【0001】
【発明の属する技術分野】
本発明は冷媒サイクル装置、特に密閉容器内に駆動要素にて駆動される第1及び第2の圧縮要素を具備して成る多段圧縮式コンプレッサを用いた冷媒サイクル装置に関するものである。
【0002】
【従来の技術】
従来より内部中間圧型多段圧縮式のロータリコンプレッサが開発されている(特許文献1参照)。即ち、係るロータリコンプレッサでは、圧縮機構部を構成する第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧のガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行われて高温高圧のガスとなり、高圧室側より吐出ポート、吐出消音室を経て冷媒吐出管より外部に吐出される。
【0003】
ロータリコンプレッサから吐出された冷媒ガスは冷媒回路の放熱器などに流入し、放熱した後、膨張弁で絞られてエバポレータ(蒸発器)で吸熱し、ロータリコンプレッサの第1の回転圧縮要素に吸入されるサイクルを繰り返す。
【0004】
また、係るロータリコンプレッサに、高低圧差の大きい冷媒、例えば二酸化炭素(CO2)を冷媒として用いた場合、吐出冷媒圧力は高圧となる第2の回転圧縮要素で12MPaGに達し、一方、低段側となる第1の回転圧縮要素で8MPaG(中間圧)となる(第1の回転圧縮要素の吸込圧力は4MPaG)。
【0005】
【特許文献1】
特開平2−294587号公報(F04C23/00)
【0006】
【発明が解決しようとする課題】
ここで、このようなロータリコンプレッサでは圧縮機構部を潤滑するために密閉容器内にオイルを封入しているが、このオイルは冷媒ガスと共に圧縮され、吐出される。第1の回転圧縮要素で圧縮された冷媒ガスは一旦密閉容器内に吐出されるため、オイルの分離が可能であるが、第2の回転圧縮要素から出た冷媒ガス中に含まれるオイルはそのまま密閉容器外に出ていくことになるため、冷媒回路中へのオイルの流出が多くなる。
【0007】
一方、冷媒回路中ではエバポレータで最も温度が低くなるため、流出したオイルはこのエバポレータ内に寝込み易くなり、それにより、冷媒循環に支障を来すと共に、ロータリコンプレッサへのオイルの帰還量が減るため、密閉容器内のオイルレベルが低下し、潤滑やシール特性が悪化する問題があった。
【0008】
本発明は、係る従来の技術的課題を解決するために成されたものであり、エバポレータ内に寝込んだオイルを円滑に回収することができる冷媒サイクル装置を提供するものである。
【0009】
【課題を解決するための手段】
即ち、本発明では多段圧縮式のコンプレッサの第1の圧縮要素から吐出された冷媒を、第2の圧縮要素に吸引させること無くエバポレータに流すためのバイパス回路と、第1の圧縮要素から吐出された冷媒を、第2の圧縮要素に吸い込ませるか、バイパス回路に流すかを制御するための流路制御手段とを備えているので、流路制御手段により、第1の圧縮要素から吐出された冷媒をバイパス回路に流すことで、冷媒を第1の圧縮要素とエバポレータの間で循環させ、エバポレータに寝込んでいるオイルを円滑に密閉容器内に回収することが可能となる。
【0010】
請求項2の発明では上記に加えて、バイパス回路を膨張弁の下流側に接続したので、第1の圧縮要素から吐出された冷媒を膨張弁を経ること無く直接エバポレータに流入させ、冷媒回収に好適な冷媒循環量を確保することができるようになる。
【0011】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の冷媒サイクル装置に使用する多段圧縮式のコンプレッサの実施例として、第1及び第2の回転圧縮要素を備えた内部中間圧型の多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図である。
【0012】
この図において、10は二酸化炭素(CO2)を冷媒として使用する縦型の内部中間圧型多段圧縮式ロータリコンプレッサで、この多段圧縮式ロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された駆動要素14及びこの駆動要素14の下側に配置され、駆動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。
【0013】
密閉容器12は底部をオイル溜めとし、駆動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成されている。エンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには駆動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0014】
駆動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0015】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部(図示せず)に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0016】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44にて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する上部支持部材54及び下部支持部材56にて構成されている。
【0017】
一方、上部支持部材54及び下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上カバー66、下カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0018】
尚、吐出消音室64と密閉容器12内とは、上下シリンダ38、40や中間仕切板36を貫通する図示しない連通路にて連通されており、連通路の上端には中間吐出管121が立設され、この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧の冷媒が密閉容器12内に吐出される。
【0019】
また、第2の回転圧縮要素34の上シリンダ38内部と連通する吐出消音室62の上面開口部を閉塞する上部カバー66は、密閉容器12内を吐出消音室62と駆動要素14側とに仕切る。
【0020】
そして、この場合冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO2)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等既存のオイルが使用される。
【0021】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路60(上側は図示せず)、吐出消音室62、上部カバー66の上側(駆動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上に位置している。また、スリーブ144はスリーブ141と略90度ずれた位置にある。
【0022】
そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の図示しない吸込通路と連通する。この冷媒導入管92は密閉容器12の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0023】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。この冷媒導入管94の他端は後述するアキュムレータ158の下側に接続されている。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒導入管96の一端は吐出消音室62と連通する。
【0024】
前記アキュムレータ158は吸込冷媒の気液分離を行うタンクである。該アキュムレータ158は、密閉容器12の容器本体12Aの上部側面に溶接固定されたブラケット147に、図示しないブラケットにて取り付けられている。
【0025】
次に、図2は本発明をエアコン(空気調和機)に適用した場合の冷媒回路を示しており、上述した多段圧縮式ロータリコンプレッサ10は図2に示すエアコンの冷媒回路の一部を構成する。即ち、多段圧縮式ロータリコンプレッサ10の冷媒吐出管96はガスクーラ154の入口に接続される。このガスクーラ154を出た配管は膨張弁156の出口側の配管160を介してエバポレータ(蒸発器)157の入口に接続される。エバポレータ157の出口は前記アキュムレータ158を介して冷媒導入管94に接続される。
【0026】
また、前記冷媒導入管92からはバイパス配管164(本発明のバイパス回路に相当)が分岐しており、このバイパス配管164は膨張弁156の出口側の配管160(膨張弁156の下流側)に接続されている。更に、バイパス配管164の分岐点より下流側の冷媒導入管92には第1の電磁弁166が設けられると共に、バイパス配管164中には、第2の電磁弁170が接続されている。これら第1の電磁弁166、第2の電磁弁170から本発明の流路制御手段が構成される。
【0027】
そして、第1の電磁弁166が閉じ、第2の電磁弁170が開放された状態では、冷媒導入管92とエバポレータ157はバイパス配管164を介して直接連通される。また、第1の電磁弁166が開放され、第2の電磁弁170が閉じた状態では、冷媒導入管92を介して密閉容器12内と上シリンダ38の図示しない吸込通路とが連通する。
【0028】
図2において161は制御装置であり、この制御装置161は室内空調のための運転指令信号に基づいてロータリコンプレッサ10の運転を制御する。また、制御装置161は例えばエバポレータ157近傍に添設された温度センサ162が検出する室内温度に基づいて、ロータリコンプレッサ10の運転、停止を行うと共に、第1の電磁弁166及び第2の電磁弁170の開閉を制御する。
【0029】
以上の構成で次に動作を説明する。例えば温度センサ162が検出した室内温度が予め設定された設定値より高く上昇して制御装置161に起動指令が入力されると、制御装置161は第1の電磁弁166を開放し、第2の電磁弁170を閉じる。そして、ターミナル20及び図示しない配線を介して駆動要素14のステータコイル28に通電する。ステータコイル28に通電されると、駆動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0030】
これにより、冷媒導入管94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧の冷媒は、ローラ48とベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0031】
そして、密閉容器12内の中間圧の冷媒ガスは、スリーブ144から出て冷媒導入管92に流出する。冷媒導入管92に流入した冷媒は第1の電磁弁166が開放され、第2の電磁弁170が閉じているのでスリーブ141に至り、上部支持部材54に形成された図示しない吸込通路を経由して図示しない吸込ポートから上シリンダ38の低圧室側に吸入される。
【0032】
上シリンダ38の低圧室側に吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62、冷媒吐出管96を経由してガスクーラ154で放熱された後、膨張弁156で絞られ減圧されて、エバポレータ157内に流入する。このとき、制御装置161は、第2の電磁弁170を閉じているので、膨張弁156で絞られた冷媒はバイパス配管164に流入せずエバポレータ157内に流入する。
【0033】
そして、冷媒はエバポレータ157内で蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮して室内が冷房される。その後、アキュムレータ158を経て冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0034】
そして、室内温度が設定値まで低下すると、制御装置161は多段圧縮式ロータリコンプレッサ10を停止する。その後、室内温度が上昇し、温度センサ162が検出した室内温度が設定値より高く上昇すると、制御装置161は前述同様にロータリコンプレッサ10を起動して冷房運転を行う。
【0035】
一方、第2の回転圧縮要素34から吐出された冷媒中に含まれるオイルは前述した如くエバポレータ157内に寝込んで行く。そこで制御装置161は、予め設定されたタイミング(例えば、霜取り時、或いは、一日の内の決められた時刻)に第1の電磁弁166を閉じ、第2の電磁弁170を開いてロータリコンプレッサ10を運転する。この場合、室内温度が低下して温度センサ162が検出した室内温度が設定値より低くなって冷却運転が必要無くなった時、即ち、冷房運転を停止している時に第1の電磁弁166を閉じ、第2の電磁弁170を開くものとする。
【0036】
これによって、第1の回転圧縮要素32から密閉容器12内に吐出された冷媒は、スリーブ144から冷媒導入管92に流出した後、バイパス配管164に流れ、このバイパス配管164を経てエバポレータ157に直接流入し、アキュムレータ158を経て冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるようになる。
【0037】
このとき、第1の回転圧縮要素32から吐出された冷媒は膨張弁156を介さずバイパス配管164から直接エバポレータ157に流入するので、第1の回転圧縮要素32から吐出された冷媒ガスの流速は低下することなくエバポレータ157に流入し、冷媒流量は多くなる。これにより、エバポレータ157内に寝込んで溜まったオイルは多量に循環する冷媒に持ち去られて冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるようになり、オイルは円滑に密閉容器12内に回収されていく。
【0038】
即ち、第1の回転圧縮要素32から吐出された冷媒を直接エバポレータ157に流入させて、エバポレータ157内を流れる冷媒流量を多くすることにより、エバポレータ157内に寝込んで溜まったオイルを冷媒と共に冷媒導入管94から第1の回転圧縮要素32内に吸い込ませ、密閉容器12内に吐出させる。これにより、エバポレータ157内に寝込んで溜まったオイルを密閉容器12内に回収する。
【0039】
尚、第1の回転圧縮要素32から吐出された冷媒を膨張弁156を介さずエバポレータ157に流入させているので、エバポレータ157は温度の高い冷媒で暖められる。これにより、エバポレータ157内で冷却されて寝込んだオイルは流れ易くなり、回収はより円滑になる。また、霜取り時にオイルの回収を行うようにすれば、オイル回収時にエバポレータ157は冷却されずに暖められるので、霜取り時間を短縮することが可能となる。そして、所定時間(例えば10分など)係る回収運転を実行した後、制御装置161はロータリコンプレッサ10を停止し、電磁弁170を閉じて電磁弁166を開くことで通常の冷却運転に復帰する。
【0040】
このように、第1の回転圧縮要素32から吐出された冷媒を、第2の回転圧縮要素34に吸引させること無くエバポレータ157に流すためのバイパス配管164を設け、第1の回転圧縮要素32から吐出された冷媒を、第2の回転圧縮要素34に吸い込ませるか、バイパス配管164に流すかを制御するための電磁弁166、170を設けている。そして、第1の電磁弁166及び第2の電磁弁170を前述の如き制御して、第1の回転圧縮要素32から吐出された冷媒をバイパス配管164に流すようにしているので、ロータリコンプレッサ10から冷媒に溶け込んで吐出され、エバポレータ157に寝込んでいるオイルを密閉容器12内に円滑に回収することができる。
【0041】
これにより、寝込んだオイルによってエバポレータ157の性能低下を防止して好適に冷媒循環を行うことが可能となると共に、圧縮機構部18の潤滑性能やシール性が低下してしまうのを防止することができるので、ロータリコンプレッサ10の円滑な動作と運転を実現することができるようになる。
【0042】
また、バイパス配管164を膨張弁156の下流側に接続し、第1の回転圧縮要素32から吐出された中間圧の冷媒を直接エバポレータ157に流入させている。これにより、エバポレータ157に流入する冷媒流量を増大させることが可能となる。従って、エバポレータ157内に寝込んで溜まったオイルは流量が多くなった冷媒で円滑に密閉容器12内に回収することができる。
【0043】
特に、冷房運転を停止している時に第1の電磁弁166を閉じて第2の電磁弁170を開き、第1の回転圧縮要素32から吐出された中間圧の冷媒を直接エバポレータ157に流入させれば、空調性能にも支障を生じることがない。
【0044】
尚、実施例ではバイパス配管164を膨張弁156の下流側に接続したが、それに限らず、膨張弁156の上流側に接続するようにしてもオイルの回収効果は発揮できる。また、実施例ではロータリコンプレッサを使用したが、それに限らず、レシプロ式やスクロール圧縮機などでもよい。また、冷媒サイクル装置としては実施例の如きエアコンに限らず、冷却貯蔵庫や給湯器にも本発明は有効である。
【0045】
【発明の効果】
以上詳述した如く本発明によれば、多段圧縮式のコンプレッサの第1の圧縮要素から吐出された冷媒を、第2の圧縮要素に吸引させること無くエバポレータに流すためのバイパス回路と、第1の圧縮要素から吐出された冷媒を、第2の圧縮要素に吸い込ませるか、バイパス回路に流すかを制御するための流路制御手段とを備えているので、流路制御手段により、第1の圧縮要素から吐出された冷媒をバイパス回路に流すことで、冷媒を第1の圧縮要素とエバポレータの間で循環させ、エバポレータに寝込んでいるオイルを円滑に密閉容器内に回収することが可能となる。
【0046】
これにより、冷媒回路内の冷媒の循環を円滑に行うことができ、コンプレッサ内のオイルレベルの低下を未然に阻止することができるようになる。従って、圧縮機構部の潤滑性能やシール性が低下してしまうのを防止することができ、コンプレッサの円滑な動作と運転を実現することができるようになるものである。
【0047】
請求項2の発明では上記に加えて、バイパス回路を膨張弁の下流側に接続したので、第1の圧縮要素から吐出された冷媒を膨張弁を経ること無く直接エバポレータに流入させ、冷媒回収に好適な冷媒循環量を確保することができるようになる。従って、エバポレータ内を流れる冷媒流量を増大させることが可能となるので、エバポレータ内に寝込んで溜まったオイルの回収を一層円滑に行うことができるようになるものである。
【図面の簡単な説明】
【図1】本発明の冷媒サイクル装置に使用する多段圧縮式ロータリコンプレッサの縦断面図である。
【図2】本発明の冷媒サイクル装置の実施例のエアコンの冷媒回路図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
32 第1の回転圧縮要素
34 第2の回転圧縮要素
92、94 冷媒導入管
96 冷媒吐出管
154 ガスクーラ
156 膨張弁
157 エバポレータ
158 アキュムレータ
160 配管
161 制御装置
162 温度センサ
164 バイパス配管
166 第1の電磁弁
170 第2の電磁弁[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus using a multi-stage compression type compressor including first and second compression elements driven by driving elements in a closed vessel.
[0002]
[Prior art]
Conventionally, a rotary compressor of an internal intermediate pressure type multi-stage compression type has been developed (see Patent Document 1). That is, in such a rotary compressor, the refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element constituting the compression mechanism, and is compressed by the operation of the rollers and the vanes to become the intermediate pressure, which becomes the intermediate pressure. The air is discharged from the chamber through a discharge port and a discharge muffling chamber into the closed container. Then, the intermediate-pressure gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second-stage compression is performed by the operation of the roller and the vane, so that the high-temperature and high-pressure gas is released. Then, the refrigerant is discharged from the high pressure chamber through the discharge port and the discharge muffling chamber to the outside through the refrigerant discharge pipe.
[0003]
The refrigerant gas discharged from the rotary compressor flows into a radiator of the refrigerant circuit, radiates heat, is throttled by an expansion valve, absorbs heat by an evaporator (evaporator), and is sucked into the first rotary compression element of the rotary compressor. Repeat cycle.
[0004]
Further, when a refrigerant having a large difference between high and low pressures, for example, carbon dioxide (CO 2 ) is used as the refrigerant in the rotary compressor, the discharged refrigerant pressure reaches 12 MPaG in the second rotary compression element having a high pressure, while the low stage side Becomes 8 MPaG (intermediate pressure) at the first rotary compression element (the suction pressure of the first rotary compression element is 4 MPaG).
[0005]
[Patent Document 1]
JP-A-2-294587 (F04C23 / 00)
[0006]
[Problems to be solved by the invention]
Here, in such a rotary compressor, oil is sealed in a closed container in order to lubricate the compression mechanism, and the oil is compressed and discharged together with the refrigerant gas. Since the refrigerant gas compressed by the first rotary compression element is once discharged into the closed container, oil can be separated, but the oil contained in the refrigerant gas discharged from the second rotary compression element remains unchanged. Since the oil goes out of the closed container, the outflow of oil into the refrigerant circuit increases.
[0007]
On the other hand, in the refrigerant circuit, the temperature becomes the lowest in the evaporator, so that the spilled oil tends to lie in the evaporator, thereby hindering the circulation of the refrigerant and reducing the amount of oil returned to the rotary compressor. However, there has been a problem that the oil level in the closed container is reduced, and the lubrication and sealing characteristics are deteriorated.
[0008]
The present invention has been made to solve such a conventional technical problem, and provides a refrigerant cycle device capable of smoothly recovering oil stored in an evaporator.
[0009]
[Means for Solving the Problems]
That is, in the present invention, the bypass circuit for flowing the refrigerant discharged from the first compression element of the multi-stage compression type compressor to the evaporator without being sucked by the second compression element, and discharged from the first compression element. And a flow path control means for controlling whether the refrigerant is sucked into the second compression element or flows into the bypass circuit. Therefore, the refrigerant discharged from the first compression element by the flow path control means is provided. By flowing the refrigerant through the bypass circuit, the refrigerant is circulated between the first compression element and the evaporator, and the oil lying in the evaporator can be smoothly collected in the closed container.
[0010]
In the invention of claim 2, in addition to the above, since the bypass circuit is connected to the downstream side of the expansion valve, the refrigerant discharged from the first compression element flows directly into the evaporator without passing through the expansion valve, and is used for refrigerant recovery. It is possible to secure a suitable refrigerant circulation amount.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows, as an embodiment of a multistage compression type compressor used in the refrigerant cycle device of the present invention, a longitudinal section of an internal intermediate pressure type multistage (two stage) compression type rotary compressor 10 having first and second rotary compression elements. It is a side view.
[0012]
In this figure, reference numeral 10 denotes a vertical internal intermediate pressure type multistage compression type rotary compressor using carbon dioxide (CO 2 ) as a refrigerant. The multistage compression type rotary compressor 10 includes a cylindrical hermetic container 12 made of a steel plate, A driving element 14 disposed and housed above the internal space of the closed casing 12 and a first rotary compression element 32 (first stage) disposed below the driving element 14 and driven by the rotation shaft 16 of the driving element 14 ) And a second rotary compression element 34 (second stage).
[0013]
The hermetically sealed container 12 has an oil reservoir at the bottom, and includes a container body 12A that houses the driving element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (lid) 12B that closes an upper opening of the container body 12A. It is configured. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring omitted) 20 for supplying electric power to the driving element 14 is mounted in the mounting hole 12D.
[0014]
The drive element 14 includes a stator 22 annularly mounted along the inner peripheral surface of the upper space of the closed casing 12, and a rotor 24 inserted inside the stator 22 at a slight interval. The rotor 24 is fixed to the rotating shaft 16 that extends vertically through the center.
[0015]
The stator 22 includes a laminated body 26 in which donut-shaped electromagnetic steel sheets are laminated, and a stator coil 28 wound around teeth (not shown) of the laminated body 26 by a direct winding (concentrated winding) method. . The rotor 24 is also formed of a laminated body 30 of electromagnetic steel sheets, like the stator 22, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0016]
An intermediate partition plate 36 is held between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38, a lower cylinder 40 disposed above and below the intermediate partition plate 36, The upper and lower rollers 46 and 48 are eccentrically rotated by upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees in the inside 40, and the upper and lower cylinders 38 contact the upper and lower rollers 46 and 48, The vanes 50 and 52 partitioning the inside of the chamber 40 into a low-pressure chamber side and a high-pressure chamber side, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed to also serve as a bearing for the rotating shaft 16. It is composed of an upper support member 54 and a lower support member 56.
[0017]
On the other hand, the upper support member 54 and the lower support member 56 have a suction passage 60 (the upper suction passage is not shown) communicating with the insides of the upper and lower cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed. Then, discharge muffling chambers 62 and 64 formed by closing the recess with the upper cover 66 and the lower cover 68 are provided.
[0018]
The discharge muffling chamber 64 and the inside of the closed container 12 are communicated with each other through a communication passage (not shown) penetrating the upper and lower cylinders 38 and 40 and the intermediate partition plate 36, and an intermediate discharge pipe 121 is provided at an upper end of the communication passage. The intermediate pressure refrigerant compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the closed container 12.
[0019]
Further, an upper cover 66 that closes an upper opening of the discharge muffling chamber 62 that communicates with the inside of the upper cylinder 38 of the second rotary compression element 34 divides the inside of the sealed container 12 into the discharge muffling chamber 62 and the drive element 14 side. .
[0020]
In this case, the above-mentioned carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, is used as a refrigerant in consideration of flammability and toxicity, and an oil as a lubricating oil is, for example, a mineral oil (mineral oil). ), Alkyl benzene oil, ether oil, ester oil, PAG (polyalkyl glycol) and the like.
[0021]
On the side surface of the container body 12A of the closed container 12, suction passages 60 (the upper side is not shown) of the upper support member 54 and the lower support member 56, the discharge muffling chamber 62, and the upper side of the upper cover 66 (the lower end of the drive element 14 The sleeves 141, 142, 143, and 144 are respectively welded and fixed at positions corresponding to (substantially corresponding positions). The sleeves 141 and 142 are vertically adjacent to each other, and the sleeve 143 is located on a substantially diagonal line of the sleeve 141. The sleeve 144 is located at a position shifted from the sleeve 141 by approximately 90 degrees.
[0022]
One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted into the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with a suction passage (not shown) of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the closed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 and communicates with the inside of the closed container 12.
[0023]
One end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. The other end of the refrigerant introduction pipe 94 is connected to a lower side of an accumulator 158 described later. A coolant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the coolant introduction pipe 96 communicates with the discharge muffling chamber 62.
[0024]
The accumulator 158 is a tank for performing gas-liquid separation of the suction refrigerant. The accumulator 158 is attached to a bracket 147 welded and fixed to the upper side surface of the container main body 12A of the closed container 12 with a bracket (not shown).
[0025]
Next, FIG. 2 shows a refrigerant circuit when the present invention is applied to an air conditioner (air conditioner). The above-described multi-stage compression type rotary compressor 10 constitutes a part of the refrigerant circuit of the air conditioner shown in FIG. . That is, the refrigerant discharge pipe 96 of the multi-stage rotary compressor 10 is connected to the inlet of the gas cooler 154. The pipe exiting the gas cooler 154 is connected to the inlet of an evaporator (evaporator) 157 via a pipe 160 on the outlet side of the expansion valve 156. The outlet of the evaporator 157 is connected to the refrigerant introduction pipe 94 via the accumulator 158.
[0026]
A bypass pipe 164 (corresponding to a bypass circuit of the present invention) branches from the refrigerant introduction pipe 92, and the bypass pipe 164 is connected to a pipe 160 on the outlet side of the expansion valve 156 (downstream of the expansion valve 156). It is connected. Further, a first solenoid valve 166 is provided in the refrigerant introduction pipe 92 downstream of the branch point of the bypass pipe 164, and a second solenoid valve 170 is connected in the bypass pipe 164. The first solenoid valve 166 and the second solenoid valve 170 constitute a flow path control unit of the present invention.
[0027]
When the first solenoid valve 166 is closed and the second solenoid valve 170 is open, the refrigerant introduction pipe 92 and the evaporator 157 are directly connected via the bypass pipe 164. In a state where the first electromagnetic valve 166 is opened and the second electromagnetic valve 170 is closed, the inside of the sealed container 12 and the suction passage (not shown) of the upper cylinder 38 communicate with each other via the refrigerant introduction pipe 92.
[0028]
In FIG. 2, reference numeral 161 denotes a control device, which controls the operation of the rotary compressor 10 based on an operation command signal for indoor air conditioning. In addition, the control device 161 operates and stops the rotary compressor 10 based on, for example, a room temperature detected by a temperature sensor 162 provided in the vicinity of the evaporator 157, and controls the first solenoid valve 166 and the second solenoid valve. 170 is controlled to open and close.
[0029]
Next, the operation of the above configuration will be described. For example, when the room temperature detected by the temperature sensor 162 rises higher than a preset value and a start command is input to the control device 161, the control device 161 opens the first solenoid valve 166, and opens the second solenoid valve 166. The solenoid valve 170 is closed. Then, the stator coil 28 of the drive element 14 is energized through the terminal 20 and the wiring (not shown). When the stator coil 28 is energized, the drive element 14 starts and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 eccentrically rotate inside the upper and lower cylinders 38 and 40.
[0030]
As a result, the low-pressure refrigerant sucked into the low-pressure chamber side of the cylinder 40 from the suction port (not shown) via the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56 operates the rollers 48 and the vanes 52. , And is discharged to the closed vessel 12 from the intermediate discharge pipe 121 through a communication passage (not shown) from the high pressure chamber side of the lower cylinder 40. Thereby, the inside of the sealed container 12 has an intermediate pressure.
[0031]
Then, the intermediate-pressure refrigerant gas in the sealed container 12 exits from the sleeve 144 and flows out to the refrigerant introduction pipe 92. Since the first solenoid valve 166 is opened and the second solenoid valve 170 is closed, the refrigerant flowing into the refrigerant introduction pipe 92 reaches the sleeve 141 and passes through a suction passage (not shown) formed in the upper support member 54. From the suction port (not shown) to the low pressure chamber side of the upper cylinder 38.
[0032]
The intermediate-pressure refrigerant gas sucked into the low-pressure chamber side of the upper cylinder 38 is subjected to the second-stage compression by the operation of the rollers 46 and the vanes 50 to become a high-pressure and high-temperature refrigerant gas. Then, the heat is dissipated by the gas cooler 154 via the discharge silence chamber 62 formed in the upper support member 54 and the refrigerant discharge pipe 96, then reduced by the expansion valve 156 and reduced in pressure, and flows into the evaporator 157. At this time, since the control device 161 has closed the second electromagnetic valve 170, the refrigerant throttled by the expansion valve 156 does not flow into the bypass pipe 164 but flows into the evaporator 157.
[0033]
Then, the refrigerant evaporates in the evaporator 157, and at that time, absorbs heat from the surroundings to exert a cooling function, thereby cooling the room. Thereafter, a cycle in which the refrigerant is sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94 via the accumulator 158 is repeated.
[0034]
Then, when the room temperature decreases to the set value, the control device 161 stops the multistage rotary compressor 10. Thereafter, when the room temperature rises and the room temperature detected by the temperature sensor 162 rises higher than the set value, the control device 161 starts the rotary compressor 10 and performs the cooling operation as described above.
[0035]
On the other hand, the oil contained in the refrigerant discharged from the second rotary compression element 34 falls into the evaporator 157 as described above. Therefore, the control device 161 closes the first solenoid valve 166 at a preset timing (for example, at the time of defrosting or at a predetermined time of the day), opens the second solenoid valve 170, and opens the rotary compressor. Drive 10 In this case, the first solenoid valve 166 is closed when the indoor temperature decreases and the indoor temperature detected by the temperature sensor 162 becomes lower than the set value and the cooling operation becomes unnecessary, that is, when the cooling operation is stopped. , The second solenoid valve 170 is opened.
[0036]
As a result, the refrigerant discharged from the first rotary compression element 32 into the closed container 12 flows out of the sleeve 144 into the refrigerant introduction pipe 92, then flows into the bypass pipe 164, and passes directly to the evaporator 157 via this bypass pipe 164. The refrigerant flows into the first rotary compression element 32 from the refrigerant introduction pipe 94 via the accumulator 158.
[0037]
At this time, since the refrigerant discharged from the first rotary compression element 32 flows directly into the evaporator 157 from the bypass pipe 164 without passing through the expansion valve 156, the flow rate of the refrigerant gas discharged from the first rotary compression element 32 is The refrigerant flows into the evaporator 157 without lowering, and the flow rate of the refrigerant increases. As a result, the oil accumulated in the evaporator 157 is taken away by the refrigerant circulating in a large amount, and is sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94, and the oil is smoothly stored in the closed container 12. Will be collected.
[0038]
That is, by causing the refrigerant discharged from the first rotary compression element 32 to flow directly into the evaporator 157 and increasing the flow rate of the refrigerant flowing in the evaporator 157, the oil that has accumulated in the evaporator 157 and accumulated therein is introduced together with the refrigerant. It is sucked from the pipe 94 into the first rotary compression element 32 and discharged into the closed container 12. As a result, the oil that has accumulated in the evaporator 157 is collected in the closed container 12.
[0039]
Since the refrigerant discharged from the first rotary compression element 32 flows into the evaporator 157 without passing through the expansion valve 156, the evaporator 157 is warmed by the high-temperature refrigerant. As a result, the oil that has been cooled and laid down in the evaporator 157 becomes easier to flow, and the recovery becomes smoother. In addition, if the oil is collected at the time of defrosting, the evaporator 157 is warmed without cooling at the time of oil collection, so that the defrosting time can be reduced. Then, after executing the recovery operation for a predetermined time (for example, 10 minutes), the control device 161 stops the rotary compressor 10, closes the electromagnetic valve 170 and opens the electromagnetic valve 166 to return to the normal cooling operation.
[0040]
As described above, the bypass pipe 164 for flowing the refrigerant discharged from the first rotary compression element 32 to the evaporator 157 without sucking the refrigerant into the second rotary compression element 34 is provided. Electromagnetic valves 166 and 170 are provided for controlling whether the discharged refrigerant is drawn into the second rotary compression element 34 or flows through the bypass pipe 164. The first solenoid valve 166 and the second solenoid valve 170 are controlled as described above so that the refrigerant discharged from the first rotary compression element 32 flows through the bypass pipe 164. The oil dissolved in the refrigerant and discharged and stored in the evaporator 157 can be smoothly collected in the closed container 12.
[0041]
Thereby, it is possible to prevent the performance of the evaporator 157 from being degraded by the laid-down oil and to suitably circulate the refrigerant, and to prevent the lubrication performance and the sealing performance of the compression mechanism 18 from being lowered. As a result, the smooth operation and operation of the rotary compressor 10 can be realized.
[0042]
Further, the bypass pipe 164 is connected to the downstream side of the expansion valve 156, and the intermediate-pressure refrigerant discharged from the first rotary compression element 32 flows directly into the evaporator 157. As a result, the flow rate of the refrigerant flowing into the evaporator 157 can be increased. Therefore, the oil that has accumulated in the evaporator 157 and has accumulated therein can be smoothly collected in the closed container 12 with the refrigerant whose flow rate has increased.
[0043]
In particular, when the cooling operation is stopped, the first solenoid valve 166 is closed and the second solenoid valve 170 is opened, so that the intermediate-pressure refrigerant discharged from the first rotary compression element 32 flows directly into the evaporator 157. If so, there is no hindrance to the air conditioning performance.
[0044]
In the embodiment, the bypass pipe 164 is connected to the downstream side of the expansion valve 156. However, the present invention is not limited to this, and the oil collecting effect can be exhibited even if it is connected to the upstream side of the expansion valve 156. Further, although the rotary compressor is used in the embodiment, the invention is not limited thereto, and a reciprocating compressor or a scroll compressor may be used. In addition, the present invention is not limited to the air conditioner as in the embodiment as the refrigerant cycle device, but is also applicable to a cooling storage and a water heater.
[0045]
【The invention's effect】
As described above in detail, according to the present invention, the bypass circuit for flowing the refrigerant discharged from the first compression element of the multi-stage compression type compressor to the evaporator without being sucked by the second compression element, Flow path control means for controlling whether the refrigerant discharged from the compression element is sucked into the second compression element or flows into the bypass circuit. By flowing the refrigerant discharged from the compression element to the bypass circuit, the refrigerant is circulated between the first compression element and the evaporator, and the oil laid in the evaporator can be smoothly collected in the closed container. .
[0046]
As a result, the circulation of the refrigerant in the refrigerant circuit can be performed smoothly, and a decrease in the oil level in the compressor can be prevented. Therefore, it is possible to prevent the lubrication performance and the sealing performance of the compression mechanism from deteriorating, and to realize a smooth operation and operation of the compressor.
[0047]
In the invention of claim 2, in addition to the above, since the bypass circuit is connected to the downstream side of the expansion valve, the refrigerant discharged from the first compression element flows directly into the evaporator without passing through the expansion valve, and is used for refrigerant recovery. It is possible to secure a suitable refrigerant circulation amount. Therefore, it is possible to increase the flow rate of the refrigerant flowing in the evaporator, and it is possible to more smoothly recover the oil that has accumulated in the evaporator.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a multi-stage compression type rotary compressor used in a refrigerant cycle device of the present invention.
FIG. 2 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the refrigerant cycle device of the present invention.
[Explanation of symbols]
10 Multi-stage compression type rotary compressor 32 First rotary compression element 34 Second rotary compression element 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 154 Gas cooler 156 Expansion valve 157 Evaporator 158 Accumulator 160 Piping 161 Control device 162 Temperature sensor 164 Bypass piping 166 First solenoid valve 170 Second solenoid valve