22 annularly attached along the inner peripheral surface of the upper space of the closed casing 12 with a slight interval provided inside the stator 22. And an installed rotor 24. The rotor 24 is fixed to the rotating shaft 16 that extends vertically through the center. The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel sheets are laminated, and a stator coil 28 wound around teeth of the laminated body 26 by a direct winding (concentrated winding) method. The rotor 24 is formed of a laminated body 30 of electromagnetic steel sheets similarly to the stator 22, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0013]
An intermediate partition plate 36 is held between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38, a lower cylinder 40 disposed above and below the intermediate partition plate 36, The upper and lower rollers 46 and 48 are eccentrically rotated by upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees in the inside 40, and the upper and lower cylinders abut on the upper and lower rollers 46 and 48. The vanes 50 and 52 partitioning the inside of the cylinders 38 and 40 into a low pressure chamber side and a high pressure chamber side, respectively, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed so that the bearing of the rotating shaft 16 is closed. An upper supporting member 54 and a lower supporting member 56 are also used as supporting members.
[0014]
On the other hand, the upper support member 54 and the lower support member 56 have a suction passage 60 (the upper suction passage is not shown) communicating with the insides of the upper and lower cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed. The discharge muffling chambers 62 and 64 formed by closing the recess with the upper cover 66 and the lower cover 68 are provided. Further, a suction pipe 122 is formed in the upper support member 54, and the refrigerant in the sealed container 12 is sucked into the cylinder 38 of the second rotary compression element 34 from the suction pipe 122 via a suction passage and a suction port. It is.
[0015]
As the refrigerant, the above-mentioned carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, is used for the earth environment, is used. Existing oils such as alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.
[0016]
The side surface of the container body 12A of the closed container 12 corresponds to the upper side of the stator 22 (position substantially corresponding to the upper side of the electric element 14), the suction passage 60 of the lower support member 56, the discharge muffling chamber 62, and the discharge muffling chamber 64. In this position, sleeves 141, 142, 143 and 144 are respectively welded and fixed. One end of a refrigerant introduction pipe 92 for discharging a refrigerant from an intermediate cooling circuit 150 to be described later into the closed container 12 is inserted and connected into the sleeve 141. One end of the refrigerant introduction pipe 92 is connected to the inside of the closed container 12. Communicate. The refrigerant introduction pipe 92 reaches a sleeve 144 via a gas cooler 154 provided in an intermediate cooling circuit 150 described later, is inserted and connected into the sleeve 144, and the other end communicates with the discharge muffling chamber 64.
[0017]
One end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. Further, a refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 communicates with the discharge muffling chamber 62.
[0018]
Next, in FIG. 2, the above-described compressor 10 forms a part of the refrigerant circuit shown in FIG. That is, the refrigerant discharge pipe 96 of the compressor 10 is connected to the inlet of the gas cooler 154. Then, the pipe exiting the gas cooler 154 passes through the internal heat exchanger 160. The internal heat exchanger 160 is for exchanging heat between the high-pressure refrigerant discharged from the gas cooler 154 and the low-pressure refrigerant discharged from the evaporator 157.
[0019]
The refrigerant having passed through the first internal heat exchanger 160 reaches an expansion valve 156 as a throttling means. The pipe coming out of the expansion valve 156 is connected to the inlet of the evaporator 157, and the pipe coming out of the evaporator 157 reaches the internal heat exchanger 160. Then, the pipe coming out of the internal heat exchanger 160 is connected to the refrigerant introduction pipe 94.
[0020]
Next, the operation of the refrigerant cycle device of the present invention having the above configuration will be described. When the stator coil 28 of the electric element 14 of the compressor 10 is energized through the terminal 20 and the wiring (not shown), the electric element 14 starts and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 eccentrically rotate inside the upper and lower cylinders 38 and 40.
[0021]
As a result, the low-pressure refrigerant gas sucked into the low-pressure chamber side of the cylinder 40 from the suction port (not shown) through the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56 is supplied to the roller 48 and the vane 52. The refrigerant is compressed by the operation to have an intermediate pressure, and flows from the high-pressure chamber side of the lower cylinder 40 through a discharge port (not shown), through a discharge silence chamber 64 formed in the lower support member 56, into the refrigerant introduction pipe 92.
[0022]
Then, the refrigerant gas flows out of the sleeve 144 and flows into the intermediate cooling circuit 150. While the intermediate cooling circuit 150 passes through the gas cooler 154, heat is radiated by air cooling. As described above, by passing the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 through the intermediate cooling circuit 150, the gas cooler 154 can effectively cool the refrigerant gas.
[0023]
The cooled intermediate-pressure refrigerant gas is discharged into the closed container 12 from a sleeve 141 formed on the side of the container body 12A and above the stator 22. As described above, the refrigerant gas compressed and discharged by the first rotary compression element 32 is radiated by the intermediate cooling circuit 150 and then discharged into the closed container 12, so that the temperature inside the closed container 12 is lowered. Cooling can be effectively performed by the refrigerant gas.
[0024]
In addition, the refrigerant cooled by the intermediate cooling circuit 150 is discharged to the upper side of the stator 22 on the side surface of the container body 12A, so that the discharged refrigerant passes around the electric element 14 and is provided on the lower side. It is sucked into the second rotary compression element 34. For this reason, since the electric element 14 is cooled by the refrigerant gas radiated in the intermediate cooling circuit 150, the operation performance of the electric element 14 is improved. As a result, it is possible to ensure each performance of the compressor such as suction, compression, and discharge of the refrigerant gas, and to improve the reliability of the electric element 14.
[0025]
Further, since the refrigerant gas cooled in the intermediate cooling circuit 150 is sucked into the second rotary compression element 34, the compression efficiency of the second rotary compression element 34 can be improved.
[0026]
Furthermore, since the refrigerant radiated in the intermediate cooling circuit 150 is once discharged into the closed container 12 and then sucked into the second rotary compression element 34, the second rotary compression element 34 is , The compression efficiency of the second rotary compression element 34 can be further improved.
[0027]
As a result, the refrigerant sucked into the second rotary compression element 34 is heated by the heat in the closed container 12, and the inconvenience of lowering the compression efficiency is eliminated, so that the coefficient of performance (COP) of the compressor 10 is improved. Can be.
[0028]
As described above, the refrigerant gas discharged from the sleeve 141 into the closed container 12 is formed on the upper support member 54, is sucked through the suction pipe 122 communicating with the inside of the closed container 12, and is supplied from the suction port (not shown) to the second rotary compression element. 34, is sucked into the low pressure chamber side of the upper cylinder 38, is compressed in the second stage by the operation of the rollers 46 and the vanes 50, and becomes high pressure and high temperature refrigerant gas. The refrigerant is discharged to the outside from the refrigerant discharge pipe 96 through the discharge muffling chamber 62 formed in the member 54.
[0029]
The refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154, radiates heat there by an air cooling method, and then passes through the internal heat exchanger 160. The refrigerant then loses its heat to the low-pressure side refrigerant and is further cooled.
[0030]
Due to the presence of the internal heat exchanger 160, the refrigerant that exits the gas cooler 154 and passes through the internal heat exchanger 160 is deprived of heat by the low-pressure refrigerant, and accordingly, the degree of supercooling of the refrigerant increases. . Therefore, the cooling capacity of the evaporator 157 is improved.
[0031]
The high-pressure side refrigerant gas cooled by the internal heat exchanger 160 reaches the expansion valve 156. The refrigerant decreases in pressure at the expansion valve 156 and flows into the evaporator 157. Then, the refrigerant evaporates and absorbs heat from the air to exert a cooling function.
[0032]
At this time, the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 passes through the intermediate cooling circuit 150 and is discharged into the closed container 12, so that the inside of the closed container 12 and the second rotary compression element The effect of suppressing the temperature rise of the refrigerant of 34 and the refrigerant gas compressed by the second rotary compression element 34 are passed through the internal heat exchanger 160, and the degree of supercooling of the refrigerant before the expansion valve 156 is increased. With this effect, the cooling capacity of the refrigerant in the evaporator 157 is improved.
[0033]
Thereafter, the refrigerant flows out of the evaporator 157 and passes through the internal heat exchanger 160. Therefore, a cycle in which heat is taken from the high-pressure side refrigerant and subjected to a heating action, and then sucked into the first rotary compression element 32 of the compressor 10 from the refrigerant introduction pipe 94 is repeated.
[0034]
Thus, the intermediate cooling circuit 150 for radiating the refrigerant discharged from the first rotary compression element 32 is provided, and the refrigerant discharged from the first rotary compression element 32 is radiated by the intermediate cooling circuit 150. Thereafter, the refrigerant is discharged into the closed container 12 and the refrigerant in the closed container 12 is sucked into the second rotary compression element 34, so that the inside of the closed container 12 can be cooled by the refrigerant discharged into the closed container 12. become able to.
[0035]
In addition, the refrigerant cooled by the intermediate cooling circuit 150 is discharged to the upper side of the stator 22 on the side surface of the container body 12A, so that the discharged refrigerant passes around the electric element 14 and is provided on the lower side. It is sucked into the second rotary compression element 34. For this reason, since the electric element 14 is cooled by the refrigerant gas radiated in the intermediate cooling circuit 150, the operation performance of the electric element 14 is improved. As a result, it is possible to ensure each performance of the compressor such as suction, compression, and discharge of the refrigerant gas.
[0036]
Further, since the refrigerant gas cooled in the intermediate cooling circuit 150 is sucked into the second rotary compression element 34, the compression efficiency of the second rotary compression element 34 can be improved.
[0037]
Furthermore, since the refrigerant radiated in the intermediate cooling circuit 150 is once discharged into the closed container 12 and then sucked into the second rotary compression element 34, the second rotary compression element 34 is And the compression efficiency of the second rotary compression element 34 can be further improved.
[0038]
In the present embodiment, the multi-stage (two-stage) compression type rotary compressor 10 is used as a compressor. However, the compressor that can be used in the present invention is not limited to this, and an internal intermediate having first and second compression elements is used. It is possible with a pressure type compressor.
[0039]
In the embodiment, carbon dioxide is used as the refrigerant. However, the present invention is not limited to this, and other refrigerants such as a fluorine-based refrigerant and a hydrocarbon-based refrigerant may be used.
[0040]
【The invention's effect】
As described in detail above, according to the refrigerant cycle device of the present invention, the compressor includes the driving element and the first and second compression elements driven by the driving element in the closed vessel, and the first compression element An intermediate cooling circuit for sucking the refrigerant compressed and discharged into the second compression element to compress and discharge the refrigerant to the gas cooler, and dissipating the refrigerant discharged from the first compression element; After radiating the refrigerant discharged from the compression element in the intermediate cooling circuit, the refrigerant is discharged into the closed container, and the refrigerant in the closed container is sucked into the second compression element. By discharging the refrigerant into the closed container, the inside of the closed container can be cooled. This makes it possible to suppress a rise in temperature in the closed container.
[0041]
Further, the driving element is also cooled by the refrigerant gas radiated in the intermediate cooling circuit, so that the operation performance of the driving element is improved. As a result, it is possible to ensure each performance of the compressor, that is, suction, compression, and discharge of the refrigerant gas, and to improve the reliability of the drive element.
[0042]
Further, since the refrigerant gas cooled in the intermediate cooling circuit is sucked into the second compression element, the compression efficiency in the second compression element can be improved.
[0043]
Furthermore, since the refrigerant that has radiated heat in the intermediate cooling circuit is once discharged into the closed container and then sucked into the second compression element, the second compression element is discharged by the refrigerant discharged into the closed container. Since the cooling can be performed, the compression efficiency of the second compression element can be further improved.
[0044]
In general, the coefficient of performance of the compressor can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multistage compression type rotary compressor constituting a refrigerant cycle device of the present invention.
FIG. 2 is a refrigerant circuit diagram of the refrigerant cycle device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Compressor 12 Closed container 12A Container main body 12B End cap 14 Electric element 16 Rotary shaft 22 Stator 32 First rotary compression element 34 Second rotary compression element 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 122 Suction pipe 141, 142, 143, 144 Sleeve 150 Intermediate cooling circuit 154 Gas cooler 156 Expansion valve 157 Evaporator 160 Internal heat exchanger

Claims (1)

コンプレッサ、ガスクーラ、絞り手段及び蒸発器を順次接続して冷媒回路が構成される冷媒サイクル装置であって、
前記コンプレッサは、密閉容器内に駆動要素と該駆動要素にて駆動される第1及び第2の圧縮要素を備え、前記第1の圧縮要素で圧縮されて吐出された冷媒を前記第2の圧縮要素に吸い込んで圧縮し、前記ガスクーラに吐出すると共に、
前記第1の圧縮要素から吐出された冷媒を放熱させるための中間冷却回路を備え、
前記第1の圧縮要素から吐出された冷媒を前記中間冷却回路にて放熱させた後、前記密閉容器内に吐出し、当該密閉容器内の冷媒を前記第2の圧縮要素に吸い込ませることを特徴とする冷媒サイクル装置。
A refrigerant cycle device comprising a compressor, a gas cooler, a throttle means, and an evaporator sequentially connected to form a refrigerant circuit,
The compressor includes a driving element and first and second compression elements driven by the driving element in a closed container, and compresses the refrigerant compressed and discharged by the first compression element into the second compression element. While sucking into the element and compressing, discharging to the gas cooler,
An intermediate cooling circuit for radiating the refrigerant discharged from the first compression element,
After radiating the refrigerant discharged from the first compression element in the intermediate cooling circuit, the refrigerant is discharged into the closed container, and the refrigerant in the closed container is sucked into the second compression element. Refrigerant cycle device.
JP2003102688A 2003-04-07 2003-04-07 Refrigerant cycle device Pending JP2004309012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102688A JP2004309012A (en) 2003-04-07 2003-04-07 Refrigerant cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102688A JP2004309012A (en) 2003-04-07 2003-04-07 Refrigerant cycle device

Publications (1)

Publication Number Publication Date
JP2004309012A true JP2004309012A (en) 2004-11-04

Family

ID=33466045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102688A Pending JP2004309012A (en) 2003-04-07 2003-04-07 Refrigerant cycle device

Country Status (1)

Country Link
JP (1) JP2004309012A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770341A3 (en) * 2005-09-30 2010-07-21 Sanyo Electric Co., Ltd. Refrigerant compressor and refrigerant cycle device including the same
CN102230471A (en) * 2011-08-05 2011-11-02 珠海格力节能环保制冷技术研究中心有限公司 Rotary compressor with variable volume
CN102597524A (en) * 2009-11-06 2012-07-18 三菱电机株式会社 Heat pump device, two-stage compressor, and method of operating heat pump device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770341A3 (en) * 2005-09-30 2010-07-21 Sanyo Electric Co., Ltd. Refrigerant compressor and refrigerant cycle device including the same
CN102597524A (en) * 2009-11-06 2012-07-18 三菱电机株式会社 Heat pump device, two-stage compressor, and method of operating heat pump device
CN102230471A (en) * 2011-08-05 2011-11-02 珠海格力节能环保制冷技术研究中心有限公司 Rotary compressor with variable volume

Similar Documents

Publication Publication Date Title
JP4219198B2 (en) Refrigerant cycle equipment
JP4208620B2 (en) Refrigerant cycle equipment
JP2005003239A (en) Refrigerant cycling device
JP2004108334A (en) Refrigerant circuit device
JP4039921B2 (en) Transcritical refrigerant cycle equipment
JP2004116957A (en) Refrigerant cycle system
JP2004317073A (en) Refrigerant cycling device
JP2004184022A (en) Cooling medium cycle device
JP3370027B2 (en) 2-stage compression type rotary compressor
JP4115296B2 (en) Transcritical refrigerant cycle equipment
JP4278402B2 (en) Refrigerant cycle equipment
JP2004309012A (en) Refrigerant cycle device
JP4107926B2 (en) Transcritical refrigerant cycle equipment
JP3986338B2 (en) Refrigerant circuit using inverter-controlled compressor
JP2003166488A (en) Multi-stage compression type rotary compressor
JP2004251150A (en) Multistage compression type rotary compressor
JP2005127215A (en) Transition critical refrigerant cycle device
JP2004251492A (en) Refrigerant cycle device
JP2004251514A (en) Refrigerant cycle device
JP2004170043A (en) Cooling device
JP2004308489A (en) Refrigerant cycle apparatus
JP2004270517A (en) Compressor and refrigerant cycle device
JP4036772B2 (en) Transcritical refrigerant cycle equipment
JP3863799B2 (en) Multi-stage rotary compressor
JP2004317004A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Effective date: 20080708

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Effective date: 20090224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090818

Free format text: JAPANESE INTERMEDIATE CODE: A02