JP2000054975A - Two-stage compressor - Google Patents

Two-stage compressor

Info

Publication number
JP2000054975A
JP2000054975A JP10224161A JP22416198A JP2000054975A JP 2000054975 A JP2000054975 A JP 2000054975A JP 10224161 A JP10224161 A JP 10224161A JP 22416198 A JP22416198 A JP 22416198A JP 2000054975 A JP2000054975 A JP 2000054975A
Authority
JP
Japan
Prior art keywords
low
compression mechanism
stage compression
pressure
closed chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10224161A
Other languages
Japanese (ja)
Other versions
JP4151120B2 (en
Inventor
Kenichi Saito
健一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP22416198A priority Critical patent/JP4151120B2/en
Publication of JP2000054975A publication Critical patent/JP2000054975A/en
Application granted granted Critical
Publication of JP4151120B2 publication Critical patent/JP4151120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps

Abstract

PROBLEM TO BE SOLVED: To eliminate inside leak, and improve efficiency by decreasing a suction overheat amount. SOLUTION: A low-stage-side compressing mechanism 5L and a high-stage-side compressing mechanism 5H are accommodated in a casing 31. Inside of the casing 31 is divided by a partition member 3M as a first sealing chamber 3A and a second sealing chamber 3B. The first sealing chamber 3A accommodates a motor 40 and is constituted under low pressure atmosphere by being connected to suction pipe 2r of low-pressure refrigerant. The second sealing chamber 3B accommodates the low- stage-side compressing mechanism 5L and the high-stage-side compressing mechanism 5H which are connected to the motor 40, and is constituted under medium pressure atmosphere by communicating with an injection pipe 2B of medium-pressure refrigerant. A suction passage 51 of the low-stage-side compressing mechanism 5L communicates with the first sealing chamber 3A, and a delivery passage 53 of the low-stage-side compressing mechanism 5L opens the second sealing chamber 3B. A suction passage 52 of the high-stage-side compressing mechanism 5H communicates with the second sealing chamber 3B, and a delivery passage 54 of the high-stage-side compressing mechanism 5H communicates with a delivery pipe 2d of high-pressure refrigerant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2段圧縮機に関
し、特に、圧縮機効率の向上対策に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-stage compressor, and more particularly to a measure for improving compressor efficiency.

【0002】[0002]

【従来の技術】従来より、2段圧縮機には、特開平5−
133366号公報に開示されているように、ケーシン
グ内に低段側圧縮機構及び高段側圧縮機構が設けられて
構成されているものがある。
2. Description of the Related Art Conventionally, a two-stage compressor has been disclosed in
As disclosed in JP-A-133366, there is a configuration in which a low-stage compression mechanism and a high-stage compression mechanism are provided in a casing.

【0003】該低段側圧縮機構は、吸入口に冷媒回路の
吸入側冷媒配管が接続されて低圧冷媒が供給される。一
方、上記低段側圧縮機構の吐出口は、高段側圧縮機構の
吸入口が中間通路を介して接続され、該中間通路には冷
媒回路に設けられた気液分離から中間圧冷媒が供給され
る。また、上記高段側圧縮機構の吐出口はケーシング内
に開口すると共に、該ケーシングに冷媒回路の吸入側冷
媒配管が接続されている。
[0003] In the low-stage compression mechanism, a suction-side refrigerant pipe of a refrigerant circuit is connected to a suction port to supply low-pressure refrigerant. On the other hand, the discharge port of the low-stage compression mechanism is connected to the suction port of the high-stage compression mechanism via an intermediate passage, and the intermediate passage is supplied with intermediate-pressure refrigerant from gas-liquid separation provided in the refrigerant circuit. Is done. The discharge port of the high-stage compression mechanism is opened in a casing, and the casing is connected to a suction-side refrigerant pipe of a refrigerant circuit.

【0004】そして、上記低段側圧縮機構は、冷媒回路
の低圧冷媒を吸い込み、中間圧冷媒に圧縮する。その
後、該中間圧冷媒は、気液分離器から供給される中間圧
冷媒と共に高段側圧縮機構に吸い込まれ、該高段側圧縮
機構が中間圧冷媒を高圧冷媒に圧縮して吐出する。
[0004] The low-stage compression mechanism sucks the low-pressure refrigerant in the refrigerant circuit and compresses the refrigerant into an intermediate-pressure refrigerant. Thereafter, the intermediate-pressure refrigerant is sucked into the high-stage compression mechanism together with the intermediate-pressure refrigerant supplied from the gas-liquid separator, and the high-stage compression mechanism compresses the intermediate-pressure refrigerant into a high-pressure refrigerant and discharges it.

【0005】この2段圧縮機では、中間圧冷媒を利用す
るので、エコノマイザ効果により冷凍能力の向上が図ら
れる。
[0005] In this two-stage compressor, since the intermediate-pressure refrigerant is used, the refrigerating capacity is improved by the economizer effect.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た2段圧縮機においては、ケーシング内が高圧雰囲気に
構成されているので、内部漏れが大きいという問題があ
った。つまり、低段側圧縮機構では、圧縮室の低圧と吐
出圧である高圧との差圧が生じ、内部漏れが生じ、効率
が低いという問題があった。
However, in the two-stage compressor described above, there is a problem that the internal leakage is large because the inside of the casing is formed in a high-pressure atmosphere. In other words, the low-stage compression mechanism has a problem that a differential pressure between the low pressure of the compression chamber and the high pressure that is the discharge pressure occurs, causing internal leakage and low efficiency.

【0007】また、潤滑油の温度が高圧冷媒の温度にな
るので、吸入過熱量を大きくなり、圧縮機効率が低いと
いう問題があった。
Further, since the temperature of the lubricating oil becomes equal to the temperature of the high-pressure refrigerant, the amount of superheat of the suction increases, and there is a problem that the efficiency of the compressor is low.

【0008】本発明は、斯かる点に鑑みて成されたもの
で、内部漏れがなく、且つ吸入過熱量を小さくして効率
の向上を図ることを目的とするものである。
The present invention has been made in view of the above points, and has as its object to eliminate internal leakage and reduce the amount of overheating of suction to improve efficiency.

【0009】[0009]

【課題を解決するための手段】−発明の概要− 本発明は、ケーシングの内部を仕切部材によって第1密
閉室と第2密閉室とに区画し、第2密閉室を中間圧雰囲
気に構成するようにしたものである。
SUMMARY OF THE INVENTION In the present invention, the inside of a casing is divided into a first closed chamber and a second closed chamber by a partition member, and the second closed chamber is configured to have an intermediate pressure atmosphere. It is like that.

【0010】−解決手段− 具体的に、図1に示すように、第1の解決手段は、先
ず、ケーシング(31)に低段側圧縮機構(5L)と高段側
圧縮機構(5H)とが収納され、該両圧縮機構(5L,5H)
によって低圧流体を2段圧縮して高圧流体を吐出する2
段圧縮機を前提としている。そして、上記ケーシング
(31)内に仕切部材(3M)が設けられて該ケーシング
(31)内が第1密閉室(3A)と第2密閉室(3B)とに区
画され、上記第1密閉室(3A)は、モータ(40)が収納
されると共に、低圧流体の吸入管(2r)が接続されて低
圧雰囲気に構成されている。更に、上記第2密閉室(3
B)は、モータ(40)の駆動軸(32)が仕切部材(3M)
を貫通して延長され、該駆動軸(32)に連結されて低段
側圧縮機構(5L)と高段側圧縮機構(5H)とが収納され
ると共に、低圧流体と高圧流体との中間の中間圧流体を
導入する導入管(2B)が連通して中間圧雰囲気に構成さ
れている。加えて、上記低段側圧縮機構(5L)の吸入口
(51)は第1密閉室(3A)に連通し、上記低段側圧縮機
構(5L)の吐出口(53)は第2密閉室(3B)に開口する
一方、上記高段側圧縮機構(5H)の吸入口(52)は第2
密閉室(3B)に連通し、上記高段側圧縮機構(5H)の吐
出口(54)は高圧流体の吐出管(2d)が連通している。
-Solution Means- Specifically, as shown in FIG. 1, a first solution means is to firstly provide a casing (31) with a low-stage compression mechanism (5L) and a high-stage compression mechanism (5H). Are stored, and both compression mechanisms (5L, 5H)
Discharges high-pressure fluid by compressing low-pressure fluid in two stages
It assumes a stage compressor. A partition member (3M) is provided in the casing (31), and the inside of the casing (31) is partitioned into a first closed chamber (3A) and a second closed chamber (3B). In (3A), a motor (40) is housed, and a low-pressure fluid suction pipe (2r) is connected to form a low-pressure atmosphere. Furthermore, the second closed chamber (3
B) The drive shaft (32) of the motor (40) is a partition member (3M)
And is connected to the drive shaft (32) to accommodate the low-stage compression mechanism (5L) and the high-stage compression mechanism (5H). An introduction pipe (2B) for introducing the intermediate pressure fluid communicates with the medium to form an intermediate pressure atmosphere. In addition, the suction port (51) of the low-stage compression mechanism (5L) communicates with the first closed chamber (3A), and the discharge port (53) of the low-stage compression mechanism (5L) is connected to the second closed chamber. (3B), while the suction port (52) of the high-stage compression mechanism (5H) is
The discharge port (54) of the high-stage compression mechanism (5H) communicates with the closed chamber (3B), and the discharge pipe (2d) for high-pressure fluid.

【0011】また、第2の解決手段では、図7に示すよ
うに、先ず、ケーシング(31)に低段側圧縮機構(5L)
と高段側圧縮機構(5H)とが収納され、該両圧縮機構
(5L,5H)によって低圧流体を2段圧縮して高圧流体を
吐出する2段圧縮機を前提としている。そして、上記ケ
ーシング(31)内に仕切部材(6m)が設けられて該ケー
シング(31)内が第1密閉室(3A)と第2密閉室(3B)
とに区画され、該第1密閉室(3A)は、高段側圧縮機構
(5H)が収納されると共に、吐出管(2d)が接続されて
高圧雰囲気に構成されている。更に、上記第2密閉室
(3B)は、低段側圧縮機構(5L)が収納されると共に、
低圧流体と高圧流体との中間の中間圧流体を導入する導
入管(2B)が連通して中間圧雰囲気に構成されている。
加えて、上記低段側圧縮機構(5L)の吸入口(51)は低
圧流体の吸入管(2r)が連通し、上記低段側圧縮機構
(5L)の吐出口(53)は第2密閉室(3B)に開口する一
方、上記高段側圧縮機構(5H)の吸入口(52)は、仕切
部材(6m)を貫通すると共に上記導入管が連通する中間
通路(56)を介して低段側圧縮機構(5L)の吸入口(5
1)に連通し、上記高段側圧縮機構(5H)の吐出口(5
4)は第1密閉室(3A)に開口している。
In a second solution, as shown in FIG. 7, first, a low-stage compression mechanism (5L) is attached to a casing (31).
And a high-stage compression mechanism (5H). The two-stage compressor presumes that the two-stage compression mechanism (5L, 5H) compresses the low-pressure fluid in two stages and discharges the high-pressure fluid. A partition member (6m) is provided in the casing (31), and the casing (31) has a first closed chamber (3A) and a second closed chamber (3B).
The first closed chamber (3A) houses a high-stage compression mechanism (5H) and is connected to a discharge pipe (2d) to form a high-pressure atmosphere. Further, the second closed chamber (3B) accommodates the low-stage compression mechanism (5L),
An introduction pipe (2B) for introducing an intermediate-pressure fluid intermediate between the low-pressure fluid and the high-pressure fluid communicates with each other to form an intermediate-pressure atmosphere.
In addition, the suction port (51) of the low-stage compression mechanism (5L) communicates with the suction pipe (2r) for low-pressure fluid, and the discharge port (53) of the low-stage compression mechanism (5L) is in the second sealed state. While opening to the chamber (3B), the suction port (52) of the high-stage compression mechanism (5H) passes through the partition member (6m) and passes through the intermediate passage (56) through which the introduction pipe communicates. Inlet (5L) of stage side compression mechanism (5L)
1) and discharge port (5H) of the high-stage compression mechanism (5H).
4) is open to the first closed chamber (3A).

【0012】また、第3の解決手段は、上記第2の解決
手段において、仕切部材(6m)には、第1密閉室(3A)
から第2密閉室(3B)に潤滑油を戻す細径通路(67)が
設けられた構成としている。
According to a third aspect of the present invention, in the above second aspect, the partition member (6m) includes a first closed chamber (3A).
And a small-diameter passage (67) for returning the lubricating oil to the second closed chamber (3B).

【0013】また、第4の解決手段は、上記第2の解決
手段において、第1密閉室(3A)にはモータ(40)が収
納され、該モータ(40)の駆動軸(32)は、高段側圧縮
機構(5H)に連結されると共に、仕切部材(6m)を貫通
して第2密閉室(3B)に延長されて低段側圧縮機構(5
L)に連結され、上記駆動軸(32)には、潤滑油の給油
路(34)が形成され、該給油路(34)は、ガスが封入さ
れた状態で潤滑油を供給するように構成されたものであ
る。
According to a fourth solution, in the second solution, a motor (40) is housed in the first closed chamber (3A), and a drive shaft (32) of the motor (40) is It is connected to the high-stage compression mechanism (5H), extends through the partition member (6m) to the second closed chamber (3B), and is connected to the low-stage compression mechanism (5H).
L), a lubricating oil supply passage (34) is formed in the drive shaft (32), and the oil supply passage (34) is configured to supply the lubricating oil in a state where gas is sealed therein. It was done.

【0014】また、第5の解決手段は、図2に示すよう
に、上記第1の解決手段において、吐出管(2d)と吸入
管(2r)の間には、熱源側熱交換器(22)と第1膨張機
構(E1)と気液分離器(23)と第2膨張機構(E2)と利
用側熱交換器(24)とが順に接続されて冷媒が循環する
冷媒回路(20)が接続された構成としている。そして、
上記気液分離器(23)は中間圧冷媒を供給するように導
入管(2B)が接続される一方、上記冷媒回路(20)は、
一方の熱交換器(24)で蒸発した低圧冷媒がそのまま吸
入管(2r)に供給されるように構成されている。
As shown in FIG. 2, the fifth solution is that the heat source side heat exchanger (22) is provided between the discharge pipe (2d) and the suction pipe (2r) in the first solution. ), The first expansion mechanism (E1), the gas-liquid separator (23), the second expansion mechanism (E2), and the use-side heat exchanger (24) are connected in order to form a refrigerant circuit (20) through which the refrigerant circulates. It has a connected configuration. And
The gas-liquid separator (23) is connected to the introduction pipe (2B) so as to supply the intermediate-pressure refrigerant, while the refrigerant circuit (20)
The low-pressure refrigerant evaporated in one heat exchanger (24) is supplied to the suction pipe (2r) as it is.

【0015】また、第6の解決手段は、図8に示すよう
に、上記第2の解決手段において、吐出管(2d)と吸入
管(2r)の間には、熱源側熱交換器(22)と第1膨張機
構(E1)と気液分離器(23)と第2膨張機構(E2)と利
用側熱交換器(24)とが順に接続されて冷媒が循環する
冷媒回路(20)が接続された構成としている。そして、
上記気液分離器(23)は中間圧冷媒を供給するように導
入管(2B)が接続される一方、上記冷媒回路(20)にお
ける吸入管(2r)の側には、アキュムレータ(25)が設
けられている。
As shown in FIG. 8, the sixth solution of the second solution is that the heat source side heat exchanger (22) is provided between the discharge pipe (2d) and the suction pipe (2r). ), The first expansion mechanism (E1), the gas-liquid separator (23), the second expansion mechanism (E2), and the use-side heat exchanger (24) are connected in order to form a refrigerant circuit (20) through which the refrigerant circulates. It has a connected configuration. And
An inlet pipe (2B) is connected to the gas-liquid separator (23) so as to supply an intermediate-pressure refrigerant, while an accumulator (25) is provided on a side of the suction pipe (2r) in the refrigerant circuit (20). Is provided.

【0016】−作用− 上記の特定事項により、第1の解決手段では、先ず、低
段側圧縮機構(5L)及び高段側圧縮機構(5H)を駆動す
ると、低圧流体が第1密閉室(3A)を経て低段側圧縮機
構(5L)の吸入通路(51)からシリンダ室(6s)に流入
し、特に、第5の解決手段では、冷媒回路(20)から気
液分離されないままの低圧冷媒が流入する。
-Operation- According to the above-mentioned specific matter, in the first solution, first, when the low-stage compression mechanism (5L) and the high-stage compression mechanism (5H) are driven, the low-pressure fluid is supplied to the first closed chamber (5). 3A), flows into the cylinder chamber (6s) from the suction passage (51) of the low-stage compression mechanism (5L), and in particular, in the fifth solution, the low-pressure pressure without being separated from the refrigerant circuit (20) Refrigerant flows in.

【0017】一方、第2密閉室(3B)には、気液分離器
(23)から中間圧冷媒が供給されているので、低段側圧
縮機構(5L)から吐出した中間圧冷媒と気液分離器(2
3)から供給された中間圧冷媒とは第2密閉室(3B)に
おいて合流し、高段側圧縮機構(5H)のシリンダ室(6
s)に流入する。
On the other hand, since the intermediate-pressure refrigerant is supplied to the second sealed chamber (3B) from the gas-liquid separator (23), the intermediate-pressure refrigerant discharged from the low-stage compression mechanism (5L) and the gas-liquid Separator (2
The intermediate-pressure refrigerant supplied from 3) joins in the second closed chamber (3B), and is joined to the cylinder chamber (6) of the high-stage compression mechanism (5H).
s).

【0018】上記高段側圧縮機構(5H)においては、中
間圧冷媒を圧縮して高圧冷媒を冷媒回路(20)に吐出
し、該冷媒が冷媒回路(20)を循環する。
In the high-stage compression mechanism (5H), the intermediate-pressure refrigerant is compressed and the high-pressure refrigerant is discharged to the refrigerant circuit (20), and the refrigerant circulates in the refrigerant circuit (20).

【0019】また、第2の解決手段では、低段側圧縮機
構(5L)及び高段側圧縮機構(5H)を駆動すると、低圧
流体が低段側圧縮機構(5L)の吸入口(51)からシリン
ダ室(6s)に流入し、特に、第6の解決手段では、冷媒
回路(20)からアキュムレータ(25)を経て低圧冷媒が
流入する。
In the second solution, when the low-stage compression mechanism (5L) and the high-stage compression mechanism (5H) are driven, the low-pressure fluid is supplied to the suction port (51) of the low-stage compression mechanism (5L). In particular, in the sixth solution, the low-pressure refrigerant flows from the refrigerant circuit (20) through the accumulator (25).

【0020】一方、第2密閉室(3B)には、気液分離器
(23)から中間圧冷媒が供給されているので、低段側圧
縮機構(5L)から吐出した中間圧冷媒と気液分離器(2
3)から供給された中間圧冷媒とは第2密閉室(3B)に
おいて合流し、高段側圧縮機構(5H)のシリンダ室(6
s)に流入する。
On the other hand, since the intermediate-pressure refrigerant is supplied to the second closed chamber (3B) from the gas-liquid separator (23), the intermediate-pressure refrigerant discharged from the low-stage compression mechanism (5L) and the gas-liquid Separator (2
The intermediate-pressure refrigerant supplied from 3) joins in the second closed chamber (3B), and is joined to the cylinder chamber (6) of the high-stage compression mechanism (5H).
s).

【0021】上記高段側圧縮機構(5H)においては、中
間圧冷媒を圧縮して高圧冷媒を第1密閉室(3A)内に吐
出する。この高圧冷媒は、冷媒回路(20)に吐出し、該
冷媒が冷媒回路(20)を循環する。
In the high-stage compression mechanism (5H), the intermediate-pressure refrigerant is compressed and the high-pressure refrigerant is discharged into the first closed chamber (3A). The high-pressure refrigerant is discharged to the refrigerant circuit (20), and the refrigerant circulates through the refrigerant circuit (20).

【0022】また、第3の解決手段では、第2の解決手
段において、上記第1密閉室(3A)内に吐出された潤滑
油は、細径通路(67)を経てケーシング(31)の底部に
戻る。
According to a third aspect of the present invention, in the second aspect, the lubricating oil discharged into the first closed chamber (3A) passes through a small-diameter passageway (67) to a bottom portion of the casing (31). Return to

【0023】また、第4の解決手段では、第2の解決手
段において、駆動軸(32)の給油路(34)は、ガスが封
入されたまま潤滑油を供給する。
According to a fourth solution, in the second solution, the lubricating oil is supplied to the oil supply passage (34) of the drive shaft (32) while the gas is sealed.

【0024】[0024]

【発明の効果】したがって、本発明によれば、中間圧冷
媒を低段側圧縮機構(5L)と高段側圧縮機構(5H)との
中間通路(56)に供給するようにしたために、冷房能力
や暖房能力を向上させることができるので、COP(成
績係数)の向上を図ることができる。
Thus, according to the present invention, the intermediate-pressure refrigerant is supplied to the intermediate passage (56) between the low-stage compression mechanism (5L) and the high-stage compression mechanism (5H). Since the capacity and the heating capacity can be improved, the COP (coefficient of performance) can be improved.

【0025】また、冷媒を2段圧縮するので、該冷媒の
吐出温度の上昇を抑制することができる。
Further, since the refrigerant is compressed in two stages, an increase in the discharge temperature of the refrigerant can be suppressed.

【0026】また、第2密閉室(3B)を中間圧雰囲気に
構成しているので、圧縮室の周り等が中間圧雰囲気にな
り、低段側圧縮機構(5L)では低圧と中間圧との圧力差
になり、高段側圧縮機構(5H)では高圧と中間圧との圧
力差になる。この結果、内部漏れを抑制することができ
ることから、効率の向上を図ることができる。
Further, since the second closed chamber (3B) is configured to have an intermediate pressure atmosphere, the surroundings of the compression chamber and the like are at an intermediate pressure atmosphere, and the low stage side compression mechanism (5L) has a low pressure and an intermediate pressure. In the high-stage compression mechanism (5H), there is a pressure difference between the high pressure and the intermediate pressure. As a result, since internal leakage can be suppressed, efficiency can be improved.

【0027】また、潤滑油の温度を中間圧冷媒の温度に
することができるので、吸入過熱量を低減することがで
き、圧縮機効率の向上を図ることができる。
Further, since the temperature of the lubricating oil can be set to the temperature of the intermediate-pressure refrigerant, the amount of suction overheating can be reduced, and the efficiency of the compressor can be improved.

【0028】また、第3の解決手段によれば、潤滑油が
細径通路(67)を経てケーシング(31)の底部に戻るの
で、油切れを確実に防止することができる。
According to the third solution, the lubricating oil returns to the bottom of the casing (31) through the small-diameter passage (67), so that the oil can be surely prevented from running out.

【0029】また、第4の解決手段によれば、給油路
(34)にガス抜き孔を形成しないので、流体の逆流を確
実に防止することができる。
Further, according to the fourth solution, since no vent hole is formed in the oil supply passage (34), the backflow of the fluid can be reliably prevented.

【0030】また、第5の解決手段によれば、第1密閉
室(3A)にモータ(40)を収納すると共に、冷媒回路
(20)から気液分離しない低圧冷媒が流入するようにし
たために、該モータ(40)を確実に冷却することができ
るので、モータ効率の向上を図ることができる。
According to the fifth solution, the motor (40) is housed in the first closed chamber (3A), and the low-pressure refrigerant that does not separate gas and liquid flows from the refrigerant circuit (20). Since the motor (40) can be reliably cooled, the motor efficiency can be improved.

【0031】[0031]

【発明の実施の形態1】以下、本発明の実施形態1を図
面に基づいて詳細に説明する。
Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings.

【0032】図2に示すように、空気調和装置(10)
は、ヒートポンプ式の空気調和装置であって、冷房運転
と暖房運転とに切り換え自在に構成されている。
As shown in FIG. 2, the air conditioner (10)
Is a heat pump type air conditioner, which is configured to be switchable between a cooling operation and a heating operation.

【0033】該空気調和装置(10)の冷媒回路(20)
は、圧縮機(30)と四路切換弁(21)と熱源側熱交換器
である室外熱交換器(22)と第1膨張機構である第1膨
張弁(E1)と気液分離器(23)と第2膨張機構である第
2膨張弁(E2)と利用側熱交換器である室内熱交換器
(24)とが冷媒配管(26)によって順に接続されてなる
主冷媒回路(2M)を備えている。特に、上記四路切換弁
(21)と圧縮機(30)の吸入側の間には、アキュムレー
タが省略されている。
The refrigerant circuit (20) of the air conditioner (10)
Are a compressor (30), a four-way switching valve (21), an outdoor heat exchanger (22) as a heat source side heat exchanger, a first expansion valve (E1) as a first expansion mechanism, and a gas-liquid separator ( 23) a main refrigerant circuit (2M) in which a second expansion valve (E2) as a second expansion mechanism and an indoor heat exchanger (24) as a use side heat exchanger are connected in order by a refrigerant pipe (26). It has. In particular, an accumulator is omitted between the four-way switching valve (21) and the suction side of the compressor (30).

【0034】上記四路切換弁(21)は、図2に実線で示
す状態の冷房運転と、図2に破線で示す状態の暖房運転
とに切り換わる。
The four-way switching valve (21) switches between a cooling operation indicated by a solid line in FIG. 2 and a heating operation indicated by a broken line in FIG.

【0035】上記冷媒回路(20)には、インジェクショ
ン管(2B)が設けられている。該インジェクション管
(2B)は、中間圧流体である中間圧ガス冷媒を圧縮機
(30)にインジェクションする導入管であって、一端が
気液分離器(23)に、他端が圧縮機(30)に連通してい
る。つまり、上記気液分離器(23)には、高圧流体であ
る冷媒の凝縮圧力と低圧流体である冷媒の蒸発圧力との
中間圧力になっている中間圧冷媒が貯溜されている。上
記インジェクション管(2B)は、気液分離器(23)の中
間圧冷媒のうち、ガス相の中間圧ガス冷媒を圧縮機(3
0)にインジェクションする。
The refrigerant circuit (20) is provided with an injection pipe (2B). The injection pipe (2B) is an introduction pipe for injecting an intermediate-pressure gas refrigerant, which is an intermediate-pressure fluid, into the compressor (30), and has one end connected to the gas-liquid separator (23) and the other end connected to the compressor (30). ). That is, the gas-liquid separator (23) stores an intermediate-pressure refrigerant having an intermediate pressure between the condensing pressure of the refrigerant as the high-pressure fluid and the evaporation pressure of the refrigerant as the low-pressure fluid. The injection pipe (2B) passes the gas-phase intermediate-pressure gas refrigerant of the intermediate-pressure refrigerant of the gas-liquid separator (23) to the compressor (3).
Inject to 0).

【0036】上記第1膨張弁(E1)と第2膨張弁(E2)
は、開度調整自在な電動弁で構成されている。そして、
上記第1膨張弁(E1)又は第2膨張弁(E2)で減圧され
る中間圧冷媒が気液分離器(23)に貯溜する。
The first expansion valve (E1) and the second expansion valve (E2)
Is composed of a motor-operated valve whose opening can be adjusted freely. And
The intermediate-pressure refrigerant depressurized by the first expansion valve (E1) or the second expansion valve (E2) is stored in the gas-liquid separator (23).

【0037】上記圧縮機(30)は、運転容量を無段階又
は多段階に制御するように構成されている。該圧縮機
(30)は、本発明の特徴として、図1に示すように、2
段圧縮機であって、図1に示すように、密閉型のケーシ
ング(31)内にモータ(40)と低段側圧縮機構(5L)及
び高段側圧縮機構(5H)とが収納されて構成されてい
る。
The compressor (30) is configured to control the operating capacity steplessly or in multiple steps. As a feature of the present invention, as shown in FIG.
As shown in FIG. 1, a motor (40) and a low-stage compression mechanism (5L) and a high-stage compression mechanism (5H) are housed in a closed casing (31). It is configured.

【0038】また、上記ケーシング(31)には、上下方
向のほぼ中央部に仕切部材(3M)が設けられ、該仕切部
材(3M)は、ケーシング(31)の内周面に密着して設け
られている。そして、上記仕切部材(3M)の上方が第1
密閉室(3A)になり、該第1密閉室(3A)にはモータ
(40)が収納されている。また、上記仕切部材(3M)の
下方が第2密閉室(3B)になり、該第2密閉室(3B)に
は低段側圧縮機構及び高段側圧縮機構が収納されてい
る。
The casing (31) is provided with a partition member (3M) substantially at the center in the vertical direction, and the partition member (3M) is provided in close contact with the inner peripheral surface of the casing (31). Have been. The first part above the partition member (3M) is the first part.
A closed chamber (3A) is provided, and a motor (40) is housed in the first closed chamber (3A). The lower part of the partition member (3M) is a second closed chamber (3B), and the second closed chamber (3B) houses a low-stage compression mechanism and a high-stage compression mechanism.

【0039】上記ケーシング(31)の上部には、主冷媒
回路(2M)の吸入側冷媒配管(2r)が接続され、第1密
閉室(3A)が低圧雰囲気に構成されている。該吸入側冷
媒配管(2r)は、低圧ガス冷媒を供給する吸入管に構成
されている。
The upper part of the casing (31) is connected to the suction side refrigerant pipe (2r) of the main refrigerant circuit (2M), and the first closed chamber (3A) is constructed in a low pressure atmosphere. The suction-side refrigerant pipe (2r) is configured as a suction pipe for supplying a low-pressure gas refrigerant.

【0040】一方、上記ケーシング(31)の中央部に
は、インジェクション管(2B)が接続されて該インジェ
クション管(2B)が第2密閉室(3B)に連通している。
つまり、上記第2密閉室(3B)は、中間圧ガス冷媒が供
給されて中間圧雰囲気に構成されている。
On the other hand, an injection pipe (2B) is connected to the center of the casing (31), and the injection pipe (2B) communicates with the second closed chamber (3B).
That is, the second closed chamber (3B) is supplied with the intermediate-pressure gas refrigerant and is configured to have an intermediate-pressure atmosphere.

【0041】上記モータ(40)は、ケーシング(31)の
内周面に固着されたステータ(41)と、ステータ(41)
の中央部に配設されたロータ(42)とによって構成され
ている。該ロータ(42)の中央部には、駆動軸(32)が
連結されている。該駆動軸(32)は、仕切部材(3M)を
貫通して下方へ延長され、低段側圧縮機構(5L)及び高
段側圧縮機構(5H)に連結されている。
The motor (40) includes a stator (41) fixed to an inner peripheral surface of a casing (31), and a stator (41).
And a rotor (42) arranged at the center of the. The drive shaft (32) is connected to the center of the rotor (42). The drive shaft (32) extends downward through the partition member (3M), and is connected to the low-stage compression mechanism (5L) and the high-stage compression mechanism (5H).

【0042】上記ケーシング(31)内の底部は潤滑油の
油溜め部(33)に構成され、該油溜め部(33)の潤滑油
には、上記駆動軸(32)の下端部が浸漬されている。
尚、上記駆動軸(32)の下端部には、図示しないが、遠
心式の油ポンプが設けられ、潤滑油が、駆動軸(32)内
の給油路(34)を通り、低段側圧縮機構(5L)及び高段
側圧縮機構(5H)の摺動箇所に供給される。
The bottom of the casing (31) is formed as an oil reservoir (33) for lubricating oil. The lower end of the drive shaft (32) is immersed in the lubricating oil of the oil reservoir (33). ing.
Although not shown, a centrifugal oil pump (not shown) is provided at the lower end of the drive shaft (32), and lubricating oil passes through an oil supply passage (34) in the drive shaft (32) and is compressed at a lower stage. It is supplied to the sliding parts of the mechanism (5L) and the high-stage compression mechanism (5H).

【0043】上記低段側圧縮機構(5L)及び高段側圧縮
機構(5H)は、モータ(40)の下方に位置して上下に併
設されている。該低段側圧縮機構(5L)及び高段側圧縮
機構(5H)は、本発明の特徴として、何れもいわゆるス
イング型のロータリ圧縮機で構成されている。
The low-stage compression mechanism (5L) and the high-stage compression mechanism (5H) are located vertically below the motor (40). Each of the low-stage compression mechanism (5L) and the high-stage compression mechanism (5H) is a so-called swing type rotary compressor as a feature of the present invention.

【0044】上記低段側圧縮機構(5L)及び高段側圧縮
機構(5H)は、ほぼ同一の構成であって、低段側圧縮機
構(5L)の下方に高段側圧縮機構(5H)が配置されてい
る。該両圧縮機構(5L,5H)は、図3に示すように、シ
リンダ(60)内に形成されたシリンダ室(6s)にピスト
ン(61)が収納されて構成されている。上記両圧縮機構
(5L,5H)のシリンダ(60)の間にはミドルプレート
(6m)が設けられ、上記低段側シリンダ(60)の上面は
上部プレート(6u)が設けられて閉鎖され、上記高段側
シリンダ(60)の下面は下部プレート(6d)が設けられ
て閉鎖されている。
The low-stage compression mechanism (5L) and the high-stage compression mechanism (5H) have substantially the same configuration, and the high-stage compression mechanism (5H) is located below the low-stage compression mechanism (5L). Is arranged. As shown in FIG. 3, the compression mechanisms (5L, 5H) each include a piston (61) housed in a cylinder chamber (6s) formed in a cylinder (60). A middle plate (6m) is provided between the cylinders (60) of the two compression mechanisms (5L, 5H), and an upper plate (6u) is provided on the upper surface of the low-stage cylinder (60) and closed. The lower surface of the high-stage side cylinder (60) is provided with a lower plate (6d) and closed.

【0045】一方、上記各圧縮機構(5L,5H)のピスト
ン(61)は円環状に形成され、偏心軸部(62)が回転自
在に嵌め込まれている。上記偏心軸部(62)は、駆動軸
(32)に偏心して形成されている。
On the other hand, the piston (61) of each compression mechanism (5L, 5H) is formed in an annular shape, and the eccentric shaft (62) is rotatably fitted therein. The eccentric shaft (62) is formed eccentric to the drive shaft (32).

【0046】上記各シリンダ(60)には吸入通路(51,
52)が形成され、該吸入通路(51,52)の一端がシリン
ダ室(6s)に開口して吸入口を構成している。また、上
記上部プレート(6u)には低段側圧縮機構(5L)の吐出
通路(53)が形成される一方、下部プレート(6d)には
高段側圧縮機構(5H)の吐出通路(54)が形成され、該
各吐出通路(53,54)の一端がシリンダ室(6s)に開口
して吐出口を構成している。尚、図示しないが、上記各
吐出通路(53,54)には、所定の吐出圧力になると吐出
口を開口する吐出弁が設けられている。
Each cylinder (60) has a suction passage (51,
52) is formed, and one end of the suction passage (51, 52) opens to the cylinder chamber (6s) to form a suction port. A discharge passage (53) for the low-stage compression mechanism (5L) is formed in the upper plate (6u), while a discharge passage (54) for the high-stage compression mechanism (5H) is formed in the lower plate (6d). ) Is formed, and one end of each of the discharge passages (53, 54) opens to the cylinder chamber (6s) to form a discharge port. Although not shown, each of the discharge passages (53, 54) is provided with a discharge valve that opens a discharge port when a predetermined discharge pressure is reached.

【0047】上記シリンダ(60)には、吸入口と吐出口
との間に位置して軸方向の円柱状のブッシュ孔(63)が
シリンダ室(6s)に開口して形成されている。上記ピス
トン(61)には半径方向に突出して延びるブレード(6
4)が一体的に形成されている。該ブレード(64)の先
端側は、ブッシュ孔(63)内に一対の揺動ブッシュ(6
b)を介して挿入されている。
In the cylinder (60), a cylindrical bush hole (63) is formed between the suction port and the discharge port so as to open in the cylinder chamber (6s). The piston (61) has a blade (6
4) is integrally formed. The tip side of the blade (64) has a pair of swinging bushes (6
b) has been inserted through.

【0048】上記ブレード(64)は、シリンダ室(6s)
を、吸入通路(51,52)に通じる低圧室と吐出通路(5
3,54)に通じる高圧室とに区画している。上記ピスト
ン(61)は、ブレード(64)を介して揺動ブッシュ(6
b)を支点に揺動し、シリンダ室(6s)を公転して冷媒
を圧縮するように構成されている。
The blade (64) is provided in the cylinder chamber (6s).
To the low-pressure chamber and the discharge passage (5
It is divided into a high-pressure chamber that leads to (3, 54). The piston (61) is connected to the swinging bush (6) through the blade (64).
It is configured to swing around the fulcrum b) and revolve around the cylinder chamber (6s) to compress the refrigerant.

【0049】上記低段側圧縮機構(5L)の吸入通路(5
1)には、上部プレート(6u)及び仕切部材(3M)を貫
通する低圧通路(55)が連通し、低段側圧縮機構(5L)
は、低圧ガス冷媒が供給されるように構成されている。
また、上記低段側圧縮機構(5L)の吐出通路(53)は、
上部プレート(5u)において第2密閉室(3B)に連通し
ている。
The suction passage (5) of the low-stage compression mechanism (5L)
1) communicates with the low pressure passage (55) passing through the upper plate (6u) and the partition member (3M), and the low-stage compression mechanism (5L)
Is configured to supply a low-pressure gas refrigerant.
Also, the discharge passage (53) of the low-stage compression mechanism (5L)
The upper plate (5u) communicates with the second closed chamber (3B).

【0050】上記上部プレート(6u)と低段側シリンダ
(60)とミドルプレート(6m)には、上下方向に貫通す
る中間通路(56)が形成されている。該中間通路(56)
は、上端が第2密閉室(3B)に連通し、下端が高段側圧
縮機構(5H)の吸入通路(52)に連通し、中間圧冷媒が
高段側圧縮機構(5H)に供給される。
The upper plate (6u), the low-stage cylinder (60), and the middle plate (6m) are formed with an intermediate passage (56) penetrating vertically. The intermediate passage (56)
The upper end communicates with the second closed chamber (3B), the lower end communicates with the suction passage (52) of the high-stage compression mechanism (5H), and the intermediate-pressure refrigerant is supplied to the high-stage compression mechanism (5H). You.

【0051】また、上記下部プレート(6d)には、下部
マフラ(65)が設けられ、該下部マフラ(65)には高段
側圧縮機構(5H)の吐出通路(54)が連通している。上
記下部プレート(6d)と高段側シリンダ(60)とミドル
プレート(6m)には、上下方向に貫通する高圧通路(5
7)が形成されている。該高圧通路(57)は、下端が下
部マフラ(65)に連通し、上端が主冷媒回路(2M)の吐
出側冷媒配管(2d)に接続されている。該吐出側冷媒配
管(2d)は、高圧ガス冷媒を吐出する吐出管に構成され
ている。
The lower plate (6d) is provided with a lower muffler (65), and the lower muffler (65) communicates with the discharge passage (54) of the high-stage compression mechanism (5H). . The lower plate (6d), the high-stage cylinder (60), and the middle plate (6m) pass through the high-pressure passage (5
7) is formed. The high pressure passage (57) has a lower end communicating with the lower muffler (65), and an upper end connected to the discharge side refrigerant pipe (2d) of the main refrigerant circuit (2M). The discharge-side refrigerant pipe (2d) is configured as a discharge pipe that discharges a high-pressure gas refrigerant.

【0052】また、上記駆動軸(32)における仕切部材
(3M)の貫通部分には、図4に示すように、シール手段
(70)が設けられている。該シール手段(70)は、駆動
軸(32)に形成されたフランジ部(71)と、上記上部プ
レート(6u)に形成されたボス部(72)とを備えてい
る。また、上記仕切部材(3M)の軸孔の下端部には、大
径凹部(73)が形成され、該大径凹部(73)に上記駆動
軸(32)のフランジ部(71)が位置している。
As shown in FIG. 4, a sealing means (70) is provided at a portion of the drive shaft (32) penetrating the partition member (3M). The sealing means (70) includes a flange (71) formed on the drive shaft (32) and a boss (72) formed on the upper plate (6u). A large-diameter recess (73) is formed at the lower end of the shaft hole of the partition member (3M), and the flange (71) of the drive shaft (32) is located in the large-diameter recess (73). ing.

【0053】上記ボス部(6n)の上面における内周部
は、駆動軸(32)のフランジ部(71)の下面に接してシ
ール面(74)に構成され、低圧雰囲気の第1密閉室(3
A)と中間圧雰囲気の第2密閉室(3B)との間がシール
されている。
The inner peripheral portion of the upper surface of the boss portion (6n) is formed on a sealing surface (74) in contact with the lower surface of the flange portion (71) of the drive shaft (32). Three
The space between A) and the second closed chamber (3B) of the intermediate pressure atmosphere is sealed.

【0054】更に、上記ボス部(6n)とフランジ部(7
1)とは、駆動軸(32)のスラスト軸受けを兼用してい
る。つまり、上記フランジ部(71)は、駆動軸(32)及
びピストン(61,61)の自重の他、モータ(40)のマグ
ネティックプルフォースによってボス部(6n)に押圧さ
れている。
Further, the boss (6n) and the flange (7
1) is also used as the thrust bearing of the drive shaft (32). That is, the flange (71) is pressed against the boss (6n) by the magnetic pull force of the motor (40) in addition to the weight of the drive shaft (32) and the pistons (61, 61).

【0055】また、上記大径凹部(73)の周縁における
仕切部材(3M)の下面は、上部プレート(6u)における
ボス部(72)の上面に密着している。そして、上記仕切
部材(3M)には、Oリング(75)が設けられて第2密閉
室(3B)と大径凹部(73)との間がシールされている。
The lower surface of the partition member (3M) at the periphery of the large-diameter concave portion (73) is in close contact with the upper surface of the boss (72) of the upper plate (6u). The partition member (3M) is provided with an O-ring (75) to seal between the second closed chamber (3B) and the large-diameter concave portion (73).

【0056】また、上記駆動軸(32)と上部プレート
(6u)の軸孔の間にはスパイラルポンプ(7P)が設けら
れている。該スパイラルポンプ(7P)は、給油路(34)
から上部プレート(6u)の軸孔に供給された潤滑油をシ
ール面(74)に供給している。そして、該潤滑油が上記
シール面(74)を潤滑する。
A spiral pump (7P) is provided between the drive shaft (32) and the shaft hole of the upper plate (6u). The spiral pump (7P)
Supplies the lubricating oil supplied to the shaft hole of the upper plate (6u) to the seal surface (74). Then, the lubricating oil lubricates the sealing surface (74).

【0057】−空気調和動作− 次に、上述した空気調和装置(10)の空気調和動作につ
いて説明する。
-Air Conditioning Operation- Next, the air conditioning operation of the air conditioner (10) will be described.

【0058】先ず、室内の冷房運転時には、四路切換弁
(21)を図2の実線側に切り換える。圧縮機(30)から
吐出した冷媒は、室外熱交換器(22)において外気と熱
交換して凝縮する。この液冷媒は、第1膨張弁(E1)で
減圧され、凝縮圧力と蒸発圧力との中間圧力の中間圧冷
媒となって気液分離器(23)に溜まる。
First, during the indoor cooling operation, the four-way switching valve (21) is switched to the solid line side in FIG. The refrigerant discharged from the compressor (30) exchanges heat with outside air in the outdoor heat exchanger (22) and condenses. This liquid refrigerant is reduced in pressure by the first expansion valve (E1), becomes an intermediate-pressure refrigerant having an intermediate pressure between the condensing pressure and the evaporation pressure, and accumulates in the gas-liquid separator (23).

【0059】上記気液分離器(23)の中間圧冷媒のう
ち、中間圧液冷媒は、第2膨張弁(E2)で減圧された
後、室内熱交換器(24)において室内空気と熱交換して
蒸発し、室内空気を冷却する。その後、このガス冷媒は
直接に圧縮機(30)に戻り、この冷媒循環動作を行う。
Among the intermediate-pressure refrigerant in the gas-liquid separator (23), the intermediate-pressure liquid refrigerant is decompressed by the second expansion valve (E2), and then exchanges heat with indoor air in the indoor heat exchanger (24). To evaporate and cool the room air. Thereafter, the gas refrigerant returns directly to the compressor (30), and performs the refrigerant circulation operation.

【0060】一方、暖房運転時には、四路切換弁(21)
を図2の破線側に切り換える。圧縮機(30)から吐出し
た冷媒は、室内熱交換器(24)において室内空気と熱交
換し、室内空気を加熱しながら凝縮する。その後、この
液冷媒は、第2膨張弁(E2)で減圧され、中間圧冷媒と
なって気液分離器(23)に溜まる。
On the other hand, during the heating operation, the four-way switching valve (21)
Is switched to the broken line side in FIG. The refrigerant discharged from the compressor (30) exchanges heat with the indoor air in the indoor heat exchanger (24) and condenses while heating the indoor air. Thereafter, the liquid refrigerant is reduced in pressure by the second expansion valve (E2), becomes an intermediate-pressure refrigerant, and accumulates in the gas-liquid separator (23).

【0061】上記気液分離器(23)の中間圧冷媒のう
ち、中間圧液冷媒は、第1膨張弁(E1)で減圧された
後、室外熱交換器(22)において外気と熱交換して蒸発
する。その後、このガス冷媒は直接に圧縮機(30)に戻
り、この冷媒循環動作を行う。
Among the intermediate-pressure refrigerants in the gas-liquid separator (23), the intermediate-pressure liquid refrigerant is depressurized by the first expansion valve (E1), and then exchanges heat with the outside air in the outdoor heat exchanger (22). And evaporate. Thereafter, the gas refrigerant returns directly to the compressor (30), and performs the refrigerant circulation operation.

【0062】上述した空調運転時において、インジェク
ション管(2B)が設けられているので、気液分離器(2
3)の中間圧ガス冷媒が圧縮機(30)にインジェクショ
ンされる。
At the time of the air conditioning operation described above, since the injection pipe (2B) is provided, the gas-liquid separator (2B) is provided.
The intermediate-pressure gas refrigerant of 3) is injected into the compressor (30).

【0063】そこで、上記冷媒回路(20)における冷媒
の特性変化を図5に基づいて詳述する。
The change in the characteristics of the refrigerant in the refrigerant circuit (20) will be described in detail with reference to FIG.

【0064】先ず、上記圧縮機(30)における冷媒は、
E点の低圧状態からF点の凝縮圧力の高圧状態に圧縮さ
れる。この高圧ガス冷媒は、室外熱交換器(22)又は室
内熱交換器(24)で凝縮し、G点で高圧液冷媒になる。
この高圧液冷媒は、第1膨張弁(E1)又は第2膨張弁
(E2)でH点まで中間圧冷媒に減圧され、気液分離器
(23)に貯溜し、該気液分離器(23)で中間圧液冷媒と
中間圧ガス冷媒とに分離する。
First, the refrigerant in the compressor (30) is
It is compressed from the low pressure state at the point E to the high pressure state of the condensation pressure at the point F. This high-pressure gas refrigerant is condensed in the outdoor heat exchanger (22) or the indoor heat exchanger (24) and becomes a high-pressure liquid refrigerant at point G.
The high-pressure liquid refrigerant is reduced to an intermediate-pressure refrigerant at point H by the first expansion valve (E1) or the second expansion valve (E2), stored in the gas-liquid separator (23), and stored in the gas-liquid separator (23). ) To separate into intermediate-pressure liquid refrigerant and intermediate-pressure gas refrigerant.

【0065】この分離した中間圧ガス冷媒は、インジェ
クション管(2B)を介して圧縮機(30)(I点参照)に
インジェクションされる一方、中間圧液冷媒は、J点か
ら第2膨張弁(E2)又は第1膨張弁(E1)でK点まで低
圧二相冷媒に減圧される。この低圧二相冷媒は、室内熱
交換器(24)又は室外熱交換器(22)で蒸発し、E点に
変化して圧縮機(30)に戻る。
The separated intermediate-pressure gas refrigerant is injected into the compressor (30) (see the point I) via the injection pipe (2B), while the intermediate-pressure liquid refrigerant is supplied from the point J to the second expansion valve ( E2) or the first expansion valve (E1) reduces the pressure to the low-pressure two-phase refrigerant to point K. The low-pressure two-phase refrigerant evaporates in the indoor heat exchanger (24) or the outdoor heat exchanger (22), changes to point E, and returns to the compressor (30).

【0066】この結果、暖房運転時にあっては、凝縮器
となる室内熱交換器(24)を流れる冷媒は、中間圧ガス
冷媒が加わることから、冷媒循環量が増大し、暖房能力
が向上する。
As a result, during the heating operation, the refrigerant flowing through the indoor heat exchanger (24) serving as the condenser is added with the intermediate-pressure gas refrigerant, so that the refrigerant circulation amount increases, and the heating capacity is improved. .

【0067】一方、冷房運転時にあっては、K点の低圧
二相冷媒は、H点からJ点までのエンタルピが増大する
ので、室内熱交換器(24)で蒸発する冷媒の熱量が多く
なり、冷房能力が向上する。
On the other hand, during the cooling operation, the enthalpy of the low-pressure two-phase refrigerant at the point K from the point H to the point J increases, so that the amount of heat of the refrigerant evaporated in the indoor heat exchanger (24) increases. The cooling capacity is improved.

【0068】また、図6に示すように、X部分の動力が
削減されることになる。
Further, as shown in FIG. 6, the power of the X portion is reduced.

【0069】次に、上記圧縮機(30)の圧縮動作につい
て説明する。
Next, the compression operation of the compressor (30) will be described.

【0070】モータ(40)の駆動によって駆動軸(32)
が回転し、低段側圧縮機構(5L)及び高段側圧縮機構
(5H)のピストン(61)がブッシュ孔(63)の中心を支
点に揺動して公転する。そして、上記主冷媒回路(2M)
から戻る低圧ガス冷媒は、第1密閉室(3A)に流入す
る。特に、上記主冷媒回路(2M)はアキュムレータが設
けられていないので、室内熱交換器(24)又は室外熱交
換器(22)で蒸発した低圧冷媒が直接に第1密閉室(3
A)に流入する。
The driving shaft (32) is driven by driving the motor (40).
Rotates, and the pistons (61) of the low-stage compression mechanism (5L) and the high-stage compression mechanism (5H) swing around the center of the bush hole (63) as a fulcrum to revolve. And the main refrigerant circuit (2M)
The low-pressure gas refrigerant returned from flows into the first closed chamber (3A). In particular, since the main refrigerant circuit (2M) is not provided with an accumulator, the low-pressure refrigerant evaporated in the indoor heat exchanger (24) or the outdoor heat exchanger (22) is directly transferred to the first closed chamber (3).
A).

【0071】その後、上記低圧冷媒は、モータ(40)の
ステータ(41)とロータ(42)との間を通り、低圧液冷
媒は蒸発し、低圧通路(55)を経て低段側圧縮機構(5
L)の吸入通路(51)からシリンダ室(6s)に流入し、
上記ピストン(61)の揺動によって圧縮される。
Thereafter, the low-pressure refrigerant passes between the stator (41) and the rotor (42) of the motor (40), the low-pressure liquid refrigerant evaporates, and passes through the low-pressure passage (55) to the low-stage compression mechanism ( Five
L) from the suction passage (51) into the cylinder chamber (6s),
It is compressed by the swing of the piston (61).

【0072】一方、第2密閉室(3B)には、気液分離器
(23)から中間圧冷媒が供給されているので、低段側圧
縮機構(5L)の吐出弁は、シリンダ室(6s)内の冷媒圧
力が中間圧になると開口する。その後、低段側圧縮機構
(5L)から吐出した中間圧冷媒と気液分離器(23)から
供給された中間圧冷媒とは第2密閉室(3B)において合
流し、中間通路(56)を通り、高段側圧縮機構(5H)の
シリンダ室(6s)に流入する。
On the other hand, since the intermediate-pressure refrigerant is supplied from the gas-liquid separator (23) to the second closed chamber (3B), the discharge valve of the low-stage compression mechanism (5L) is connected to the cylinder chamber (6s). It opens when the refrigerant pressure in () becomes an intermediate pressure. Thereafter, the intermediate-pressure refrigerant discharged from the low-stage compression mechanism (5L) and the intermediate-pressure refrigerant supplied from the gas-liquid separator (23) merge in the second closed chamber (3B), and pass through the intermediate passage (56). Flows into the cylinder chamber (6s) of the high-stage compression mechanism (5H).

【0073】上記高段側圧縮機構(5H)においては、中
間圧冷媒を圧縮して高圧冷媒を下部マフラ(65)に吐出
する。この高圧冷媒は、高圧通路(57)を通り、主冷媒
回路(2M)に吐出する。この高圧冷媒は、上述したよう
に冷媒回路(20)を循環する。
The high-stage compression mechanism (5H) compresses the intermediate-pressure refrigerant and discharges the high-pressure refrigerant to the lower muffler (65). This high-pressure refrigerant passes through the high-pressure passage (57) and is discharged to the main refrigerant circuit (2M). This high-pressure refrigerant circulates through the refrigerant circuit (20) as described above.

【0074】−実施形態1の効果− したがって、本実施形態によれば、中間圧冷媒を低段側
圧縮機構(5L)と高段側圧縮機構(5H)との中間通路
(56)に供給するようにしたために、冷房能力や暖房能
力を向上させることができるので、COP(成績係数)
の向上を図ることができる。
According to the present embodiment, the intermediate-pressure refrigerant is supplied to the intermediate passage (56) between the low-stage compression mechanism (5L) and the high-stage compression mechanism (5H). As a result, the cooling capacity and the heating capacity can be improved, so that the COP (coefficient of performance) can be improved.
Can be improved.

【0075】また、冷媒を2段圧縮するので、該冷媒の
吐出温度の上昇を抑制することができる。
Further, since the refrigerant is compressed in two stages, an increase in the discharge temperature of the refrigerant can be suppressed.

【0076】また、第1密閉室(3A)にモータ(40)を
収納すると共に、気液分離しない低圧冷媒が流入するよ
うにしたために、該モータ(40)を確実に冷却すること
ができるので、モータ効率の向上を図ることができる。
Further, since the motor (40) is housed in the first closed chamber (3A) and the low-pressure refrigerant that does not separate gas and liquid flows therein, the motor (40) can be cooled reliably. Thus, the motor efficiency can be improved.

【0077】また、第2密閉室(3B)を中間圧雰囲気に
構成しているので、偏心軸部(62)の周り等が中間圧雰
囲気になり、低段側圧縮機構(5L)では低圧と中間圧と
の圧力差になり、高段側圧縮機構(5H)では高圧と中間
圧との圧力差になる。この結果、内部漏れを抑制するこ
とができることから、効率の向上を図ることができる。
Further, since the second closed chamber (3B) is configured to have an intermediate pressure atmosphere, the periphery of the eccentric shaft (62) and the like are in an intermediate pressure atmosphere, and the low stage side compression mechanism (5L) has a low pressure. It becomes the pressure difference between the intermediate pressure and the pressure difference between the high pressure and the intermediate pressure in the high-stage compression mechanism (5H). As a result, since internal leakage can be suppressed, efficiency can be improved.

【0078】また、潤滑油の温度を中間圧冷媒の温度に
することができるので、吸入過熱量を低減することがで
き、圧縮機効率の向上を図ることができる。
Further, since the temperature of the lubricating oil can be set to the temperature of the intermediate-pressure refrigerant, the amount of suction overheating can be reduced, and the efficiency of the compressor can be improved.

【0079】また、ピストン(61)とブレード(64)と
を一体にしたロータリ圧縮機を適用しているので、ロー
リングピストン型のロータリ圧縮機に比して、ブレード
(64)とピストン(61)とが接触することがない。よっ
て、ブレード(64)の摩耗を抑制することができる。
Further, since the rotary compressor in which the piston (61) and the blade (64) are integrated is applied, the blade (64) and the piston (61) are compared with the rolling piston type rotary compressor. Does not come into contact with Therefore, wear of the blade (64) can be suppressed.

【0080】特に、高段側圧縮機構(5H)においては、
吐出冷媒温度が上昇するものの、ブレード(64)の摩耗
がないことから、摩擦による影響がより確実に抑制する
ことができる。
In particular, in the high-stage compression mechanism (5H),
Although the temperature of the discharged refrigerant increases, there is no wear of the blade (64), so that the influence of friction can be more reliably suppressed.

【0081】この結果、上記摩耗による異物が冷媒回路
(20)中を流れることがなく、回路の閉塞等を確実に防
止することができる。
As a result, foreign matter due to the abrasion does not flow through the refrigerant circuit (20), and blockage of the circuit can be reliably prevented.

【0082】[0082]

【発明の実施の形態2】本実施形態は、図7に示すよう
に、低段側圧縮機構(5L)下方に、高段側圧縮機構(5
H)を上方に配置する一方、実施形態1の仕切部材(3
M)を省略してミドルプレート(6m)が仕切部材(3M)
を兼用するようにしたものである。
Embodiment 2 In this embodiment, as shown in FIG. 7, a lower stage compression mechanism (5L) is placed under a lower stage compression mechanism (5L).
H) is arranged upward, while the partition member (3
The middle plate (6m) is a partition member (3M), omitting M)
Is also used.

【0083】上記ミドルプレート(6m)は、外周面がケ
ーシング(31)の内周面に密接して設けられ、ケーシン
グ(31)の内部は、ミドルプレート(6m)の上方が第1
密閉室(3A)に、ミドルプレート(6m)の下方が第2密
閉室(3B)に区画されている。そして、上記第1密閉室
(3A)にはモータ(40)と高段側圧縮機構(5H)が収納
され、第2密閉室(3B)には低段側圧縮機構(5L)が収
納されている。
The middle plate (6m) is provided such that its outer peripheral surface is in close contact with the inner peripheral surface of the casing (31), and the inside of the casing (31) is the first plate above the middle plate (6m).
The lower part of the middle plate (6 m) is partitioned into a second closed chamber (3B) in the closed chamber (3A). The first closed chamber (3A) houses the motor (40) and the high-stage compression mechanism (5H), and the second closed chamber (3B) houses the low-stage compression mechanism (5L). I have.

【0084】上記低段側圧縮機構(5L)は下部プレート
(6d)とミドルプレート(6m)の間に形成され、高段側
圧縮機構(5H)はミドルプレート(6m)と上部プレート
(6u)の間に形成されている。そして、上記下部プレー
ト(6d)には、低段側圧縮機構(5L)の吐出通路(53)
が形成されると共に、下部マフラ(65)が設けられてい
る。
The lower stage compression mechanism (5L) is formed between the lower plate (6d) and the middle plate (6m), and the higher stage compression mechanism (5H) is formed between the middle plate (6m) and the upper plate (6u). Is formed between. The lower plate (6d) has a discharge passage (53) for the low-stage compression mechanism (5L).
And a lower muffler (65) is provided.

【0085】上記下部プレート(6d)と低段側シリンダ
(60)とミドルプレート(6m)と高段側シリンダ(60)
とに亘って中間通路(56)が上下方向に形成されてい
る。該中間通路(56)は、下部マフラ(65)と高段側圧
縮機構(5H)の吸入通路(52)に連通している。
The lower plate (6d), the lower cylinder (60), the middle plate (6m), and the higher cylinder (60)
An intermediate passage (56) is formed vertically. The intermediate passage (56) communicates with the lower muffler (65) and the suction passage (52) of the high-stage compression mechanism (5H).

【0086】上記ミドルプレート(6m)には、インジェ
クション管(2B)が接続され、該インジェクション管
(2B)は、中間通路(56)に連通すると共に、第2密閉
室(3B)に連通路(58)を介して連通し、第2密閉室
(3B)が中間圧雰囲気に構成されている。
An injection pipe (2B) is connected to the middle plate (6m), and the injection pipe (2B) communicates with the intermediate passage (56) and communicates with the second closed chamber (3B). 58), the second closed chamber (3B) is configured to have an intermediate pressure atmosphere.

【0087】一方、上記上部プレート(6u)には、高段
側圧縮機構(5H)の吐出通路(54)が形成されると共
に、該吐出通路(54)を覆う上部マフラ(66)が設け
られている。そして、上記高圧冷媒が上部マフラ(66)
を介して第1密閉室(3A)に吐出され、第2密閉室(3
B)が高圧雰囲気に構成されている。
On the other hand, a discharge passage (54) for the high-stage compression mechanism (5H) is formed in the upper plate (6u), and an upper muffler (66) for covering the discharge passage (54) is provided. ing. The high-pressure refrigerant is supplied to the upper muffler (66)
Is discharged to the first closed chamber (3A) through the second closed chamber (3A).
B) is configured in a high-pressure atmosphere.

【0088】そして、上記ケーシング(31)の上部に
は、第1密閉室(3A)に連通して吐出側冷媒配管(2d)
が接続され、低段側圧縮機構(5L)のシリンダ(60)に
は、吸入通路(51)に連通して吸入側冷媒配管(2r)が
接続されている。
Then, a discharge side refrigerant pipe (2d) communicating with the first closed chamber (3A) is provided above the casing (31).
The suction side refrigerant pipe (2r) is connected to the cylinder (60) of the low-stage compression mechanism (5L) so as to communicate with the suction passage (51).

【0089】また、上記ミドルプレート(6m)には、第
1密閉室(3A)から第2密閉室(3B)に潤滑油を戻す細
径通路(67)が設けられている。つまり、上記高段側圧
縮機構(5H)から吐出した潤滑油は、ミドルプレート
(6m)の上方に溜まるので、細径通路(67)は、この潤
滑油をケーシング(31)の下部の油溜め部(33)に戻す
ようにしている。
The middle plate (6m) is provided with a small-diameter passage (67) for returning lubricating oil from the first closed chamber (3A) to the second closed chamber (3B). That is, since the lubricating oil discharged from the high-stage compression mechanism (5H) accumulates above the middle plate (6m), the small-diameter passage (67) stores the lubricating oil in the lower oil reservoir in the casing (31). Return to section (33).

【0090】尚、上記駆動軸(32)の給油路(34)は、
ガス抜き孔が形成されておらず、ガス冷媒が封入された
まま、潤滑油を低段側圧縮機構(5L)及び高段側圧縮機
構(5H)の摺動箇所に供給するように構成されている。
The oil supply path (34) of the drive shaft (32) is
No gas vent hole is formed, and the lubricating oil is supplied to the sliding parts of the low-stage compression mechanism (5L) and the high-stage compression mechanism (5H) while the gas refrigerant is sealed. I have.

【0091】また、図8に示すように、冷媒回路(20)
は、四路切換弁(21)と圧縮機(30)との間にアキュム
レータ(25)が設けられ、該アキュムレータ(25)は、
気液分離した低圧ガス冷媒のみが圧縮機(30)に戻るよ
うに構成されている。その他の構成は実施形態1と同様
である。
As shown in FIG. 8, the refrigerant circuit (20)
Is provided with an accumulator (25) between the four-way switching valve (21) and the compressor (30), and the accumulator (25)
Only the low-pressure gas refrigerant that has been gas-liquid separated is configured to return to the compressor (30). Other configurations are the same as those of the first embodiment.

【0092】したがって、冷媒回路(20)からはアキュ
ムレータ(25)で気液分離された低圧ガス冷媒が低段側
圧縮機構(5L)に直接に流入することになる。そして、
該低段側圧縮機構(5L)で圧縮された中間圧冷媒は吐出
通路(53)から下部マフラ(65)に吐出し、中間通路
(56)を経て高段側圧縮機構(5H)の吸入通路(52)に
流れ、この中間通路(56)でインジェクション管(2B)
の中間圧冷媒が合流する。高段側圧縮機構(5H)から吐
出した高圧冷媒は上部マフラ(66)から第1密閉室(3
A)に吐出される。その後、上記高圧冷媒は、モータ(4
0)のステータ(41)とロータ(42)との間を通り、冷
媒回路(20)に流出し、該冷媒回路(20)を循環する。
その他の作用は実施形態1と同様である。
Therefore, the low-pressure gas refrigerant separated into gas and liquid by the accumulator (25) flows directly from the refrigerant circuit (20) into the low-stage compression mechanism (5L). And
The intermediate-pressure refrigerant compressed by the low-stage compression mechanism (5L) is discharged from the discharge passage (53) to the lower muffler (65), passes through the intermediate passage (56), and is sucked into the high-stage compression mechanism (5H). (52), and the injection pipe (2B) in this intermediate passage (56)
Of the intermediate-pressure refrigerants merge. The high-pressure refrigerant discharged from the high-stage compression mechanism (5H) flows from the upper muffler (66) to the first closed chamber (3H).
A) is discharged. Thereafter, the high-pressure refrigerant is supplied to the motor (4
0), flows between the stator (41) and the rotor (42), flows out to the refrigerant circuit (20), and circulates through the refrigerant circuit (20).
Other operations are the same as those of the first embodiment.

【0093】本実施形態によれば、実施形態1の効果に
加え、潤滑油が上記細径通路(67)を経てケーシング
(31)の底部に戻るので、油切れを確実に防止すること
ができる。
According to the present embodiment, in addition to the effect of the first embodiment, the lubricating oil returns to the bottom of the casing (31) via the small-diameter passage (67), so that the oil can be surely prevented from running out. .

【0094】また、上記給油路(34)にガス抜き孔を形
成しないので、流体の逆流を確実に防止することができ
る。その他の効果は実施形態1と同様である。
Further, since no gas vent hole is formed in the oil supply passage (34), backflow of the fluid can be reliably prevented. Other effects are the same as those of the first embodiment.

【0095】[0095]

【発明の実施の形態3】本実施形態は、図9に示すよう
に、実施形態1におけるシール手段(70)の変形例を示
している。該シール手段(70)は、駆動軸(32)におけ
る仕切部材(3M)の貫通部分に複数の環状溝(7a)が形
成されてラビリンスシールを構成している。このシール
手段(70)によって低圧雰囲気の第1密閉室(3A)と中
間圧雰囲気の第2密閉室(3B)との間がシールされてい
る。
Third Embodiment As shown in FIG. 9, this embodiment shows a modification of the sealing means (70) in the first embodiment. In the sealing means (70), a plurality of annular grooves (7a) are formed in a portion of the drive shaft (32) penetrating the partition member (3M) to form a labyrinth seal. The sealing means (70) seals the space between the first closed chamber (3A) in a low-pressure atmosphere and the second closed chamber (3B) in an intermediate-pressure atmosphere.

【0096】尚、図示しないが、駆動軸(32)と下部プ
レート(6d)との間には、スラスト軸受けが設けられて
いる。その他の構成並びに作用及び効果は実施形態1と
同様である。
Although not shown, a thrust bearing is provided between the drive shaft (32) and the lower plate (6d). Other configurations, operations and effects are the same as those of the first embodiment.

【0097】[0097]

【発明の実施の形態4】本実施形態は、図10に示すよ
うに、実施形態3におけるシール手段(70)の環状溝
(7a)に代えて、仕切部材(3M)に環状溝(7b)を設け
たものである。つまり、該シール手段(70)は、駆動軸
(32)が貫通する仕切部材(3M)の軸孔の内周面に複数
の環状溝(7b)が形成されてラビリンスシールを構成し
ている。このシール手段(70)によって低圧雰囲気の第
1密閉室(3A)と中間圧雰囲気の第2密閉室(3B)との
間がシールされている。その他の構成並びに作用及び効
果は実施形態3と同様である。
Fourth Embodiment In this embodiment, as shown in FIG. 10, instead of the annular groove (7a) of the sealing means (70) in the third embodiment, an annular groove (7b) is formed in the partition member (3M). Is provided. That is, the sealing means (70) forms a labyrinth seal by forming a plurality of annular grooves (7b) on the inner peripheral surface of the shaft hole of the partition member (3M) through which the drive shaft (32) passes. The sealing means (70) seals the space between the first closed chamber (3A) in a low-pressure atmosphere and the second closed chamber (3B) in an intermediate-pressure atmosphere. Other configurations, operations and effects are the same as those of the third embodiment.

【0098】[0098]

【発明の実施の形態5】本実施形態は、図11に示すよ
うに、実施形態3におけるシール手段(70)の環状溝
(7a)に代えて、摺動シール(7d)を設けたものであ
る。
Embodiment 5 In this embodiment, as shown in FIG. 11, a sliding seal (7d) is provided instead of the annular groove (7a) of the sealing means (70) in Embodiment 3. is there.

【0099】つまり、該シール手段(70)は、駆動軸
(32)における仕切部材(3M)の貫通部分に複数の環状
溝(7c)が形成されると共に、該各環状溝(7c)に摺動
シール(7d)が設けられて構成されている。このシール
手段(70)によって低圧雰囲気の第1密閉室(3A)と中
間圧雰囲気の第2密閉室(3B)との間がシールされてい
る。その他の構成並びに作用及び効果は実施形態3と同
様である。
That is, the sealing means (70) has a plurality of annular grooves (7 c) formed in the drive shaft (32) through the partition member (3 M) and slides into each of the annular grooves (7 c). A dynamic seal (7d) is provided. The sealing means (70) seals the space between the first closed chamber (3A) in a low-pressure atmosphere and the second closed chamber (3B) in an intermediate-pressure atmosphere. Other configurations, operations and effects are the same as those of the third embodiment.

【0100】[0100]

【発明の他の実施の形態】上記実施形態における低段側
圧縮機構(5L)及び高段側圧縮機構(5H)は、ピストン
(61)とブレード(64)とが一体に形成された、いわゆ
るスイング型のロータリ圧縮機を適用したが、本発明
は、ピストン(61)とブレード(64)とが分離したロー
リングピストン型のロータリ圧縮機を適用してもよい。
Another embodiment of the present invention is a so-called low-stage compression mechanism (5L) and high-stage compression mechanism (5H) in which a piston (61) and a blade (64) are integrally formed. Although the swing type rotary compressor is applied, the present invention may apply a rolling piston type rotary compressor in which the piston (61) and the blade (64) are separated.

【0101】また、低段側圧縮機構(5L)及び高段側圧
縮機構(5H)は、スクロール型圧縮機で構成してもよ
い。つまり、低段側圧縮機構(5L)及び高段側圧縮機構
(5H)は、図示しないが、鏡板の片面に渦巻状のラップ
が突出形成されてなる固定スクロールと可動スクロール
とが互いに噛み合うように配置され、上記可動スクロー
ルが公転のみ行って流体を圧縮するように構成されてい
る。
The low-stage compression mechanism (5L) and the high-stage compression mechanism (5H) may be constituted by scroll compressors. In other words, the low-stage compression mechanism (5L) and the high-stage compression mechanism (5H) are not shown in the drawing, but the fixed scroll and the movable scroll, each of which has a spiral wrap protrudingly formed on one side of the end plate, engage with each other. The orbiting scroll is arranged so as to revolve only to compress the fluid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1の圧縮機を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a compressor according to a first embodiment.

【図2】実施形態1を示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram showing the first embodiment.

【図3】低段側圧縮機構及び高段側圧縮機構を示す平面
断面図である。
FIG. 3 is a plan sectional view showing a low-stage compression mechanism and a high-stage compression mechanism.

【図4】シール手段を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a sealing means.

【図5】実施形態1の冷媒回路の冷媒特性を示すモリエ
ル線図である。
FIG. 5 is a Mollier chart showing refrigerant characteristics of the refrigerant circuit of the first embodiment.

【図6】実施形態1の圧縮機の圧力と容積との関係を示
す状態図である。
FIG. 6 is a state diagram showing a relationship between pressure and volume of the compressor of the first embodiment.

【図7】実施形態2の圧縮機を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing a compressor according to a second embodiment.

【図8】実施形態2を示す冷媒回路図である。FIG. 8 is a refrigerant circuit diagram showing Embodiment 2.

【図9】実施形態3のシール手段を示す要部の縦断面図
である。
FIG. 9 is a longitudinal sectional view of a main part showing a sealing unit of a third embodiment.

【図10】実施形態4のシール手段を示す要部の縦断面
図である。
FIG. 10 is a longitudinal sectional view of a main part showing a sealing means of a fourth embodiment.

【図11】実施形態5のシール手段を示す要部の縦断面
図である。
FIG. 11 is a longitudinal sectional view of a main part showing a sealing means of a fifth embodiment.

【符号の説明】[Explanation of symbols]

10 空気調和装置 20 冷媒回路 2B インジェクション管(導入管) 30 圧縮機 31 ケーシング 40 モータ 5L 低段側圧縮機構 5H 高段側圧縮機構 51,52 吸入通路 53,54 吐出通路 56 中間通路 60 シリンダ 61 ピストン 64 ブレード 70 シール手段 10 Air conditioner 20 Refrigerant circuit 2B Injection pipe (introduction pipe) 30 Compressor 31 Casing 40 Motor 5L Low stage compression mechanism 5H High stage compression mechanism 51, 52 Suction passage 53, 54 Discharge passage 56 Intermediate passage 60 Cylinder 61 Piston 64 Blade 70 Sealing means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ケーシング(31)に低段側圧縮機構(5
L)と高段側圧縮機構(5H)とが収納され、該両圧縮機
構(5L,5H)によって低圧流体を2段圧縮して高圧流体
を吐出する2段圧縮機において、 上記ケーシング(31)内に仕切部材(3M)が設けられて
該ケーシング(31)内が第1密閉室(3A)と第2密閉室
(3B)とに区画され、 上記第1密閉室(3A)は、モータ(40)が収納されると
共に、低圧流体の吸入管(2r)が接続されて低圧雰囲気
に構成され、 上記第2密閉室(3B)は、モータ(40)の駆動軸(32)
が仕切部材(3M)を貫通して延長され、該駆動軸(32)
に連結されて低段側圧縮機構(5L)と高段側圧縮機構
(5H)とが収納されると共に、低圧流体と高圧流体との
中間の中間圧流体を導入する導入管(2B)が連通して中
間圧雰囲気に構成され、 上記低段側圧縮機構(5L)の吸入口(51)は第1密閉室
(3A)に連通し、上記低段側圧縮機構(5L)の吐出口
(53)は第2密閉室(3B)に開口する一方、 上記高段側圧縮機構(5H)の吸入口(52)は第2密閉室
(3B)に連通し、上記高段側圧縮機構(5H)の吐出口
(54)は高圧流体の吐出管(2d)が連通していることを
特徴とする2段圧縮機。
A low-stage compression mechanism (5) is provided on a casing (31).
L) and the high-stage compression mechanism (5H) are housed, and the two-stage compression mechanism (5L, 5H) compresses the low-pressure fluid in two stages and discharges the high-pressure fluid. The casing (31) is partitioned into a first closed chamber (3A) and a second closed chamber (3B), and the first closed chamber (3A) is provided with a motor (3M). 40) is housed, and a low-pressure fluid suction pipe (2r) is connected to form a low-pressure atmosphere. The second closed chamber (3B) is provided with a drive shaft (32) of a motor (40).
Is extended through the partition member (3M) and the drive shaft (32)
The low-pressure side compression mechanism (5L) and the high-pressure side compression mechanism (5H) are housed and connected to an inlet pipe (2B) for introducing an intermediate pressure fluid between the low pressure fluid and the high pressure fluid. The suction port (51) of the low-stage compression mechanism (5L) communicates with the first closed chamber (3A), and the discharge port (53) of the low-stage compression mechanism (5L). ) Opens into the second closed chamber (3B), while the suction port (52) of the high-stage compression mechanism (5H) communicates with the second closed chamber (3B), and the high-stage compression mechanism (5H) The two-stage compressor characterized in that a discharge pipe (2d) of the high-pressure fluid communicates with a discharge port (54) of the compressor.
【請求項2】 ケーシング(31)に低段側圧縮機構(5
L)と高段側圧縮機構(5H)とが収納され、該両圧縮機
構(5L,5H)によって低圧流体を2段圧縮して高圧流体
を吐出する2段圧縮機において、 上記ケーシング(31)内に仕切部材(6m)が設けられて
該ケーシング(31)内が第1密閉室(3A)と第2密閉室
(3B)とに区画され、 該第1密閉室(3A)は、高段側圧縮機構(5H)が収納さ
れると共に、吐出管(2d)が接続されて高圧雰囲気に構
成され、 上記第2密閉室(3B)は、低段側圧縮機構(5L)が収納
されると共に、低圧流体と高圧流体との中間の中間圧流
体を導入する導入管(2B)が連通して中間圧雰囲気に構
成され、 上記低段側圧縮機構(5L)の吸入口(51)は低圧流体の
吸入管(2r)が連通し、上記低段側圧縮機構(5L)の吐
出口(53)は第2密閉室(3B)に開口する一方、 上記高段側圧縮機構(5H)の吸入口(52)は、仕切部材
(6m)を貫通すると共に上記導入管(2B)が連通する中
間通路(56)を介して低段側圧縮機構(5L)の吸入口
(51)に連通し、上記高段側圧縮機構(5H)の吐出口
(54)は第1密閉室(3A)に開口していることを特徴と
する2段圧縮機。
2. A low-stage compression mechanism (5) is provided on a casing (31).
L) and the high-stage compression mechanism (5H) are housed, and the two-stage compression mechanism (5L, 5H) compresses the low-pressure fluid in two stages and discharges the high-pressure fluid. The casing (31) is partitioned into a first closed chamber (3A) and a second closed chamber (3B), and the first closed chamber (3A) is The side compression mechanism (5H) is housed, and the discharge pipe (2d) is connected to form a high-pressure atmosphere. The second closed chamber (3B) houses the low-stage compression mechanism (5L). An introduction pipe (2B) for introducing an intermediate-pressure fluid intermediate between the low-pressure fluid and the high-pressure fluid is connected to form an intermediate-pressure atmosphere. The suction port (51) of the low-stage compression mechanism (5L) is connected to the low-pressure fluid. And the discharge port (53) of the low-stage compression mechanism (5L) opens to the second closed chamber (3B), while the high-stage compression mechanism The suction port (52) of the low-stage compression mechanism (5L) passes through an intermediate passage (56) that penetrates through the partition member (6m) and communicates with the introduction pipe (2B). ), Wherein the discharge port (54) of the high-stage compression mechanism (5H) is open to the first closed chamber (3A).
【請求項3】 請求項2記載の2段圧縮機において、 仕切部材(6m)には、第1密閉室(3A)から第2密閉室
(3B)に潤滑油を戻す細径通路(67)が設けられている
ことを特徴とする2段圧縮機。
3. A small-diameter passage (67) for returning lubricating oil from a first closed chamber (3A) to a second closed chamber (3B) in the partition member (6m). A two-stage compressor, comprising:
【請求項4】 請求項2記載の2段圧縮機において、 第1密閉室(3A)にはモータ(40)が収納され、該モー
タ(40)の駆動軸(32)は、高段側圧縮機構(5H)に連
結されると共に、仕切部材(6m)を貫通して第2密閉室
(3B)に延長されて低段側圧縮機構(5L)に連結され、 上記駆動軸(32)には、潤滑油の給油路(34)が形成さ
れ、該給油路(34)は、ガスが封入された状態で潤滑油
を供給するように構成されていることを特徴とする2段
圧縮機。
4. The two-stage compressor according to claim 2, wherein a motor (40) is housed in the first closed chamber (3A), and a drive shaft (32) of the motor (40) is a high-stage compression. While being connected to the mechanism (5H), it extends through the partition member (6m) to the second closed chamber (3B) and is connected to the low-stage compression mechanism (5L). A two-stage compressor, wherein a lubricating oil supply path (34) is formed, and the oil supply path (34) is configured to supply the lubricating oil in a state in which gas is sealed.
【請求項5】 請求項1記載の2段圧縮機において、 吐出管(2d)と吸入管(2r)の間には、熱源側熱交換器
(22)と第1膨張機構(E1)と気液分離器(23)と第2
膨張機構(E2)と利用側熱交換器(24)とが順に接続さ
れて冷媒が循環する冷媒回路(20)が接続され、 上記気液分離器(23)は中間圧冷媒を供給するように導
入管(2B)が接続される一方、 上記冷媒回路(20)は、一方の熱交換器(24)で蒸発し
た低圧冷媒がそのまま吸入管(2r)に供給されるように
構成されていることを特徴とする2段圧縮機。
5. The two-stage compressor according to claim 1, wherein a heat source side heat exchanger (22), a first expansion mechanism (E1), and a gas are provided between the discharge pipe (2d) and the suction pipe (2r). Liquid separator (23) and second
The expansion mechanism (E2) and the use-side heat exchanger (24) are connected in order to connect a refrigerant circuit (20) through which the refrigerant circulates. The gas-liquid separator (23) supplies an intermediate-pressure refrigerant. While the introduction pipe (2B) is connected, the refrigerant circuit (20) is configured such that the low-pressure refrigerant evaporated in the one heat exchanger (24) is supplied to the suction pipe (2r) as it is. A two-stage compressor.
【請求項6】 請求項2記載の2段圧縮機において、 吐出管(2d)と吸入管(2r)の間には、熱源側熱交換器
(22)と第1膨張機構(E1)と気液分離器(23)と第2
膨張機構(E2)と利用側熱交換器(24)とが順に接続さ
れて冷媒が循環する冷媒回路(20)が接続され、 上記気液分離器(23)は中間圧冷媒を供給するように導
入管(2B)が接続される一方、 上記冷媒回路(20)における吸入管(2r)の側には、ア
キュムレータ(25)が設けられていることを特徴とする
2段圧縮機。
6. The two-stage compressor according to claim 2, wherein a heat source side heat exchanger (22), a first expansion mechanism (E1), and a gas are provided between the discharge pipe (2d) and the suction pipe (2r). Liquid separator (23) and second
The expansion mechanism (E2) and the use-side heat exchanger (24) are connected in order to connect a refrigerant circuit (20) through which the refrigerant circulates. The gas-liquid separator (23) supplies an intermediate-pressure refrigerant. A two-stage compressor, wherein an inlet pipe (2B) is connected, and an accumulator (25) is provided on a side of the suction pipe (2r) in the refrigerant circuit (20).
JP22416198A 1998-08-07 1998-08-07 2-stage compressor Expired - Fee Related JP4151120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22416198A JP4151120B2 (en) 1998-08-07 1998-08-07 2-stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22416198A JP4151120B2 (en) 1998-08-07 1998-08-07 2-stage compressor

Publications (2)

Publication Number Publication Date
JP2000054975A true JP2000054975A (en) 2000-02-22
JP4151120B2 JP4151120B2 (en) 2008-09-17

Family

ID=16809496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22416198A Expired - Fee Related JP4151120B2 (en) 1998-08-07 1998-08-07 2-stage compressor

Country Status (1)

Country Link
JP (1) JP4151120B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001069087A1 (en) * 2000-03-15 2001-09-20 Sanyo Electric Co., Ltd. 2-cylinder, 2-stage compression type rotary compressor
KR100690892B1 (en) 2005-06-03 2007-03-09 엘지전자 주식회사 Capacity varying compressor and driving method thereof
JP2008082294A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Compressor and refrigerant circuit device
WO2008081899A1 (en) 2006-12-28 2008-07-10 Mitsubishi Heavy Industries, Ltd. Multistage compressor
EP1953388A1 (en) 2007-02-02 2008-08-06 Mitsubishi Heavy Industries, Ltd. Multistage compressor
JP2008248865A (en) * 2007-03-30 2008-10-16 Fujitsu General Ltd Injectible two-stage compression rotary compressor and heat pump system
WO2009014161A1 (en) 2007-07-25 2009-01-29 Mitsubishi Heavy Industries, Ltd. Multi-stage compressor
JP2010156226A (en) * 2008-12-26 2010-07-15 Sanyo Electric Co Ltd Rotary compressor
DE102011100300A1 (en) 2010-05-12 2011-11-17 Denso Corporation Two-stage pressure compressor
JP2012097755A (en) * 2012-01-12 2012-05-24 Fujitsu General Ltd Injection-corresponding two-stage compression rotary compressor
CN102767524A (en) * 2011-05-05 2012-11-07 广东美芝制冷设备有限公司 Air exhaust structure of compressor
WO2013152599A1 (en) * 2012-04-10 2013-10-17 国家节能环保制冷设备工程技术研究中心 Compressor, air conditioner system comprising the compressor and heat pump water heater system
CN103375405A (en) * 2012-04-26 2013-10-30 珠海格力电器股份有限公司 Compressor as well as air conditioning system and heat-pump water heater with same
CN103573624A (en) * 2013-10-31 2014-02-12 广东美芝制冷设备有限公司 Rotating compressor and refrigeration cycle device
CN104075493A (en) * 2013-03-27 2014-10-01 特灵空调系统(中国)有限公司 Exhaust gas temperature-controllable compression system and exhaust gas temperature control method thereof
CN107061283A (en) * 2017-01-24 2017-08-18 广东美芝制冷设备有限公司 Rotary compressor
CN107288879A (en) * 2016-03-31 2017-10-24 珠海凌达压缩机有限公司 A kind of low pressure chamber rotary compressor and its assembly method
KR20180053323A (en) * 2015-10-15 2018-05-21 그린 레프리저레이션 이큅먼트 엔지니어링 리서치 센터 오브 주하이 그리 씨오., 엘티디. Double Variable Capacity Compressor and Air Conditioning System Including It
WO2018216916A1 (en) * 2017-05-26 2018-11-29 엘지전자 주식회사 Rotary compressor
CN113464435A (en) * 2021-08-13 2021-10-01 珠海凌达压缩机有限公司 Compressor enthalpy-increasing assembly, compressor and air conditioning system
CN114811984A (en) * 2022-04-29 2022-07-29 珠海格力电器股份有限公司 Compressor and compressor air conditioning system

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6616428B2 (en) 2000-03-15 2003-09-09 Sanyo Electric Co., Ltd. Double-cylinder two-stage compression rotary compressor
WO2001069087A1 (en) * 2000-03-15 2001-09-20 Sanyo Electric Co., Ltd. 2-cylinder, 2-stage compression type rotary compressor
KR100690892B1 (en) 2005-06-03 2007-03-09 엘지전자 주식회사 Capacity varying compressor and driving method thereof
JP4556934B2 (en) * 2006-09-28 2010-10-06 三菱電機株式会社 Compressor and refrigerant circuit device
JP2008082294A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Compressor and refrigerant circuit device
WO2008081899A1 (en) 2006-12-28 2008-07-10 Mitsubishi Heavy Industries, Ltd. Multistage compressor
US7914267B2 (en) 2006-12-28 2011-03-29 Mitsubishi Heavy Industries, Ltd. Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism
US8037702B2 (en) 2007-02-02 2011-10-18 Mitsubishi Heavy Industries, Ltd. Multistage compressor
JP2008190377A (en) * 2007-02-02 2008-08-21 Mitsubishi Heavy Ind Ltd Multistage compressor
EP1953388A1 (en) 2007-02-02 2008-08-06 Mitsubishi Heavy Industries, Ltd. Multistage compressor
JP2008248865A (en) * 2007-03-30 2008-10-16 Fujitsu General Ltd Injectible two-stage compression rotary compressor and heat pump system
US8857211B2 (en) 2007-03-30 2014-10-14 Fujitsu General Limited Injectable two-staged rotary compressor and heat pump system
WO2009014161A1 (en) 2007-07-25 2009-01-29 Mitsubishi Heavy Industries, Ltd. Multi-stage compressor
JP2010156226A (en) * 2008-12-26 2010-07-15 Sanyo Electric Co Ltd Rotary compressor
DE102011100300A1 (en) 2010-05-12 2011-11-17 Denso Corporation Two-stage pressure compressor
CN102767524A (en) * 2011-05-05 2012-11-07 广东美芝制冷设备有限公司 Air exhaust structure of compressor
JP2012097755A (en) * 2012-01-12 2012-05-24 Fujitsu General Ltd Injection-corresponding two-stage compression rotary compressor
WO2013152599A1 (en) * 2012-04-10 2013-10-17 国家节能环保制冷设备工程技术研究中心 Compressor, air conditioner system comprising the compressor and heat pump water heater system
US10041482B2 (en) 2012-04-10 2018-08-07 National Engineering Research Center Of Green Refrigeration Equipment Compressor, air conditioner system comprising the compressor and heat pump water heater system
AU2012376626B2 (en) * 2012-04-10 2016-03-31 National Engineering Research Center Of Green Refrigeration Equipment Compressor, air conditioner system comprising the compressor and heat pump water heater system
CN103375405A (en) * 2012-04-26 2013-10-30 珠海格力电器股份有限公司 Compressor as well as air conditioning system and heat-pump water heater with same
CN104075493A (en) * 2013-03-27 2014-10-01 特灵空调系统(中国)有限公司 Exhaust gas temperature-controllable compression system and exhaust gas temperature control method thereof
CN103573624B (en) * 2013-10-31 2015-08-05 广东美芝制冷设备有限公司 Rotary compressor and refrigerating circulatory device
CN103573624A (en) * 2013-10-31 2014-02-12 广东美芝制冷设备有限公司 Rotating compressor and refrigeration cycle device
KR102045694B1 (en) * 2015-10-15 2019-11-15 그린 레프리저레이션 이큅먼트 엔지니어링 리서치 센터 오브 주하이 그리 씨오., 엘티디. Dual Variable Capacity Compressor and Air Conditioning System With The Same
KR20180053323A (en) * 2015-10-15 2018-05-21 그린 레프리저레이션 이큅먼트 엔지니어링 리서치 센터 오브 주하이 그리 씨오., 엘티디. Double Variable Capacity Compressor and Air Conditioning System Including It
CN107288879A (en) * 2016-03-31 2017-10-24 珠海凌达压缩机有限公司 A kind of low pressure chamber rotary compressor and its assembly method
CN107061283A (en) * 2017-01-24 2017-08-18 广东美芝制冷设备有限公司 Rotary compressor
WO2018216916A1 (en) * 2017-05-26 2018-11-29 엘지전자 주식회사 Rotary compressor
CN110678655A (en) * 2017-05-26 2020-01-10 Lg电子株式会社 Rotary compressor
CN113464435A (en) * 2021-08-13 2021-10-01 珠海凌达压缩机有限公司 Compressor enthalpy-increasing assembly, compressor and air conditioning system
CN114811984A (en) * 2022-04-29 2022-07-29 珠海格力电器股份有限公司 Compressor and compressor air conditioning system

Also Published As

Publication number Publication date
JP4151120B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
JP4151120B2 (en) 2-stage compressor
AU2005240929B2 (en) Rotary compressor
JP2000073974A (en) Two stage compressor and air conditioner
JP4367567B2 (en) Compressor and refrigeration equipment
JP2000087892A (en) Two-stage compressor and air conditioner
US7618245B2 (en) Fluid machine
WO2001022008A1 (en) Multi-stage compression refrigerating device
JP6291533B2 (en) High-pressure compressor and refrigeration cycle apparatus including the same
EP1215450A1 (en) Multi-stage compression refrigerating device
JP6605140B2 (en) Rotary compressor and refrigeration cycle apparatus
JP4591350B2 (en) Refrigeration equipment
JPH02230995A (en) Compressor for heat pump and operating method thereof
JPH08121364A (en) Rotary compressor and refrigerating device
JP2007146747A (en) Refrigerating cycle device
JP2007023993A (en) Two-stage compressor
JP5401899B2 (en) Refrigeration equipment
JP2007146663A (en) Sealed compressor and refrigerating cycle device
JP5338231B2 (en) Two-stage compressor
WO2021149180A1 (en) Compressor
JP6791234B2 (en) Multi-stage compression system
JP6791233B2 (en) Multi-stage compression system
JPH03260391A (en) Closed type rotary compressor
JP2003202161A (en) Freezing air conditioning device
US11953005B2 (en) Compressor having orbiting scroll supply hole to lubricate thrust surface
WO2023152799A1 (en) Compressor and refrigeration cycle device with said compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees