JP4278402B2 - Refrigerant cycle equipment - Google Patents

Refrigerant cycle equipment Download PDF

Info

Publication number
JP4278402B2
JP4278402B2 JP2003041197A JP2003041197A JP4278402B2 JP 4278402 B2 JP4278402 B2 JP 4278402B2 JP 2003041197 A JP2003041197 A JP 2003041197A JP 2003041197 A JP2003041197 A JP 2003041197A JP 4278402 B2 JP4278402 B2 JP 4278402B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pressure
circuit
compression element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003041197A
Other languages
Japanese (ja)
Other versions
JP2004251513A (en
Inventor
兼三 松本
茂弥 石垣
晴久 山崎
正司 山中
一昭 藤原
恒久 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003041197A priority Critical patent/JP4278402B2/en
Publication of JP2004251513A publication Critical patent/JP2004251513A/en
Application granted granted Critical
Publication of JP4278402B2 publication Critical patent/JP4278402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Description

【0001】
【発明の属する技術分野】
本発明は、コンプレッサ、ガスクーラ、絞り手段及び蒸発器を順次接続して冷媒回路が構成される冷媒サイクル装置に関するものである。
【0002】
【従来の技術】
従来のこの種冷媒サイクル装置は、ロータリコンプレッサ(コンプレッサ)、ガスクーラ、絞り手段(膨張弁等)及び蒸発器等を順次環状に配管接続して冷媒サイクル(冷媒回路)が構成されている。そして、ロータリコンプレッサの回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経てガスクーラに吐出される。このガスクーラにて冷媒ガスは放熱した後、絞り手段で絞られて蒸発器に供給される。そこで冷媒が蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮するものであった。
【0003】
ここで、近年では地球環境問題に対処するため、この種の冷媒サイクルにおいても、従来のフロンを用いずに自然冷媒である二酸化炭素(CO2)を冷媒として用い、高圧側を超臨界圧力として運転する遷臨界冷媒サイクルを用いた装置が開発されて来ている。
【0004】
このような冷媒サイクル装置では、コンプレッサ内に液冷媒が戻って、液圧縮することを防ぐために、蒸発器の出口側とコンプレッサの吸込側との間の低圧側にアキュムレータを配設し、このアキュムレータに液冷媒を溜め、ガスのみをコンプレッサに吸い込ませる構成とされていた。そして、アキュムレータ内の液冷媒がコンプレッサに戻らないように絞り手段を調整していた(例えば、特許文献1参照)。
【0005】
【特許文献1】
特公平7−18602号公報
【0006】
しかしながら、冷媒サイクルの低圧側にアキュムレータを設けることは、その分多くの冷媒充填量を必要とする。また、液バックを防止するためには絞り手段の開度を小さくし、或いは、アキュムレータの容量を拡大しなければならず、冷却能力の低下や設置スペースの拡大を招く。そこで、係るアキュムレータを設けること無く、コンプレッサにおける液圧縮を解消するために、出願人は従来図4に示す冷媒サイクル装置の開発を試みた。
【0007】
図4において、10は内部中間圧型多段(2段)圧縮式ロータリコンプレッサを示しており、密閉容器12内の電動要素14とこの電動要素14の回転軸16で駆動される第1の回転圧縮要素32及び第2の回転圧縮要素34を備えて構成されている。
【0008】
この場合の冷媒サイクル装置の動作を説明する。コンプレッサ10の冷媒導入管94から吸い込まれた低圧(LP)の冷媒は、第1の回転圧縮要素32で圧縮されて中間圧(MP)となり、密閉容器12内に吐出される。その後、冷媒導入管92から出て中間冷却回路150Aに流入する。中間冷却回路150Aはガスクーラ154を通過するように設けられており、そこで、冷媒が空冷方式により放熱する。ここで中間圧の冷媒はガスクーラにて熱が奪われる。
【0009】
その後、第2の回転圧縮要素34に吸い込まれて2段目の圧縮が行われて高温高圧(HP)の冷媒ガスとなり、冷媒吐出管96より外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されている。
【0010】
冷媒吐出管96から吐出された冷媒ガスはガスクーラ154に流入し、そこで空冷方式により放熱した後、内部熱交換器160を通過する。冷媒はそこで蒸発器157を出た低圧側の冷媒に熱を奪われて更に冷却される。その後、冷媒は膨張弁156にて減圧され、その過程でガス/液混合状態となり、次に蒸発器157に流入して蒸発する。蒸発器157から出た冷媒は内部熱交換器160を通過し、そこで前記高圧側の冷媒から熱を奪って加熱される。
【0011】
そして、内部熱交換器160で加熱された冷媒は冷媒導入管94からロータリコンプレッサ10の第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。このように、蒸発器157から出た冷媒を内部熱交換器160により高圧側の冷媒にて加熱することで過熱度を取ることができるようになり、低圧側にアキュムレータなどを設けること無く、コンプレッサ10に液冷媒が吸い込まれる液バックを防止し、コンプレッサ10が液圧縮にて損傷を受ける不都合を回避することができるようになる。
【0012】
【発明が解決しようとする課題】
一方、係る二酸化炭素を使用した冷媒サイクル装置では、高圧側の圧力が通常でも12MPa以上まで上昇する。特に、コンプレッサを定速で運転した場合には、コンプレッサの起動時(プルダウン時)に高圧側の圧力は更に上昇し、図5に示す如く機器の設計圧(DP)を超えてしまい、機器の損傷を引き起こす恐れがある。そのため、インバータによりコンプレッサの回転数制御(容量制御)を実行するか、更にそれに加えて膨張弁の開度調整を行い、高圧側の圧力上昇を抑えて起動する必要があった。
【0013】
本発明は、係る従来の技術的課題を解決するために成されたものであり、コンプレッサが定速で運転される場合にも高圧側圧力の異常上昇による不都合の発生を未然に回避することができる冷媒サイクル装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
即ち、本発明の冷媒サイクル装置では、第1の圧縮要素から吐出され、第2の圧縮要素に吸い込まれる冷媒を放熱させるための中間冷却回路と、この中間冷却回路と低圧側とを連通するバイパス回路と、このバイパス回路に設けられた減圧手段及び弁装置とを備え、中間冷却回路は、ガスクーラを通過するよう設けられると共に、コンプレッサの起動時に、弁装置によりバイパス回路の流路を開放するので、第1の圧縮要素で圧縮され中間冷却回路に流入した中間圧の冷媒をバイパス回路から低圧側に逃がすことが可能となる。
【0015】
中間圧の冷媒ガスが低圧側に流入することで、中間圧が低下し、これに伴い、高圧側の圧力も低下するので、コンプレッサが定速で運転される場合にも、起動時における高圧側圧力が異常上昇してしまう不都合を未然に回避し、耐久性の向上と円滑な運転を確保することができるようになる。また、中間圧の冷媒はバイパス回路に設けられた減圧手段にて減圧された後、低圧側に流入するので、低圧側の圧力が上がり過ぎる不都合を回避することができるようになる。
【0016】
特に、中間冷却回路はガスクーラを通過するよう設けられているので、第1の圧縮要素で圧縮された中間圧の冷媒はガスクーラにて冷却した後、低圧側の冷媒と合流するので、コンプレッサの内部温度の上昇を防ぐことができるようになる。
【0017】
請求項2の発明では上記発明に加えて、弁装置により、コンプレッサの起動から所定時間バイパス回路の流路を開放することを特徴とする。
【0018】
請求項3の発明では請求項1の発明に加えて、弁装置により、コンプレッサの起動から冷媒回路内の冷媒の圧力が所定値に到達するまでバイパス回路の流路を開放することを特徴とする。
【0019】
請求項4の発明では請求項1の発明に加えて、弁装置により、コンプレッサの起動から当該コンプレッサの駆動電流が所定値に到達するまでバイパス回路の流路を開放することを特徴とする。
【0020】
請求項5の発明では請求項1の発明に加えて、弁装置により、コンプレッサの起動から冷媒回路内の冷媒の温度が所定値に到達するまでバイパス回路の流路を開放することを特徴とする。
【0021】
請求項6の発明では上記各発明に加えて、冷媒として二酸化炭素を使用するので環境問題にも寄与することができるようになる。
【0022】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の冷媒サイクル装置に使用するコンプレッサの実施例として、第1の回転圧縮要素(第1の圧縮要素)32及び第2の回転圧縮要素(第2の圧縮要素)34を備えた内部中間圧型多段(2段)圧縮式のロータリコンプレッサ10の縦断面図、図2は本発明の冷媒サイクル装置の冷媒回路図である。
【0023】
各図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式ロータリコンプレッサで、このコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された駆動要素としての電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)から成る回転圧縮機構部18にて構成されている。
【0024】
密閉容器12は底部をオイル溜めとし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0025】
電動要素14は所謂磁極集中巻き式のDCモータであり、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24はステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0026】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を、180度の位相差を有して回転軸16に設けられた上下偏心部42、44により偏心回転される上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成されている。
【0027】
一方、上部支持部材54及び下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上部カバー66、下部カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0028】
尚、吐出消音室64と密閉容器12内とは、上下シリンダ38、40や中間仕切板36を貫通する連通路にて連通されており、連通路の上端には中間吐出管121が立設され、この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧(MP)の冷媒ガスが密閉容器12内に吐出される。
【0029】
そして、冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO2)が使用され、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)など既存のオイルが使用される。
【0030】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路60(上側は図示せず)、吐出消音室62、上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の図示しない吸込通路と連通する。この冷媒導入管92は後述する中間冷却回路150に設けられたガスクーラ154を経てスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0031】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62と連通する。
【0032】
次に図2において、上述したコンプレッサ10は図2に示す冷媒回路の一部を構成する。即ち、コンプレッサ10の冷媒吐出管96はガスクーラ154の入口に接続される。そして、このガスクーラ154を出た冷媒配管は内部熱交換器160を通過する。この内部熱交換器160はガスクーラ154から出た高圧側の冷媒と蒸発器157から出た低圧側の冷媒とを熱交換させるためのものである。
【0033】
内部熱交換器160を通過した冷媒配管は絞り手段としての膨張弁156に至る。そして、膨張弁156の出口は蒸発器157の入口に接続され、蒸発器157を出た冷媒配管は内部熱交換器160を経て冷媒導入管94に接続される。
【0034】
また、冷媒回路には本発明における中間圧領域と低圧側とを連通するバイパス回路170が設けられている。即ち、中間圧領域である中間冷却回路150のガスクーラ154からコンプレッサ10に至る冷媒導入管92の途中部からはバイパス回路170が分岐している(図1では示さず)。そして、バイパス回路170は冷媒回路における低圧側である冷媒導入管94に接続されている。このバイパス回路170には、中間圧領域からの冷媒を減圧するための減圧手段としてのキャピラリチューブ172と、バイパス回路170の流路を開閉するための弁装置としてのバイパス弁174が設けられている。このバイパス弁174は図示しない制御装置にて開閉が制御される。尚、前記中間圧領域は第1の回転圧縮要素32で圧縮された冷媒が、第2の回転圧縮要素34に吸い込まれるまでの経路の全てが相当するものであり、バイパス回路170は、実施例の位置に限らず、中間圧の冷媒ガスが通過する経路と低圧の冷媒ガスが通過する経路とを連通するものであれば、接続箇所は特に限定されない。
【0035】
以上の構成で次に本発明の冷媒サイクル装置の動作を説明する。尚、コンプレッサ10の起動前には前記バイパス回路170のバイパス弁174は図示しない制御装置により閉じられているものとする。また、当該制御装置はコンプレッサ10の電動要素14を定速で運転するものであり、インバータなどの容量制御手段は用いない。即ち、制御装置によりターミナル20及び図示されない配線を介してコンプレッサ10の電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転し始める。この電動要素14の起動に同期して上記制御装置はバイパス回路170のバイパス弁174を開放する。
【0036】
前記ロータ24の回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。これにより、冷媒導入管94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧(LP:通常運転状態で4MPa程)の冷媒ガスは、ローラ48とベーン52の動作により圧縮されて中間圧(MP:通常運転状態で8MPa程)となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧(MP)となる。
【0037】
そして、密閉容器12内の中間圧の冷媒ガスは冷媒導入管92に入り、スリーブ144から出て中間冷却回路150に流入する。そして、この中間冷却回路150に流入した冷媒ガスがガスクーラ154を通過する過程で空冷方式により放熱する。このように、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスを中間冷却回路150を通過させることで、ガスクーラ154にて効果的に冷却することができるので、密閉容器12内の温度上昇を抑え、第2の回転圧縮要素34における圧縮効率も向上させることができるようになる。
【0038】
ガスクーラ154にて冷却された中間圧の冷媒ガスは上部支持部材54に形成された図示しない吸込通路を経由して、図示しない吸込ポートから第2の回転圧縮要素34の上シリンダ38の低圧室側に吸入される。
【0039】
ここで、コンプレッサ10の電動要素14はインバータなどを用いずに定速で運転されるため、その起動時には第2の回転圧縮要素34の吐出側、即ち、高圧側の圧力は急激に上昇し、最悪の場合には冷媒回路の設計圧(耐圧限界)を超えてしまう場合もある。しかしながら、本発明では中間冷却回路150においてガスクーラ154で冷却された冷媒ガスの一部はガスクーラ154からコンプレッサ10に至る冷媒導入管92の途中部から分岐している前記バイパス回路170に流入し、そこでキャピラリチューブ172にて減圧された後、冷媒導入管94に逃げる。そして、蒸発器157を経て内部熱交換器160からの低圧側の冷媒ガスと合流して第1の回転圧縮要素32の下シリンダ40の低圧室側に吸入されることになる。これにより、中間圧領域の冷媒ガスの一部を冷媒導入管94に逃がすことができるので、中間圧領域の冷媒圧力が低下する。
【0040】
即ち、第2の回転圧縮要素34に吸い込まれる冷媒ガスの圧力が低下することで、第2の回転圧縮要素34で圧縮される冷媒ガスの圧力上昇も抑えることができる。このように、本発明では中間圧の冷媒ガスの一部を冷媒導入管94に逃がすので、図3に示すように中間圧領域の冷媒圧力が低下し、その結果、高圧側の冷媒の圧力上昇が抑えられる。これにより、コンプレッサ10の起動時(プルダウン時)に第2の回転圧縮要素34で圧縮された冷媒ガスの圧力が異常に上昇して、冷媒回路内の冷媒配管等が劣化したり、最悪、破損すると云った不都合を回避することができるようになる。
【0041】
また、冷媒ガスはバイパス回路170に設けられたキャピラリチューブ172にて減圧された後、冷媒導入管94に供給されるので、低圧が必要以上に上昇し、中間圧が更に上昇するといった不都合も回避することができるようになる。更に、第1の回転圧縮要素32で圧縮された冷媒ガスはガスクーラ154を通過する過程で放熱し、バイパス回路170に設けられたキャピラリチューブ172にて減圧した後、低圧の冷媒ガスと合流する。このように、ガスクーラ154にて中間圧領域の冷媒ガスを冷却した後に、低圧側の冷媒と合流させることで、コンプレッサ10の内部温度の上昇を防ぐことができるようになる。
【0042】
尚、前記制御装置は、コンプレッサ10を起動してから所定時間(1分乃至10分)経過すると、バイパス弁174を閉じる。以後は第1の回転圧縮要素32で圧縮され、冷媒導入管92に入り、スリーブ144を出て中間冷却回路150に流入し、ガスクーラ154にて放熱した冷媒ガスは全て、上部支持部材54に形成された図示しない吸込通路を経由して、図示しない吸込ポートから第2の回転圧縮要素34の上シリンダ38の低圧室側に吸入されることになる。
【0043】
他方、第2の回転圧縮要素34の上シリンダ38の低圧室側に吸入された冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行われて高温高圧(HP:通常運転状態で12MPa程)の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62を経て冷媒吐出管96より外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されており、この冷媒吐出管96から吐出された冷媒ガスはガスクーラ154に流入する。
【0044】
ガスクーラ154に流入した冷媒ガスは空冷方式により放熱した後、内部熱交換器160を通過する。冷媒はそこで低圧側の冷媒に熱を奪われて更に冷却される。これにより、冷媒の過冷却度が大きくなるという効果によって、蒸発器157における冷媒の冷却能力が向上する。
【0045】
内部熱交換器160で冷却された高圧側の冷媒ガスは膨張弁156に至る。尚、膨張弁156の入口では冷媒ガスはまだ気体の状態である。冷媒は膨張弁156における圧力低下により、ガス/液体の二相混合体とされ、その状態で蒸発器157内に流入する。そこで冷媒は蒸発し、空気から吸熱することにより冷却作用を発揮する。
【0046】
その後、冷媒は蒸発器157から流出して、内部熱交換器160を通過する。そこで前記高圧側の冷媒から熱を奪い、加熱作用を受ける。このように、蒸発器157で蒸発して低温となり、蒸発器157を出た冷媒は完全に気体の状態ではなく液体が混在した状態である。そこで、内部熱交換器160を通過させて高圧側の冷媒と熱交換させることで、冷媒は過熱度が取れて完全に気体となる。これにより、低圧側にアキュムレータを設けること無く、コンプレッサ10に液冷媒が吸い込まれる液バックを確実に防止し、コンプレッサ10が液圧縮にて損傷を受ける不都合を回避することができるようになる。
【0047】
尚、内部熱交換器160で加熱された冷媒は、冷媒導入管94からコンプレッサ10の第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。このとき、起動時(プルダウン時)以外の通常運転状態(安定時)では、冷媒の圧力は図3に示すように冷媒回路内の冷媒配管などの前記設計圧(DP)を超えること無く、安定した圧力で運転される。
【0048】
このように、冷媒回路の中間圧領域と低圧側とを連通するバイパス回路170と、当該バイパス回路170にキャピラリチューブ172及びバイパス弁174とを設けて、コンプレッサ10の起動時等に、バイパス弁174によりバイパス回路170の流路を開放することで、中間圧領域の冷媒ガスを低圧側に逃がすことができるようになる。これにより、中間圧領域の冷媒圧力が低下し、第2の回転圧縮要素34で圧縮される冷媒ガスの圧力上昇も抑えることができるようになる。このため、起動時に高圧側の冷媒の圧力が異常上昇して、当該冷媒ガスにより冷媒配管が劣化したり、最悪、破損すると云った不都合を回避することができるようになる。
【0049】
これにより、冷媒サイクル装置の耐久性を確保することができ、信頼性の向上を図ることができるようになる。
【0050】
更に、バイパス回路170に流入した冷媒ガスは当該バイパス回路170に設けられたキャピラリチューブ172にて減圧された後、低圧側に流入するので、当該冷媒が低圧側に流入することで、低圧が上昇して、中間圧が更に上昇するといった不都合も回避することができるようになる。
【0051】
尚、本実施例では図示しない制御装置によりバイパス弁174をコンプレッサ10の起動時から開放し、その後所定時間経過した時点で閉じることとしたが、本発明はこれに限定されるものでなく、例えば、冷媒回路内の冷媒温度や冷媒圧力、若しくはコンプレッサの起動電流が所定値に到達するまでバイパス回路170の流路を開放するものであっても良い。また、上記冷媒回路内の冷媒温度によりバイパス回路への冷媒流通を制御する場合、冷媒温度としては、例えば、蒸発器157における冷媒の蒸発温度を図示しない制御装置に接続された冷媒温度センサなどにより検出し、起動時からバイパス弁174を開いて、当該冷媒温度センサにて検出される蒸発器157における冷媒の蒸発温度が所定値に低下した時点で閉じる制御を行っても良い。
【0052】
また、実施例ではコンプレッサ10は内部中間圧型の多段(2段)圧縮式ロータリコンプレッサを用いて説明したが、本発明に使用可能なコンプレッサはこれに限定されるものではなく、3段以上の多段圧縮式のコンプレッサであっても本発明は有効である。尚、本実施例ではコンプレッサ10を定速で運転するものとしたが、インバータによりコンプレッサの回転数制御するものに本発明を適応しても良い。この場合には、起動時の回転数制御をより容易に行うことができるようになるので、制御機能の簡素化を図ることができるようになる。
【0053】
【発明の効果】
以上詳述する如く本発明の冷媒サイクル装置によれば、第1の圧縮要素から吐出され、第2の圧縮要素に吸い込まれる冷媒を放熱させるための中間冷却回路と、この中間冷却回路と低圧側とを連通するバイパス回路と、このバイパス回路に設けられた減圧手段及び弁装置とを備え、中間冷却回路は、ガスクーラを通過するよう設けられると共に、コンプレッサの起動時に、弁装置によりバイパス回路の流路を開放するので、第1の圧縮要素で圧縮され中間冷却回路に流入した中間圧の冷媒をバイパス回路から低圧側に逃がすことが可能となる。
【0054】
中間圧の冷媒ガスが低圧側に流入することで、中間圧が低下し、これに伴い、高圧側の圧力も低下するので、コンプレッサが定速で運転される場合にも、起動時における高圧側圧力が異常上昇してしまう不都合を未然に回避し、耐久性の向上と円滑な運転を確保することができるようになる。また、中間圧の冷媒はバイパス回路に設けられた減圧手段にて減圧された後、低圧側に流入するので、低圧側の圧力が上がり過ぎる不都合を回避することができるようになる。
【0055】
また、中間圧の冷媒はバイパス回路に設けられた減圧手段にて減圧した後、低圧側に流入するので、低圧が上がり過ぎる不都合を回避することができるようになる。
【0056】
特に、中間冷却回路はガスクーラを通過するよう設けられているので、第1の圧縮要素で圧縮された中間圧の冷媒はガスクーラにて冷却した後、低圧側の冷媒と合流するので、コンプレッサの内部温度の上昇を防ぐことができるようになる。
【0057】
総じて、耐久性の向上と円滑な運転を確保することができるようになり、冷媒サイクル装置の信頼性の向上を図ることができるようになる。
【0058】
特に、請求項6の如き高圧側の圧力が極めて高くなる二酸化炭素を冷媒として用いる装置に好適であると共に、係る二酸化炭素を冷媒として使用すれば環境問題にも寄与することができるようになる。
【図面の簡単な説明】
【図1】 本発明の冷媒サイクル装置に使用する実施例のロータリコンプレッサの縦断面図である。
【図2】 本発明の冷媒サイクル装置の冷媒回路図である。
【図3】 本発明の冷媒サイクル装置における冷媒圧力の推移を示す図である。
【図4】 従来の冷媒サイクル装置の冷媒回路図である。
【図5】 従来の冷媒サイクル装置における冷媒圧力の推移を示す図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
12 密閉容器
14 電動要素
32 第1の回転圧縮要素
34 第2の回転圧縮要素
92、94 冷媒導入管
96 冷媒吐出管
150 中間冷却回路
154 ガスクーラ
156 膨張弁(絞り手段)
157 蒸発器
160 内部熱交換器
170 バイパス回路
172 キャピラリチューブ
174 バイパス弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant cycle apparatus in which a refrigerant circuit is configured by sequentially connecting a compressor, a gas cooler, a throttle means, and an evaporator.
[0002]
[Prior art]
In this type of conventional refrigerant cycle apparatus, a rotary compressor (compressor), a gas cooler, a throttle means (expansion valve, etc.), an evaporator, and the like are sequentially connected in an annular manner to form a refrigerant cycle (refrigerant circuit). Then, the refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the rotary compression element of the rotary compressor, and is compressed by the operation of the roller and the vane to become a high temperature and high pressure refrigerant gas. It is discharged to the gas cooler through the silencer chamber. The refrigerant gas radiates heat in the gas cooler, and is then squeezed by the squeezing means and supplied to the evaporator. Therefore, the refrigerant evaporates, and at that time, the cooling effect is exhibited by absorbing heat from the surroundings.
[0003]
Here, in recent years, in order to deal with global environmental problems, even in this type of refrigerant cycle, carbon dioxide (CO 2 ), which is a natural refrigerant, is used as a refrigerant without using conventional chlorofluorocarbon, and the high pressure side is used as a supercritical pressure. Devices using transcritical refrigerant cycles to operate have been developed.
[0004]
In such a refrigerant cycle device, an accumulator is disposed on the low pressure side between the outlet side of the evaporator and the suction side of the compressor in order to prevent the liquid refrigerant from returning into the compressor and compressing the liquid. The liquid refrigerant was stored in the tank and only the gas was sucked into the compressor. And the throttle means was adjusted so that the liquid refrigerant in an accumulator may not return to a compressor (for example, refer to patent documents 1).
[0005]
[Patent Document 1]
Japanese Examined Patent Publication No. 7-18602 [0006]
However, providing an accumulator on the low-pressure side of the refrigerant cycle requires a larger amount of refrigerant filling. Further, in order to prevent liquid back, the opening of the throttle means must be reduced or the capacity of the accumulator must be increased, leading to a reduction in cooling capacity and an increase in installation space. Therefore, in order to eliminate the liquid compression in the compressor without providing such an accumulator, the applicant tried to develop the refrigerant cycle apparatus shown in FIG.
[0007]
In FIG. 4, reference numeral 10 denotes an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor, and the first rotary compression element driven by the electric element 14 in the hermetic container 12 and the rotating shaft 16 of the electric element 14. 32 and a second rotary compression element 34.
[0008]
The operation of the refrigerant cycle device in this case will be described. The low-pressure (LP) refrigerant sucked from the refrigerant introduction pipe 94 of the compressor 10 is compressed by the first rotary compression element 32 to an intermediate pressure (MP), and is discharged into the sealed container 12. Thereafter, the refrigerant leaves the refrigerant introduction pipe 92 and flows into the intermediate cooling circuit 150A. The intermediate cooling circuit 150A is provided so as to pass through the gas cooler 154, where the refrigerant dissipates heat by an air cooling method. Here, the intermediate pressure refrigerant is deprived of heat by the gas cooler.
[0009]
Thereafter, the second rotary compression element 34 is sucked into the second stage of compression and becomes a high-temperature and high-pressure (HP) refrigerant gas, which is discharged from the refrigerant discharge pipe 96 to the outside. At this time, the refrigerant is compressed to an appropriate supercritical pressure.
[0010]
The refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154, where it dissipates heat by an air cooling method, and then passes through the internal heat exchanger 160. The refrigerant is further cooled by taking heat away from the low-pressure side refrigerant that has left the evaporator 157. Thereafter, the refrigerant is depressurized by the expansion valve 156, and in this process, a gas / liquid mixed state is obtained. The refrigerant coming out of the evaporator 157 passes through the internal heat exchanger 160, where it is heated by taking heat from the high-pressure side refrigerant.
[0011]
The refrigerant heated by the internal heat exchanger 160 repeats a cycle of being sucked into the first rotary compression element 32 of the rotary compressor 10 from the refrigerant introduction pipe 94. In this way, the refrigerant that has come out of the evaporator 157 is heated by the internal heat exchanger 160 with the high-pressure side refrigerant, so that the degree of superheat can be obtained, and the compressor can be provided without providing an accumulator or the like on the low-pressure side. The liquid back into which the liquid refrigerant is sucked into 10 can be prevented, and the disadvantage that the compressor 10 is damaged by the liquid compression can be avoided.
[0012]
[Problems to be solved by the invention]
On the other hand, in the refrigerant cycle apparatus using such carbon dioxide, the pressure on the high pressure side rises to 12 MPa or more even in normal cases. In particular, when the compressor is operated at a constant speed, the pressure on the high-pressure side further increases when the compressor is started (when pulling down), and exceeds the design pressure (DP) of the device as shown in FIG. May cause damage. Therefore, it is necessary to start the compressor while controlling the rotation speed (capacity control) of the compressor by the inverter or by adjusting the opening of the expansion valve in addition to suppressing the pressure increase on the high pressure side.
[0013]
The present invention has been made to solve the conventional technical problem, and it is possible to avoid the occurrence of inconvenience due to an abnormal increase in the high-pressure side pressure even when the compressor is operated at a constant speed. It is an object of the present invention to provide a refrigerant cycle device that can be used.
[0014]
[Means for Solving the Problems]
That is, in the refrigerant cycle device of the present invention, an intermediate cooling circuit for dissipating the refrigerant discharged from the first compression element and sucked into the second compression element, and a bypass communicating the intermediate cooling circuit and the low pressure side comprising a circuit, a decompression means and a valve device provided in the bypass circuit, intermediate cooling circuit, with provided so as to pass through the gas cooler, at the start of the compressor, so opening the flow path of the bypass circuit by the valve device The intermediate pressure refrigerant compressed by the first compression element and flowing into the intermediate cooling circuit can be released from the bypass circuit to the low pressure side.
[0015]
Since the intermediate pressure of the refrigerant gas flows into the low pressure side, the intermediate pressure decreases, and the pressure on the high pressure side also decreases.Therefore, even when the compressor is operated at a constant speed, It is possible to avoid the inconvenience that the pressure increases abnormally, and to improve the durability and ensure smooth operation. Further, since the intermediate pressure refrigerant is decompressed by the decompression means provided in the bypass circuit and then flows into the low pressure side, it is possible to avoid the disadvantage that the pressure on the low pressure side is excessively increased.
[0016]
In particular, since the intermediate cooling circuit is provided so as to pass through the gas cooler, the intermediate-pressure refrigerant compressed by the first compression element is cooled by the gas cooler and then merged with the low-pressure side refrigerant. It becomes possible to prevent the temperature from rising.
[0017]
The invention of claim 2 is characterized in that, in addition to the above invention, the flow path of the bypass circuit is opened for a predetermined time from the start of the compressor by a valve device.
[0018]
The invention of claim 3 is characterized in that, in addition to the invention of claim 1, the valve device opens the flow path of the bypass circuit from the start of the compressor until the pressure of the refrigerant in the refrigerant circuit reaches a predetermined value. .
[0019]
The invention of claim 4 is characterized in that, in addition to the invention of claim 1, the valve device opens the flow path of the bypass circuit from the start of the compressor until the drive current of the compressor reaches a predetermined value.
[0020]
According to a fifth aspect of the present invention, in addition to the first aspect, the valve device opens the flow path of the bypass circuit from the start of the compressor until the temperature of the refrigerant in the refrigerant circuit reaches a predetermined value. .
[0021]
In the invention of claim 6, in addition to the above-mentioned inventions, carbon dioxide is used as a refrigerant, so that it can contribute to environmental problems.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 includes a first rotary compression element (first compression element) 32 and a second rotary compression element (second compression element) 34 as an example of a compressor used in the refrigerant cycle apparatus of the present invention. FIG. 2 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10, and FIG. 2 is a refrigerant circuit diagram of the refrigerant cycle apparatus of the present invention.
[0023]
In each figure, reference numeral 10 denotes an internal intermediate pressure type multistage compression rotary compressor that uses carbon dioxide (CO 2 ) as a refrigerant. The compressor 10 includes a cylindrical sealed container 12 made of a steel plate, and an internal space of the sealed container 12. The electric element 14 as a driving element arranged and housed on the upper side, the first rotary compression element 32 (first stage) arranged on the lower side of the electric element 14 and driven by the rotating shaft 16 of the electric element 14 and the first The rotary compression mechanism section 18 is composed of two rotary compression elements 34 (second stage).
[0024]
The sealed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a generally bowl-shaped end cap (lid body) 12B that closes the upper opening of the container body 12A. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring is omitted) 20 for supplying power to the electric element 14 is mounted in the mounting hole 12D. It has been.
[0025]
The electric element 14 is a so-called magnetic pole concentrated winding type DC motor, and is inserted into the stator 22 in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12, and is inserted inside the stator 22 with a slight gap therebetween. The rotor 24 is installed. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction. The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. Similarly to the stator 22, the rotor 24 is formed of a laminated body 30 of electromagnetic steel plates, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0026]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38 and a lower cylinder 40 disposed above and below the intermediate partition plate 36, and the upper and lower cylinders 38, The upper and lower rollers 46 and 48 are rotated eccentrically by upper and lower eccentric portions 42 and 44 provided on the rotary shaft 16 with a phase difference of 180 degrees, and the upper and lower cylinders are in contact with the upper and lower rollers 46 and 48. 38 and 40 are divided into a low pressure chamber side and a high pressure chamber side, respectively, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed to support the bearing of the rotary shaft 16. The upper support member 54 and the lower support member 56 are also used as the supporting members.
[0027]
On the other hand, the upper support member 54 and the lower support member 56 are respectively provided with a suction passage 60 (the upper suction passage is not shown) that communicates with the inside of the upper and lower cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed. Discharge silencing chambers 62 and 64 formed by closing the recessed portion with an upper cover 66 and a lower cover 68 are provided.
[0028]
The discharge silencer chamber 64 and the inside of the sealed container 12 are communicated with each other through a communication passage that penetrates the upper and lower cylinders 38 and 40 and the intermediate partition plate 36, and an intermediate discharge pipe 121 is provided upright at the upper end of the communication passage. The intermediate pressure (MP) refrigerant gas compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0029]
And, as the refrigerant, the above-mentioned carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, is used as the refrigerant, and the oil as the lubricating oil is, for example, mineral oil (mineral oil), Existing oils such as alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.
[0030]
On the side surface of the container main body 12A of the sealed container 12, the suction passage 60 (upper side is not shown) of the upper support member 54 and the lower support member 56, the discharge silencer chamber 62, the upper side of the upper cover 66 (on the lower end of the electric element 14). Sleeves 141, 142, 143, and 144 are welded and fixed at positions corresponding to (substantially corresponding positions). One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with a suction passage (not shown) of the upper cylinder 38. The refrigerant introduction pipe 92 reaches a sleeve 144 through a gas cooler 154 provided in an intermediate cooling circuit 150 described later, and the other end is inserted and connected into the sleeve 144 to communicate with the sealed container 12.
[0031]
In addition, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected in the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. In addition, a refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 communicates with the discharge silencer chamber 62.
[0032]
Next, in FIG. 2, the compressor 10 mentioned above comprises a part of refrigerant circuit shown in FIG. That is, the refrigerant discharge pipe 96 of the compressor 10 is connected to the inlet of the gas cooler 154. Then, the refrigerant pipe exiting the gas cooler 154 passes through the internal heat exchanger 160. The internal heat exchanger 160 is for exchanging heat between the high-pressure refrigerant coming out of the gas cooler 154 and the low-pressure refrigerant coming out of the evaporator 157.
[0033]
The refrigerant pipe that has passed through the internal heat exchanger 160 reaches an expansion valve 156 as a throttle means. The outlet of the expansion valve 156 is connected to the inlet of the evaporator 157, and the refrigerant pipe exiting the evaporator 157 is connected to the refrigerant introduction pipe 94 via the internal heat exchanger 160.
[0034]
The refrigerant circuit is provided with a bypass circuit 170 that communicates the intermediate pressure region and the low pressure side in the present invention. That is, the bypass circuit 170 branches off from the middle part of the refrigerant introduction pipe 92 from the gas cooler 154 of the intermediate cooling circuit 150 which is an intermediate pressure region to the compressor 10 (not shown in FIG. 1). The bypass circuit 170 is connected to a refrigerant introduction pipe 94 on the low pressure side of the refrigerant circuit. The bypass circuit 170 is provided with a capillary tube 172 serving as a decompressing means for decompressing the refrigerant from the intermediate pressure region, and a bypass valve 174 serving as a valve device for opening and closing the flow path of the bypass circuit 170. . The bypass valve 174 is controlled to be opened and closed by a control device (not shown). The intermediate pressure region corresponds to the entire path until the refrigerant compressed by the first rotary compression element 32 is sucked into the second rotary compression element 34, and the bypass circuit 170 is an embodiment of the present invention. The connection location is not particularly limited as long as the path through which the intermediate-pressure refrigerant gas passes and the path through which the low-pressure refrigerant gas pass are communicated.
[0035]
Next, the operation of the refrigerant cycle apparatus of the present invention will be described with the above configuration. It is assumed that the bypass valve 174 of the bypass circuit 170 is closed by a control device (not shown) before the compressor 10 is started. The control device operates the electric element 14 of the compressor 10 at a constant speed, and does not use capacity control means such as an inverter. That is, when the control device energizes the stator coil 28 of the electric element 14 of the compressor 10 via the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 starts to rotate. In synchronization with the activation of the electric element 14, the control device opens the bypass valve 174 of the bypass circuit 170.
[0036]
As the rotor 24 rotates, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 eccentrically rotate in the upper and lower cylinders 38 and 40. Thereby, the low pressure (LP: about 4 MPa in the normal operation state) sucked from the suction port (not shown) to the low pressure chamber side of the cylinder 40 via the suction passage 60 formed in the refrigerant introduction pipe 94 and the lower support member 56. The refrigerant gas is compressed by the operation of the roller 48 and the vane 52 to become an intermediate pressure (MP: about 8 MPa in a normal operation state) from the high pressure chamber side of the lower cylinder 40 through a communication path (not shown) from the intermediate discharge pipe 121 to the sealed container 12. It is discharged inside. Thereby, the inside of the sealed container 12 becomes an intermediate pressure (MP).
[0037]
The intermediate-pressure refrigerant gas in the sealed container 12 enters the refrigerant introduction pipe 92, exits the sleeve 144, and flows into the intermediate cooling circuit 150. The refrigerant gas that has flowed into the intermediate cooling circuit 150 dissipates heat by an air cooling method in the process of passing through the gas cooler 154. In this way, the refrigerant gas having the intermediate pressure compressed by the first rotary compression element 32 can be effectively cooled by the gas cooler 154 by passing through the intermediate cooling circuit 150. The temperature rise can be suppressed, and the compression efficiency in the second rotary compression element 34 can be improved.
[0038]
The intermediate-pressure refrigerant gas cooled by the gas cooler 154 passes through a suction passage (not shown) formed in the upper support member 54 and is connected to a low pressure chamber side of the upper cylinder 38 of the second rotary compression element 34 from a suction port (not shown). Inhaled.
[0039]
Here, since the electric element 14 of the compressor 10 is operated at a constant speed without using an inverter or the like, the pressure on the discharge side of the second rotary compression element 34, that is, the pressure on the high pressure side suddenly rises at the time of activation. In the worst case, the design pressure (pressure limit) of the refrigerant circuit may be exceeded. However, in the present invention, a part of the refrigerant gas cooled by the gas cooler 154 in the intermediate cooling circuit 150 flows into the bypass circuit 170 branched from the middle portion of the refrigerant introduction pipe 92 extending from the gas cooler 154 to the compressor 10. After being depressurized by the capillary tube 172, it escapes to the refrigerant introduction tube 94. Then, it passes through the evaporator 157 and merges with the low-pressure side refrigerant gas from the internal heat exchanger 160 and is sucked into the low-pressure chamber side of the lower cylinder 40 of the first rotary compression element 32. As a result, a part of the refrigerant gas in the intermediate pressure region can escape to the refrigerant introduction pipe 94, so that the refrigerant pressure in the intermediate pressure region decreases.
[0040]
That is, since the pressure of the refrigerant gas sucked into the second rotary compression element 34 is reduced, an increase in the pressure of the refrigerant gas compressed by the second rotary compression element 34 can also be suppressed. In this way, in the present invention, a part of the refrigerant gas at the intermediate pressure is released to the refrigerant introduction pipe 94, so that the refrigerant pressure in the intermediate pressure region is lowered as shown in FIG. 3, and as a result, the pressure of the refrigerant on the high pressure side is increased. Is suppressed. As a result, the pressure of the refrigerant gas compressed by the second rotary compression element 34 is abnormally increased when the compressor 10 is started (at the time of pull-down), and the refrigerant piping in the refrigerant circuit is deteriorated or worst-cased or damaged. This makes it possible to avoid such inconveniences.
[0041]
Further, since the refrigerant gas is depressurized by the capillary tube 172 provided in the bypass circuit 170 and then supplied to the refrigerant introduction pipe 94, the disadvantage that the low pressure rises more than necessary and the intermediate pressure further rises is avoided. Will be able to. Further, the refrigerant gas compressed by the first rotary compression element 32 dissipates heat in the process of passing through the gas cooler 154, and is decompressed by the capillary tube 172 provided in the bypass circuit 170, and then merges with the low-pressure refrigerant gas. In this way, after the refrigerant gas in the intermediate pressure region is cooled by the gas cooler 154, the refrigerant is combined with the refrigerant on the low pressure side, thereby preventing an increase in the internal temperature of the compressor 10.
[0042]
The control device closes the bypass valve 174 when a predetermined time (1 to 10 minutes) elapses after the compressor 10 is started. Thereafter, the refrigerant is compressed by the first rotary compression element 32, enters the refrigerant introduction pipe 92, exits the sleeve 144, flows into the intermediate cooling circuit 150, and all the refrigerant gas radiated by the gas cooler 154 is formed in the upper support member 54. The air is sucked into the low pressure chamber side of the upper cylinder 38 of the second rotary compression element 34 from the suction port (not shown) via the suction passage (not shown).
[0043]
On the other hand, the refrigerant gas sucked into the low-pressure chamber side of the upper cylinder 38 of the second rotary compression element 34 is compressed in the second stage by the operation of the roller 46 and the vane 50, so that the high-temperature and high-pressure (HP: normal operation state) And is discharged from the refrigerant discharge pipe 96 to the outside through the discharge silencer chamber 62 formed in the upper support member 54 through the discharge port (not shown) from the high pressure chamber side. At this time, the refrigerant is compressed to an appropriate supercritical pressure, and the refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154.
[0044]
The refrigerant gas flowing into the gas cooler 154 dissipates heat by the air cooling method and then passes through the internal heat exchanger 160. The refrigerant is further cooled by taking heat away from the low-pressure side refrigerant. Thereby, the cooling capacity of the refrigerant in the evaporator 157 is improved by the effect that the degree of supercooling of the refrigerant is increased.
[0045]
The high-pressure side refrigerant gas cooled by the internal heat exchanger 160 reaches the expansion valve 156. Note that the refrigerant gas is still in a gaseous state at the inlet of the expansion valve 156. The refrigerant is made into a gas / liquid two-phase mixture due to the pressure drop in the expansion valve 156 and flows into the evaporator 157 in this state. Therefore, the refrigerant evaporates and exhibits a cooling action by absorbing heat from the air.
[0046]
Thereafter, the refrigerant flows out of the evaporator 157 and passes through the internal heat exchanger 160. Therefore, heat is taken from the high-pressure side refrigerant and is subjected to a heating action. Thus, it evaporates with the evaporator 157, becomes low temperature, and the refrigerant | coolant which exited the evaporator 157 is not the state of a gas completely, but the state where the liquid was mixed. Therefore, by passing through the internal heat exchanger 160 and exchanging heat with the high-pressure side refrigerant, the refrigerant is superheated and becomes completely gas. Thereby, without providing an accumulator on the low pressure side, it is possible to reliably prevent the liquid back into which the liquid refrigerant is sucked into the compressor 10, and to avoid the disadvantage that the compressor 10 is damaged by the liquid compression.
[0047]
The refrigerant heated by the internal heat exchanger 160 repeats a cycle of being sucked into the first rotary compression element 32 of the compressor 10 from the refrigerant introduction pipe 94. At this time, in the normal operation state (at the time of pull-down) other than the start-up time (at the time of pull-down), the refrigerant pressure is stable without exceeding the design pressure (DP) of the refrigerant piping in the refrigerant circuit as shown in FIG. It is operated with the pressure.
[0048]
In this way, the bypass circuit 170 that connects the intermediate pressure region of the refrigerant circuit and the low pressure side, and the capillary tube 172 and the bypass valve 174 are provided in the bypass circuit 170 so that the bypass valve 174 is activated when the compressor 10 is started. Thus, by opening the flow path of the bypass circuit 170, the refrigerant gas in the intermediate pressure region can be released to the low pressure side. As a result, the refrigerant pressure in the intermediate pressure region decreases, and an increase in the pressure of the refrigerant gas compressed by the second rotary compression element 34 can be suppressed. For this reason, it is possible to avoid the inconvenience that the pressure of the refrigerant on the high-pressure side abnormally rises at the time of startup and the refrigerant pipe is deteriorated or worst-cased by the refrigerant gas.
[0049]
Thereby, the durability of the refrigerant cycle device can be ensured, and the reliability can be improved.
[0050]
Furthermore, since the refrigerant gas flowing into the bypass circuit 170 is decompressed by the capillary tube 172 provided in the bypass circuit 170 and then flows into the low pressure side, the refrigerant flows into the low pressure side, thereby increasing the low pressure. Thus, the inconvenience that the intermediate pressure further increases can be avoided.
[0051]
In this embodiment, the bypass valve 174 is opened from the start of the compressor 10 by a control device (not shown) and then closed when a predetermined time has passed. However, the present invention is not limited to this, for example, Alternatively, the flow path of the bypass circuit 170 may be opened until the refrigerant temperature or refrigerant pressure in the refrigerant circuit or the starting current of the compressor reaches a predetermined value. In addition, when the refrigerant flow to the bypass circuit is controlled by the refrigerant temperature in the refrigerant circuit, the refrigerant temperature is, for example, a refrigerant temperature sensor connected to a control device (not shown) for the evaporation temperature of the refrigerant in the evaporator 157. Detection may be performed so that the bypass valve 174 is opened from the time of activation and closed when the refrigerant evaporation temperature in the evaporator 157 detected by the refrigerant temperature sensor is lowered to a predetermined value.
[0052]
In the embodiment, the compressor 10 is described using an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor. However, the compressor usable in the present invention is not limited to this, and the multi-stage of three or more stages is used. The present invention is effective even for a compression type compressor. In the present embodiment, the compressor 10 is operated at a constant speed. However, the present invention may be applied to an apparatus in which the rotation speed of the compressor is controlled by an inverter. In this case, since the rotation speed control at the time of starting can be performed more easily, the control function can be simplified.
[0053]
【The invention's effect】
As described above in detail, according to the refrigerant cycle device of the present invention, the intermediate cooling circuit for radiating the refrigerant discharged from the first compression element and sucked into the second compression element, the intermediate cooling circuit and the low pressure side preparative includes a bypass circuit that communicates, and a pressure reducing means and a valve device provided in the bypass circuit, intermediate cooling circuit, with provided so as to pass through the gas cooler, the compressor starts, the flow of the bypass circuit by the valve device Since the passage is opened, the intermediate pressure refrigerant compressed by the first compression element and flowing into the intermediate cooling circuit can be released from the bypass circuit to the low pressure side.
[0054]
Since the intermediate pressure of the refrigerant gas flows into the low pressure side, the intermediate pressure decreases, and the pressure on the high pressure side also decreases.Therefore, even when the compressor is operated at a constant speed, It is possible to avoid the inconvenience that the pressure increases abnormally, and to improve the durability and ensure smooth operation. Further, since the intermediate pressure refrigerant is decompressed by the decompression means provided in the bypass circuit and then flows into the low pressure side, it is possible to avoid the disadvantage that the pressure on the low pressure side is excessively increased.
[0055]
Further, since the intermediate pressure refrigerant is decompressed by the decompression means provided in the bypass circuit and then flows into the low pressure side, it is possible to avoid the disadvantage that the low pressure is excessively increased.
[0056]
In particular, since the intermediate cooling circuit is provided so as to pass through the gas cooler, the intermediate-pressure refrigerant compressed by the first compression element is cooled by the gas cooler and then merged with the low-pressure side refrigerant. It becomes possible to prevent the temperature from rising.
[0057]
In general, the durability and smooth operation can be ensured, and the reliability of the refrigerant cycle device can be improved.
[0058]
In particular, the present invention is suitable for a device using carbon dioxide having a very high pressure on the high pressure side as a refrigerant, and can also contribute to environmental problems if such carbon dioxide is used as a refrigerant.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a rotary compressor of an embodiment used in a refrigerant cycle device of the present invention.
FIG. 2 is a refrigerant circuit diagram of the refrigerant cycle device of the present invention.
FIG. 3 is a graph showing changes in refrigerant pressure in the refrigerant cycle device of the present invention.
FIG. 4 is a refrigerant circuit diagram of a conventional refrigerant cycle device.
FIG. 5 is a graph showing changes in refrigerant pressure in a conventional refrigerant cycle device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Multistage compression rotary compressor 12 Airtight container 14 Electric element 32 1st rotation compression element 34 2nd rotation compression element 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 150 Intermediate cooling circuit 154 Gas cooler 156 Expansion valve (throttle means)
157 Evaporator 160 Internal heat exchanger 170 Bypass circuit 172 Capillary tube 174 Bypass valve

Claims (6)

コンプレッサ、ガスクーラ、絞り手段及び蒸発器を順次接続して冷媒回路が構成されると共に、前記コンプレッサは、駆動要素にて駆動される第1及び第2の圧縮要素を備え、前記冷媒回路の低圧側から前記第1の圧縮要素に冷媒を吸い込んで圧縮し、当該第1の圧縮要素から吐出された中間圧の冷媒を前記第2の圧縮要素に吸い込み、圧縮して前記ガスクーラに吐出する冷媒サイクル装置において、
前記第1の圧縮要素から吐出され、前記第2の圧縮要素に吸い込まれる冷媒を放熱させるための中間冷却回路と、
該中間冷却回路と低圧側とを連通するバイパス回路と、
該バイパス回路に設けられた減圧手段及び弁装置とを備え、
前記中間冷却回路は、前記ガスクーラを通過するよう設けられると共に、
前記コンプレッサの起動時に、前記弁装置により前記バイパス回路の流路を開放することを特徴とする冷媒サイクル装置。
A refrigerant circuit is configured by sequentially connecting a compressor, a gas cooler, a throttle means, and an evaporator, and the compressor includes first and second compression elements driven by a driving element, and the low-pressure side of the refrigerant circuit The refrigerant cycle device that sucks and compresses the refrigerant from the first compression element and compresses the intermediate pressure refrigerant discharged from the first compression element into the second compression element, compresses it, and discharges it to the gas cooler In
An intermediate cooling circuit for releasing heat from the refrigerant discharged from the first compression element and sucked into the second compression element;
A bypass circuit communicating the intermediate cooling circuit and the low pressure side;
A pressure reducing means and a valve device provided in the bypass circuit,
The intermediate cooling circuit is provided to pass through the gas cooler,
A refrigerant cycle device that opens a flow path of the bypass circuit by the valve device when the compressor is started.
前記弁装置により、前記コンプレッサの起動から所定時間前記バイパス回路の流路を開放することを特徴とする請求項1の冷媒サイクル装置。  The refrigerant cycle device according to claim 1, wherein the valve device opens the flow path of the bypass circuit for a predetermined time after the compressor is started. 前記弁装置により、前記コンプレッサの起動から前記冷媒回路内の冷媒の圧力が所定値に到達するまで前記バイパス回路の流路を開放することを特徴とする請求項1の冷媒サイクル装置。  2. The refrigerant cycle device according to claim 1, wherein the valve device opens the flow path of the bypass circuit until the pressure of the refrigerant in the refrigerant circuit reaches a predetermined value after the compressor is started. 前記弁装置により、前記コンプレッサの起動から当該コンプレッサの駆動電流が所定値に到達するまで前記バイパス回路の流路を開放することを特徴とする請求項1の冷媒サイクル装置。  The refrigerant cycle device according to claim 1, wherein the valve device opens the flow path of the bypass circuit until the compressor drive current reaches a predetermined value after the compressor is started. 前記弁装置により、前記コンプレッサの起動から前記冷媒回路内の冷媒の温度が所定値に到達するまで前記バイパス回路の流路を開放することを特徴とする請求項1の冷媒サイクル装置。  The refrigerant cycle device according to claim 1, wherein the valve device opens the flow path of the bypass circuit until the temperature of the refrigerant in the refrigerant circuit reaches a predetermined value after the compressor is started. 前記冷媒として二酸化炭素を使用することを特徴とする請求項1、請求項2、請求項3、請求項4又は請求項5の冷媒サイクル装置。  6. The refrigerant cycle device according to claim 1, 2, 3, 4, or 5, wherein carbon dioxide is used as the refrigerant.
JP2003041197A 2003-02-19 2003-02-19 Refrigerant cycle equipment Expired - Fee Related JP4278402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041197A JP4278402B2 (en) 2003-02-19 2003-02-19 Refrigerant cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041197A JP4278402B2 (en) 2003-02-19 2003-02-19 Refrigerant cycle equipment

Publications (2)

Publication Number Publication Date
JP2004251513A JP2004251513A (en) 2004-09-09
JP4278402B2 true JP4278402B2 (en) 2009-06-17

Family

ID=33024846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041197A Expired - Fee Related JP4278402B2 (en) 2003-02-19 2003-02-19 Refrigerant cycle equipment

Country Status (1)

Country Link
JP (1) JP4278402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808768A (en) * 2011-06-03 2012-12-05 富士通将军股份有限公司 Rotary compressor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2229562T3 (en) * 2008-01-17 2018-10-15 Carrier Corp Carbon dioxide refrigerant vapor compression system
JP2011047567A (en) * 2009-08-26 2011-03-10 Daikin Industries Ltd Refrigerating device
JP2011133208A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
DK2339266T3 (en) 2009-12-25 2018-05-28 Sanyo Electric Co Cooling device
GB2585594B (en) * 2018-03-26 2021-11-24 Mitsubishi Electric Corp Refrigeration device
CN112654823B (en) * 2018-09-14 2022-12-27 三菱电机株式会社 Heat source device and refrigeration cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808768A (en) * 2011-06-03 2012-12-05 富士通将军股份有限公司 Rotary compressor
CN102808768B (en) * 2011-06-03 2015-05-13 富士通将军股份有限公司 Rotary compressor

Also Published As

Publication number Publication date
JP2004251513A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP4859694B2 (en) Multistage compressor
TWI323774B (en) Refrigeration circuit system
JP2005003239A (en) Refrigerant cycling device
JP4219198B2 (en) Refrigerant cycle equipment
JP2004293813A (en) Refrigerant cycle device
JP3995570B2 (en) Refrigerant circuit device
JP4039921B2 (en) Transcritical refrigerant cycle equipment
JP6298272B2 (en) Scroll compressor
JP4278402B2 (en) Refrigerant cycle equipment
JP2004116957A (en) Refrigerant cycle system
JP3983115B2 (en) Refrigerant circuit using CO2 refrigerant
JP3370027B2 (en) 2-stage compression type rotary compressor
JP2004317073A (en) Refrigerant cycling device
JP4107926B2 (en) Transcritical refrigerant cycle equipment
JP3895976B2 (en) Multistage rotary compressor
JP2004251492A (en) Refrigerant cycle device
JP3954875B2 (en) Refrigerant circuit device
JP2004251514A (en) Refrigerant cycle device
JP4241127B2 (en) Transcritical refrigerant cycle equipment
JP3370026B2 (en) 2-stage compression type rotary compressor
JP3291469B2 (en) Rotary compressor
EP2322804B1 (en) Multiple-stage compressor
JP4036772B2 (en) Transcritical refrigerant cycle equipment
JP2004028485A (en) Co2 cooling medium cycle device
JP2004170043A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees