JP4556934B2 - Compressor and refrigerant circuit device - Google Patents

Compressor and refrigerant circuit device Download PDF

Info

Publication number
JP4556934B2
JP4556934B2 JP2006265278A JP2006265278A JP4556934B2 JP 4556934 B2 JP4556934 B2 JP 4556934B2 JP 2006265278 A JP2006265278 A JP 2006265278A JP 2006265278 A JP2006265278 A JP 2006265278A JP 4556934 B2 JP4556934 B2 JP 4556934B2
Authority
JP
Japan
Prior art keywords
refrigerant
low
pipe
stage
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006265278A
Other languages
Japanese (ja)
Other versions
JP2008082294A (en
Inventor
英明 前山
真一 高橋
広康 高橋
稔 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006265278A priority Critical patent/JP4556934B2/en
Publication of JP2008082294A publication Critical patent/JP2008082294A/en
Application granted granted Critical
Publication of JP4556934B2 publication Critical patent/JP4556934B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

この発明は、冷媒を低段側圧縮機構部と高段側圧縮機構部からなる2段圧縮式の圧縮機構部で圧縮する圧縮機とそれを用いた冷媒回路装置に関するものである。   The present invention relates to a compressor that compresses a refrigerant by a two-stage compression type compression mechanism section including a low-stage compression mechanism section and a high-stage compression mechanism section, and a refrigerant circuit device using the compressor.

従来の2段圧縮式の冷媒回路装置は、密閉容器内に低段側圧縮機構部と高段側圧縮機構部からなる圧縮機構部と、この圧縮機構部を駆動する電動機を有し、低段側圧縮機構部の低段吐出管を密閉容器内に開口させ、低段側圧縮機構部で圧縮した中間圧の冷媒を密閉容器内に吐出させて密閉容器内を中間圧雰囲気とし、高段側圧縮機構部の高段吸入管をこの中間圧雰囲気の密閉容器内に開口させた内部中間圧型の2段圧縮機と、凝縮器やガスクーラのような高圧側熱交換器と、膨張弁のような減圧のための絞り装置と、蒸発器のような低圧側熱交換器等を接続して冷凍回路を構成しており、低段側圧縮機構部の低段吸入管と低圧側熱交換器出口とを接続し、高段側圧縮機構部の高段吐出管を高圧側熱交換器に接続するとともに、高圧側熱交換器出口と絞り装置との接続配管から分岐した分岐管を、圧縮機の密閉容器の上部に、密閉容器内部と連通するように接続している。   A conventional two-stage compression type refrigerant circuit device includes a compression mechanism unit including a low-stage compression mechanism unit and a high-stage compression mechanism unit in an airtight container, and an electric motor that drives the compression mechanism unit. Open the low-stage discharge pipe of the side compression mechanism section into the sealed container, and discharge the intermediate-pressure refrigerant compressed by the low-stage compression mechanism section into the sealed container to create an intermediate pressure atmosphere in the sealed container. An internal intermediate pressure type two-stage compressor in which the high-stage suction pipe of the compression mechanism is opened in a sealed container of the intermediate pressure atmosphere, a high-pressure side heat exchanger such as a condenser and a gas cooler, and an expansion valve A refrigeration circuit is configured by connecting a throttling device for decompression and a low-pressure side heat exchanger such as an evaporator, and a low-stage suction pipe and a low-pressure side heat exchanger outlet of the low-stage compression mechanism And connect the high-stage discharge pipe of the high-stage side compression mechanism to the high-pressure side heat exchanger and the high-pressure side heat exchanger The branch pipe branched from the connecting pipe between the mouth and the diaphragm device, the upper part of the sealed container of the compressor, is connected to the closed vessel in communication with the interior.

上記の構成により、高圧側熱交換器出口と絞り装置との間の冷媒の一部は分岐管を経由して密閉容器内に噴射され、電動機を通過する際にその潜熱で電動機を冷却し、電動機を冷却した後、低段側圧縮機構部からの吐出冷媒と共に密閉容器内部に開口した高段吸入管より高段側圧縮機構部に吸入され、そこで吐出圧まで圧縮され、高段吐出管を経て高圧側熱交換器入口へと導かれる(例えば、特許文献1参照)。   With the above configuration, a part of the refrigerant between the high-pressure side heat exchanger outlet and the expansion device is injected into the sealed container via the branch pipe, and cools the electric motor with its latent heat when passing through the electric motor, After cooling the electric motor, the refrigerant is sucked into the high-stage side compression mechanism part from the high-stage suction pipe opened inside the sealed container together with the refrigerant discharged from the low-stage side compression mechanism part, and is compressed to the discharge pressure there. Then, it is led to the high-pressure side heat exchanger inlet (see, for example, Patent Document 1).

特開平2−133757号公報(第2−3頁、第1図)JP-A-2-133757 (page 2-3, FIG. 1)

従来の内部中間圧型の2段圧縮機を用いた2段圧縮式の冷媒回路装置では、高圧側熱交換器出口と低圧側熱交換器入口との間から圧縮機の密閉容器内に噴射された冷媒(以降、噴射冷媒)が電動機を通過し、電動機を冷却するが、この電動機を通過した後の噴射冷媒と、低段側圧縮機構部の低段吐出管から密閉容器内に吐出された中間圧の吐出冷媒は、高段圧縮機構部の吸入作用により、密閉容器内に開口する高段吸入管にそれぞれが直接的に導入されてしまうので、互いの冷媒の熱交換が足りずに、十分に混合されず、互いの冷媒群の重量比が一定しない状態で高段側圧縮機構部へ吸引されてしまう事態が起こり得る。   In a conventional two-stage compression type refrigerant circuit device using an internal intermediate pressure type two-stage compressor, the refrigerant circuit was injected into the hermetic container of the compressor from between the high-pressure side heat exchanger outlet and the low-pressure side heat exchanger inlet. The refrigerant (hereinafter referred to as injection refrigerant) passes through the electric motor and cools the electric motor. The injection refrigerant after passing through the electric motor and the intermediate discharged from the low stage discharge pipe of the low stage compression mechanism into the sealed container The refrigerant discharged under pressure is introduced directly into the high-stage suction pipe that opens into the sealed container by the suction action of the high-stage compression mechanism, so there is not enough heat exchange between the refrigerants. There is a possibility that the refrigerant will be sucked into the high-stage compression mechanism portion without being mixed and in a state where the weight ratio of the refrigerant groups is not constant.

圧力は密閉容器内で瞬時に均圧されるのに対し、両冷媒の温度は瞬時に等しくならないため、両冷媒群には密度差が生じている。噴射冷媒の方が高圧側熱交換器を通過しているので電動機を冷却しているとはいえ温度が低く、密度が大きい傾向にある。そのため高段側圧縮機構部の行程容積において一圧縮行程毎に取り込まれる冷媒には、電動機を通過した後の噴射冷媒と低段側圧縮機構部からの吐出冷媒という温度および密度が異なる2つの冷媒群が存在し、しかも一圧縮行程毎に両冷媒群の比が異なるような状態で高段側圧縮機構部に吸引されてしまう。また噴射冷媒に液冷媒がある場合では、電動機を通過しても完全にガス化されず一部は液の状態で高段側圧縮機構部に吸引される場合もある。 While the pressure is instantaneously equalized in the sealed container, the temperatures of the two refrigerants do not instantly become equal, so there is a density difference between the two refrigerant groups. Since the injected refrigerant passes through the high-pressure side heat exchanger, the temperature tends to be low and the density tends to be high although the motor is cooled. Therefore, the refrigerant taken in every compression stroke in the stroke volume of the high-stage compression mechanism section includes two refrigerants having different temperatures and densities, ie, the injected refrigerant after passing through the electric motor and the refrigerant discharged from the low-stage compression mechanism section. There is a group, and the high-stage compression mechanism is sucked in such a state that the ratio of the two refrigerant groups is different for each compression stroke. Further, when the jet refrigerant includes a liquid refrigerant, it may not be completely gasified even when it passes through the electric motor, and a part thereof may be sucked into the high-stage compression mechanism section in a liquid state.

上記のように電動機通過後の噴射冷媒と低段側圧縮機構部の吐出冷媒の熱交換が高段側圧縮機構部に吸引される前に十分に行われないことにより、高段側圧縮機構部に吸引される冷媒は、一圧縮行程毎に両冷媒群の比が異なるような状態なので、取り込まれる冷媒の見かけ上の密度が一圧縮行程毎に異なるような不安定な状態となり、そのため高段側圧縮機構部から吐出される吐出圧の冷媒の質量流量が安定しないので、冷媒回路装置の運転特性が安定せず、また圧縮機も吐出脈動による振動や騒音が大きくなるといった問題があった。 As described above, the heat exchange between the injected refrigerant after passing through the motor and the refrigerant discharged from the low-stage compression mechanism section is not sufficiently performed before being sucked into the high-stage compression mechanism section, so that the high-stage compression mechanism section Since the refrigerant sucked in is in a state in which the ratio of the two refrigerant groups is different for each compression stroke, the apparent density of the refrigerant taken in becomes unstable in each compression stroke. Since the mass flow rate of the refrigerant at the discharge pressure discharged from the side compression mechanism is not stable, the operation characteristics of the refrigerant circuit device are not stable, and the compressor also has problems such as vibration and noise due to discharge pulsation.

この発明は上記のような問題点を解決するためになされたもので、内部中間圧型の2段圧縮機を用いた冷媒回路装置において、高圧側熱交換器出口と絞り装置との間の冷媒を圧縮機の密閉容器内に噴射させ、密閉容器内に配置される電動機を冷却するようにしても、電動機を冷却した後の噴射冷媒と低段側圧縮機構部の吐出冷媒の熱交換が十分に行われ、高段側圧縮機構部に吸引される冷媒の密度を安定させた圧縮機およびそれを用いた冷媒回路装置を得るものである。   The present invention has been made to solve the above-described problems. In the refrigerant circuit device using the internal intermediate pressure type two-stage compressor, the refrigerant between the high-pressure side heat exchanger outlet and the expansion device is used. Even if it is injected into the airtight container of the compressor and the electric motor arranged in the airtight container is cooled, the heat exchange between the injected refrigerant after cooling the electric motor and the refrigerant discharged from the low-stage compression mechanism section is sufficient. Thus, a compressor in which the density of the refrigerant sucked into the high-stage compression mechanism is stabilized and a refrigerant circuit device using the compressor are obtained.

この発明に係わる圧縮機においては、電動機とこの電動機に連結された回転軸にて駆動される低段側圧縮機構部と高段側圧縮機構部からなる圧縮機構部とを内部に収納する密閉容器と、電動機の反圧縮機構部側の電動機と密閉容器の間の空間に一端を開口し、密閉容器外から密閉容器内に冷媒を噴射する噴射管と、低段側圧縮機構部で圧縮された冷媒を密閉容器内に吐出する低段吐出管と、電動機と圧縮機構部の間の空間に一端を開口し、噴射管より噴射された冷媒と低段吐出管から吐出された冷媒とを密閉容器の外部に導出する冷媒導出管と、この冷媒導出管の他端と接続し、冷媒導出管より導出された冷媒を高段圧縮機構部に吸引する高段吸入管と、を備えたものである。   In the compressor according to the present invention, an airtight container that accommodates therein an electric motor, a low-stage compression mechanism that is driven by a rotary shaft connected to the electric motor, and a compression mechanism that includes a high-stage compression mechanism. One end is opened in the space between the motor on the anti-compression mechanism portion side of the electric motor and the sealed container, the injection pipe for injecting the refrigerant from the outside of the sealed container into the sealed container, and the lower stage compression mechanism portion A low-stage discharge pipe for discharging the refrigerant into the sealed container, and one end opened in a space between the electric motor and the compression mechanism, and the refrigerant injected from the injection pipe and the refrigerant discharged from the low-stage discharge pipe are sealed in the sealed container And a high-stage intake pipe that is connected to the other end of the refrigerant discharge pipe and sucks the refrigerant extracted from the refrigerant discharge pipe to the high-stage compression mechanism. .

この発明によれば、電動機通過後の噴射冷媒と低段側圧縮機構部の吐出冷媒とが、高段側圧縮機構部に至る密閉容器外部の中間圧の冷媒が流れる配管を通過している過程において、互いに十分な熱交換を行うことができ、高段段側圧縮機構部に吸引されるまでに、両冷媒群は温度および密度を等しくして1つの冷媒群となることができるので、定常運転状態において、高段側圧縮機構部に吸引される冷媒の密度は安定し、高段側圧縮機構部から吐出される吐出圧の冷媒の質量流量も安定するため、冷媒回路装置の運転特性の安定性が高められ、また吐出質量流量の不安定に起因していた圧縮機の振動や騒音の発生を回避することができる。さらに電動機を通過してもガス化されずに液である噴射冷媒があった場合にも、低段側圧縮機構部の吐出冷媒との熱交換により完全にガス化されるので、高段側圧縮機構部へ液冷媒が吸引されてしまう事態を回避できる。よって高効率で信頼性の高い圧縮機が得られるとともに、この圧縮機を使用した冷媒回路装置も高効率で信頼性の高いものとなる。 According to this invention, the process in which the injection refrigerant after passing through the electric motor and the discharge refrigerant of the low-stage compression mechanism section pass through the pipe through which the intermediate-pressure refrigerant outside the sealed container reaches the high-stage compression mechanism section. Can sufficiently exchange heat with each other, and the two refrigerant groups can be equalized in temperature and density to become one refrigerant group before being sucked into the high-stage compression mechanism section. In this state, the density of the refrigerant sucked into the high-stage compression mechanism is stable, and the mass flow rate of the refrigerant at the discharge pressure discharged from the high-stage compression mechanism is also stable. And the generation of compressor vibration and noise caused by unstable discharge mass flow rate can be avoided. Furthermore, even if there is jet refrigerant that is not gasified even after passing through the electric motor, it is completely gasified by heat exchange with the refrigerant discharged from the low-stage compression mechanism, so the high-stage compression A situation in which the liquid refrigerant is sucked into the mechanism part can be avoided. Therefore, a highly efficient and highly reliable compressor is obtained, and a refrigerant circuit device using this compressor is also highly efficient and highly reliable.

実施の形態1.
図1は、この発明を実施するための実施の形態1における2段圧縮式の冷媒回路装置の構成図であり、この形態ではヒートポンプ式の給湯装置となっており、冷媒として二酸化炭素が用いられている。図2は、その冷媒回路装置に用いられる内部中間圧型の2段圧縮機1(以後、圧縮機1)周りを示す説明図である。圧縮機1は、密閉容器10の内部に低段側圧縮機構部11(以後、低段部11)と高段側圧縮機構部12(以後、高段部12)とからなる2段圧縮式の圧縮機構部と、これらの圧縮機構部11、12を回転軸14を介して回転駆動させる電動機13を備える。電動機13の下方に2段圧縮式の圧縮機構部11、12が配置され、密閉容器10の底側に低段部11が、低段部11の上部に高段部12が配置される。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a two-stage compression refrigerant circuit device according to Embodiment 1 for carrying out the present invention. In this embodiment, a heat pump type hot water supply device is used, and carbon dioxide is used as a refrigerant. ing. FIG. 2 is an explanatory view showing the periphery of the internal intermediate pressure type two-stage compressor 1 (hereinafter referred to as the compressor 1) used in the refrigerant circuit device. The compressor 1 is a two-stage compression type comprising a low-stage compression mechanism 11 (hereinafter referred to as a low-stage section 11) and a high-stage compression mechanism 12 (hereinafter referred to as a high-stage section 12) in an airtight container 10. A compression mechanism section and an electric motor 13 that rotates these compression mechanism sections 11 and 12 via a rotation shaft 14 are provided. Two-stage compression type compression mechanism portions 11 and 12 are disposed below the electric motor 13, the low-stage portion 11 is disposed on the bottom side of the sealed container 10, and the high-stage portion 12 is disposed above the low-stage portion 11.

密閉容器10は上下を開口した円筒容器10aに上蓋10bおよび底蓋10cが溶接等で接合されることで密閉がなされる。なお密閉容器10は絞り加工等で形成した有底の円筒容器に上蓋10bを接合する2分割構成としてもよい。また密閉容器10の底部には圧縮機構部の潤滑やシールに使用する潤滑油が貯留される油溜め17が設けられている。   The sealed container 10 is hermetically sealed by joining an upper lid 10b and a bottom lid 10c to a cylindrical container 10a that is open at the top and bottom by welding or the like. The sealed container 10 may have a two-part configuration in which the top lid 10b is joined to a bottomed cylindrical container formed by drawing or the like. An oil sump 17 is provided at the bottom of the sealed container 10 to store lubricating oil used for lubricating and sealing the compression mechanism.

電動機13は、固定子13aと回転子13bから構成される。回転子13bの外周と固定子13a内周には、エアギャップと呼ばれる径方向のすきまが全周に渡ってほぼ均一に設けられる。固定子13aは図示しないが積層された略円環状の電磁鋼板の内側歯部にコイルが集中巻き方式で巻かれており、その積層された電磁鋼板の外周が密閉容器10の内周に焼嵌めにより固定される。固定子13aの積層された電磁鋼板外周には部分的に切欠きが複数設けられているので、密閉容器10内周と固定子13aの外周の間には、それら切欠きにより固定子13aの上下を連通する流路が形成される。 The electric motor 13 includes a stator 13a and a rotor 13b. In the outer periphery of the rotor 13b and the inner periphery of the stator 13a, a radial clearance called an air gap is provided substantially uniformly over the entire periphery. Although not shown, the stator 13a has a coil wound around the inner teeth of a substantially annular magnetic steel sheet laminated in a concentrated winding manner, and the outer periphery of the laminated electromagnetic steel sheet is shrink-fitted to the inner periphery of the sealed container 10. It is fixed by. Since a plurality of cutouts are partially provided on the outer periphery of the electromagnetic steel plates on which the stator 13a is laminated, the upper and lower sides of the stator 13a are formed between the inner periphery of the hermetic container 10 and the outer periphery of the stator 13a by the cutouts. Is formed.

回転子13bも図示しないが、固定子13a同様に円環状の電磁鋼板が積層されたもので、電磁鋼板の内部に希土類磁石やフェライト磁石等の永久磁石が埋設され、また積層された電磁鋼板の上下を連通するように複数の風穴が流路として設けられている。回転子13bは積層された電磁鋼板の内周が回転軸14と焼嵌められており、固定子13aに電力が供給されると、回転軸14は回転子13bと一体となって回転する。図示しないが、密閉容器10の上蓋10bには、ガラスターミナルが溶接固定されていて、このガラスターミナルと固定子13aがリード線で接続され、外部から供給される電力がガラスターミナルを中継して電動機13に付与される。 Although the rotor 13b is not shown in the drawing, like the stator 13a, an annular electromagnetic steel plate is laminated, and permanent magnets such as rare earth magnets and ferrite magnets are embedded in the electromagnetic steel plate, and the laminated electromagnetic steel plate A plurality of air holes are provided as flow paths so as to communicate vertically. In the rotor 13b, the inner periphery of the laminated electromagnetic steel sheets is shrink-fitted with the rotating shaft 14, and when electric power is supplied to the stator 13a, the rotating shaft 14 rotates integrally with the rotor 13b. Although not shown, a glass terminal is welded and fixed to the upper lid 10b of the sealed container 10, the glass terminal and the stator 13a are connected by lead wires, and electric power supplied from outside relays the glass terminal to the motor. 13.

低段部11と高段部12はいずれもローラーがシリンダ内を偏心回転しベーンにより吸入室と仕切られた圧縮室の容積を減じて圧縮を行うロータリ圧縮機構を備えており、図示しないが、低段部11と高段部12の互いの圧縮室は低段部11と高段部12の間に配置される仕切板により隔てられている。電動機13に電力が供給され、回転軸14が電動機13により回転駆動すると、低段吸入管20から低段部11に吸入圧(低圧)の冷媒が吸引される。そして低段部11で中間圧まで圧縮され、密閉容器10内で、電動機13と圧縮機構部である高段部12の間の空間である空間A31に開口する低段吐出管21から、密閉容器10内部に全量吐出される。それにより密閉容器10の内部が中間圧雰囲気となる。 Each of the low-stage part 11 and the high-stage part 12 includes a rotary compression mechanism that performs compression by reducing the volume of the compression chamber partitioned from the suction chamber by the vane while the roller rotates eccentrically in the cylinder. The compression chambers of the low step portion 11 and the high step portion 12 are separated by a partition plate arranged between the low step portion 11 and the high step portion 12. When electric power is supplied to the electric motor 13 and the rotary shaft 14 is driven to rotate by the electric motor 13, a refrigerant having a suction pressure (low pressure) is sucked from the low-stage suction pipe 20 into the low-stage portion 11. Then, it is compressed to an intermediate pressure in the low stage portion 11, and from the low stage discharge pipe 21 that opens into the space A 31 that is a space between the electric motor 13 and the high stage section 12 that is the compression mechanism section in the sealed container 10. 10 is discharged in its entirety. Thereby, the inside of the sealed container 10 becomes an intermediate pressure atmosphere.

密閉容器10内の中間圧の冷媒は、電動機13と高段部12との間で空間A31に臨む密閉容器10壁部に設置され密閉容器10内部に一端を開口する冷媒導出管22より一旦密閉容器10の外部に導出される。冷媒導出管22は、回転軸14軸心を中心として低段吐出管21が開口する位置の方向と略180°対称の方向に設置されている。そして中間圧の冷媒は、密閉容器10の外部で一端をこの冷媒導出管22に接続され、他端を高段吸入管23に接続される中間圧接続管25と高段吸入管23を順次経由して、高段部12に吸引され、高段部12にて吐出圧(高圧)まで圧縮され、高段部12より高段吐出管24を通過して密閉容器内に開放されることなく直接密閉容器10外部の冷媒回路装置の接続配管A40に吐出される。中間圧接続管25は一本の管を曲げて形成されるが、複数の管をつないで形成してもよい。 The intermediate-pressure refrigerant in the hermetic container 10 is temporarily sealed from the refrigerant outlet tube 22 that is installed on the wall of the hermetic container 10 facing the space A31 between the electric motor 13 and the high stage portion 12 and opens at one end inside the hermetic container 10. It is led out of the container 10. The refrigerant outlet pipe 22 is installed in a direction approximately 180 ° symmetrical to the direction of the position where the low-stage discharge pipe 21 is opened with the rotation axis 14 as the center. The intermediate pressure refrigerant is sequentially passed through an intermediate pressure connection pipe 25 and a high stage suction pipe 23, one end of which is connected to the refrigerant outlet pipe 22 and the other end connected to the high stage suction pipe 23. Then, it is sucked into the high stage part 12, compressed to the discharge pressure (high pressure) at the high stage part 12, and directly passes through the high stage discharge pipe 24 from the high stage part 12 without being opened into the sealed container. It is discharged to the connection pipe A40 of the refrigerant circuit device outside the sealed container 10. The intermediate pressure connection pipe 25 is formed by bending a single pipe, but may be formed by connecting a plurality of pipes.

図においては、中間圧接続管25は、上蓋10bを跨いで設けられているが、圧縮機1のコンパクト性を阻害することなく、冷媒吐出管22から吐出される中間圧の冷媒が高段吸入管23を経て高段部12に吸入されるまでの距離をなるべく長く取れるように上蓋10bを跨がせている。中間圧接続管25はこの形に特定されるものではなく、円筒容器10aの外側を這うように設けてもよく、冷媒吐出管22から吐出される中間圧の冷媒が高段部12に吸入されるまでの距離距離を長くするために円筒容器10a外側を半周以上周回させてもよい。   In the figure, the intermediate pressure connecting pipe 25 is provided across the upper lid 10b. However, the intermediate pressure refrigerant discharged from the refrigerant discharge pipe 22 does not impair the compactness of the compressor 1, and the high pressure suction is performed. The upper lid 10b is straddled so that the distance until it is sucked into the high step portion 12 through the tube 23 can be taken as long as possible. The intermediate pressure connection pipe 25 is not limited to this shape, and may be provided so as to crawl the outside of the cylindrical container 10a, and the intermediate pressure refrigerant discharged from the refrigerant discharge pipe 22 is sucked into the high stage portion 12. In order to lengthen the distance until the end of the cylindrical container 10a, the outer side of the cylindrical container 10a may be circulated more than half a round.

また圧縮機1のコンパクト性を阻害することなく、冷媒吐出管22から吐出される中間圧の冷媒が高段部12に吸入されるまでの距離を長くするために、冷媒導出管22と高段吸入管23の位相を最大180°の間で、大きくずらすのがよいが、冷媒導出管22と高段吸入管23の位相差が小さくても、中間圧接続管25の形状や配置を、例えば円筒容器10a外側を周回させる等、適切に設定することで、圧縮機1のコンパクト性を阻害することなく、冷媒吐出管22から吐出される中間圧の冷媒が高段部12に吸入されるまでの距離を長く
設定することができる。
Further, in order to increase the distance until the intermediate pressure refrigerant discharged from the refrigerant discharge pipe 22 is sucked into the high stage portion 12 without hindering the compactness of the compressor 1, the refrigerant outlet pipe 22 and the high stage The phase of the suction pipe 23 should be largely shifted between a maximum of 180 °. However, even if the phase difference between the refrigerant outlet pipe 22 and the high-stage suction pipe 23 is small, the shape and arrangement of the intermediate pressure connection pipe 25 are, for example, By appropriately setting the outer circumference of the cylindrical container 10a, for example, until the medium-pressure refrigerant discharged from the refrigerant discharge pipe 22 is sucked into the high stage portion 12 without impairing the compactness of the compressor 1. The distance can be set longer.

また中間圧接続管25を介さずに、冷媒導出管22もしくは高段吸入管23のどちらか一方を長く形成して、または冷媒導出管22と高段吸入管23のそれぞれを長く形成して直接冷導出管22と高段吸入管23を接続してもよい。冷媒導出管22と高段吸入管23を接続するということは、途中に中間圧接続管25を介して接続する場合も、両管22,23を直接接続する場合も含むものである。また冷媒導出管22と中間圧接続管25をまとめて冷媒導出管と判断してもよいし、中間圧接続管25と高段吸入管23をまとめて高段吸入管と判断してもよい。 Further, without either the intermediate pressure connection pipe 25, either the refrigerant outlet pipe 22 or the high stage suction pipe 23 is formed long, or each of the refrigerant outlet pipe 22 and the high stage suction pipe 23 is formed long and directly. The cold lead-out pipe 22 and the high stage suction pipe 23 may be connected. The connection of the refrigerant outlet pipe 22 and the high stage suction pipe 23 includes the case of connecting via the intermediate pressure connection pipe 25 in the middle and the case of connecting both pipes 22 and 23 directly. Further, the refrigerant outlet pipe 22 and the intermediate pressure connecting pipe 25 may be collectively determined as a refrigerant outlet pipe, or the intermediate pressure connecting pipe 25 and the high stage suction pipe 23 may be collectively determined as a high stage suction pipe.

圧縮機1の上部、すなわち密閉容器10の上蓋10bには、密閉容器10内部で電動機13の反圧縮機構部側にあって電動機13と密閉容器10の上蓋10bとの間の空間である空間B32に一端を開口し、密閉容器10外部からの冷媒を空間B32に噴射する噴射管26が設置されている。図2において噴射管26は圧縮機1の軸線方向と平行な方向で設置され、形状としては直管となっているが、電動機13の上部となる空間B32に一端が開口するのであれば、噴射管26の方向や形状はどのようなものであってもよく、密閉容器10の側面に、圧縮機1の軸線方向と直交する方向に設置されてもよい。この噴射管26の一端は上記の通り空間B32に開口するが、他端には、冷媒回路装置の分岐管B51が接続される。また噴射管26は低段吐出管21と同様に、回転軸14の軸心を中心として冷媒導出管22の位置する方向と略180°対称の方向に設置されている。 In the upper part of the compressor 1, that is, the upper cover 10 b of the sealed container 10, there is a space B 32 that is on the side opposite to the compression mechanism part of the electric motor 13 inside the sealed container 10 and is a space between the electric motor 13 and the upper cover 10 b of the sealed container 10. One end is opened, and an injection pipe 26 for injecting refrigerant from the outside of the sealed container 10 into the space B32 is installed. In FIG. 2, the injection pipe 26 is installed in a direction parallel to the axial direction of the compressor 1 and has a straight pipe shape. However, if one end opens in the space B <b> 32 which is the upper part of the electric motor 13, the injection pipe 26 is injected. The pipe 26 may have any direction and shape, and may be installed on the side surface of the sealed container 10 in a direction orthogonal to the axial direction of the compressor 1. One end of the injection pipe 26 opens into the space B32 as described above, and the other end is connected to the branch pipe B51 of the refrigerant circuit device. Similarly to the low-stage discharge pipe 21, the injection pipe 26 is installed in a direction approximately 180 ° symmetrical to the direction in which the refrigerant outlet pipe 22 is located around the axis of the rotating shaft 14.

次に図1により、上記の圧縮機1を使用した2段圧縮式の冷媒回路装置であるヒートポンプ式給湯装置について説明する。圧縮機1の高段吐出管24には、一端をガスクーラである高圧側熱交換器2の入口に接続される接続配管A40の他端が接続され、圧縮機1から吐出された高圧の冷媒ガスは、接続配管A40を経て高圧側熱交換器2に導入される。図1において高圧側熱交換器2はガスクーラとなっており、ここで高圧の冷媒は、同じ高圧側熱交換器2を通る水配管62内をポンプ61により冷媒の流れとは対抗して逆方向に流れる水と熱交換して温度を下げる。一方で水配管62の水は冷媒との熱交換により加熱され、貯湯タンク60に貯められる。   Next, a heat pump hot water supply apparatus that is a two-stage compression refrigerant circuit apparatus using the compressor 1 will be described with reference to FIG. The high-pressure discharge gas 24 discharged from the compressor 1 is connected to the high-stage discharge pipe 24 of the compressor 1 with the other end of the connection pipe A40 connected at one end to the inlet of the high-pressure side heat exchanger 2 that is a gas cooler. Is introduced into the high-pressure side heat exchanger 2 via the connection pipe A40. In FIG. 1, the high-pressure side heat exchanger 2 is a gas cooler. Here, the high-pressure refrigerant flows in the reverse direction in the water pipe 62 passing through the same high-pressure side heat exchanger 2 against the refrigerant flow by the pump 61. Heat is exchanged with the water flowing in the water to lower the temperature. On the other hand, the water in the water pipe 62 is heated by heat exchange with the refrigerant and stored in the hot water storage tank 60.

ガスクーラである高圧側熱交換器2にて水と熱交換して温度を下げた高圧の冷媒は、電子膨張弁である絞り装置3により低圧まで減圧される。またこの絞り装置3により、冷媒回路装置の冷媒流量が制御される。ここで高圧側熱交換器2を通過し、その際に水と熱交換して温度を下げた高圧の冷媒の全量が、絞り装置3を通過するわけではなく、一部の冷媒は、高圧側熱交換器2出口と絞り装置3をつなぐ接続配管B41から分岐する分岐管A50を通り、分岐管A50に接続して設置された減圧装置5により中間圧まで減圧されて、さらに一端を減圧装置5と接続し他端を圧縮機1の噴射管26と接続する分岐管B51と、噴射管26を順次通って圧縮機1の密閉容器10内の空間B32に噴射される。減圧装置5には、膨張弁などの弁機構やキャピラリーチューブが使用されていて、高圧側熱交換器2と絞り装置3の間に一端を接続し、他端を噴射管26に接続する分岐管50、51の途中に減圧装置5が設けられているのである。 The high-pressure refrigerant whose temperature has been lowered by exchanging heat with water in the high-pressure side heat exchanger 2 that is a gas cooler is decompressed to a low pressure by the expansion device 3 that is an electronic expansion valve. The throttle device 3 controls the refrigerant flow rate of the refrigerant circuit device. Here, the entire amount of the high-pressure refrigerant that has passed through the high-pressure side heat exchanger 2 and reduced its temperature by exchanging heat with water does not pass through the expansion device 3, and some of the refrigerant is It passes through a branch pipe A50 branched from a connection pipe B41 connecting the outlet of the heat exchanger 2 and the expansion device 3, and is reduced to an intermediate pressure by a decompression device 5 connected to the branch pipe A50, and further, one end of the decompression device 5 And the other end is connected to the injection pipe 26 of the compressor 1, and the injection pipe 26 is sequentially injected into the space B 32 in the sealed container 10 of the compressor 1. The decompression device 5 uses a valve mechanism such as an expansion valve or a capillary tube. One end is connected between the high pressure side heat exchanger 2 and the expansion device 3, and the other end is connected to the injection pipe 26. The decompression device 5 is provided in the middle of 50 and 51.

絞り装置3を通過して低圧となった冷媒は、接続配管C42を通って蒸発器である低圧側熱交換器4に流入し、ここで大気と熱交換してガス化され、接続配管D43を経て、圧縮機1の低段吸入管20から低段部11に吸引される。なお低圧側熱交換器4で冷媒を完全にガス化できず一部の冷媒が液のまま低圧側熱交換器4の出口を越えてしまうことに備え、液冷媒が圧縮機1に直接吸引されることがないように、低圧側熱交換器4と圧縮機1の間に、アキュームレータを設けてもよい。またそのアキュームレータは圧縮機1に一体的に固定してもよい。 The low-pressure refrigerant that has passed through the expansion device 3 passes through the connection pipe C42 and flows into the low-pressure side heat exchanger 4 that is an evaporator, where it is gasified by exchanging heat with the atmosphere. After that, the air is sucked into the low stage portion 11 from the low stage suction pipe 20 of the compressor 1. Note that the refrigerant cannot be completely gasified by the low-pressure side heat exchanger 4 and part of the refrigerant remains in the liquid state and exceeds the outlet of the low-pressure side heat exchanger 4, so that the liquid refrigerant is directly sucked into the compressor 1. An accumulator may be provided between the low pressure side heat exchanger 4 and the compressor 1 so as not to occur. The accumulator may be fixed integrally to the compressor 1.

低段部11で圧縮された中間圧となった冷媒が、低段吐出管21から密閉容器10内の空間A31に全量吐出され、密閉容器10の内部は中間圧の冷媒雰囲気となる。低段部11で圧縮された中間圧の冷媒は高段部12の吸入室の吸入作用により、冷媒導出管22に導かれ、冷媒導出管22を通って、密閉容器10の外部に設置される中間圧接続管25と、密閉容器10に取り付けられる高段吸入管23を経由して高段部12に吸引される。 The intermediate pressure compressed by the low stage portion 11 is discharged from the low stage discharge pipe 21 to the space A31 in the sealed container 10 and the inside of the sealed container 10 becomes an intermediate pressure refrigerant atmosphere. The intermediate pressure refrigerant compressed in the low stage portion 11 is guided to the refrigerant outlet pipe 22 by the suction action of the suction chamber of the high stage section 12, and is installed outside the sealed container 10 through the refrigerant outlet pipe 22. The intermediate pressure connecting pipe 25 and the high stage suction pipe 23 attached to the sealed container 10 are sucked into the high stage 12.

一方接続配管B41から分岐し、減圧装置5によって中間圧に減圧されて圧縮機1の密閉容器10内の空間B32に噴射された噴射冷媒は、同じく高段部12の吸入室の吸入作用により、電動機13より下方にある冷媒導出管22に導かれる。その際噴射冷媒は、上記した固定子13a外周の切欠きによる流路や、固定子13aと回転子13bのすきま(エアギャップ)や、回転子13bの風穴による流路などを通過するので、電動機13をその潜熱によって冷却する。電動機13を冷却することにより、液あるいは気液二相状態であった噴射冷媒はガス化するが、場合によっては一部の噴射冷媒は電動機13を通過してもガス化できずに液の状態である場合も起こり得る。電動機13は冷却され温度が下がることで、固定子13aの巻線抵抗が低減し、効率が上昇する。また回転子13bに希土類磁石が埋設されている場合には冷却され温度が下がることで、磁石の磁束密度が上がるので効率がさらに上昇する。   On the other hand, the injected refrigerant branched from the connection pipe B41 and reduced in pressure to the intermediate pressure by the pressure reducing device 5 and injected into the space B32 in the hermetic container 10 of the compressor 1 is similarly sucked by the suction action of the suction chamber of the high stage portion 12. The refrigerant is led to a refrigerant outlet pipe 22 below the electric motor 13. At that time, the injected refrigerant passes through the flow path formed by the notch on the outer periphery of the stator 13a, the clearance (air gap) between the stator 13a and the rotor 13b, the flow path formed by the air holes of the rotor 13b, and the like. 13 is cooled by its latent heat. By cooling the electric motor 13, the injected refrigerant that has been in a liquid or gas-liquid two-phase state is gasified, but in some cases, some of the injected refrigerant cannot be gasified even after passing through the electric motor 13 and is in a liquid state. It can happen. When the motor 13 is cooled and the temperature is lowered, the winding resistance of the stator 13a is reduced, and the efficiency is increased. Further, when a rare earth magnet is embedded in the rotor 13b, the cooling is performed and the temperature is lowered, so that the magnetic flux density of the magnet is increased, and the efficiency is further increased.

電動機13を冷却した噴射冷媒は、空間A31を経て、低段吐出管21から吐出された冷媒といっしょに冷媒導出管22から高段吸入管23を経て高段部12に吸引される。ここで冷媒導出管22は、低段吐出管21から吐出された冷媒と噴射管26から噴射された冷媒が合わせて流出するものであるから、流路としての抵抗を小さくすべく、低段吐出管21の内径および噴射管26の内径より大きな内径を有する。そして中間圧接続管25および高段吸入管23の内径は低段吐出管21の内径と等しくしている。 The jet refrigerant that has cooled the electric motor 13 passes through the space A31 and is sucked into the high stage portion 12 from the refrigerant outlet pipe 22 through the high stage suction pipe 23 together with the refrigerant discharged from the low stage discharge pipe 21. Here, since the refrigerant discharged from the low-stage discharge pipe 21 and the refrigerant injected from the injection pipe 26 flow out together, the refrigerant outlet pipe 22 is low-stage discharge in order to reduce the resistance as a flow path. The inner diameter of the tube 21 and the inner diameter of the injection tube 26 are larger. The inner diameters of the intermediate pressure connecting pipe 25 and the high stage suction pipe 23 are equal to the inner diameter of the low stage discharge pipe 21.

電動機13を挟んで噴射冷媒が噴射される電動機13上部の空間B32と、低段部11で圧縮された冷媒が低段吐出管21より吐出される電動機13下部の空間A31とは、上記した電動機13に設けられた流路やすきまにより流路としての抵抗が小さい状態で連通しているので、噴射冷媒と低段部11の吐出冷媒に多少の圧力差が生じていても瞬時に均圧できる。一方両冷媒の温度は圧力のように瞬時に等しくならない。電動機13を通過した後の噴射冷媒は、噴射される前に高圧側熱交換器2で熱交換して温度を下げた冷媒であるため、電動機13を冷却することで、電動機13を通過する前の空間B32に噴射された時点での温度よりは上昇しているが、定常運転状態では低段部11で圧縮され吐出された冷媒の温度よりは低い。   The space B32 above the motor 13 in which the injection refrigerant is injected across the motor 13 and the space A31 below the motor 13 from which the refrigerant compressed by the low stage portion 11 is discharged from the low stage discharge pipe 21 are the above-described motor. 13 is connected in a state where the resistance as a flow path is small due to the clearance of the flow path provided in 13, so that even if there is a slight pressure difference between the injected refrigerant and the discharged refrigerant of the low stage portion 11, the pressure can be instantaneously equalized . On the other hand, the temperature of both refrigerants does not become instantaneously equal to the pressure. Since the injected refrigerant after passing through the electric motor 13 is a refrigerant whose temperature has been lowered by the heat exchange in the high-pressure heat exchanger 2 before being injected, before the electric refrigerant 13 passes through by cooling the electric motor 13. However, in the steady operation state, the temperature is lower than the temperature of the refrigerant compressed and discharged in the low stage portion 11.

圧力は同じだが温度が異なるということは密度が異なることであるので、電動機13通過後の噴射冷媒の方が低段部11の吐出冷媒よりも密度が大きく、電動機13の下部の空間A31においては、電動機13通過後の噴射冷媒の群と低段部11からの吐出冷媒の群という温度並びに密度が異なる2つの冷媒群が互いに熱交換を行うものの十分には熱交換されていない状態、すなわち熱交換により両冷媒群が温度および密度を完全に等しくして1つの冷媒群とはなっていない状態で存在している。 The fact that the pressure is the same but the temperature is different means that the density is different. Therefore, the injected refrigerant after passing through the electric motor 13 has a higher density than the discharged refrigerant of the low stage portion 11, and in the space A31 below the electric motor 13. The two refrigerant groups having different temperatures and densities, ie, the group of jet refrigerant after passing through the electric motor 13 and the group of refrigerant discharged from the low stage portion 11 exchange heat with each other, but are not sufficiently heat exchanged, that is, heat As a result of the replacement, the two refrigerant groups exist in a state in which the temperature and density are completely equal and do not form one refrigerant group.

しかしこの圧縮機1では、高段部12の吸入作用によって高段部12に吸引される冷媒は、密閉容器10の外部に位置する冷媒導出管22や中間圧接続管25、高段吸入管23といった配管を通ってから吸引されるので、外部の配管を通過している過程において、電動機13通過後の噴射冷媒と低段部11の吐出冷媒の熱交換を十分に行うことができる。そのため高段部12に吸引される前に、両冷媒群は温度および密度を等しくして1つの冷媒群となることができる。これは密閉容器10内部に高段吐出管が開口する引用文献1に比べて、中間圧接続管25等の外部の配管を通過することで、両冷媒が互いに十分な熱交換を行うのに必要な空間と時間が与えられるためである。また十分な熱交換を行うのに必要な空間(あるいは距離と言ってもよい)と時間を設けるために、中間圧接続管25等の冷媒導出管22から高段部12に至る密閉容器10外部の中間圧の冷媒が流れる配管の配置を、上蓋10bを跨がせたり、円筒容器10aの外側を周回させたりするのである。 However, in this compressor 1, the refrigerant sucked into the high stage portion 12 by the suction action of the high stage portion 12 is the refrigerant outlet pipe 22, the intermediate pressure connection pipe 25, and the high stage suction pipe 23 located outside the sealed container 10. Therefore, the heat exchange between the injected refrigerant after passing through the electric motor 13 and the refrigerant discharged from the low stage portion 11 can be sufficiently performed in the process of passing through the external pipe. Therefore, before being sucked into the high stage portion 12, both refrigerant groups can be equalized in temperature and density to become one refrigerant group. This is necessary for the two refrigerants to sufficiently exchange heat with each other by passing through an external pipe such as the intermediate pressure connecting pipe 25 as compared with the cited reference 1 in which the high-stage discharge pipe is opened inside the sealed container 10. It is because it gives a lot of space and time. In addition, in order to provide a space (or distance) and time necessary for sufficient heat exchange, the outside of the sealed container 10 extending from the refrigerant outlet pipe 22 such as the intermediate pressure connecting pipe 25 to the high stage portion 12 is provided. The arrangement of the pipe through which the intermediate pressure refrigerant flows is straddled over the upper lid 10b, or the outside of the cylindrical container 10a is circulated.

両冷媒群が十分に熱交換されることにより温度および密度が等しくなり、1つの冷媒群となるので、定常運転状態において、高段部12に吸引される冷媒の密度は安定し、圧縮行程毎にほぼ一定となる。そして吸引される冷媒の密度が安定するということは、高段部12に吸引される冷媒の質量流量が安定するということであるから、高段部12から吐出される吐出圧の冷媒の質量流量も安定するので、冷媒回路装置の運転特性の安定性が高められ、また吐出質量流量の不安定に起因していた圧縮機の振動や騒音の発生を回避することができる。 When the two refrigerant groups are sufficiently heat-exchanged, the temperature and density are equalized to form one refrigerant group. Therefore, in the steady operation state, the density of the refrigerant sucked into the high stage portion 12 is stable, and the compression stroke is Almost constant. The fact that the density of the sucked refrigerant is stable means that the mass flow rate of the refrigerant sucked into the high stage portion 12 is stable, and therefore the mass flow rate of the refrigerant having the discharge pressure discharged from the high stage portion 12. Therefore, the stability of the operating characteristics of the refrigerant circuit device can be improved, and the compressor vibration and noise caused by the unstable discharge mass flow rate can be avoided.

また電動機13を通過してもガス化されずに液である噴射冷媒があった場合にも、冷媒導出管22から高段部12に至る密閉容器10外部の中間圧の冷媒が流れる配管において、低段部11の吐出冷媒との熱交換により完全にガス化されるので、高段部12へ液冷媒が吸引されてしまう事態は回避できる。よって高効率で信頼性の高い圧縮機1が得られるとともに、この圧縮機1を使用した冷媒回路装置も高効率で信頼性の高いものとなる。 In addition, even when there is an injection refrigerant that is liquid without being gasified even when passing through the electric motor 13, in the pipe through which the intermediate pressure refrigerant outside the sealed container 10 from the refrigerant outlet pipe 22 to the high stage portion 12 flows, Since the gas is completely gasified by heat exchange with the refrigerant discharged from the low stage portion 11, a situation where the liquid refrigerant is sucked into the high stage portion 12 can be avoided. Therefore, the highly efficient and highly reliable compressor 1 is obtained, and the refrigerant circuit device using the compressor 1 is also highly efficient and highly reliable.

実施の形態2.
図3は、この発明を実施するための実施の形態2における2段圧縮式の冷媒回路装置に用いられる内部中間圧型の2段圧縮機6(以後、圧縮機6)周りを示す説明図である。なお図3において図2と同一の符号で示すものは、図2の圧縮機1と同一もしくは同様な部品であり、ここでの説明は省略する。この圧縮機6は、高段部12に吸引される中間圧の冷媒が流れる密閉容器10外部に設置された配管の途中に、中間圧冷媒の流れる空間容積を拡大するための容積拡大部15を備える。すなわち冷媒導出管22と高段吸入管23の間に容積拡大部15を備えるものである。容積拡大部15は容積拡大部15の入口側に位置する冷媒導出管22の内径と同一の内径を有する第1中間圧接続管27の内径よりも大きく、かつ容積拡大部15の出口側に位置する高段吸入管23の内径と同一の内径を有する第2中間圧接続管28の内径より大きい内径を有した円筒状の密閉容器であるが、円筒状でなくても所定容量のタンクであればよい。なお図3に示す圧縮機6においては、冷媒導出管22の内径と高段吸入管23の内径は等しいものである。
Embodiment 2. FIG.
FIG. 3 is an explanatory view showing the periphery of an internal intermediate pressure type two-stage compressor 6 (hereinafter referred to as the compressor 6) used in the two-stage compression refrigerant circuit device in Embodiment 2 for carrying out the present invention. . 3 that are the same as those in FIG. 2 are the same as or similar to those in the compressor 1 in FIG. 2, and a description thereof is omitted here. The compressor 6 includes a volume expanding unit 15 for expanding the space volume in which the intermediate pressure refrigerant flows in the middle of the pipe installed outside the sealed container 10 through which the intermediate pressure refrigerant sucked by the high stage unit 12 flows. Prepare. That is, the volume expanding portion 15 is provided between the refrigerant outlet tube 22 and the high stage suction tube 23. The volume expanding section 15 is larger than the inner diameter of the first intermediate pressure connecting pipe 27 having the same inner diameter as the inner diameter of the refrigerant outlet pipe 22 positioned on the inlet side of the volume expanding section 15 and is positioned on the outlet side of the volume expanding section 15. The cylindrical sealed container having an inner diameter larger than the inner diameter of the second intermediate pressure connection pipe 28 having the same inner diameter as the inner diameter of the high-stage suction pipe 23 is not limited to the cylindrical shape but may be a tank having a predetermined capacity. That's fine. In the compressor 6 shown in FIG. 3, the inner diameter of the refrigerant outlet pipe 22 and the inner diameter of the high stage suction pipe 23 are the same.

容積拡大部15は入口側を冷媒導出管22と接続している第1中間圧接続管27に、出口側を高段吸入管23と接続している第2中間圧接続管28に連通するように接続される。第1中間圧接続管27および第2中間圧接続管28は一本の管を曲げて形成されるが、複数の管をつないで形成してもよい。また第1中間圧接続管27を介さずに冷媒導出管23を容積拡大部15と直接接続してもよいし、第2中間圧接続管28を介さずに高段吸入管23を容積拡大部15と接続してもよい。また容積拡大部15と第1中間圧接続管27および第2中間圧接続管28を絞り加工などで、一体的に形成してもよい。そして冷媒導出管22と第1中間圧接続管27をまとめて冷媒導出管と判断してもよいし、第2中間圧接続管28と高段吸入管23をまとめて高段吸入管と判断してもよい。 The volume expanding section 15 communicates with the first intermediate pressure connection pipe 27 connected to the refrigerant outlet pipe 22 on the inlet side and to the second intermediate pressure connection pipe 28 connected to the high stage suction pipe 23 on the outlet side. Connected to. The first intermediate pressure connection pipe 27 and the second intermediate pressure connection pipe 28 are formed by bending one pipe, but may be formed by connecting a plurality of pipes. Further, the refrigerant outlet pipe 23 may be directly connected to the volume expanding section 15 without using the first intermediate pressure connecting pipe 27, or the high stage suction pipe 23 may be connected to the volume expanding section without using the second intermediate pressure connecting pipe 28. 15 may be connected. Further, the volume expanding portion 15, the first intermediate pressure connection pipe 27, and the second intermediate pressure connection pipe 28 may be integrally formed by drawing or the like. Then, the refrigerant outlet pipe 22 and the first intermediate pressure connection pipe 27 may be collectively determined as a refrigerant outlet pipe, or the second intermediate pressure connection pipe 28 and the high stage suction pipe 23 may be collectively determined as a high stage suction pipe. May be.

図2と同様に、冷媒吐出管22から吐出され高段部12に吸入されるまでの中間圧の冷媒が流れる密閉容器10外部の配管は、上蓋10bを跨がずに円筒容器10aの外側を這うように設けてもよく、円筒容器10aの外側を周回させてもよい。そして冷媒導出管22と高段吸入管23の位相を最大180°の間で、大きくずらすのがよい。容積拡大部15は、密閉容器10の円筒容器10a外周面に溶接にて固定された受け具16に溶接あるいはバンドによって保持され、圧縮機6と一体化される。容積拡大部15を圧縮機6に保持させず、別体として設置してもよいが、圧縮機6に保持させ一体的にした方がコンパクトにすることができ、冷媒回路装置を筐体に収納する場合に有利である。   As in FIG. 2, the piping outside the sealed container 10 through which the intermediate pressure refrigerant is discharged from the refrigerant discharge pipe 22 and sucked into the high step portion 12 extends outside the cylindrical container 10a without straddling the upper lid 10b. You may provide so that it may crawl and may circle the outer side of the cylindrical container 10a. The phases of the refrigerant outlet pipe 22 and the high stage suction pipe 23 should be largely shifted between a maximum of 180 °. The volume expanding unit 15 is held by a welding or band on a receiving fixture 16 fixed to the outer peripheral surface of the cylindrical container 10 a of the sealed container 10 by welding, and is integrated with the compressor 6. The volume expansion unit 15 may be installed as a separate unit without being held by the compressor 6, but it can be made compact by being held by the compressor 6 and integrated, and the refrigerant circuit device is housed in the housing. This is advantageous.

図3において、容積拡大部15は高段吸入管23により近い側に設置されているが、この位置はこれに限るものではなく、冷媒導出管22に近い側にあってもよい。容積拡大部15は冷媒導出管22と高段吸入管23の間に備えられるもので、それは冷媒導出管22から吐出された中間圧の冷媒が高段部12に吸引されるまで密閉容器10の外部で流れる配管の途中のいずれかの場所に設ければよいということである。容積拡大部15の容積は、低段部12の行程容積の少なくとも2倍以上とし、上限は外形が圧縮機6に一体的に保持できる大きさとなる容積である。なおこの圧縮機6が搭載される冷媒回路装置の実施の形態は、図1に示す冷媒回路装置と同様で、図1において圧縮機1をこの圧縮機6に変更したものであり、ここでの説明は省略する。 In FIG. 3, the volume expanding portion 15 is installed on the side closer to the high stage suction pipe 23, but this position is not limited to this, and may be on the side closer to the refrigerant outlet pipe 22. The volume expanding section 15 is provided between the refrigerant outlet pipe 22 and the high stage suction pipe 23, and it is used for the sealed container 10 until the intermediate pressure refrigerant discharged from the refrigerant outlet pipe 22 is sucked into the high stage section 12. This means that it may be provided at any location in the middle of the piping that flows outside. The volume of the volume expanding section 15 is at least twice the stroke volume of the low stage section 12, and the upper limit is a volume that allows the outer shape to be held integrally with the compressor 6. The embodiment of the refrigerant circuit device on which the compressor 6 is mounted is similar to the refrigerant circuit device shown in FIG. 1, and the compressor 1 is changed to the compressor 6 in FIG. Description is omitted.

図3の圧縮機6においては、高段部12に吸引される中間圧の冷媒が流れる密閉容器10外部の配管の途中である、冷媒導出管22と高段吸入管23の間容積拡大部15を備えたことにより、容積拡大部15の内部容積が、電動機13通過後の噴射冷媒と低段部11の吐出冷媒との熱交換を十分に行うための空間として提供できるので、電動機13通過後の噴射冷媒と低段部11の吐出冷媒との熱交換が十分に行え、両冷媒群の温度および密度を等しくして1つの冷媒群となって高段部12に吸引させるようにすることができる。また容積拡大部15は所定容量のタンクから成るものなので、冷媒導出管22から導出された中間圧の冷媒のマフラー効果を得ることができる。 In the compressor 6 of FIG. 3, the volume expansion section 15 between the refrigerant outlet pipe 22 and the high stage suction pipe 23, which is in the middle of the piping outside the sealed container 10 through which the intermediate pressure refrigerant sucked by the high stage section 12 flows. Since the internal volume of the volume expanding portion 15 can be provided as a space for sufficiently performing heat exchange between the injected refrigerant after passing through the electric motor 13 and the discharged refrigerant from the low stage portion 11, It is possible to sufficiently exchange heat between the injected refrigerant and the refrigerant discharged from the low stage portion 11, so that the temperature and density of both refrigerant groups are equalized to form one refrigerant group and sucked into the high stage portion 12. it can. Further, since the volume expanding portion 15 is composed of a tank having a predetermined capacity, it is possible to obtain the muffler effect of the intermediate pressure refrigerant derived from the refrigerant outlet pipe 22.

このため高段部12に吸引される冷媒の密度は安定し、高段部12から吐出される吐出圧の冷媒の質量流量が安定するので、冷媒回路装置の運転特性の安定性が高められ、また吐出質量流量の不安定に起因していた2段圧縮機の振動や騒音の発生を回避することができる。また電動機13を通過してもガス化されずに液である噴射冷媒があった場合にも、容積拡大部15を含めた冷媒導出管22から高段部12に至る密閉容器10外部の中間圧の冷媒が流れる配管において、低段部11の吐出冷媒と熱交換して完全にガス化されるので、高段部12へ液冷媒が吸引されてしまう事態は回避できる。よって高効率で信頼性の高い圧縮機6が得られるとともに、この圧縮機6を使用した冷媒回路装置も高効率で信頼性の高いものとなる。 For this reason, the density of the refrigerant sucked into the high stage part 12 is stabilized, and the mass flow rate of the refrigerant with the discharge pressure discharged from the high stage part 12 is stabilized, so that the stability of the operation characteristics of the refrigerant circuit device is improved, In addition, it is possible to avoid the occurrence of vibration and noise of the two-stage compressor caused by the unstable discharge mass flow rate. Further, even when there is an injection refrigerant that is liquid without being gasified even after passing through the electric motor 13, the intermediate pressure outside the sealed container 10 that extends from the refrigerant outlet pipe 22 including the volume expansion section 15 to the high stage section 12. In the pipe through which the refrigerant flows, the refrigerant is completely gasified by exchanging heat with the refrigerant discharged from the low stage portion 11, so that a situation in which the liquid refrigerant is sucked into the high stage portion 12 can be avoided. Therefore, a highly efficient and highly reliable compressor 6 is obtained, and a refrigerant circuit device using the compressor 6 is also highly efficient and highly reliable.

実施の形態3.
図4は、この発明を実施するための実施の形態3における2段圧縮式の冷媒回路装置に用いられる内部中間圧型の2段圧縮機7(以後、圧縮機7)周りを示す説明図である。この圧縮機7では、低段部11で圧縮された中間圧の冷媒が、密閉容器10内に開口する第1低段吐出管29(図2および図3における低段吐出管21に相当)から密閉容器10内の電動機13下部の空間に吐出されるものと、第1低段吐出管29とは別に設けられ、第1中間圧接続管27と接続する第2低段吐出管30から密閉容器10の外部に設置された第1中間圧接続管に直接吐出されるものとに分流される。この点が図2および図3に示す他の実施の形態の圧縮機1、6と異なる。
Embodiment 3 FIG.
FIG. 4 is an explanatory diagram showing the periphery of an internal intermediate pressure type two-stage compressor 7 (hereinafter referred to as compressor 7) used in the two-stage compression refrigerant circuit device according to Embodiment 3 for carrying out the present invention. . In the compressor 7, the intermediate-pressure refrigerant compressed in the low stage portion 11 is supplied from a first low stage discharge pipe 29 (corresponding to the low stage discharge pipe 21 in FIGS. 2 and 3) that opens into the sealed container 10. What is discharged into the space below the electric motor 13 in the sealed container 10 and the first low-stage discharge pipe 29 are provided separately from the second low-stage discharge pipe 30 connected to the first intermediate pressure connection pipe 27. 10 is diverted to that directly discharged to the first intermediate pressure connecting pipe installed outside. This point is different from the compressors 1 and 6 of the other embodiments shown in FIGS.

図2および図3に示す他の実施の形態の圧縮機1、6では、低段部11からの吐出冷媒を全量密閉容器10内に吐出していたが、その際吐出冷媒に含まれる潤滑油が密閉容器10内で冷媒から分離し、密閉容器10の底部の油溜め17に戻る。低段部11の吸入室は低圧(吸入圧)であるため、密閉容器10内の中間圧雰囲気より圧力が低いので、圧力差により油溜め17から潤滑油が供給し易く、図示しない回転軸14に設けられた油穴から低段部11には潤滑油が供給され、低段部11の摺動部の潤滑や圧縮室のシールに使用される。 In the compressors 1 and 6 of the other embodiments shown in FIGS. 2 and 3, all of the refrigerant discharged from the low stage portion 11 is discharged into the sealed container 10, but the lubricating oil contained in the refrigerant discharged at that time Is separated from the refrigerant in the sealed container 10 and returns to the oil sump 17 at the bottom of the sealed container 10. Since the suction chamber of the low step portion 11 is at a low pressure (suction pressure), the pressure is lower than the intermediate pressure atmosphere in the sealed container 10, so that the lubricating oil can be easily supplied from the oil reservoir 17 due to the pressure difference, and the rotating shaft 14 (not shown). Lubricating oil is supplied to the lower step portion 11 from an oil hole provided in the lower hole portion 11 and is used for lubricating the sliding portion of the lower step portion 11 and sealing the compression chamber.

一方高段部11には密閉容器10内の中間圧より圧力が低い箇所がないため、油溜め17の潤滑油を供給し難い。そこで高段吸入管23か高段部12に吸引される中間圧の冷媒に潤滑油を混入させることで、高段部12の潤滑およびシールに使用する潤滑油を供給する方法が考えられる。そのためには低段部11からの吐出冷媒を密閉容器10内に吐出せずに密閉容器10外部の配管を経由させて高段部12に吸引させるようにすれば、低段部11に供給された潤滑油の一部が低段部11の吐出冷媒に混入しているので、その潤滑油を高段部12に供給できる。 On the other hand, since there is no portion where the pressure is lower than the intermediate pressure in the airtight container 10 in the high step portion 11, it is difficult to supply the lubricating oil in the oil sump 17. Therefore, a method of supplying lubricating oil used for lubrication and sealing of the high stage portion 12 by mixing the lubricating oil into the intermediate pressure refrigerant sucked into the high stage suction pipe 23 or the high stage portion 12 can be considered. For that purpose, if the refrigerant discharged from the low stage portion 11 is not discharged into the sealed container 10 and is sucked into the high stage portion 12 via a pipe outside the sealed container 10, the refrigerant is supplied to the low stage portion 11. Since a part of the lubricating oil is mixed in the refrigerant discharged from the low stage portion 11, the lubricating oil can be supplied to the high stage portion 12.

低段部11の吐出冷媒の全量を密閉容器10外部の配管に吐出させてそのまま高段部12に吸引させるようにすると、高段部12からの吐出圧の吐出冷媒ガスは、密閉容器10内に開放されずに直接密閉容器10外部の接続配管A40に吐出されるので、密閉容器10内部で冷媒と油の分離が一度も行われなくなってしまう。よって油溜め17の潤滑油が徐々に密閉容器10外に持ち出され、最終的には油枯渇を招き、潤滑不良による摺動部の異常摩耗や回転軸14のロックが起きる恐れがある。 When the entire amount of refrigerant discharged from the low stage portion 11 is discharged to the piping outside the sealed container 10 and sucked into the high stage section 12 as it is, the discharged refrigerant gas at the discharge pressure from the high stage section 12 Since it is discharged directly to the connecting pipe A40 outside the sealed container 10 without being opened, the refrigerant and oil are never separated inside the sealed container 10. Therefore, the lubricating oil in the oil sump 17 is gradually taken out of the closed container 10 and eventually causes oil exhaustion, which may cause abnormal wear of the sliding portion and locking of the rotary shaft 14 due to poor lubrication.

このような恐れを回避するために、低段部11の吐出冷媒は密閉容器10内にも吐出させる必要があり、低段部11の吐出冷媒は、密閉容器10内に吐出されるものと、密閉容器10の外部に設置されて高段吸入管23に至る中間圧の冷媒が流れる配管に直接吐出されるものとに分流するのである。分流の割合は、高段部12へ供給される潤滑油の量が油枯渇を招かず、かつ高段部12の潤滑やシールを満足できるような適切な量となるように調整される。 In order to avoid such a fear, it is necessary to discharge the refrigerant discharged from the low stage portion 11 also into the sealed container 10, and the refrigerant discharged from the low stage section 11 is discharged into the sealed container 10, This is divided into a pipe that is installed outside the hermetic container 10 and is directly discharged to a pipe through which an intermediate-pressure refrigerant that reaches the high-stage suction pipe 23 flows. The ratio of the diversion is adjusted so that the amount of the lubricating oil supplied to the high step portion 12 does not cause oil exhaustion and is an appropriate amount that can satisfy the lubrication and sealing of the high step portion 12.

上記のように低段部11の吐出冷媒を分流させ、分流後の中間圧の冷媒を高段部12に吸引させるために、圧縮機7の第1中間圧接続管27は、低段部11から直接密閉容器10の外部に吐出される冷媒が通過する第2低段吐出管30に接続される接続口A27aと、密閉容器10内に吐出された冷媒と電動機13を通過後の噴射冷媒が通過する冷媒導出管22に接続される接続口B27bを備える。これらの接続口27a、27bから高段部12の吸入作用により、中間圧の冷媒が第1中間圧接続管27を通り、容積拡大部15と第2中間圧接続管28および高段吸入管23を経て、高段部12に吸引される。 As described above, the first intermediate pressure connection pipe 27 of the compressor 7 is connected to the low-stage portion 11 in order to divert the refrigerant discharged from the low-stage portion 11 and suck the intermediate-pressure refrigerant after the diversion into the high-stage portion 12. The connection port A27a connected to the second low-stage discharge pipe 30 through which the refrigerant discharged directly from the outside of the sealed container 10 passes, the refrigerant discharged into the sealed container 10 and the injected refrigerant after passing through the electric motor 13 A connection port B27b connected to the refrigerant outlet tube 22 passing therethrough is provided. Due to the suction action of the high stage portion 12 from these connection ports 27a, 27b, the intermediate pressure refrigerant passes through the first intermediate pressure connection pipe 27, and the volume expanding portion 15, the second intermediate pressure connection pipe 28, and the high stage suction pipe 23. After that, it is sucked into the high step portion 12.

その際、第2低段吐出管30を通過した冷媒に混入していた潤滑油が高段部12に冷媒といっしょに供給され、摺動部の潤滑や圧縮室のシールを行う。これにより高段部12の摺動特性が向上し、機械損失を低減させ、また圧縮室のシール性向上により、漏れ損失を低減させることができるので、圧縮機効率が上昇する。また第1低段吐出管29を通過した冷媒に混入していた潤滑油は、密閉容器10内で冷媒と分離され油溜め17に戻るので、油溜め17の潤滑油が枯渇することはない。 At that time, the lubricating oil mixed in the refrigerant that has passed through the second low-stage discharge pipe 30 is supplied to the high-stage portion 12 together with the refrigerant to lubricate the sliding portion and seal the compression chamber. As a result, the sliding characteristics of the high step portion 12 are improved, the mechanical loss is reduced, and the leakage loss can be reduced by improving the sealing performance of the compression chamber, so that the compressor efficiency is increased. Further, the lubricating oil mixed in the refrigerant that has passed through the first low-stage discharge pipe 29 is separated from the refrigerant in the sealed container 10 and returns to the oil reservoir 17, so that the lubricating oil in the oil reservoir 17 is not exhausted.

なお図4において図3と同一の符号で示すものは、図3の圧縮機6と同一もしくは同様な部品であり、ここでの説明は省略する。またこの圧縮機7が搭載される冷媒回路装置の実施の形態は、図1に示す冷媒回路装置と同様で、図1において圧縮機1をこの圧縮機7に変更したものであり、ここでの説明は省略する。この圧縮機7においても、噴射管26を通って圧縮機7の密閉容器10内の空間B32に高圧から中間圧に減圧された低温の冷媒が噴射され、電動機13を通過する際にその潜熱により電動機13を冷却し、電動機13の効率を上昇させている。 4 that are the same as those in FIG. 3 are the same or similar parts as the compressor 6 in FIG. 3, and a description thereof is omitted here. The embodiment of the refrigerant circuit device on which the compressor 7 is mounted is similar to the refrigerant circuit device shown in FIG. 1, and the compressor 1 is changed to the compressor 7 in FIG. Description is omitted. Also in the compressor 7, low-temperature refrigerant reduced from high pressure to intermediate pressure is injected through the injection pipe 26 into the space B 32 in the sealed container 10 of the compressor 7, and due to the latent heat when passing through the electric motor 13. The electric motor 13 is cooled, and the efficiency of the electric motor 13 is increased.

そして圧縮機7のように低段部11の吐出冷媒が密閉容器10内に吐出されるものと、密閉容器10の外部に設置された配管に直接吐出されるものとに分流する構造であっても、容積拡大部15を含めた冷媒導出管22から高段部12に至る密閉容器10外部の中間圧の冷媒が流れる配管において、分流後のそれぞれの低段部11からの吐出冷媒と電動機13通過後の噴射冷媒との熱交換を十分に行うことができるので、高段部12に吸引される際には、温度および密度を等しくして1つの冷媒群となり、そのため高段部12に吸引される冷媒の密度は安定し、高段部12から吐出される吐出圧の冷媒の質量流量が安定する。 And the structure is such that the refrigerant discharged from the lower stage portion 11 is discharged into the sealed container 10 as in the compressor 7 and the refrigerant discharged directly into the pipe installed outside the sealed container 10. Also, in the pipe through which the intermediate-pressure refrigerant outside the sealed container 10 from the refrigerant outlet pipe 22 including the volume expansion part 15 to the high stage part 12 flows, the refrigerant discharged from each low stage part 11 and the motor 13 after the diversion. Since heat exchange with the injected refrigerant after passing can be sufficiently performed, when sucked into the high stage portion 12, the temperature and density are equalized to form one refrigerant group. The density of the refrigerant to be discharged is stabilized, and the mass flow rate of the refrigerant having the discharge pressure discharged from the high stage portion 12 is stabilized.

よって冷媒回路装置の運転特性の安定性が高められ、また吐出質量流量の不安定に起因していた圧縮機の振動や騒音の発生を回避することができる。また電動機13を通過してもガス化されずに液である噴射冷媒があった場合にも、容積拡大部15を含めた冷媒導出管22から高段部12に至る密閉容器10外部の中間圧の冷媒が流れる配管において、低段部11の吐出冷媒と熱交換して完全にガス化されるので、高段部12へ液冷媒が吸引されてしまう事態は回避できる。また低段部11からの吐出冷媒を分流したことにより高段部12へ給油でき、高段部12の摺動特性やシール性の向上が図れ、また油溜め17の潤滑油枯渇も回避できる。したがって高効率で信頼性の高い圧縮機7が得られるとともに、この圧縮機7を使用した冷媒回路装置も高効率で信頼性の高いものとなる。 Therefore, the stability of the operating characteristics of the refrigerant circuit device can be improved, and the compressor vibration and noise caused by the unstable discharge mass flow rate can be avoided. Further, even when there is an injection refrigerant that is liquid without being gasified even after passing through the electric motor 13, the intermediate pressure outside the sealed container 10 that extends from the refrigerant outlet pipe 22 including the volume expansion section 15 to the high stage section 12. In the pipe through which the refrigerant flows, the refrigerant is completely gasified by exchanging heat with the refrigerant discharged from the low stage portion 11, so that a situation in which the liquid refrigerant is sucked into the high stage portion 12 can be avoided. Further, by dividing the refrigerant discharged from the low step portion 11, oil can be supplied to the high step portion 12, the sliding characteristics and the sealing performance of the high step portion 12 can be improved, and the lubricating oil depletion of the oil reservoir 17 can be avoided. Therefore, the highly efficient and highly reliable compressor 7 is obtained, and the refrigerant circuit device using the compressor 7 is also highly efficient and highly reliable.

圧縮機7は容積拡大部15を備えていたが、容積拡大部を備えず、図2の圧縮機1が示すように、冷媒導出管22と高段吸入管23を、中間圧接続管を介して、あるいは直接に接続するように構成しても、冷媒導出管22から高段吸入管23に至る密閉容器10外部の中間圧の冷媒が流れる配管において冷媒同士の熱交換が行われるので、同様な効果を奏することができる。 Although the compressor 7 was provided with the volume expanding section 15, it did not include the volume expanding section, and as shown in the compressor 1 of FIG. 2, the refrigerant outlet pipe 22 and the high stage suction pipe 23 were connected via the intermediate pressure connecting pipe. Even if it is configured to be connected directly, heat exchange between the refrigerants is performed in a pipe through which the intermediate-pressure refrigerant outside the sealed container 10 from the refrigerant outlet pipe 22 to the high-stage suction pipe 23 flows. Can produce various effects.

また図4に示す圧縮機7においては第1中間圧接続管27に接続口27a、27bを設け、冷媒導出管22と第2低段吐出管30をそれぞれ第1中間圧接続管27に設けたが、冷媒導出管22に第2低段吐出管30を接続してもよい。冷媒導出管22と第1中間圧接続管27、あるいは図2の形態のような冷媒導出管22と中間圧接続管25とをまとめて冷媒導出管と判断することもできるので、図4の圧縮機7もそのように判断すれば冷媒導出管に第2低段吐出管30が接続していると言えるし、容積拡大部15を備えない形態であれば中間圧接続管25に第2低段吐出管30が接続するものも、冷媒導出管に第2低段吐出管30が接続していると言える。 In the compressor 7 shown in FIG. 4, connection ports 27 a and 27 b are provided in the first intermediate pressure connection pipe 27, and the refrigerant outlet pipe 22 and the second low-stage discharge pipe 30 are provided in the first intermediate pressure connection pipe 27. However, the second low-stage discharge pipe 30 may be connected to the refrigerant outlet pipe 22. Since the refrigerant outlet pipe 22 and the first intermediate pressure connecting pipe 27 or the refrigerant outlet pipe 22 and the intermediate pressure connecting pipe 25 as shown in FIG. 2 can be collectively determined as the refrigerant outlet pipe, the compression shown in FIG. If the machine 7 also makes such a determination, it can be said that the second low-stage discharge pipe 30 is connected to the refrigerant outlet pipe, and if the volume expansion portion 15 is not provided, the second low-stage is connected to the intermediate pressure connection pipe 25. It can be said that the one connected to the discharge pipe 30 is connected to the second low-stage discharge pipe 30 to the refrigerant outlet pipe.

さらに第1中間圧接続管27から高段吸入管23まで含めて、あるいは容積拡大部15を備えない図2の形態では中間圧接続管25と高段吸入管23を含めて高段吸入管と判断する場合もあり、この場合は第1中間圧接続管27あるいは中間圧接続管25に第2低段吐出管30が接続される場合は、第2低段吐出管30は高段吸入管23の冷媒導出管22に近接した箇所に接続されると言える。第2低段吐出管30から吐出された冷媒は、冷媒導出管22から導出される噴射冷媒および第1低段吐出管から吐出された冷媒と十分な熱交換が必要であるから、高段部12から離れて冷媒導出管22の空間A31への開口部にできる限り近い位置で噴射冷媒および第1低段吐出管から吐出された冷媒と合流するのがよい。 Further, including the first intermediate pressure connection pipe 27 to the high stage suction pipe 23, or in the form of FIG. 2 that does not include the volume expanding section 15, the intermediate pressure connection pipe 25 and the high stage suction pipe 23 are included in the high stage suction pipe. In this case, when the second low stage discharge pipe 30 is connected to the first intermediate pressure connection pipe 27 or the intermediate pressure connection pipe 25, the second low stage discharge pipe 30 is connected to the high stage suction pipe 23. It can be said that it is connected to a location close to the refrigerant outlet tube 22. The refrigerant discharged from the second low-stage discharge pipe 30 needs to sufficiently exchange heat with the refrigerant discharged from the refrigerant outlet pipe 22 and the refrigerant discharged from the first low-stage discharge pipe. It is preferable to join the injected refrigerant and the refrigerant discharged from the first low-stage discharge pipe at a position away from 12 and as close as possible to the opening to the space A31 of the refrigerant outlet pipe 22.

なお上記した圧縮機1、6、7では、低段吐出管21または第1低段吐出管29と冷媒導出管22とが、回転軸14の軸心を中心として、略180°の位相差を有して設置されているが、電動機13下部の空間においても低段部11の吐出冷媒と電動機13を通過した噴射冷媒との熱交換を行わせるように、低段吐出管21、29と冷媒導出管22の距離を長くするためにそのように設置したものである。中間圧接続管25、27あるいは容積拡大部15を加えて、密閉容器10の外部のみで両冷媒群の熱交換が十分に行えるようであれば、低段吐出管21または第1低段吐出管29と冷媒導出管22との位置関係は上記の関係に拘るものではない。また噴射管26についても同様に冷媒導出管22との位置関係は、回転軸14の軸心を中心として、略180°の位相差を有する関係に拘るものではない。 In the above-described compressors 1, 6, and 7, the low-stage discharge pipe 21 or the first low-stage discharge pipe 29 and the refrigerant outlet pipe 22 have a phase difference of about 180 ° around the axis of the rotating shaft 14. The low-stage discharge pipes 21 and 29 and the refrigerant are arranged so as to cause heat exchange between the refrigerant discharged from the low-stage portion 11 and the injected refrigerant that has passed through the electric motor 13 in the space below the motor 13. In order to increase the distance of the outlet tube 22, it is installed in such a manner. If the intermediate pressure connecting pipes 25 and 27 or the volume expanding section 15 are added so that heat exchange between the two refrigerant groups can be sufficiently performed only outside the sealed container 10, the low-stage discharge pipe 21 or the first low-stage discharge pipe is used. The positional relationship between 29 and the refrigerant outlet tube 22 is not related to the above relationship. Similarly, the positional relationship between the ejection pipe 26 and the refrigerant outlet pipe 22 is not limited to a relation having a phase difference of about 180 ° with the axis of the rotating shaft 14 as the center.

また図1に示す冷媒回路装置において、いずれの圧縮機1、6、7を使用する場合でも同様であるが、噴射管26から圧縮機1、6、7の密閉容器10内に噴射する冷媒は装置の稼動時、常時噴射される必要はなく、噴射が必要と判断された時にのみ、例えば電動機13の温度や高段吐出管24から吐出される冷媒の温度(または高段吐出管24の表面温度)をセンサ等で監視し、その温度がしきい値を超えた場合等に噴射するようにしてもよい。噴射が不要な時は減圧装置5に膨張弁等の弁機構を用いた場合では弁を閉じればよい。また減圧装置5にキャピラリーチューブを用いる場合では、キャピラリーチューブの上流側(分岐管A50の範囲)に切替え弁を設置しておき、噴射が必要な時は切替え弁を開き、不要な時は閉じるようにすればよい。 In the refrigerant circuit device shown in FIG. 1, the same applies when any of the compressors 1, 6, 7 is used, but the refrigerant injected from the injection pipe 26 into the sealed container 10 of the compressor 1, 6, 7 is During operation of the apparatus, it is not necessary to always inject, and only when it is determined that injection is necessary, for example, the temperature of the electric motor 13 and the temperature of the refrigerant discharged from the high stage discharge pipe 24 (or the surface of the high stage discharge pipe 24) The temperature may be monitored by a sensor or the like, and injection may be performed when the temperature exceeds a threshold value. When injection is unnecessary, the valve may be closed when a valve mechanism such as an expansion valve is used for the pressure reducing device 5. When a capillary tube is used for the decompression device 5, a switching valve is installed upstream of the capillary tube (in the range of the branch pipe A50), and the switching valve is opened when injection is necessary and closed when unnecessary. You can do it.

実施の形態4.
図5は、この発明を実施するための実施の形態4における2段圧縮式の冷媒回路装置の構成図であり、ヒートポンプ式の冷凍空調装置である。図5において図1と同一の符号で示すものは、図1の冷媒回路装置と同一もしくは相当な部品であり、ここでの説明は省略する。図5の冷媒回路装置においては、高圧側熱交換器2を通過し、その際に大気と熱交換した高圧で低温の冷媒は、減圧装置5にて中間圧まで減圧され、一端を気液分離器8の上部に開口し、他端を減圧装置5に接続する接続配管E44を経て気液分離器8に流入する。気液分離器8に流入した冷媒の一部はそこで蒸発し、気液分離器8の内部には、上部側にその蒸発した冷媒のガス冷媒層8aが、また気液分離器8内の底部側には液冷媒が貯留される液冷媒層8bが分かれて形成される。そして液層8bの液冷媒のみが、一端が気液分離器8の底部に開口し、他端が絞り装置3に接続する接続配管F45を通って絞り装置3に流出する。
Embodiment 4 FIG.
FIG. 5 is a configuration diagram of a two-stage compression refrigerant circuit device according to a fourth embodiment for carrying out the present invention, and is a heat pump type refrigeration air conditioner. 5 that are the same as those in FIG. 1 are the same as or equivalent to those in the refrigerant circuit device of FIG. 1, and a description thereof is omitted here. In the refrigerant circuit device of FIG. 5, the high-pressure and low-temperature refrigerant that has passed through the high-pressure side heat exchanger 2 and exchanged heat with the atmosphere at that time is decompressed to an intermediate pressure by the decompression device 5, and one end is gas-liquid separated. It flows into the gas-liquid separator 8 through the connection pipe E44 that opens to the upper part of the vessel 8 and connects the other end to the decompression device 5. A part of the refrigerant flowing into the gas-liquid separator 8 evaporates there, and inside the gas-liquid separator 8 there is a gas refrigerant layer 8a of the evaporated refrigerant on the upper side, and the bottom part in the gas-liquid separator 8 A liquid refrigerant layer 8b in which liquid refrigerant is stored is divided and formed on the side. Then, only the liquid refrigerant in the liquid layer 8 b flows out to the expansion device 3 through the connection pipe F <b> 45 having one end opened at the bottom of the gas-liquid separator 8 and the other end connected to the expansion device 3.

一方ガス冷媒層8aのガス冷媒は、一端をガス冷媒層8aに開口し、他端を噴射管26に接続する分岐管52を通って圧縮機1の密閉容器10内の空間B32に噴射され、電動機13を冷却する。以降の冷媒の流れは図1の冷媒回路装置と同じであるのでここでの説明は省略する。ガス化された冷媒を密閉容器10内の空間B32に噴射するので、液冷媒が高段部12に吸引されるのを回避できるとともに、気液分離器8内の液冷媒を絞り装置3を通して蒸発器である低圧側熱交換器4にて蒸発させるので、絞り装置3に流入する液冷媒は飽和液冷媒となって、気液分離器8に流入する前の冷媒よりエンタルピーが下がり、蒸発工程での冷凍能力を増加できる効果がある。 On the other hand, the gas refrigerant in the gas refrigerant layer 8a is injected into the space B32 in the sealed container 10 of the compressor 1 through the branch pipe 52 having one end opened to the gas refrigerant layer 8a and the other end connected to the injection pipe 26, The electric motor 13 is cooled. Since the subsequent refrigerant flow is the same as that of the refrigerant circuit device of FIG. 1, the description thereof is omitted here. Since the gasified refrigerant is injected into the space B32 in the sealed container 10, the liquid refrigerant can be prevented from being sucked into the high stage 12, and the liquid refrigerant in the gas-liquid separator 8 is evaporated through the expansion device 3. Is evaporated in the low-pressure side heat exchanger 4 that is a condenser, the liquid refrigerant flowing into the expansion device 3 becomes a saturated liquid refrigerant, and has a lower enthalpy than the refrigerant before flowing into the gas-liquid separator 8. There is an effect that can increase the refrigerating capacity.

図5の冷媒回路装置の形態においては、ガス冷媒を圧縮機1の空間B32に噴射するので、電動機13の冷却に冷媒の潜熱を利用できなくなり、電動機13に対する冷却効果は、図1の冷媒回路装置に示したような高圧側熱交換器2出口と絞り装置3の間の冷媒を分岐させ減圧した液冷媒あるいは気液二相状態の冷媒を密閉容器1内の空間B32に噴射するものに比べて小さいが、絞り装置3に流入する液冷媒は飽和液冷媒となって、気液分離器8に流入する前の冷媒よりエンタルピーが下がり、蒸発工程での冷凍能力を増加できる効果がある。 In the form of the refrigerant circuit device of FIG. 5, since the gas refrigerant is injected into the space B32 of the compressor 1, the latent heat of the refrigerant cannot be used for cooling the motor 13, and the cooling effect on the motor 13 is the same as that of FIG. Compared to the one in which the refrigerant between the outlet of the high-pressure side heat exchanger 2 and the expansion device 3 as shown in the apparatus is branched and the decompressed liquid refrigerant or the gas-liquid two-phase refrigerant is injected into the space B32 in the sealed container 1 However, the liquid refrigerant flowing into the expansion device 3 becomes a saturated liquid refrigerant, and has an effect that the enthalpy is lower than that of the refrigerant before flowing into the gas-liquid separator 8 and the refrigeration capacity in the evaporation step can be increased.

実施の形態5.
図6は、この発明を実施するための実施の形態5における2段圧縮式の冷媒回路装置の構成図であり、ヒートポンプ式の冷凍空調装置である。図6において図1または図5と同一の符号で示すものは、図1または図5の冷媒回路装置と同一もしくは同様な部品であり、ここでの説明は省略する。図6の冷媒回路装置において、高圧側熱交換器2と絞り装置3の間に一端を接続し、他端を圧縮機1の噴射管26に接続する分岐管50、53の途中に減圧装置5を設け、高圧側熱交換器2出口と絞り装置3をつなぐ接続配管B41を流れる高圧側熱交換器2を通過した後の冷媒の一部を分岐管A50に分岐させて、減圧装置5により中間圧まで減圧させ、分岐管C53および噴射管26を通して圧縮機1の空間B32にその冷媒を噴射させる点では図1に示す実施の形態1と同様であるが、図6に示す冷媒回路装置は、熱交換部54を備えており、分岐管C53および接続配管B41がそれぞれこの熱交換部54を通過するよう構成している。そして接続配管B41を流れる高圧の冷媒と、減圧装置5を通過した後で分岐管C53を流れる冷媒を互いに熱交換させ、分岐した冷媒をガス化あるいは気液二相状態として、圧縮機1の空間B32に噴射するものである。すなわち熱交換部54は、分岐して減圧装置5で中間圧まで減圧させた一部の冷媒を、圧縮機1の空間B32に噴射する以前に、高圧側熱交換器2と絞り装置3の間を流れる高圧の冷媒と熱交換させるものである。
Embodiment 5 FIG.
FIG. 6 is a configuration diagram of a two-stage compression refrigerant circuit device according to Embodiment 5 for carrying out the present invention, and is a heat pump type refrigeration air conditioner. 6 that are the same as those in FIG. 1 or FIG. 5 are the same or similar parts as the refrigerant circuit device of FIG. 1 or FIG. 5, and a description thereof is omitted here. In the refrigerant circuit device of FIG. 6, the decompression device 5 is connected in the middle of the branch pipes 50, 53 with one end connected between the high-pressure side heat exchanger 2 and the expansion device 3 and the other end connected to the injection pipe 26 of the compressor 1. A part of the refrigerant after passing through the high-pressure side heat exchanger 2 flowing through the connecting pipe B41 connecting the outlet of the high-pressure side heat exchanger 2 and the expansion device 3 is branched to the branch pipe A50, The refrigerant circuit device shown in FIG. 6 is the same as the first embodiment shown in FIG. 1 in that the pressure is reduced to the pressure and the refrigerant is injected into the space B32 of the compressor 1 through the branch pipe C53 and the injection pipe 26. A heat exchange part 54 is provided, and the branch pipe C53 and the connection pipe B41 are configured to pass through the heat exchange part 54, respectively. Then, the high-pressure refrigerant flowing through the connecting pipe B41 and the refrigerant flowing through the branch pipe C53 after passing through the decompression device 5 are mutually heat-exchanged, and the branched refrigerant is converted into a gasified or gas-liquid two-phase state. It injects to B32. That is, the heat exchanging section 54 is branched between the high pressure side heat exchanger 2 and the expansion device 3 before injecting a part of the refrigerant branched and decompressed to the intermediate pressure by the decompression device 5 into the space B32 of the compressor 1. Heat exchange with the high-pressure refrigerant flowing through

図6の冷媒回路装置の形態においては、熱交換部54にて熱交換後のガス冷媒または気液二相状態の冷媒を圧縮機1の空間B32に噴射するので、電動機13の冷却に冷媒の潜熱を十分に利用できなくなり、電動機13に対する冷却効果は、図1の冷媒回路装置に示したような高圧側熱交換器2出口と絞り装置3の間の冷媒を分岐させ減圧した液冷媒あるいは気液二相状態の冷媒を密閉容器1内の空間B32に噴射するものに比べると小さくなるが、高圧側熱交換器2と絞り装置3の間を流れる高圧の冷媒が熱交換部60にて分岐管C53を流れる冷媒に熱を奪われることで、絞り装置3に流入する冷媒のエンタルピーが下がり、蒸発工程での冷凍能力を増加できる効果がある。 In the form of the refrigerant circuit device of FIG. 6, since the gas refrigerant or the gas-liquid two-phase refrigerant after heat exchange is injected into the space B <b> 32 of the compressor 1 by the heat exchange unit 54, The latent heat cannot be sufficiently used, and the cooling effect on the electric motor 13 is such that the refrigerant between the outlet of the high-pressure side heat exchanger 2 and the expansion device 3 as shown in the refrigerant circuit device of FIG. Although it is smaller than that in which the liquid two-phase refrigerant is injected into the space B <b> 32 in the sealed container 1, the high-pressure refrigerant flowing between the high-pressure side heat exchanger 2 and the expansion device 3 branches at the heat exchange unit 60. Since the refrigerant flowing through the pipe C53 is deprived of heat, the enthalpy of the refrigerant flowing into the expansion device 3 is lowered, and the refrigeration capacity in the evaporation step can be increased.

図6においては、熱交換部54は分岐管A50が接続配管B41から分岐する点より上流側、すなわち高圧側熱交換器2側に設け、分岐管A50が分岐する点より上流側で接続配管B41を流れる冷媒、すなわち分岐される前に接続配管B41を流れる冷媒と分岐管C53を流れる冷媒を熱交換させているが、熱交換部54を分岐管A50が接続配管B41から分岐する点より下流側、すなわち絞り装置3側に設け、分岐管A50が分岐する点より下流側で接続配管B41を流れる冷媒、すなわち分岐された後で接続配管B41を流れる冷媒と分岐管C53を流れる冷媒を熱交換させても同様な効果が得られる。 In FIG. 6, the heat exchanging section 54 is provided on the upstream side from the point where the branch pipe A50 branches from the connection pipe B41, that is, on the high-pressure side heat exchanger 2 side, and on the upstream side from the point where the branch pipe A50 branches. The refrigerant flowing in the pipe, that is, the refrigerant flowing in the connection pipe B41 and the refrigerant flowing in the branch pipe C53 are exchanged in heat before branching, but the heat exchange part 54 is located downstream from the point where the branch pipe A50 branches from the connection pipe B41. That is, heat is exchanged between the refrigerant that flows through the connecting pipe B41 downstream from the point where the branch pipe A50 branches, that is, the refrigerant that flows through the connecting pipe B41 after branching and the refrigerant that flows through the branch pipe C53. However, the same effect can be obtained.

図5および図6に示す冷凍回路装置では、圧縮機として、実施の形態1に示す圧縮機1を用いたが、他の実施の形態で示したような圧縮機6、7であってもよい。また図1または図5または図6の冷媒回路装置に使用される圧縮機1、6、7においてはいずれも、低段部11の行程容積と高段部12の行程容積の比は、高段部12に低段部11から吐出される冷媒に加えて噴射管26から密閉容器10内に噴射される冷媒も吸引されることから、噴射管を設けない一般的な2段圧縮機に比べて高段部12の行程容積を少し大きく設定しており、低段部11の行程容積を1とすると、高段部12の行程容積は0.6〜0.85としている。 In the refrigeration circuit device shown in FIGS. 5 and 6, the compressor 1 shown in the first embodiment is used as the compressor, but the compressors 6 and 7 shown in the other embodiments may be used. . In each of the compressors 1, 6, and 7 used in the refrigerant circuit device of FIG. 1, FIG. 5, or FIG. 6, the ratio of the stroke volume of the low stage portion 11 to the stroke volume of the high stage portion 12 is high. In addition to the refrigerant discharged from the low-stage part 11 in the part 12, the refrigerant injected into the sealed container 10 from the injection pipe 26 is also sucked, so that compared to a general two-stage compressor not provided with an injection pipe If the stroke volume of the high step portion 12 is set slightly larger and the stroke volume of the low step portion 11 is 1, the stroke volume of the high step portion 12 is set to 0.6 to 0.85.

また図6に示す冷媒回路装置において、いずれの圧縮機1、6、7を使用する場合でも同様であるが、噴射管26から圧縮機1、6、7の密閉容器10内に噴射する冷媒は装置の稼動時、常時噴射される必要はなく、噴射が必要と判断された時にのみ、例えば電動機13の温度や高段吐出管24から吐出される冷媒の温度(または高段吐出管24の表面温度)をセンサ等で監視し、その温度がしきい値を超えた場合等に噴射するようにしてもよい。噴射が不要な時は減圧装置5に膨張弁等の弁機構を用いた場合では弁を閉じればよい。また減圧装置5にキャピラリーチューブを用いる場合では、キャピラリーチューブの上流側(分岐管A50の範囲)に切替え弁を設置しておき、噴射が必要な時は切替え弁を開き、不要な時は閉じるようにすればよい。 In the refrigerant circuit device shown in FIG. 6, the same applies when any of the compressors 1, 6, and 7 is used, but the refrigerant that is injected from the injection pipe 26 into the sealed container 10 of the compressors 1, 6, and 7 is During operation of the apparatus, it is not necessary to always inject, and only when it is determined that injection is necessary, for example, the temperature of the electric motor 13 and the temperature of the refrigerant discharged from the high stage discharge pipe 24 (or the surface of the high stage discharge pipe 24) The temperature may be monitored by a sensor or the like, and injection may be performed when the temperature exceeds a threshold value. When injection is unnecessary, the valve may be closed when a valve mechanism such as an expansion valve is used for the pressure reducing device 5. When a capillary tube is used for the decompression device 5, a switching valve is installed upstream of the capillary tube (in the range of the branch pipe A50), and the switching valve is opened when injection is necessary and closed when unnecessary. You can do it.

また図1に示した冷媒回路装置は、二酸化炭素を冷媒として使用したヒートポンプ式の給湯装置であったが、給湯装置以外でも図5あるいは図6に示したような冷凍空調装置に適用してもよく、給湯用としては二酸化炭素が冷媒として適していると言えるが、これに拘るものではなく、特に冷凍空調用であれば二酸化炭素以外でもHFC冷媒やHC冷媒が適用でき、同様な効果を奏することができる。また図5および図6に示す冷媒回路装置を給湯用途に適用させてもよく、また使用する冷媒も給湯用であれば二酸化炭素が適当であるが、冷凍空調用途であれば、二酸化炭素以外でもHFC冷媒やHC冷媒が適用でき、同様な効果を奏することができる。 The refrigerant circuit device shown in FIG. 1 is a heat pump type hot water supply device using carbon dioxide as a refrigerant. However, the refrigerant circuit device may be applied to a refrigeration air conditioner as shown in FIG. 5 or FIG. Well, it can be said that carbon dioxide is suitable as a refrigerant for hot water supply, but it is not limited to this, and in particular for refrigeration and air conditioning, HFC refrigerant and HC refrigerant can be applied other than carbon dioxide, and the same effect is exhibited. be able to. Also, the refrigerant circuit device shown in FIGS. 5 and 6 may be applied to a hot water supply application, and carbon dioxide is appropriate if the refrigerant to be used is also for hot water supply. HFC refrigerant and HC refrigerant can be applied, and similar effects can be achieved.

この発明の実施の形態1を示す冷媒回路装置の構成図である。It is a block diagram of the refrigerant circuit apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す圧縮機周りを示す説明図である。It is explanatory drawing which shows the compressor periphery which shows Embodiment 1 of this invention. この発明の実施の形態2を示す圧縮機周りを示す説明図である。It is explanatory drawing which shows the compressor periphery which shows Embodiment 2 of this invention. この発明の実施の形態3を示す圧縮機周りを示す説明図である。It is explanatory drawing which shows the compressor periphery which shows Embodiment 3 of this invention. この発明の実施の形態4を示す冷媒回路装置の構成図である。It is a block diagram of the refrigerant circuit apparatus which shows Embodiment 4 of this invention. この発明の実施の形態5を示す冷媒回路装置の構成図である。It is a block diagram of the refrigerant circuit apparatus which shows Embodiment 5 of this invention.

符号の説明Explanation of symbols

1、6、7 圧縮機、2 高圧側熱交換器、3 絞り装置、4 低圧側熱交換器、5 減圧装置、8 気液分離器、8a ガス冷媒層、8b 液冷媒層、10 密閉容器、10a 円筒容器、10b 上蓋、10c 底蓋、11 低段側圧縮機構部(低段部)、12 高段側圧縮機構部(高段部)、13 電動機、13a 固定子、13b 回転子、14 回転軸、15 容積拡大部、16 受け具、17 油溜め、20 低段吸入管、21 低段吐出管、22 冷媒導出管、23 高段吸入管、24 高段吐出管、25 中間圧接続管、26 噴射管、27 第1中間圧接続管、28 第2中間圧接続管、29 第1低段吐出管、30 第2低段吐出管、31 空間A、32 空間B、40 接続配管A、41 接続配管B、42 接続配管C、43 接続配管D、44 接続配管E、45 接続配管F、50 分岐管A、51 分岐管B、52 分岐管、53 分岐管C、54 熱交換部、60 貯湯タンク、61 ポンプ、62 水配管。   1, 6, 7 compressor, 2 high pressure side heat exchanger, 3 expansion device, 4 low pressure side heat exchanger, 5 decompression device, 8 gas-liquid separator, 8a gas refrigerant layer, 8b liquid refrigerant layer, 10 sealed container, 10a Cylindrical container, 10b Upper lid, 10c Bottom lid, 11 Low stage compression mechanism (low stage), 12 High stage compression mechanism (high stage), 13 Electric motor, 13a Stator, 13b Rotor, 14 rotations Shaft, 15 volume expansion section, 16 receptacle, 17 oil sump, 20 low stage suction pipe, 21 low stage discharge pipe, 22 refrigerant outlet pipe, 23 high stage suction pipe, 24 high stage discharge pipe, 25 intermediate pressure connection pipe, 26 injection pipe, 27 first intermediate pressure connection pipe, 28 second intermediate pressure connection pipe, 29 first low stage discharge pipe, 30 second low stage discharge pipe, 31 space A, 32 space B, 40 connection pipe A, 41 Connection piping B, 42 Connection piping C, 43 Connection piping D, 4 4 connection pipe E, 45 connection pipe F, 50 branch pipe A, 51 branch pipe B, 52 branch pipe, 53 branch pipe C, 54 heat exchanger, 60 hot water storage tank, 61 pump, 62 water pipe.

Claims (7)

電動機とこの電動機に連結された回転軸にて駆動される低段側圧縮機構部と高段側圧縮機構部からなる圧縮機構部とを内部に収納する密閉容器と、
前記電動機の反圧縮機構部側の前記電動機と前記密閉容器の間の空間に一端を開口し、前記密閉容器外から前記密閉容器内に冷媒を噴射する噴射管と、
前記低段側圧縮機構部で圧縮された冷媒を前記密閉容器内に吐出する低段吐出管と、
前記電動機と前記圧縮機構部の間の空間に一端を開口し、前記噴射管より噴射された冷媒と前記低段吐出管から吐出された冷媒とを前記密閉容器の外部に導出する冷媒導出管と、
この冷媒導出管の他端と接続し、前記冷媒導出管より導出された冷媒を前記高段圧縮機構部に吸引する高段吸入管と、
を備えたことを特徴とする圧縮機。
A hermetically sealed container that houses therein an electric motor and a compression mechanism unit composed of a low-stage compression mechanism unit and a high-stage compression mechanism unit driven by a rotating shaft coupled to the electric motor;
One end of the motor on the anti-compression mechanism part side of the electric motor and the sealed container is opened at one end, and an injection pipe for injecting refrigerant into the sealed container from the outside of the sealed container;
A low-stage discharge pipe for discharging the refrigerant compressed by the low-stage compression mechanism into the sealed container;
A refrigerant outlet pipe that opens at one end to a space between the electric motor and the compression mechanism, and leads the refrigerant injected from the injection pipe and the refrigerant discharged from the low-stage discharge pipe to the outside of the sealed container; ,
A high-stage suction pipe connected to the other end of the refrigerant lead-out pipe and sucking the refrigerant led out from the refrigerant lead-out pipe into the high-stage compression mechanism;
The compressor characterized by having.
前記冷媒導出管と前記高段吸入管の間に、前記冷媒導出管および前記高段吸入管の内径より大きい内径を有した容積拡大部を備えたことを特徴とする請求項1記載の圧縮機。 2. The compressor according to claim 1, further comprising a volume expansion portion having an inner diameter larger than an inner diameter of the refrigerant outlet pipe and the higher stage suction pipe between the refrigerant outlet pipe and the higher stage suction pipe. . 前記冷媒導出管または前記高段吸入管の前記冷媒導出管に近接した箇所と前記密閉容器の外部で接続し、前記低段吐出管から前記密閉容器内に吐出される冷媒と分流して前記低段側圧縮機構部で圧縮された冷媒を前記低段圧縮機構部から前記高段圧縮機構部に導く第2低段吐出管を備えたことを特徴とする請求項1または請求項2に記載の圧縮機。 A portion of the refrigerant outlet pipe or the high stage suction pipe adjacent to the refrigerant outlet pipe is connected to the outside of the airtight container, and the refrigerant is discharged from the low stage discharge pipe into the airtight container to be diverted to the low airflow. The second low-stage discharge pipe that guides the refrigerant compressed by the stage-side compression mechanism section from the low-stage compression mechanism section to the high-stage compression mechanism section. Compressor. 前記冷媒導出管は、前記回転軸の軸心を中心として前記低段吐出管の位置する方向と略180°対称の方向に設けられることを特徴とする請求項1から請求項3のいずれかに記載の圧縮機。 The said refrigerant | coolant derivation | leading-out pipe | tube is provided in the direction substantially 180 degrees symmetrical with the direction where the said low stage discharge pipe | tube is located centering | focusing on the axial center of the said rotating shaft. The compressor described. 密閉容器内に、電動機とこの電動機に連結された回転軸にて駆動される低段側圧縮機構部と高段側圧縮機構部からなる圧縮機構部とを収納し、前記低段側圧縮機構部に低圧の冷媒を吸入し、前記低段側圧縮機構部と前記高段側圧縮機構部で順次圧縮した高圧の冷媒を吐出する圧縮機と前記圧縮機より吐出された高圧の冷媒が熱交換を行う高圧側熱交換器と前記高圧側熱交換器を通過後の冷媒を低圧まで減圧する絞り装置と前記絞り装置を通過後の低圧の冷媒が熱交換を行う低圧側熱交換器とを順次接続し冷媒を循環させる冷媒回路と、
前記高圧側熱交換器と前記絞り装置の間に一端を接続し、途中に減圧装置を設けた分岐管と、
前記電動機の反圧縮機構部側の前記電動機と前記密閉容器の間の空間に一端を開口し、他端を前記分岐管の他端と接続し、前記高圧側熱交換器を通過した後の冷媒の一部で前記分岐管を通過するとともに前記減圧装置にて減圧された冷媒を前記密閉容器内に噴射する前記圧縮機の噴射管と、
前記低段側圧縮機構部で圧縮された冷媒を前記密閉容器内に吐出する前記圧縮機の低段吐出管と、
前記電動機と前記圧縮機構部の間の空間に一端を開口し、前記噴射管より噴射された冷媒と前記低段吐出管から吐出された冷媒とを前記密閉容器の外部に導出する前記圧縮機の冷媒導出管と、
この冷媒導出管の他端と接続し、前記冷媒導出管より導出された冷媒を前記高段圧縮機構部に吸引する前記圧縮機の高段吸入管と、
を備えたことを特徴とする冷媒回路装置。
In the sealed container, an electric motor and a compression mechanism unit composed of a low-stage compression mechanism unit and a high-stage compression mechanism unit driven by a rotating shaft connected to the electric motor are housed, and the low-stage compression mechanism unit A low-pressure refrigerant is sucked into the compressor and a high-pressure refrigerant discharged from the compressor exchanges heat with a compressor that discharges a high-pressure refrigerant that is sequentially compressed by the low-stage compression mechanism and the high-stage compression mechanism. Sequentially connecting a high-pressure side heat exchanger to be performed, a throttle device that depressurizes the refrigerant after passing through the high-pressure side heat exchanger to a low pressure, and a low-pressure side heat exchanger that performs heat exchange with the low-pressure refrigerant after passing through the throttle device A refrigerant circuit for circulating the refrigerant,
One end connected between the high-pressure side heat exchanger and the expansion device, a branch pipe provided with a decompression device in the middle,
Refrigerant after one end is opened in the space between the electric motor and the sealed container on the side of the anti-compression mechanism of the electric motor, the other end is connected to the other end of the branch pipe, and passes through the high-pressure side heat exchanger An injection pipe of the compressor that injects the refrigerant that has passed through the branch pipe at a part thereof and has been decompressed by the decompression device into the sealed container;
A low-stage discharge pipe of the compressor that discharges the refrigerant compressed by the low-stage compression mechanism into the sealed container;
One end of the compressor is opened to a space between the electric motor and the compression mechanism, and the refrigerant injected from the injection pipe and the refrigerant discharged from the low-stage discharge pipe are led out of the sealed container. A refrigerant outlet tube;
A high-stage suction pipe of the compressor that is connected to the other end of the refrigerant lead-out pipe and sucks the refrigerant led out from the refrigerant lead-out pipe into the high-stage compression mechanism;
A refrigerant circuit device comprising:
密閉容器内に、電動機とこの電動機に連結された回転軸にて駆動される低段側圧縮機構部と高段側圧縮機構部からなる圧縮機構部とを収納し、前記低段側圧縮機構部に低圧の冷媒を吸入し、前記低段側圧縮機構部と前記高段側圧縮機構部で順次圧縮した高圧の冷媒を吐出する圧縮機と前記圧縮機より吐出された高圧の冷媒が熱交換を行う高圧側熱交換器と前記高圧側熱交換器を通過後の冷媒を低圧まで減圧する絞り装置と前記絞り装置を通過後の低圧の冷媒が熱交換を行う低圧側熱交換器とを順次接続し冷媒を循環させる冷媒回路と、
前記高圧側熱交換器と前記絞り装置の間にあって前記高圧側熱交換器を通過した後の冷媒を減圧する減圧装置と、
前記高圧側熱交換器と前記絞り装置の間にあって前記減圧装置で減圧された冷媒が流入し、内部に液冷媒層とガス冷媒層が分かれて形成される気液分離器と、
前記気液分離器のガス冷媒層に一端を開口した分岐管と、
前記電動機の反圧縮機構部側の前記電動機と前記密閉容器の間の空間に一端を開口し、他端を前記分岐管の他端と接続し、前記分岐管を通過した前記気液分離器のガス冷媒層の冷媒を前記密閉容器内に噴射する前記圧縮機の噴射管と、
前記低段側圧縮機構部で圧縮された冷媒を前記密閉容器内に吐出する前記圧縮機の低段吐出管と、
前記電動機と前記圧縮機構部の間の空間に一端を開口し、前記噴射管より噴射された冷媒と前記低段吐出管から吐出された冷媒とを前記密閉容器の外部に導出する前記圧縮機の冷媒導出管と、
この冷媒導出管の他端と接続し、前記冷媒導出管より導出された冷媒を前記高段圧縮機構部に吸引する前記圧縮機の高段吸入管と、
を備えたことを特徴とする冷媒回路装置。
In the sealed container, an electric motor and a compression mechanism unit composed of a low-stage compression mechanism unit and a high-stage compression mechanism unit driven by a rotating shaft connected to the electric motor are housed, and the low-stage compression mechanism unit A low-pressure refrigerant is sucked into the compressor and a high-pressure refrigerant discharged from the compressor exchanges heat with a compressor that discharges a high-pressure refrigerant that is sequentially compressed by the low-stage compression mechanism and the high-stage compression mechanism. Sequentially connecting a high-pressure side heat exchanger to be performed, a throttle device that depressurizes the refrigerant after passing through the high-pressure side heat exchanger to a low pressure, and a low-pressure side heat exchanger that performs heat exchange with the low-pressure refrigerant after passing through the throttle device A refrigerant circuit for circulating the refrigerant,
A decompression device for decompressing the refrigerant after passing through the high pressure side heat exchanger between the high pressure side heat exchanger and the expansion device;
A gas-liquid separator formed between the high-pressure side heat exchanger and the expansion device, the refrigerant decompressed by the decompression device flows therein, and a liquid refrigerant layer and a gas refrigerant layer are formed inside;
A branch pipe having one end opened in the gas refrigerant layer of the gas-liquid separator;
One end is opened in the space between the motor on the anti-compression mechanism part side of the motor and the sealed container, the other end is connected to the other end of the branch pipe, and the gas-liquid separator that has passed through the branch pipe An injection pipe of the compressor for injecting a refrigerant of a gas refrigerant layer into the sealed container;
A low-stage discharge pipe of the compressor that discharges the refrigerant compressed by the low-stage compression mechanism into the sealed container;
One end of the compressor is opened to a space between the electric motor and the compression mechanism, and the refrigerant injected from the injection pipe and the refrigerant discharged from the low-stage discharge pipe are led out of the sealed container. A refrigerant outlet tube;
A high-stage suction pipe of the compressor that is connected to the other end of the refrigerant lead-out pipe and sucks the refrigerant led out from the refrigerant lead-out pipe into the high-stage compression mechanism;
A refrigerant circuit device comprising:
密閉容器内に、電動機とこの電動機に連結された回転軸にて駆動される低段側圧縮機構部と高段側圧縮機構部からなる圧縮機構部とを収納し、前記低段側圧縮機構部に低圧の冷媒を吸入し、前記低段側圧縮機構部と前記高段側圧縮機構部で順次圧縮した高圧の冷媒を吐出する圧縮機と前記圧縮機より吐出された高圧の冷媒が熱交換を行う高圧側熱交換器と前記高圧側熱交換器を通過後の冷媒を低圧まで減圧する絞り装置と前記絞り装置を通過後の低圧の冷媒が熱交換を行う低圧側熱交換器とを順次接続し冷媒を循環させる冷媒回路と、
前記高圧側熱交換器と前記絞り装置の間に一端を接続し、途中に減圧装置を設けた分岐管と、
前記減圧装置を通過後に分岐管を流れる冷媒と前記高圧側熱交換器と前記絞り装置の間を流れる冷媒とを熱交換させる熱交換部と、
前記電動機の反圧縮機構部側の前記電動機と前記密閉容器の間の空間に一端を開口し、他端を前記分岐管の他端と接続し、前記高圧側熱交換器を通過した後の冷媒の一部で前記分岐管を通過するとともに前記減圧装置にて減圧し、前記熱交換部で熱交換された冷媒を前記密閉容器内に噴射する前記圧縮機の噴射管と、
前記低段側圧縮機構部で圧縮された冷媒を前記密閉容器内に吐出する前記圧縮機の低段吐出管と、
前記電動機と前記圧縮機構部の間の空間に一端を開口し、前記噴射管より噴射された冷媒と前記低段吐出管から吐出された冷媒とを前記密閉容器の外部に導出する前記圧縮機の冷媒導出管と、
この冷媒導出管の他端と接続し、前記冷媒導出管より導出された冷媒を前記高段圧縮機構部に吸引する前記圧縮機の高段吸入管と、
を備えたことを特徴とする冷媒回路装置。
In the sealed container, an electric motor and a compression mechanism unit composed of a low-stage compression mechanism unit and a high-stage compression mechanism unit driven by a rotating shaft connected to the electric motor are housed, and the low-stage compression mechanism unit A low-pressure refrigerant is sucked into the compressor and a high-pressure refrigerant discharged from the compressor exchanges heat with a compressor that discharges a high-pressure refrigerant that is sequentially compressed by the low-stage compression mechanism and the high-stage compression mechanism. Sequentially connecting a high-pressure side heat exchanger to be performed, a throttle device that depressurizes the refrigerant after passing through the high-pressure side heat exchanger to a low pressure, and a low-pressure side heat exchanger that performs heat exchange with the low-pressure refrigerant after passing through the throttle device A refrigerant circuit for circulating the refrigerant,
One end connected between the high-pressure side heat exchanger and the expansion device, a branch pipe provided with a decompression device in the middle,
A heat exchanging section for exchanging heat between the refrigerant flowing through the branch pipe after passing through the decompression device and the refrigerant flowing between the high-pressure side heat exchanger and the expansion device;
Refrigerant after one end is opened in the space between the electric motor and the sealed container on the side of the anti-compression mechanism of the electric motor, the other end is connected to the other end of the branch pipe, and passes through the high-pressure side heat exchanger An injection pipe of the compressor that passes through the branch pipe in a part of the compressor and depressurizes by the decompression device, and injects the refrigerant heat-exchanged by the heat exchange unit into the sealed container;
A low-stage discharge pipe of the compressor that discharges the refrigerant compressed by the low-stage compression mechanism into the sealed container;
One end of the compressor is opened to a space between the electric motor and the compression mechanism, and the refrigerant injected from the injection pipe and the refrigerant discharged from the low-stage discharge pipe are led out of the sealed container. A refrigerant outlet tube;
A high-stage suction pipe of the compressor that is connected to the other end of the refrigerant lead-out pipe and sucks the refrigerant led out from the refrigerant lead-out pipe into the high-stage compression mechanism;
A refrigerant circuit device comprising:
JP2006265278A 2006-09-28 2006-09-28 Compressor and refrigerant circuit device Expired - Fee Related JP4556934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006265278A JP4556934B2 (en) 2006-09-28 2006-09-28 Compressor and refrigerant circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006265278A JP4556934B2 (en) 2006-09-28 2006-09-28 Compressor and refrigerant circuit device

Publications (2)

Publication Number Publication Date
JP2008082294A JP2008082294A (en) 2008-04-10
JP4556934B2 true JP4556934B2 (en) 2010-10-06

Family

ID=39353402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006265278A Expired - Fee Related JP4556934B2 (en) 2006-09-28 2006-09-28 Compressor and refrigerant circuit device

Country Status (1)

Country Link
JP (1) JP4556934B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101170613B1 (en) 2010-01-06 2012-08-02 한라공조주식회사 Cooling system of air conditioner for vehicle
JP7547030B2 (en) * 2019-02-12 2024-09-09 ナブテスコ株式会社 Dust-proofing method for air compressors and motors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054975A (en) * 1998-08-07 2000-02-22 Daikin Ind Ltd Two-stage compressor
JP2001124422A (en) * 1999-10-28 2001-05-11 Sanyo Electric Co Ltd Multi-stage compression refrigerating device
JP2004092404A (en) * 2002-08-29 2004-03-25 Sanyo Electric Co Ltd Multistage compression rotary compressor
JP2005147073A (en) * 2003-11-19 2005-06-09 Sanyo Electric Co Ltd Intermediate heat exchanger-integrated type compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539410B2 (en) * 1973-10-27 1978-04-05
JPH0730962B2 (en) * 1988-11-15 1995-04-10 松下電器産業株式会社 Two-stage compression refrigeration cycle
JP2723610B2 (en) * 1989-05-09 1998-03-09 松下電器産業株式会社 Two-stage compression rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054975A (en) * 1998-08-07 2000-02-22 Daikin Ind Ltd Two-stage compressor
JP2001124422A (en) * 1999-10-28 2001-05-11 Sanyo Electric Co Ltd Multi-stage compression refrigerating device
JP2004092404A (en) * 2002-08-29 2004-03-25 Sanyo Electric Co Ltd Multistage compression rotary compressor
JP2005147073A (en) * 2003-11-19 2005-06-09 Sanyo Electric Co Ltd Intermediate heat exchanger-integrated type compressor

Also Published As

Publication number Publication date
JP2008082294A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
KR20040020013A (en) Refrigerant cycling device and compressor using the same
US7086244B2 (en) Refrigerant cycle apparatus
JP2007100513A (en) Refrigerant compressor and refrigerant cycle device having the same
JP4208620B2 (en) Refrigerant cycle equipment
US7111471B2 (en) Refrigerant cycle apparatus
JP4039921B2 (en) Transcritical refrigerant cycle equipment
JP4556934B2 (en) Compressor and refrigerant circuit device
KR20040049270A (en) Refrigerant Cycling Device
JP2004317073A (en) Refrigerant cycling device
JP2003254276A (en) Rotary compressor
JP4107926B2 (en) Transcritical refrigerant cycle equipment
JP2003161280A (en) Rotary compressor
WO2013027237A1 (en) Two-stage compressor, and heat pump device
JP2004251513A (en) Refrigerant cycle device
JP2005127215A (en) Transition critical refrigerant cycle device
JP2004251492A (en) Refrigerant cycle device
JP2004251514A (en) Refrigerant cycle device
JP3469845B2 (en) Multi-stage compression refrigeration equipment
JP4036772B2 (en) Transcritical refrigerant cycle equipment
JP2004170043A (en) Cooling device
JP2003254272A (en) Rotary compressor
JP2001124423A (en) Multi-stage compression refrigerating device
CN117989131A (en) Compressor and refrigeration cycle device
JP2004101114A (en) Transition critical refrigerant cycle apparatus
JP2004270517A (en) Compressor and refrigerant cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R151 Written notification of patent or utility model registration

Ref document number: 4556934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees