JP2004170043A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2004170043A
JP2004170043A JP2002339375A JP2002339375A JP2004170043A JP 2004170043 A JP2004170043 A JP 2004170043A JP 2002339375 A JP2002339375 A JP 2002339375A JP 2002339375 A JP2002339375 A JP 2002339375A JP 2004170043 A JP2004170043 A JP 2004170043A
Authority
JP
Japan
Prior art keywords
refrigerant
rotary compression
evaporator
compression element
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002339375A
Other languages
Japanese (ja)
Inventor
Haruhisa Yamazaki
晴久 山崎
Masaji Yamanaka
正司 山中
Kenzo Matsumoto
兼三 松本
Kazuya Sato
里  和哉
Kazuaki Fujiwara
一昭 藤原
Kentaro Yamaguchi
賢太郎 山口
Akifumi Fuuka
明文 富宇加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002339375A priority Critical patent/JP2004170043A/en
Priority to TW092121775A priority patent/TWI308631B/en
Priority to CNA2003101003244A priority patent/CN1499081A/en
Priority to EP03025399A priority patent/EP1418338B1/en
Priority to EP07006592A priority patent/EP1795838A3/en
Priority to ES03025399T priority patent/ES2388274T3/en
Priority to MYPI20034244A priority patent/MY138073A/en
Priority to KR1020030078422A priority patent/KR100950412B1/en
Priority to US10/703,261 priority patent/US6907746B2/en
Publication of JP2004170043A publication Critical patent/JP2004170043A/en
Priority to US11/009,155 priority patent/US6931866B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device having a cooling medium cycle, with an evaporator having improved cooling performance and a compressor preventive of damages due to liquid compression without providing an accumulator on the lower pressure side. <P>SOLUTION: The cooling device comprises an intermediate cooling circuit 150 for releasing heat from a cooling medium discharged from a first rotary compression element 32, a heat insulating casing 201, a storage chamber 204 constructed in the heat insulating casing 201 and adapted to be cooled by the evaporator 157, a cover 206 for closing an opening portion 202 of the heat insulating casing 201. A portion of a pipe in the intermediate cooling circuit 150 is arranged in the opening portion 202 of the heat insulating casing 201 to form a frame pipe 150A. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、コンプレッサ、ガスクーラ、絞り手段及び蒸発器を順次接続して構成された冷却装置に関するものである。
【0002】
【従来の技術】
従来のこの種冷却装置は、ロータリコンプレッサ(コンプレッサ)、ガスクーラ、絞り手段(膨張弁等)及び蒸発器等を順次環状に配管接続して冷媒サイクル(冷媒回路)が構成されている。そして、ロータリコンプレッサの回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経てガスクーラに吐出される。このガスクーラにて冷媒ガスは放熱した後、絞り手段で絞られて蒸発器に供給される。そこで冷媒が蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮するものであった。
【0003】
また、近年では地球環境問題に対処するため、この種の冷却装置においても、従来のフロンを用いずに自然冷媒である二酸化炭素(CO)を冷媒として用いる冷媒サイクルの冷却装置が開発されてきている。
【0004】
このような冷却装置では、コンプレッサ内に液冷媒が戻って、液圧縮することを防ぐために、蒸発器の出口側とコンプレッサの吸込側との間にアキュムレータを配設し、このアキュムレータに液冷媒を溜め、ガスのみをコンプレッサに吸い込ませる構成とされていた。そして、アキュムレータ内の液冷媒がコンプレッサに戻らないように絞り手段を調整していた(例えば、特許文献1参照)。
【0005】
【特許文献1】
特公平7−18602号公報
【0006】
【発明が解決しようとする課題】
しかしながら、冷媒サイクルの低圧側にアキュムレータを設けることは、その分多くの冷媒充填量が必要となる。また、液バックを防止するためには絞り手段の開度を小さくし、或いは、アキュムレータの容量を拡大しなければならず、冷却能力の低下や設置スペースの拡大を招くという問題が生じていた。
【0007】
また、蒸発器での蒸発温度が0℃以下、例えば−50℃以下の超低温域となるようにすることは、圧縮比が非常に高くなり、コンプレッサ自体の温度又は冷媒サイクル内に吐出される冷媒ガスの温度が高くなる関係上極めて困難となっていた。
【0008】
本発明は、係る従来の技術的課題を解決するために成されたものであり、冷却装置において、蒸発器における冷却能力の向上を図ると共に、低圧側のアキュムレータを設けることなく、コンプレッサの液圧縮による損傷の発生を防止することを目的とする。
【0009】
【課題を解決するための手段】
即ち、本発明の冷却装置では、コンプレッサは、密閉容器内に第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されて吐出された冷媒を第2の回転圧縮要素に吸い込んで圧縮し、ガスクーラに吐出すると共に、第1の回転圧縮要素から吐出された冷媒を放熱させるための中間冷却回路を備え、この中間冷却回路の少なくとも一部を、結露、若しくは、凍結の防止が必要な箇所に配設したので、第1の回転圧縮要素で圧縮され吐出された冷媒が結露、若しくは、凍結の防止が必要な箇所を通過することで熱を奪われるので、冷媒の温度を下げることができるようになる。
【0010】
一方、冷媒により冷却装置の結露、若しくは、凍結の防止が必要な箇所は加熱されるので、結露、若しくは、凍結を未然に防ぐことができるようになる。
【0011】
請求項2の発明では上記発明に加えて、断熱箱体と、この断熱箱体内に構成され、蒸発器により冷却される貯蔵室と、断熱箱体の開口部を閉塞する蓋体を備え、中間冷却回路の少なくとも一部を断熱箱体の開口部に配設したので、第1の回転圧縮要素で圧縮され吐出された冷媒が断熱箱体の開口部を通過することで熱を奪われるので、冷媒の温度を下げることができる。
【0012】
一方、冷媒により断熱箱体の開口部が加熱されるので、当該開口部の結露、若しくは、凍結を未然に回避することができるようになる。
【0013】
請求項3の発明では上記各発明に加えて、ガスクーラから出た第2の回転圧縮要素からの冷媒と蒸発器を出た冷媒とを熱交換させるための内部熱交換器を備えるので、蒸発器から出た冷媒は内部熱交換器でガスクーラを出た第2の回転圧縮要素からの冷媒と熱交換して熱を奪うので、冷媒の過熱度を確保してコンプレッサにおける液圧縮を回避することができるようになる。
【0014】
また、本発明では請求項4の如く蒸発器における冷媒の蒸発温度を0℃以下、例えば−50℃以下の超低温域とする場合に極めて有効となる。
【0015】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の冷却装置200に使用するコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図、図2は本発明の冷却装置200の冷媒回路図である。
【0016】
各図において、10は二酸化炭素(CO)を冷媒として使用する内部中間圧型多段圧縮式ロータリコンプレッサで、このコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された駆動要素としての電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)から成る回転圧縮機構部18にて構成されている。
【0017】
密閉容器12は底部をオイル溜めとし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0018】
電動要素14は所謂磁極集中巻き式のDCモータであり、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24はステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0019】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を、180度の位相差を有して回転軸16に設けられた上下偏心部42、44により偏心回転される上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成されている。
【0020】
一方、上部支持部材54及び下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上部カバー66、下部カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0021】
尚、吐出消音室64と密閉容器12内とは、上下シリンダ38、40や中間仕切板36を貫通する連通路にて連通されており、連通路の上端には中間吐出管121が立設され、この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスが密閉容器12内に吐出される。
【0022】
そして、冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO)が使用され、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)など既存のオイルが使用される。
【0023】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路60(上側は図示せず)、吐出消音室62、上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の図示しない吸込通路と連通する。この冷媒導入管92は後述する中間冷却回路150に設けられた断熱箱体201の開口部202、中間熱交換器159を経てスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0024】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。
【0025】
そして、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62と連通する。
【0026】
次に、図2において、上述したコンプレッサ10は図2に示す冷媒回路の一部を構成する。即ち、コンプレッサ10の冷媒吐出管96はガスクーラ154の入口に接続される。そして、このガスクーラ154を出た配管は内部熱交換器160を通過する。この内部熱交換器160はガスクーラ154から出た第2の回転圧縮要素34からの高圧側の冷媒と蒸発器157から出た低圧側の冷媒とを熱交換させるためのものである。
【0027】
そして、この内部熱交換器160を通過した高圧側の冷媒は、絞り手段としての膨張弁156に至る。この膨張弁156の出口は蒸発器157の入口に接続され、蒸発器157を出た配管は内部熱交換器160に至る。そして、内部熱交換器160から出た配管は冷媒導入管94に接続されている。
【0028】
また、図2において、中間冷却回路150の配管の一部は中間熱交換器159を通過した後、放熱する断熱箱体201の開口部202に設けられたフレームパイプ(フレームヒータ)150Aを通過するように配設されている。
【0029】
図3は本発明の冷却装置200の斜視図である。図3において、200は理化学実験などに使用されるフリーザーであり、201は前記断熱箱体である。この断熱箱体201は図示しない金属製の内箱と外箱から成り、内箱と外箱の間には断熱材が充填されている。また、断熱箱体201の内箱の断熱材側(外面)には前述した蒸発器157が設けられている。そして、断熱箱体201の内箱内には、前記蒸発器157にて冷却される貯蔵室204が構成されている。断熱箱体201は開口部202を蓋体206により開閉可能に閉塞できるように形成されている。また、断熱箱体201の開口部202の全周には、前述した前記中間冷却回路150の一部の配管が埋設されたフレームパイプ150Aが構成されている。
【0030】
このフレームパイプ150Aは当該フレームパイプ150Aを通過する冷媒から熱を奪い、開口部202やその付近を加熱して、結露や凍結の発生を防止するために設けられたものである。尚、図3において、208は前記コンプレッサ10、ガスクーラ154、内部熱交換器160、膨張弁156及び中間熱交換器159などが収納されている機械室である。
【0031】
以上の構成で次に本発明の冷却装置200の動作を説明する。ターミナル20及び図示されない配線を介してコンプレッサ10の電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0032】
これにより、冷媒導入管94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧の冷媒ガスは、ローラ48とベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0033】
そして、密閉容器12内の中間圧の冷媒ガスは冷媒導入管92に入り、スリーブ144から出て中間冷却回路150に流入する。そして、この中間冷却回路150が中間熱交換器159を通過する過程で空冷方式により放熱した後、冷却装置200の開口部202の全周に渡って埋設されたフレームパイプ150Aを通過する。冷媒はそこで開口部202周辺の冷気により熱を奪われて更に冷却される。
【0034】
一方、冷却装置200の開口部202は中間圧の冷媒によって加熱され、結露や凍結の発生を未然に防止することができる。このように、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスを中間冷却回路150を通過させることで、中間熱交換器159及び開口部202に形成されたフレームパイプ150Aにて効果的に冷却することができるので、密閉容器12内の温度上昇を抑え、第2の回転圧縮要素34における圧縮効率も向上させることができるようになる。また、第2の回転圧縮要素34に吸い込まれる冷媒が冷却されることで、第2の回転圧縮要素34で圧縮され、吐出される冷媒の温度上昇も抑えることができるようになる。
【0035】
また、中間熱交換器159とフレームパイプ150Aが通過する開口部202との二段階で冷媒を冷却することができるため、中間熱交換器159の容量を大きくする必要がないので、冷却装置200の機械室208をよりコンパクトにすることができる。
【0036】
そして、冷却された中間圧の冷媒ガスは上部支持部材54に形成された図示しない吸込通路を経由して、図示しない吸込ポートから第2の回転圧縮要素34の上シリンダ38の低圧室側に吸入され、ローラ46とベーン50の動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62を経て冷媒吐出管96より外部に吐出される。
【0037】
冷媒吐出管96から吐出された冷媒ガスはガスクーラ154に流入し、そこで空冷方式により放熱した後、内部熱交換器160を通過する。冷媒はそこで低圧側の冷媒に熱を奪われて更に冷却される。
【0038】
この内部熱交換器160の存在により、ガスクーラ154を出て、内部熱交換器160を通過する冷媒は、低圧側の冷媒に熱を奪われるので、この分、当該冷媒の過冷却度が大きくなる。そのため、蒸発器157における冷却能力が向上する。
【0039】
係る内部熱交換器160で冷却された高圧側の冷媒ガスは膨張弁156に至る。冷媒は膨張弁156において圧力が低下して、その後、蒸発器157内に流入する。そこで冷媒は蒸発し、吸熱作用を発揮して断熱箱体201の内箱を冷却する。これにより、貯蔵室204は内箱の壁面から冷却される。
【0040】
このとき、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスを中間冷却回路150を通過させて、密閉容器12内及び第2の回転圧縮要素34の冷媒の温度上昇を抑えるという効果と、第2の回転圧縮要素34で圧縮された冷媒ガスを、内部熱交換器160を通過させて、膨張弁156前の冷媒の過冷却度が大きくなるという効果によって、蒸発器157における冷媒の冷却能力が向上する。
【0041】
即ち、この場合における蒸発器157での蒸発温度を0℃以下、例えば−50℃以下の超低温域に容易に到達させることができるようになる。また、同時にコンプレッサ10での消費電力の低減も図ることができるようになる。
【0042】
その後、冷媒は蒸発器157から流出して、内部熱交換器160に至る。そこで前述の高圧側の冷媒から熱を奪い、加熱作用を受ける。ここで、蒸発器157で蒸発して低温となり、蒸発器157を出た冷媒は、完全に気体の状態ではなく液体が混在した状態であるが、内部熱交換器160を通過させて高圧側の冷媒と熱交換させることで、冷媒が加熱される。これにより、冷媒は過熱度が取れて完全に気体となる。
【0043】
これにより、蒸発器157から出た冷媒を確実にガス化させることができるようになる。特に、運転条件により余剰冷媒が発生するような場合においても、内部熱交換器160により、低圧側冷媒を加熱しているので、低圧側のアキュムレータなどを設けること無く、コンプレッサ10に液冷媒が吸い込まれる液バックを確実に防止し、コンプレッサ10が液圧縮にて損傷を受ける不都合を回避することができるようになる。
【0044】
また、コンプレッサ10の吐出温度や内部温度を上昇させないサイクルとすることで、冷却装置200の信頼性の向上を図ることができるようになる。
【0045】
尚、内部熱交換器160で加熱された冷媒は、冷媒導入管94からコンプレッサ10の第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0046】
このように、第1の回転圧縮要素32から吐出された冷媒を放熱させるための中間冷却回路150を備え、この中間冷却回路150の配管の一部を、断熱箱体201の開口部202に配設してフレームパイプ150Aを構成したので、第1の回転圧縮要素32で圧縮され吐出された冷媒が断熱箱体201の開口部202に設けられたフレームパイプ150Aを通過することで熱を奪われるので、冷媒の温度を下げることができるようになる。
【0047】
これにより、第2の回転圧縮要素34における圧縮効率を向上させることができるようになる。また、第2の回転圧縮要素34に吸い込まれる冷媒が冷却されることで、第2の回転圧縮要素34で圧縮され、吐出される冷媒の温度上昇も抑えることができるようになる。
【0048】
一方、冷媒により冷却装置200の結露、若しくは、凍結の防止が必要な箇所は加熱されるので、結露、若しくは、凍結を未然に回避することができるようになる。
【0049】
また、ガスクーラ154から出た第2の回転圧縮要素34からの冷媒と蒸発器157を出た冷媒とを熱交換させるための内部熱交換器160を備えることで、蒸発器157から出た冷媒は内部熱交換器160でガスクーラ154を出た第2の回転圧縮要素34からの冷媒と熱交換して熱を奪うので、確実に冷媒の過熱度を確保してコンプレッサ10における液圧縮を回避できるようになる。
【0050】
他方、ガスクーラ154を出た第2の回転圧縮要素34からの冷媒は、内部熱交換器160において蒸発器157を出た冷媒に熱を奪われるので、それにより、膨張弁156前の冷媒の過冷却度が大きくなる。それにより、蒸発器157における冷却能力が更に向上する。
【0051】
これらにより、冷媒サイクルの蒸発器157における冷媒の蒸発温度を低下させることが可能となり、例えば蒸発器157での蒸発温度を−50℃以下の超低温域とすることを容易に達成することができるようになる。また、コンプレッサ10での消費電力の低減も図ることができるようになる。
【0052】
尚、本実施例ではフレームパイプ150Aを中間冷却回路150の中間熱交換器159の下流側に設けるものとしたが、中間冷却回路150の中間熱交換器159の上流側に設けても良い。
【0053】
また、本実施例では蒸発器157を断熱箱体201の内箱の断熱材側(外面)に設けて、内箱を冷却することで、貯蔵室204が内箱の壁面から冷却されるものとしたが、蒸発器の位置や冷却方法はこれに限定されるものでなく、ファンによって強制的に冷気を循環させることにより貯蔵室を冷却する方法など種々の方法が適用可能である。
【0054】
実施例では、二酸化炭素を冷媒として使用したが、これに限らず、他の冷媒、例えばフッ素系の冷媒や炭化水素系の冷媒などの冷媒を用いた場合であっても適用可能である。
【0055】
【発明の効果】
以上詳述した如く、本発明の冷却装置によれば、コンプレッサは、密閉容器内に電動要素とこの電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されて吐出された冷媒を第2の回転圧縮要素に吸い込んで圧縮し、ガスクーラに吐出すると共に、第1の回転圧縮要素から吐出された冷媒を放熱させるための中間冷却回路を備え、この中間冷却回路の少なくとも一部を、結露、若しくは、凍結の防止が必要な箇所に配設したので、第1の回転圧縮要素で圧縮され吐出された冷媒が結露、若しくは、凍結の防止が必要な箇所を通過することで熱を奪われるので、冷媒の温度を下げることができる。
【0056】
これにより、第2の回転圧縮要素における圧縮効率を向上させることができるようになる。また、第2の回転圧縮要素に吸い込まれる冷媒が冷却されることで、第2の回転圧縮要素で圧縮され、吐出される冷媒の温度上昇も抑えることができるようになり、膨張弁前の冷媒の過冷却度を大きくできるので、蒸発器における冷却能力が向上する。
【0057】
一方、第1の回転圧縮要素から吐出された冷媒により冷却装置の結露、若しくは、凍結の防止が必要な箇所が加熱されるため、結露、若しくは、凍結を未然に防ぐことができるようになる。
【0058】
請求項2の発明によれば上記発明に加えて、断熱箱体と、この断熱箱体内に構成され、蒸発器により冷却される貯蔵室と、断熱箱体の開口部を閉塞する蓋体を備え、中間冷却回路の少なくとも一部を断熱箱体の開口部に配設したので、第1の回転圧縮要素で圧縮され吐出された冷媒が断熱箱体の開口部を通過することで熱を奪われるので、冷媒の温度を下げることができる。
【0059】
これにより、第2の回転圧縮要素における圧縮効率を向上させることができるようになる。また、第2の回転圧縮要素に吸い込まれる冷媒が冷却されることで、第2の回転圧縮要素で圧縮され、吐出される冷媒の温度上昇も抑えることができるようになり、膨張弁前の冷媒の過冷却度が大きくなるので、蒸発器における冷却能力が向上する。
【0060】
一方、第1の回転圧縮要素から吐出された冷媒により断熱箱体の開口部が加熱され、当該開口部の結露、若しくは、凍結を未然に回避することができるようになる。
【0061】
請求項3の発明では上記各発明に加えて、ガスクーラから出た第2の回転圧縮要素からの冷媒と蒸発器を出た冷媒とを熱交換させるための内部熱交換器を備えるので、蒸発器から出た冷媒は内部熱交換器でガスクーラを出た第2の回転圧縮要素からの冷媒と熱交換して熱を奪うので、冷媒の過熱度を確保してコンプレッサにおける液圧縮を回避できるようになる。
【0062】
他方、ガスクーラを出た第2の回転圧縮要素からの冷媒は、内部熱交換器において蒸発器を出た冷媒に熱を奪われるので、この分、冷媒の過冷却度が大きくなる。それにより、蒸発器における冷媒ガスの冷却能力が更に向上する。
【0063】
従って、冷媒循環量を増やさずに所望の冷却能力を容易に達成することができるようになり、コンプレッサでの消費電力の低減も図ることができるようになる。
【0064】
また、本発明では請求項4の如く蒸発器における冷媒の蒸発温度を0℃以下、例えば−50℃以下の超低温域とする場合に極めて有効となる。
【図面の簡単な説明】
【図1】本発明の遷臨界冷媒サイクル装置を構成する内部中間圧型多段圧縮式ロータリコンプレッサの縦断面図である。
【図2】本発明の冷却装置の冷媒回路図である。
【図3】本発明の冷却装置の斜視図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
12 密閉容器
14 電動要素
32 第1の回転圧縮要素
34 第2の回転圧縮要素
92、94 冷媒導入管
96 冷媒吐出管
150 中間冷却回路
150A フレームパイプ
154 ガスクーラ
156 膨張弁(絞り手段)
157 蒸発器
160 内部熱交換器
200 冷却装置
201 断熱箱体
202 開口部
204 貯蔵室
206 蓋体
208 機械室
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling device configured by sequentially connecting a compressor, a gas cooler, a throttle unit, and an evaporator.
[0002]
[Prior art]
In this type of conventional cooling device, a refrigerant cycle (refrigerant circuit) is configured by connecting a rotary compressor (compressor), a gas cooler, a throttling means (expansion valve and the like), an evaporator, and the like in order in a tubular manner. Refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the rotary compression element of the rotary compressor, and is compressed by the operation of the rollers and vanes to become high temperature and high pressure refrigerant gas. It is discharged to the gas cooler through the silencer. After the refrigerant gas radiates heat in this gas cooler, it is throttled by throttle means and supplied to the evaporator. Then, the refrigerant evaporates, and at that time, absorbs heat from the surroundings to exert a cooling effect.
[0003]
In recent years, in order to deal with global environmental problems, in this type of cooling device, a cooling device of a refrigerant cycle using carbon dioxide (CO 2 ), which is a natural refrigerant, as a refrigerant without using conventional fluorocarbons has been developed. ing.
[0004]
In such a cooling device, an accumulator is arranged between the outlet side of the evaporator and the suction side of the compressor in order to prevent the liquid refrigerant from returning into the compressor and performing liquid compression, and the liquid refrigerant is supplied to the accumulator. Only the reservoir and gas were sucked into the compressor. The throttle means is adjusted so that the liquid refrigerant in the accumulator does not return to the compressor (for example, see Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent Publication No. Hei 7-18602
[Problems to be solved by the invention]
However, providing an accumulator on the low pressure side of the refrigerant cycle requires a correspondingly large amount of refrigerant charge. Further, in order to prevent the liquid back, the opening degree of the throttle means must be reduced or the capacity of the accumulator must be increased, which causes a problem that the cooling capacity is reduced and the installation space is increased.
[0007]
In addition, setting the evaporation temperature in the evaporator to an ultra-low temperature range of 0 ° C. or less, for example, −50 ° C. or less, results in a very high compression ratio, the temperature of the compressor itself or the refrigerant discharged into the refrigerant cycle. This was extremely difficult due to the high gas temperature.
[0008]
The present invention has been made to solve the conventional technical problem, and in a cooling device, while improving the cooling capacity of an evaporator, the liquid compression of a compressor is not provided without providing a low-pressure side accumulator. The purpose of the present invention is to prevent the occurrence of damages due to damage.
[0009]
[Means for Solving the Problems]
That is, in the cooling device of the present invention, the compressor includes the first and second rotary compression elements in the closed container, and transfers the refrigerant compressed and discharged by the first rotary compression element to the second rotary compression element. An intermediate cooling circuit is provided for sucking and compressing, discharging the refrigerant to the gas cooler, and dissipating the refrigerant discharged from the first rotary compression element. At least a part of the intermediate cooling circuit is prevented from dew condensation or freezing. Is disposed in a necessary place, the refrigerant compressed and discharged by the first rotary compression element is dewed, or heat is taken away by passing through a place where prevention of freezing is required. Will be able to lower it.
[0010]
On the other hand, since a portion of the cooling device that needs to be prevented from dew condensation or freezing is heated by the refrigerant, dew condensation or freezing can be prevented beforehand.
[0011]
The invention according to claim 2 further comprises, in addition to the above invention, an insulating box, a storage room configured in the insulating box and cooled by an evaporator, and a lid closing an opening of the insulating box. Since at least a part of the cooling circuit is arranged at the opening of the heat insulating box, the refrigerant compressed and discharged by the first rotary compression element passes through the opening of the heat insulating box, so that heat is taken away. The temperature of the refrigerant can be reduced.
[0012]
On the other hand, since the opening of the heat-insulating box is heated by the refrigerant, dew condensation or freezing of the opening can be avoided.
[0013]
According to the third aspect of the present invention, in addition to the above inventions, the evaporator further includes an internal heat exchanger for exchanging heat between the refrigerant from the second rotary compression element coming out of the gas cooler and the refrigerant coming out of the evaporator. From the second rotary compression element that has exited the gas cooler in the internal heat exchanger exchanges heat with the refrigerant from the second rotary compression element to take heat, so that it is possible to secure the degree of superheat of the refrigerant and avoid liquid compression in the compressor. become able to.
[0014]
Further, the present invention is extremely effective when the evaporation temperature of the refrigerant in the evaporator is set to an ultra-low temperature range of 0 ° C. or lower, for example, −50 ° C. or lower.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional side view of an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of a compressor used in a cooling device 200 of the present invention. FIG. 2 is a refrigerant circuit diagram of the cooling device 200 of the present invention.
[0016]
In each of the drawings, reference numeral 10 denotes an internal intermediate pressure type multistage compression type rotary compressor using carbon dioxide (CO 2 ) as a refrigerant. The compressor 10 includes a cylindrical hermetic container 12 made of a steel plate and an inner space of the hermetic container 12. An electric element 14 as a driving element disposed and housed on the upper side, and a first rotary compression element 32 (first stage) and a first rotary compression element 32 disposed below the electric element 14 and driven by the rotating shaft 16 of the electric element 14. The rotary compression mechanism 18 includes two rotary compression elements 34 (second stage).
[0017]
The closed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (lid) 12B that closes an upper opening of the container body 12A. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring omitted) 20 for supplying electric power to the electric element 14 is mounted in the mounting hole 12D. Have been.
[0018]
The electric element 14 is a so-called magnetic pole concentrated winding type DC motor, and is inserted into the stator 22 annularly attached along the inner peripheral surface of the upper space of the closed casing 12 with a slight interval provided inside the stator 22. And an installed rotor 24. The rotor 24 is fixed to the rotating shaft 16 that extends vertically through the center. The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel sheets are laminated, and a stator coil 28 wound around teeth of the laminated body 26 by a direct winding (concentrated winding) method. The rotor 24 is formed of a laminated body 30 of electromagnetic steel sheets similarly to the stator 22, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0019]
An intermediate partition plate 36 is held between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38, a lower cylinder 40 disposed above and below the intermediate partition plate 36, The upper and lower rollers 46 and 48 are eccentrically rotated by upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees in the inside 40, and the upper and lower cylinders abut on the upper and lower rollers 46 and 48. The vanes 50 and 52 partitioning the inside of the cylinders 38 and 40 into a low pressure chamber side and a high pressure chamber side, respectively, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed so that the bearing of the rotary shaft 16 is An upper supporting member 54 and a lower supporting member 56 are also used as supporting members.
[0020]
On the other hand, the upper support member 54 and the lower support member 56 have a suction passage 60 (the upper suction passage is not shown) communicating with the insides of the upper and lower cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed. The discharge muffling chambers 62 and 64 formed by closing the recess with the upper cover 66 and the lower cover 68 are provided.
[0021]
The discharge muffling chamber 64 and the inside of the closed container 12 are communicated with each other by a communication passage penetrating the upper and lower cylinders 38 and 40 and the intermediate partition plate 36, and an intermediate discharge pipe 121 is provided upright at the upper end of the communication passage. The intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the closed container 12.
[0022]
As the refrigerant, the above-mentioned carbon dioxide (CO 2 ), which is a natural refrigerant, is used in consideration of flammability and toxicity, which is friendly to the global environment, and the lubricating oil is, for example, mineral oil (mineral oil), Existing oils such as alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.
[0023]
On the side surface of the container body 12A of the closed container 12, suction passages 60 (the upper side is not shown) of the upper support member 54 and the lower support member 56, the discharge muffling chamber 62, and the upper side of the upper cover 66 (at the lower end of the electric element 14). The sleeves 141, 142, 143, and 144 are respectively welded and fixed at positions corresponding to (substantially corresponding positions). One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted into the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with a suction passage (not shown) of the upper cylinder 38. The refrigerant introduction pipe 92 reaches the sleeve 144 via the opening 202 of the heat insulating box 201 provided in the intermediate cooling circuit 150 to be described later and the intermediate heat exchanger 159, and the other end is inserted and connected into the sleeve 144 to form a sealed container. It communicates within 12.
[0024]
One end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40.
[0025]
The refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 communicates with the discharge muffling chamber 62.
[0026]
Next, in FIG. 2, the above-described compressor 10 forms a part of the refrigerant circuit shown in FIG. That is, the refrigerant discharge pipe 96 of the compressor 10 is connected to the inlet of the gas cooler 154. Then, the pipe exiting the gas cooler 154 passes through the internal heat exchanger 160. The internal heat exchanger 160 is for exchanging heat between the high-pressure side refrigerant from the second rotary compression element 34 coming out of the gas cooler 154 and the low-pressure side refrigerant coming out of the evaporator 157.
[0027]
Then, the high-pressure side refrigerant that has passed through the internal heat exchanger 160 reaches an expansion valve 156 as a throttling unit. The outlet of the expansion valve 156 is connected to the inlet of the evaporator 157, and the pipe exiting the evaporator 157 reaches the internal heat exchanger 160. The pipe coming out of the internal heat exchanger 160 is connected to the refrigerant introduction pipe 94.
[0028]
In FIG. 2, a part of the piping of the intermediate cooling circuit 150 passes through the intermediate heat exchanger 159, and then passes through a frame pipe (frame heater) 150A provided in the opening 202 of the heat insulating box 201 that radiates heat. It is arranged as follows.
[0029]
FIG. 3 is a perspective view of the cooling device 200 of the present invention. In FIG. 3, reference numeral 200 denotes a freezer used for physics and chemistry experiments and the like, and 201 denotes the heat insulating box. The heat-insulating box 201 includes a metal inner box and an outer box (not shown), and a space between the inner box and the outer box is filled with a heat insulating material. The evaporator 157 described above is provided on the heat insulating material side (outer surface) of the inner box of the heat insulating box 201. A storage room 204 cooled by the evaporator 157 is formed in the inner box of the heat insulating box 201. The heat insulating box 201 is formed so that the opening 202 can be closed and opened by the lid 206. A frame pipe 150A in which a part of the piping of the above-mentioned intermediate cooling circuit 150 is buried is formed all around the opening 202 of the heat insulating box 201.
[0030]
The frame pipe 150A is provided for removing heat from the refrigerant passing through the frame pipe 150A and heating the opening 202 and its vicinity to prevent the occurrence of dew condensation and freezing. In FIG. 3, a machine room 208 houses the compressor 10, the gas cooler 154, the internal heat exchanger 160, the expansion valve 156, the intermediate heat exchanger 159, and the like.
[0031]
Next, the operation of the cooling device 200 of the present invention having the above configuration will be described. When the stator coil 28 of the electric element 14 of the compressor 10 is energized through the terminal 20 and the wiring (not shown), the electric element 14 starts and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 eccentrically rotate inside the upper and lower cylinders 38 and 40.
[0032]
As a result, the low-pressure refrigerant gas sucked into the low-pressure chamber side of the cylinder 40 from the suction port (not shown) through the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56 is supplied to the roller 48 and the vane 52. It is compressed by the operation and becomes an intermediate pressure, and is discharged from the intermediate discharge pipe 121 into the closed container 12 through a communication passage (not shown) from the high pressure chamber side of the lower cylinder 40. Thereby, the inside of the sealed container 12 has an intermediate pressure.
[0033]
Then, the intermediate-pressure refrigerant gas in the sealed container 12 enters the refrigerant introduction pipe 92, exits from the sleeve 144, and flows into the intermediate cooling circuit 150. Then, after the intermediate cooling circuit 150 radiates heat by air cooling while passing through the intermediate heat exchanger 159, the intermediate cooling circuit 150 passes through the frame pipe 150 </ b> A embedded around the entire periphery of the opening 202 of the cooling device 200. The refrigerant is deprived of heat by the cool air around the opening 202 and further cooled.
[0034]
On the other hand, the opening 202 of the cooling device 200 is heated by the intermediate-pressure refrigerant, so that dew condensation and freezing can be prevented. As described above, by passing the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 through the intermediate cooling circuit 150, the intermediate heat exchanger 159 and the frame pipe 150A formed in the opening 202 are effective. As a result, the temperature rise in the closed container 12 can be suppressed, and the compression efficiency of the second rotary compression element 34 can be improved. Further, since the refrigerant sucked into the second rotary compression element 34 is cooled, the temperature rise of the refrigerant compressed and discharged by the second rotary compression element 34 can be suppressed.
[0035]
In addition, since the refrigerant can be cooled in two stages: the intermediate heat exchanger 159 and the opening 202 through which the frame pipe 150A passes, it is not necessary to increase the capacity of the intermediate heat exchanger 159. The machine room 208 can be made more compact.
[0036]
Then, the cooled intermediate-pressure refrigerant gas is drawn into a low-pressure chamber side of the upper cylinder 38 of the second rotary compression element 34 from a suction port (not shown) through a suction passage (not shown) formed in the upper support member 54. Then, the second-stage compression is performed by the operation of the roller 46 and the vane 50 to become a high-pressure and high-temperature refrigerant gas. The refrigerant gas passes through a discharge port (not shown) from the high-pressure chamber side and passes through a discharge muffling chamber 62 formed in the upper support member 54. The refrigerant is discharged from the refrigerant discharge pipe 96 to the outside.
[0037]
The refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154, radiates heat there by an air cooling method, and then passes through the internal heat exchanger 160. The refrigerant then loses its heat to the low-pressure side refrigerant and is further cooled.
[0038]
Due to the presence of the internal heat exchanger 160, the refrigerant that exits the gas cooler 154 and passes through the internal heat exchanger 160 is deprived of heat by the low-pressure refrigerant, and accordingly, the degree of supercooling of the refrigerant increases. . Therefore, the cooling capacity of the evaporator 157 is improved.
[0039]
The refrigerant gas on the high pressure side cooled by the internal heat exchanger 160 reaches the expansion valve 156. The refrigerant decreases in pressure at the expansion valve 156, and then flows into the evaporator 157. Then, the refrigerant evaporates and exerts an endothermic effect to cool the inner box of the heat insulating box 201. Thereby, the storage room 204 is cooled from the wall surface of the inner box.
[0040]
At this time, the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 is passed through the intermediate cooling circuit 150 to suppress the temperature rise of the refrigerant in the closed vessel 12 and the second rotary compression element 34. Then, the refrigerant gas compressed by the second rotary compression element 34 is passed through the internal heat exchanger 160, and the degree of supercooling of the refrigerant in front of the expansion valve 156 is increased. The cooling capacity is improved.
[0041]
That is, in this case, the evaporation temperature in the evaporator 157 can easily reach an extremely low temperature range of 0 ° C. or less, for example, −50 ° C. or less. At the same time, the power consumption of the compressor 10 can be reduced.
[0042]
Thereafter, the refrigerant flows out of the evaporator 157 and reaches the internal heat exchanger 160. Therefore, heat is removed from the high-pressure side refrigerant, and the refrigerant is heated. Here, the refrigerant evaporates to a low temperature in the evaporator 157, and the refrigerant exiting the evaporator 157 is not completely in a gaseous state but in a liquid state. The refrigerant is heated by exchanging heat with the refrigerant. Thereby, the refrigerant has a degree of superheat and is completely gaseous.
[0043]
As a result, the refrigerant discharged from the evaporator 157 can be reliably gasified. In particular, even when excess refrigerant is generated due to operating conditions, since the low-pressure side refrigerant is heated by the internal heat exchanger 160, the liquid refrigerant is sucked into the compressor 10 without providing a low-pressure side accumulator or the like. Thus, it is possible to reliably prevent the liquid back from being caused, and to avoid a disadvantage that the compressor 10 is damaged by the liquid compression.
[0044]
Further, by setting the cycle in which the discharge temperature or the internal temperature of the compressor 10 is not increased, the reliability of the cooling device 200 can be improved.
[0045]
The cycle in which the refrigerant heated by the internal heat exchanger 160 is sucked from the refrigerant introduction pipe 94 into the first rotary compression element 32 of the compressor 10 repeats.
[0046]
Thus, the intermediate cooling circuit 150 for radiating the refrigerant discharged from the first rotary compression element 32 is provided, and a part of the piping of the intermediate cooling circuit 150 is arranged in the opening 202 of the heat insulating box 201. Since the frame pipe 150A is provided, the refrigerant compressed and discharged by the first rotary compression element 32 passes through the frame pipe 150A provided in the opening 202 of the heat insulating box 201, so that heat is taken away. Therefore, the temperature of the refrigerant can be reduced.
[0047]
Thereby, the compression efficiency of the second rotary compression element 34 can be improved. Further, since the refrigerant sucked into the second rotary compression element 34 is cooled, the temperature rise of the refrigerant compressed and discharged by the second rotary compression element 34 can be suppressed.
[0048]
On the other hand, the portion of the cooling device 200 that needs to be prevented from dew condensation or freezing is heated by the refrigerant, so that dew condensation or freezing can be avoided beforehand.
[0049]
Further, by providing the internal heat exchanger 160 for exchanging heat between the refrigerant from the second rotary compression element 34 from the gas cooler 154 and the refrigerant from the evaporator 157, the refrigerant from the evaporator 157 Since the internal heat exchanger 160 exchanges heat with the refrigerant from the second rotary compression element 34 that has exited the gas cooler 154 and removes heat, the degree of superheat of the refrigerant can be ensured and liquid compression in the compressor 10 can be avoided. become.
[0050]
On the other hand, the refrigerant from the second rotary compression element 34 that has exited the gas cooler 154 is deprived of heat by the refrigerant that has exited the evaporator 157 in the internal heat exchanger 160. The degree of cooling increases. Thereby, the cooling capacity of the evaporator 157 is further improved.
[0051]
With these, it is possible to reduce the evaporation temperature of the refrigerant in the evaporator 157 of the refrigerant cycle, and it is possible to easily achieve, for example, setting the evaporation temperature in the evaporator 157 to an extremely low temperature range of −50 ° C. or less. become. In addition, the power consumption of the compressor 10 can be reduced.
[0052]
In this embodiment, the frame pipe 150A is provided on the downstream side of the intermediate heat exchanger 159 of the intermediate cooling circuit 150, but may be provided on the upstream side of the intermediate heat exchanger 159 of the intermediate cooling circuit 150.
[0053]
Further, in the present embodiment, the storage chamber 204 is cooled from the wall surface of the inner box by providing the evaporator 157 on the heat insulating material side (outer surface) of the inner box of the heat insulating box 201 and cooling the inner box. However, the position of the evaporator and the cooling method are not limited thereto, and various methods such as a method of cooling the storage room by forcibly circulating cool air by a fan can be applied.
[0054]
In the embodiment, carbon dioxide is used as the refrigerant. However, the present invention is not limited to this. The present invention is also applicable to a case where another refrigerant, for example, a refrigerant such as a fluorine-based refrigerant or a hydrocarbon-based refrigerant is used.
[0055]
【The invention's effect】
As described above in detail, according to the cooling device of the present invention, the compressor includes the electric element and the first and second rotary compression elements driven by the electric element in the closed container, and performs the first rotary compression. A refrigerant cooled and discharged by the element is sucked into the second rotary compression element and compressed, and is discharged to the gas cooler, and an intermediate cooling circuit is provided for radiating the refrigerant discharged from the first rotary compression element, Since at least a part of the intermediate cooling circuit is disposed at a location where dew condensation or freezing must be prevented, the refrigerant compressed and discharged by the first rotary compression element must be prevented from dew condensation or freezing. Since heat is deprived by passing through a suitable location, the temperature of the refrigerant can be reduced.
[0056]
Thereby, the compression efficiency of the second rotary compression element can be improved. In addition, by cooling the refrigerant sucked into the second rotary compression element, the temperature of the refrigerant compressed and discharged by the second rotary compression element can be suppressed, and the refrigerant before the expansion valve can be suppressed. Since the degree of supercooling of the evaporator can be increased, the cooling capacity of the evaporator is improved.
[0057]
On the other hand, since the refrigerant discharged from the first rotary compression element heats a portion of the cooling device where dew condensation or freezing needs to be prevented, dew condensation or freezing can be prevented beforehand.
[0058]
According to the second aspect of the present invention, in addition to the above invention, there is provided a heat-insulating box, a storage chamber configured in the heat-insulating box and cooled by an evaporator, and a lid for closing an opening of the heat-insulating box. Since at least a part of the intermediate cooling circuit is disposed in the opening of the heat insulating box, the refrigerant compressed and discharged by the first rotary compression element passes through the opening of the heat insulating box, so that heat is taken away. Therefore, the temperature of the refrigerant can be reduced.
[0059]
Thereby, the compression efficiency of the second rotary compression element can be improved. In addition, by cooling the refrigerant sucked into the second rotary compression element, the temperature of the refrigerant compressed and discharged by the second rotary compression element can be suppressed, and the refrigerant before the expansion valve can be suppressed. Because the degree of supercooling of the evaporator is increased, the cooling capacity of the evaporator is improved.
[0060]
On the other hand, the opening of the heat insulating box is heated by the refrigerant discharged from the first rotary compression element, so that dew condensation or freezing of the opening can be avoided.
[0061]
According to the third aspect of the present invention, in addition to the above inventions, the evaporator further includes an internal heat exchanger for exchanging heat between the refrigerant from the second rotary compression element coming out of the gas cooler and the refrigerant coming out of the evaporator. Refrigerant from the second rotary compression element that has exited the gas cooler in the internal heat exchanger exchanges heat with the refrigerant to take away heat, so that the degree of superheat of the refrigerant can be secured and liquid compression in the compressor can be avoided. Become.
[0062]
On the other hand, since the refrigerant from the second rotary compression element that has exited the gas cooler is deprived of heat by the refrigerant that has exited the evaporator in the internal heat exchanger, the degree of supercooling of the refrigerant is increased accordingly. Thereby, the cooling capacity of the refrigerant gas in the evaporator is further improved.
[0063]
Therefore, a desired cooling capacity can be easily achieved without increasing the amount of circulating refrigerant, and the power consumption of the compressor can be reduced.
[0064]
Further, the present invention is extremely effective when the evaporation temperature of the refrigerant in the evaporator is set to an ultra-low temperature range of 0 ° C. or lower, for example, -50 ° C. or lower.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage compression type rotary compressor constituting a transcritical refrigerant cycle device of the present invention.
FIG. 2 is a refrigerant circuit diagram of the cooling device of the present invention.
FIG. 3 is a perspective view of a cooling device of the present invention.
[Explanation of symbols]
Reference Signs List 10 multistage rotary compressor 12 closed vessel 14 electric element 32 first rotary compression element 34 second rotary compression element 92, 94 refrigerant introduction pipe 96 refrigerant discharge pipe 150 intermediate cooling circuit 150A frame pipe 154 gas cooler 156 expansion valve (throttle) means)
157 Evaporator 160 Internal heat exchanger 200 Cooling device 201 Insulated box 202 Opening 204 Storage room 206 Cover 208 Machine room

Claims (4)

コンプレッサ、ガスクーラ、絞り手段及び蒸発器を順次接続して構成された冷媒サイクルを備える冷却装置において、
前記コンプレッサは、密閉容器内に第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮されて吐出された冷媒を前記第2の回転圧縮要素に吸い込んで圧縮し、前記ガスクーラに吐出すると共に、
前記第1の回転圧縮要素から吐出された冷媒を放熱させるための中間冷却回路を備え、
該中間冷却回路の少なくとも一部を、結露、若しくは、凍結の防止が必要な箇所に配設したことを特徴とする冷却装置。
In a cooling device including a refrigerant cycle configured by sequentially connecting a compressor, a gas cooler, a throttle device, and an evaporator,
The compressor includes first and second rotary compression elements in an airtight container, and sucks and compresses the refrigerant compressed and discharged by the first rotary compression element into the second rotary compression element, While discharging to the gas cooler,
An intermediate cooling circuit for radiating the refrigerant discharged from the first rotary compression element,
A cooling device, wherein at least a part of the intermediate cooling circuit is disposed at a place where prevention of dew condensation or freezing is required.
断熱箱体と、該断熱箱体内に構成され、前記蒸発器により冷却される貯蔵室と、前記断熱箱体の開口部を閉塞する蓋体を備え、
前記中間冷却回路の少なくとも一部を前記断熱箱体の開口部に配設したことを特徴とする請求項1の冷却装置。
A heat insulating box, a storage room configured in the heat insulating box and cooled by the evaporator, and a lid closing an opening of the heat insulating box;
2. The cooling device according to claim 1, wherein at least a part of the intermediate cooling circuit is disposed in an opening of the heat insulating box.
前記ガスクーラから出た前記第2の回転圧縮要素からの冷媒と前記蒸発器を出た冷媒とを熱交換させるための内部熱交換器を備えることを特徴とする請求項1又は請求項2の冷却装置。3. The cooling system according to claim 1, further comprising: an internal heat exchanger for exchanging heat between the refrigerant from the second rotary compression element flowing out of the gas cooler and the refrigerant flowing out of the evaporator. apparatus. 前記蒸発器における冷媒の蒸発温度は0℃以下であることを特徴とする請求項1、請求項2又は請求項3の冷却装置。4. The cooling device according to claim 1, wherein the evaporation temperature of the refrigerant in the evaporator is 0 ° C. or less.
JP2002339375A 2002-11-07 2002-11-22 Cooling device Pending JP2004170043A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002339375A JP2004170043A (en) 2002-11-22 2002-11-22 Cooling device
TW092121775A TWI308631B (en) 2002-11-07 2003-08-08 Multistage compression type rotary compressor and cooling device
CNA2003101003244A CN1499081A (en) 2002-11-07 2003-10-14 Multi-stage compression type rotary compressor
ES03025399T ES2388274T3 (en) 2002-11-07 2003-11-05 Rotary compressor of multi-stage compression type
EP07006592A EP1795838A3 (en) 2002-11-07 2003-11-05 Multistage compression type rotary compressor and cooling device
EP03025399A EP1418338B1 (en) 2002-11-07 2003-11-05 Multistage compression type rotary compressor
MYPI20034244A MY138073A (en) 2002-11-07 2003-11-06 Multistage compression type rotary compressor and cooling device
KR1020030078422A KR100950412B1 (en) 2002-11-07 2003-11-06 Multi-stage compression type rotary compressor and cooling device
US10/703,261 US6907746B2 (en) 2002-11-07 2003-11-06 Multistage compression type rotary compressor and cooling device
US11/009,155 US6931866B2 (en) 2002-11-07 2004-12-08 Multistage compression type rotary compressor and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339375A JP2004170043A (en) 2002-11-22 2002-11-22 Cooling device

Publications (1)

Publication Number Publication Date
JP2004170043A true JP2004170043A (en) 2004-06-17

Family

ID=32702329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339375A Pending JP2004170043A (en) 2002-11-07 2002-11-22 Cooling device

Country Status (1)

Country Link
JP (1) JP2004170043A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814241B1 (en) 2007-05-08 2008-03-17 왕영혁 Refrigeration cycle of air conditioner
JP2009264605A (en) * 2008-04-22 2009-11-12 Daikin Ind Ltd Refrigerating device
JP2011512509A (en) * 2008-02-19 2011-04-21 キャリア コーポレイション Refrigerant vapor compression system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814241B1 (en) 2007-05-08 2008-03-17 왕영혁 Refrigeration cycle of air conditioner
JP2011512509A (en) * 2008-02-19 2011-04-21 キャリア コーポレイション Refrigerant vapor compression system
JP2009264605A (en) * 2008-04-22 2009-11-12 Daikin Ind Ltd Refrigerating device

Similar Documents

Publication Publication Date Title
KR100950412B1 (en) Multi-stage compression type rotary compressor and cooling device
TW200403415A (en) Refrigerant cycling device and compressor using the same
JP4208620B2 (en) Refrigerant cycle equipment
JP4219198B2 (en) Refrigerant cycle equipment
JP2005003239A (en) Refrigerant cycling device
JP4039921B2 (en) Transcritical refrigerant cycle equipment
JP2004116957A (en) Refrigerant cycle system
JP2004184022A (en) Cooling medium cycle device
JP2004317073A (en) Refrigerant cycling device
JP4115296B2 (en) Transcritical refrigerant cycle equipment
JP4278402B2 (en) Refrigerant cycle equipment
JP4107926B2 (en) Transcritical refrigerant cycle equipment
JP2004170043A (en) Cooling device
JP2003161280A (en) Rotary compressor
JP2005127215A (en) Transition critical refrigerant cycle device
JP2004251492A (en) Refrigerant cycle device
JP2004251514A (en) Refrigerant cycle device
JP2004309012A (en) Refrigerant cycle device
JP4036772B2 (en) Transcritical refrigerant cycle equipment
JP4556934B2 (en) Compressor and refrigerant circuit device
JP2000104690A (en) Rotary compressor
JP2004028485A (en) Co2 cooling medium cycle device
JP2003269804A (en) Refrigerant circuit device
JP2004101114A (en) Transition critical refrigerant cycle apparatus
JP2004270517A (en) Compressor and refrigerant cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071017

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120