JP3863799B2 - Multi-stage rotary compressor - Google Patents

Multi-stage rotary compressor Download PDF

Info

Publication number
JP3863799B2
JP3863799B2 JP2002098556A JP2002098556A JP3863799B2 JP 3863799 B2 JP3863799 B2 JP 3863799B2 JP 2002098556 A JP2002098556 A JP 2002098556A JP 2002098556 A JP2002098556 A JP 2002098556A JP 3863799 B2 JP3863799 B2 JP 3863799B2
Authority
JP
Japan
Prior art keywords
compression
discharge port
rotary
discharge
rotary compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002098556A
Other languages
Japanese (ja)
Other versions
JP2003293973A (en
Inventor
兼三 松本
晴久 山崎
里  和哉
昌也 只野
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2002098556A priority Critical patent/JP3863799B2/en
Priority claimed from CNB031051715A external-priority patent/CN1318760C/en
Publication of JP2003293973A publication Critical patent/JP2003293973A/en
Application granted granted Critical
Publication of JP3863799B2 publication Critical patent/JP3863799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Description

【0001】
【発明の属する技術分野】
本発明は、第1の回転圧縮要素で圧縮されて吐出された冷媒ガスを第2の回転圧縮要素に吸引し、圧縮して吐出する多段圧縮式ロータリコンプレッサに関するものである。
【0002】
【従来の技術】
従来のこの種の多段圧縮式ロータリコンプレッサでは、例えば特開平2−294586号公報に示されるように、第1の回転圧縮要素の吸入ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となり、シリンダの高圧室側の吐出ポートより吐出される。そして、中間圧となった冷媒ガスは第2の回転圧縮要素の吸入ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側の吐出ポートより吐出される。そして、このコンプレッサから吐出された冷媒は、放熱器に流入し、放熱した後、膨張弁で絞られて蒸発器で吸熱し、第1の回転圧縮要素に吸入するサイクルを繰り返すものであった。
【0003】
係る多段圧縮式ロータリコンプレッサにおいて、第1及び第2の回転圧縮要素のシリンダと吐出消音室とは吐出ポートにて連通されている。この吐出消音室内には吐出ポートを開閉自在に閉塞する吐出弁が設けられている。この吐出弁は縦長略矩形状の金属板からなる弾性部材にて構成されており、吐出弁の一側が吐出ポートに当接して密閉すると共に、他側は吐出ポートと所定の間隔を存して設けられた取付孔にカシメピンにより固着されている。
【0004】
そして、シリンダで圧縮され、所定の圧力に達した冷媒ガスが、吐出ポートを閉じている吐出弁を押して吐出ポートを開き、吐出消音室へ吐出させる。そして、冷媒ガスの吐出が終了する時期になると、吐出弁が吐出ポートを閉塞する構成とされている。このとき、吐出ポート内には冷媒ガスが残留し、この残留した冷媒ガスはシリンダ内に戻り再膨張することになる。
【0005】
【発明が解決しようとする課題】
係る吐出ポートの残留冷媒の再膨張は圧縮効率の低下を招くが、この種多段圧縮式ロータリコンプレッサにおいては、従来より第1の回転圧縮要素の吐出ポートの面積S1と第2の回転圧縮要素の吐出ポートS2の面積の比S2/S1は、第1の回転圧縮要素の排除容積V1と第2の回転圧縮要素の排除容積V2の比V2/V1と一致するように第1の回転圧縮要素の吐出ポートの面積S1及び第2の回転圧縮要素の吐出ポートの面積S2を設定していた。
【0006】
一方、CO2を冷媒として使用する冷房、暖房、給湯機などの冷媒回路では、通常第2の回転圧縮要素の吐出圧力(2段目)は10MPa〜13MPaなどの極めて高い圧力に制御され、第2の回転圧縮要素の吐出ポートの体積流量は非常に少ない。そのため、第2の回転圧縮要素の吐出ポート面積を小さくしても、通路抵抗の影響は受け難い。
【0007】
本発明は、係る従来の状況を踏まえ、吐出圧力が高圧となるCO2冷媒を用いた多段圧縮式ロータリコンプレッサにおいて、各回転圧縮要素の排除容積比と吐出ポートの面積の比を適切とすることで、運転効率の改善を図ることを目的とする。
【0008】
【発明を解決するための手段】
即ち、本発明では密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮され、吐出されたCO2冷媒ガスを第2の回転圧縮要素に吸引し、圧縮して吐出する多段圧縮式ロータリコンプレッサにおいて、第1の回転圧縮要素の吐出ポート面積S1と第2の回転圧縮要素の吐出ポート面積S2の比S2/S1を、第1の回転圧縮要素の排除容積V1と第2の回転圧縮要素の排除容積V2の比V2/V1より小さく設定しているので、第2の回転圧縮要素の吐出ポートの面積S2をより小さくして、第2の回転圧縮要素の吐出ポート内に残留する高圧ガスの量を減らすことができるようになる。これにより、ロータリコンプレッサの運転効率の改善を促進できる。
【0009】
【発明の実施の形態】
次に、図面に基づき本発明の実施の形態を詳述する。図1は本発明の多段圧縮式ロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサの縦断面図である。
【0010】
図1において、10はCO2(二酸化炭素)を冷媒とする内部中間圧型多段圧縮式ロータリコンプレッサで、この多段圧縮式ロータリコンプレッサ10は、鋼板からなる円筒状の密閉容器12A、及びこの密閉容器12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで形成されるケースとしての密閉容器12と、この密閉容器12の容器本体12Aの内部空間の上側に配置収納された電動要素14と、この電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32及び第2の回転圧縮要素34からなる回転圧縮機構部18とにより構成されている。
【0011】
尚、密閉容器12は底部をオイル溜めとする。また、前記エンドキャップ12Bの上面中心には円形状の取付孔12Dが形成され、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0012】
電動要素14は、密閉容器12の上部空間の内面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の隙間を設けて挿入設置されたロータ24とからなる。そして、このロータ24には鉛直方向に延びる回転軸16が固定されている。
【0013】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式によって巻装されたステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0014】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が狭持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素は、中間仕切板36と、この中間仕切板36の上下に配置されたシリンダ38、40内を180度の異相差を有して回転軸16に設けられた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成される。
【0015】
また、上部支持部材54及び下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路図示せず)と、上部支持部材54及び下部支持部材56の凹陥部を壁としてのカバーによって閉塞することにより形成された吐出消音室62、64とが設けられている。即ち、吐出消音室62は当該吐出消音室62を画成する壁としての上部カバー66にて閉塞され、吐出消音室64は下部カバー68にて閉塞される。
【0016】
この場合、上部支持部材54の中央には軸受け54A起立形成されている。又、下部支持部材56の中央には軸受け56Aが貫通形成されており、回転軸16は上部支持部材54の軸受け54Aと下部支持部材56の軸受け56Aにて保持されいる。
【0017】
この場合、下部カバー68はドーナッツ状の円形鋼板から構成されており、周辺部の4カ所を主ボルト129・・・によって下から下部支持部材56に固定され、吐出ポート41にて第1の回転圧縮要素32の下シリンダ40内部と連通する吐出消音室64を画成する。この主ボルト129・・・の先端は上部支持部材54に螺合する。
【0018】
吐出消音室64の上面には、吐出ポート41を開閉可能に閉塞する吐出弁128が設けられている。この吐出弁128は縦長略矩形状の金属板からなる弾性部材にて構成されており、この吐出弁128の下側には吐出弁抑え板としての図示しないバッカーバルブが配置され、下部支持部材56に取り付けられており、吐出弁128の一側が吐出ポート41に当接して密閉すると共に、他側は吐出ポート41と所定の間隔を存して設けられた下部支持部材56の図示しない取付孔にカシメピンにより固着されている。
【0019】
そして、下シリンダ40内で圧縮され、所定の圧力に達した冷媒ガスが、図の上方から吐出ポート41を閉じている吐出弁128を押し下げて吐出ポート41を開き、吐出消音室64へ吐出させる。このとき、吐出弁128は他側を下部支持部材56に固着されているので吐出ポート41に当接している一側が反り上がり、吐出弁128の開き量を規制している図示しないバッカーバルブに当接する。冷媒ガスの吐出が終了する時期になると、吐出弁128がバッカーバルブから離れ、吐出ポート41を閉塞する。
【0020】
第1の回転圧縮要素32の吐出消音室64と密閉容器12内とは連通路にて連通されており、この連通路は上部カバー66、上下シリンダ38、40、中間仕切板36を貫通する図示しない孔である。この場合、連通路の上端には中間吐出管121が立設されており、この中間吐出管121から密閉容器12内に中間圧の冷媒が吐出される。
【0021】
また、上部カバー66は第2の回転圧縮要素34の上シリンダ38内部と吐出ポート39にて連通する吐出消音室62を画成し、この上部カバー66の上側には、上部カバー66と所定間隔を存して、電動要素14が設けられている。この上部カバー66は前記上部支持部材54の軸受け54Aが貫通する孔が形成された略ドーナッツ状の円形鋼板から構成されており、周辺部が4本の主ボルト78・・・により、上から上部支持部材54に固定されている。この主ボルト78・・・の先端は下部支持部材56に螺合する。
【0022】
尚、吐出消音室62の下面には、吐出ポート39を開閉可能に閉塞する吐出弁127が設けられている。この吐出弁127は縦長略矩形状の金属板からなる弾性部材にて構成されており、この吐出弁127の上側には前述する吐出弁128と同様に吐出弁抑え板としての図示しないバッカーバルブが配置され、上部支持部材54に取り付けられている。そして、吐出弁127の一側が吐出ポート39に当接して密閉すると共に、他側は吐出ポート39と所定の間隔を存して設けられた上部支持部材54の図示しない取付孔にカシメピンにより固着されている。
【0023】
そして、上シリンダ38内で圧縮され、所定の圧力に達した冷媒ガスが、図の下方から吐出ポート39を閉じている吐出弁127を押し上げて吐出ポート39を開き、吐出消音室62へ吐出させる。このとき、吐出弁127は他側を上部支持部材54に固着されているので吐出ポート39に当接している一側が反り上がり、吐出弁127の開き量を規制している図示しないバッカーバルブに当接する。冷媒ガスの吐出が終了する時期になると、吐出弁127がバッカーバルブから離れ、吐出ポート39を閉塞する。
【0024】
ここで本発明では、第2の回転圧縮要素34の吐出ポート39の面積S2及び第1の回転圧縮要素32の吐出ポート41の面積S1の比S2/S1は、前記第1の回転圧縮要素32の排除容積V1と第2の回転圧縮要素34の排除容積V2の比V2/V1より小さく、例えば比S2/S1を、比V2/V1の0.55倍以上0.85倍以下に設定している。
【0025】
従って、第2の回転圧縮要素34の吐出ポート39の面積が小さくなるので、吐出ポート39内に残留する高圧の冷媒ガスの量を減らすことができるようになる。
【0026】
即ち、吐出ポート39内に残留する高圧の冷媒ガスの量が少なくできることにより、吐出ポート39からシリンダ38内に戻り、再膨張する冷媒ガスの量を減らすことができるようになるので、第2の回転圧縮要素34における圧縮効率を改善し、ロータリコンプレッサの性能を大幅に向上させることができるようになる。
【0027】
尚、第2の回転圧縮要素34の吐出ポート39における体積流量は非常に少ないが、吐出ポート39の通路抵抗を極力抑えて、冷媒の流通が著しく阻害されないように、第1の回転圧縮要素32の吐出ポート41の面積S1と第2の回転圧縮要素34の吐出ポート39の面積S2の比S2/S1を、第1の回転圧縮要素32の排除容積V1と第2の回転圧縮要素34の排除容積V2の比V2/V1の0.55倍以上0.85倍以下に設定している。これにより、通路抵抗の増大による冷媒流通の悪化よりも吐出ポート39内に残留して再膨張することによる冷媒ガスの圧力損失の低減による効果の方が勝るようになるので、コンプレッサの性能の向上を図ることができるようになる。
【0028】
一方、上下シリンダ38、40内にはベーン50、52を収納する図示しない案内溝と、この案内溝の外側に位置してバネ部材としてのスプリング76、78を収納する収納部70、72が形成されている。この収納部70、72は案内溝側と密閉容器12(容器本体12A)側に開口している。前記スプリング76、78はベーン50、52の外側端部に当接し、常時ベーン50、52をローラ46、48側に付勢する。そして、このスプリング76、78の密閉容器12側の収納部70、72内には金属製のプラグ137、140が設けられ、スプリング76、78の抜け止めの役目を果たす。
【0029】
尚、前述の如く冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前記CO2(二酸化炭素)使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。
【0030】
以上の構成で次に動作を説明する。ターミナル20及び図示されない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けられた上下偏心部42、44に嵌合されて上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0031】
これにより、下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートから下シリンダ40の低圧室側に吸入された低圧の冷媒は、下ローラ48と下ベーン52の動作により圧縮されて中間圧となる。これにより吐出消音室64内に設けられた吐出弁128が開放され、吐出消音室64と吐出ポート41とが連通するため、下シリンダ40の高圧室側から吐出ポート41内を通り下部支持部材56に形成された吐出消音室64に吐出される。吐出消音室64内に吐出された冷媒ガスは図示しない連通孔を経て中間吐出管121から密閉容器12内に吐出される。
【0032】
そして、密閉容器12内の中間圧の冷媒ガスは、図示しない冷媒通路を通って、上部支持部材54に形成された図示しない吸込通路を経由して図示しない吸込ポートから上シリンダ38の低圧室側に吸入される。吸入された中間圧の冷媒ガスは、上ローラ46と上べーン50の動作により2段目の圧縮が行われて高温高圧の冷媒ガスとなる。これにより吐出消音室62内に設けられた吐出弁127が開放され、吐出消音室62と吐出ポート39とが連通するため、上シリンダ38の高圧室側から吐出ポート39内を通り上部支持部材54に形成された吐出消音室62に吐出される。
【0033】
そして、吐出消音室62に吐出された高圧の冷媒ガスは図示しない冷媒通路を通って多段圧縮式ロータリコンプレッサ10の外部に設けられた冷媒回路の図示しない放熱器に流入する。
【0034】
放熱器に流入した冷媒はここで放熱して加熱作用を発揮する。放熱器を出た冷媒は冷媒回路の図示しない減圧装置(膨張弁など)で減圧された後、これも図示しない蒸発器に入り、そこで蒸発する。そして、最終的には第1の回転圧縮要素32の吸込通路60に吸い込まれる循環を繰り返す。
【0035】
このように、第1の回転圧縮要素32の吐出ポート41の面積S1と第2の回転圧縮要素34の吐出ポート39の面積S2の比S2/S1を、第1の回転圧縮要素32の排除容積V1と第2の回転圧縮要素34の排除容積V2の比V2/V1より小さく設定するものとしたので、第2の回転圧縮要素34の吐出ポート39の面積S2を更に小さくして、吐出ポート39内に残留する冷媒ガスの量を減らすことができるようになる。
【0036】
これにより、第2の回転圧縮要素34の吐出ポート39内の冷媒ガスの再膨張量を少なくすることが可能となり、高圧ガスの再膨張による圧力損失を低減することができるようになるため、多段圧縮式ロータリコンプレッサの性能を大幅に向上させることができるようになる。
【0037】
尚、実施例では第1の回転圧縮要素32の吐出ポート41の面積S1と第2の回転圧縮要素34の吐出ポート41の面積S2の比S2/S1を、第1の回転圧縮要素32の排除容積V1と第2の回転圧縮要素34の排除容積V2の比V2/V1の0.55倍以上0.85倍以下としたが、これに限らず、第1の回転圧縮要素32の吐出ポート41の面積S1と第2の回転圧縮要素34の吐出ポート41の面積S2の比S2/S1を、第1の回転圧縮要素32の排除容積V1と第2の回転圧縮要素34の排除容積V2の比V2/V1より小さくすれば上述のような効果が期待できる。
【0038】
また、冷媒流量が少ない状況下、例えば寒冷地でロータリコンプレッサ10が用いられる場合においては、第1の回転圧縮要素32の吐出ポート41の面積S1と第2の回転圧縮要素34の吐出ポート41の面積S2の比S2/S1を、第1の回転圧縮要素32の排除容積V1と第2の回転圧縮要素34の排除容積V2の比V2/V1の0.55倍以上067倍以下に設定して、第2の回転圧縮要素34の吐出ポート39内に残留する冷媒ガス量を更に少なくすることで一層の効果が得られる。
【0039】
一方、冷媒流量が多い状況下、例えば温暖な地域でコンプレッサが用いられる場合には、第1の回転圧縮要素32の吐出ポート41の面積S1と第2の回転圧縮要素34の吐出ポート41の面積S2の比S2/S1を、第1の回転圧縮要素32の排除容積V1と第2の回転圧縮要素34の排除容積V2の比V2/V1の0.69以上0.85以下に設定して、第2の回転圧縮要素の通路抵抗の増大を極力抑えて、コンプレッサの性能の向上を図ることがきるようになる。
【0040】
尚、実施例では回転軸16を縦置型とした多段圧縮式ロータリコンプレッサ10について説明したが、この発明は回転軸を横置型とした多段圧縮式ロータリコンプレッサにも適応できることは言うまでもない。
【0041】
更に、多段圧縮式ロータリコンプレッサを第1及び第2の回転圧縮要素を備えた2段圧縮式ロータリコンプレッサで説明したが、これに限らず回転圧縮要素を3段、4段或いはそれ以上の回転圧縮要素を備えた多段圧縮式ロータリコンプレッサに適応しても差し支えない。
【0042】
【発明の効果】
以上詳述した如く本発明によれば、第2の回転圧縮要素の吐出ポートの面積S2をより小さくして、第2の回転圧縮要素の吐出ポート内に残留する高圧ガスの量を減らすことができるようになる。
【0043】
これにより、第2の回転圧縮要素の吐出ポート内の冷媒ガスの再膨張量を少なくすることが可能となり、高圧ガスの再膨張による圧縮効率の低下を抑制できる。一方、第2の回転圧縮要素の吐出ポートにおける冷媒ガスの体積流量は非常に少ないので、吐出ポートにおける通路抵抗の増大による損失よりも残留ガスの再膨張の削減による効率向上が上回るため、総じてロータリコンプレッサの運転効率の改善が達成されるものである。
【図面の簡単な説明】
【図1】 本発明の実施例の多段圧縮式ロータリコンプレッサの縦断面図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
12 密閉容器
14 電動要素
16 回転軸
18 回転圧縮機構部
20 ターミナル
22 ステータ
24 ロータ
26 積層体
28 ステータコイル
30 積層体
32 第1の回転圧縮要素
34 第2の回転圧縮要素
38、40 シリンダ
39、41 吐出ポート
54 上部支持部材
56 下部支持部材
62、64 吐出消音室
66 上部カバー
68 下部カバー
127、128 吐出弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multistage compression rotary compressor that draws refrigerant gas compressed and discharged by a first rotary compression element into a second rotary compression element, compresses and discharges the refrigerant gas.
[0002]
[Prior art]
In a conventional multistage compression rotary compressor of this type, for example, as disclosed in Japanese Patent Laid-Open No. 2-294586, refrigerant gas is sucked from the suction port of the first rotary compression element into the low pressure chamber side of the cylinder, It is compressed by the vane operation to become an intermediate pressure, and is discharged from the discharge port on the high pressure chamber side of the cylinder. Then, the refrigerant gas having an intermediate pressure is sucked from the suction port of the second rotary compression element to the low pressure chamber side of the cylinder, and the second stage compression is performed by the operation of the roller and the vane to become a high temperature and high pressure refrigerant gas. And discharged from the discharge port on the high pressure chamber side. Then, the refrigerant discharged from the compressor flows into the radiator, dissipates heat, is throttled by the expansion valve, absorbs heat by the evaporator, and repeats a cycle of sucking into the first rotary compression element.
[0003]
In such a multistage compression rotary compressor, the cylinders of the first and second rotary compression elements and the discharge silencer chamber are communicated with each other through a discharge port. A discharge valve for closing and opening the discharge port is provided in the discharge silencer chamber. This discharge valve is made of an elastic member made of a vertically long, substantially rectangular metal plate. One side of the discharge valve is in contact with the discharge port to be sealed, and the other side has a predetermined distance from the discharge port. It is fixed to the provided mounting hole with caulking pins.
[0004]
Then, the refrigerant gas that has been compressed by the cylinder and has reached a predetermined pressure pushes the discharge valve that closes the discharge port to open the discharge port, and discharges it to the discharge silencer chamber. Then, when the discharge of the refrigerant gas ends, the discharge valve closes the discharge port. At this time, refrigerant gas remains in the discharge port, and the remaining refrigerant gas returns into the cylinder and re-expands.
[0005]
[Problems to be solved by the invention]
The re-expansion of the residual refrigerant in the discharge port causes a reduction in compression efficiency. In this type of multistage compression rotary compressor, the area S1 of the discharge port of the first rotary compression element and the second rotary compression element The ratio S2 / S1 of the area of the discharge port S2 is equal to the ratio V2 / V1 of the displacement volume V1 of the first rotation compression element and the displacement volume V2 of the second rotation compression element. The area S1 of the discharge port and the area S2 of the discharge port of the second rotary compression element were set.
[0006]
On the other hand, in refrigerant circuits such as cooling, heating, and water heaters that use CO 2 as a refrigerant, the discharge pressure (second stage) of the second rotary compression element is normally controlled to an extremely high pressure such as 10 MPa to 13 MPa. The volumetric flow rate at the discharge port of the rotary compression element 2 is very small. Therefore, even if the discharge port area of the second rotary compression element is reduced, it is not easily affected by the passage resistance.
[0007]
In the multistage compression rotary compressor using a CO 2 refrigerant having a high discharge pressure, the present invention makes appropriate the ratio of the excluded volume ratio of each rotary compression element to the area of the discharge port in view of the conventional situation. The purpose is to improve driving efficiency.
[0008]
[Means for Solving the Invention]
That is, according to the present invention, an electric element and a first and a second rotary compression element driven by the electric element are provided in a sealed container, and the compressed CO 2 refrigerant gas is discharged by being compressed by the first rotary compression element. In the multi-stage compression rotary compressor that sucks the air into the second rotary compression element and compresses and discharges it, the ratio S2 / of the discharge port area S1 of the first rotary compression element and the discharge port area S2 of the second rotary compression element Since S1 is set smaller than the ratio V2 / V1 of the displacement volume V1 of the first rotational compression element and the displacement volume V2 of the second rotational compression element, the area S2 of the discharge port of the second rotational compression element is This makes it possible to reduce the amount of high-pressure gas remaining in the discharge port of the second rotary compression element. Thereby, improvement of the operation efficiency of a rotary compressor can be promoted.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor having first and second rotary compression elements 32 and 34 as an embodiment of the multi-stage compression rotary compressor of the present invention.
[0010]
In FIG. 1, reference numeral 10 denotes an internal intermediate pressure multistage compression rotary compressor using CO 2 (carbon dioxide) as a refrigerant. The multistage compression rotary compressor 10 includes a cylindrical sealed container 12A made of a steel plate, and the sealed container 12A. A sealed container 12 as a case formed by a substantially bowl-shaped end cap (lid) 12B that closes the upper opening of the container, and an electric element disposed and housed above the internal space of the container body 12A of the sealed container 12 14 and a rotary compression mechanism portion 18 that is arranged below the electric element 14 and that includes the first rotary compression element 32 and the second rotary compression element 34 that are driven by the rotary shaft 16 of the electric element 14. Has been.
[0011]
The closed container 12 has an oil reservoir at the bottom. A circular attachment hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring is omitted) 20 for supplying electric power to the electric element 14 is attached to the attachment hole 12D.
[0012]
The electric element 14 includes a stator 22 that is annularly attached along the inner surface of the upper space of the hermetic container 12, and a rotor 24 that is inserted and installed with a slight gap inside the stator 22. A rotating shaft 16 extending in the vertical direction is fixed to the rotor 24.
[0013]
The stator 22 includes a laminate 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminate 26 by a direct winding (concentrated winding) method. Similarly to the stator 22, the rotor 24 is also formed by a laminated body 30 of electromagnetic steel plates, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0014]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element have an intermediate partition plate 36 and cylinders 38 and 40 disposed above and below the intermediate partition plate 36 with a 180-degree difference in phase. Upper and lower rollers 46 and 48 that are fitted to upper and lower eccentric portions 42 and 44 provided on the rotary shaft 16 and rotate eccentrically, and the upper and lower cylinders 38 and 40 are in contact with the upper and lower rollers 46 and 48, respectively, to the low pressure chamber side. The upper support member 54 and the lower support serving as support members that also serve as bearings for the rotating shaft 16 by closing the upper opening surface of the upper cylinder 38 and the lower cylinder 40 by closing the vanes 50 and 52 partitioned on the high pressure chamber side. The member 56 is used.
[0015]
The upper support member 54 and the lower support member 56 include a suction passage 60 (not shown) on the upper and lower cylinders 38 and 40 through suction ports (not shown), an upper support member 54 and an upper support member 54, respectively. Discharge silencing chambers 62 and 64 formed by closing the recessed portions of the lower support member 56 with a cover as a wall are provided. In other words, the discharge silencer chamber 62 is closed by the upper cover 66 as a wall that defines the discharge silencer chamber 62, and the discharge silencer chamber 64 is closed by the lower cover 68.
[0016]
In this case, a bearing 54 </ b> A is erected at the center of the upper support member 54. A bearing 56A is formed through the center of the lower support member 56, and the rotary shaft 16 is held by a bearing 54A of the upper support member 54 and a bearing 56A of the lower support member 56.
[0017]
In this case, the lower cover 68 is made of a donut-shaped circular steel plate, and is fixed to the lower support member 56 from below by main bolts 129... A discharge silencing chamber 64 communicating with the inside of the lower cylinder 40 of the compression element 32 is defined. The front ends of the main bolts 129 are screwed into the upper support member 54.
[0018]
A discharge valve 128 that closes the discharge port 41 so as to be openable and closable is provided on the upper surface of the discharge silencer chamber 64. The discharge valve 128 is composed of an elastic member made of a vertically long, substantially rectangular metal plate. A backer valve (not shown) serving as a discharge valve restraining plate is disposed below the discharge valve 128, and the lower support member 56. One side of the discharge valve 128 is in contact with the discharge port 41 to be sealed, and the other side is attached to a mounting hole (not shown) of the lower support member 56 provided at a predetermined distance from the discharge port 41. It is fixed with caulking pins.
[0019]
Then, the refrigerant gas that has been compressed in the lower cylinder 40 and has reached a predetermined pressure pushes down the discharge valve 128 that closes the discharge port 41 from the upper side of the drawing to open the discharge port 41 and discharge the refrigerant gas into the discharge silencer chamber 64. . At this time, since the other side of the discharge valve 128 is fixed to the lower support member 56, one side contacting the discharge port 41 is warped, and the discharge valve 128 contacts a backer valve (not shown) that regulates the opening amount of the discharge valve 128. Touch. When it is time to finish the discharge of the refrigerant gas, the discharge valve 128 is separated from the backer valve, and the discharge port 41 is closed.
[0020]
The discharge silencer chamber 64 of the first rotary compression element 32 and the inside of the sealed container 12 are communicated with each other through a communication path. The communication path passes through the upper cover 66, the upper and lower cylinders 38 and 40, and the intermediate partition plate 36. Not a hole. In this case, an intermediate discharge pipe 121 is erected at the upper end of the communication path, and an intermediate pressure refrigerant is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0021]
The upper cover 66 defines a discharge silencing chamber 62 that communicates with the inside of the upper cylinder 38 of the second rotary compression element 34 at the discharge port 39. The electric element 14 is provided. The upper cover 66 is formed of a substantially donut-shaped circular steel plate in which a hole through which the bearing 54A of the upper support member 54 passes is formed, and the peripheral portion is formed by four main bolts 78. It is fixed to the support member 54. The front ends of the main bolts 78 are screwed into the lower support member 56.
[0022]
A discharge valve 127 that closes the discharge port 39 so as to be openable and closable is provided on the lower surface of the discharge silencer chamber 62. The discharge valve 127 is composed of an elastic member made of a vertically long, substantially rectangular metal plate, and a backer valve (not shown) serving as a discharge valve restraining plate is disposed on the upper side of the discharge valve 127 in the same manner as the discharge valve 128 described above. Disposed and attached to the upper support member 54. One side of the discharge valve 127 abuts against the discharge port 39 to be sealed, and the other side is fixed to a mounting hole (not shown) of the upper support member 54 provided at a predetermined distance from the discharge port 39 by a caulking pin. ing.
[0023]
Then, the refrigerant gas that has been compressed in the upper cylinder 38 and has reached a predetermined pressure pushes up the discharge valve 127 that closes the discharge port 39 from below in the drawing to open the discharge port 39 and discharge it to the discharge silencing chamber 62. . At this time, since the other side of the discharge valve 127 is fixed to the upper support member 54, one side in contact with the discharge port 39 is warped, and the discharge valve 127 contacts a backer valve (not shown) that regulates the opening amount of the discharge valve 127. Touch. When it is time to finish the discharge of the refrigerant gas, the discharge valve 127 is separated from the backer valve, and the discharge port 39 is closed.
[0024]
Here, in the present invention, the ratio S2 / S1 of the area S2 of the discharge port 39 of the second rotary compression element 34 and the area S1 of the discharge port 41 of the first rotary compression element 32 is the first rotary compression element 32. Is smaller than the ratio V2 / V1 of the excluded volume V1 of the second rotary compression element 34, for example, the ratio S2 / S1 is set to 0.55 times or more and 0.85 times or less of the ratio V2 / V1 Yes.
[0025]
Accordingly, since the area of the discharge port 39 of the second rotary compression element 34 is reduced, the amount of high-pressure refrigerant gas remaining in the discharge port 39 can be reduced.
[0026]
That is, since the amount of high-pressure refrigerant gas remaining in the discharge port 39 can be reduced, the amount of refrigerant gas that returns from the discharge port 39 into the cylinder 38 and re-expands can be reduced. The compression efficiency in the rotary compression element 34 can be improved, and the performance of the rotary compressor can be greatly improved.
[0027]
Although the volume flow rate at the discharge port 39 of the second rotary compression element 34 is very small, the passage resistance of the discharge port 39 is suppressed as much as possible so that the flow of the refrigerant is not significantly inhibited. The ratio S2 / S1 of the area S1 of the discharge port 41 and the area S2 of the discharge port 39 of the second rotary compression element 34 is determined by the exclusion volume V1 of the first rotary compression element 32 and the exclusion of the second rotary compression element 34. The ratio V2 / V1 of the volume V2 is set to 0.55 times or more and 0.85 times or less. As a result, the effect of reducing the pressure loss of the refrigerant gas by remaining in the discharge port 39 and re-expanding is better than the deterioration of the refrigerant flow due to an increase in passage resistance. Can be planned.
[0028]
On the other hand, guide grooves (not shown) for storing the vanes 50 and 52 and storage portions 70 and 72 for storing springs 76 and 78 as spring members are formed outside the guide grooves in the upper and lower cylinders 38 and 40, respectively. Has been. The storage portions 70 and 72 are open to the guide groove side and the closed container 12 (container body 12A) side. The springs 76 and 78 are in contact with the outer ends of the vanes 50 and 52, and always bias the vanes 50 and 52 toward the rollers 46 and 48. Metal plugs 137 and 140 are provided in the storage portions 70 and 72 of the springs 76 and 78 on the sealed container 12 side, and serve to prevent the springs 76 and 78 from coming off.
[0029]
As described above, the refrigerant is environmentally friendly, uses the above-mentioned CO 2 (carbon dioxide) which is a natural refrigerant in consideration of flammability and toxicity, and the oil as the lubricating oil is, for example, mineral oil (mineral oil) Existing oils such as alkylbenzene oil, ether oil and ester oil are used.
[0030]
Next, the operation of the above configuration will be described. When the stator coil 28 of the electric element 14 is energized through the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 are eccentrically rotated in the upper and lower cylinders 38 and 40 by being fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16.
[0031]
As a result, the low-pressure refrigerant sucked into the low-pressure chamber side of the lower cylinder 40 from the suction port (not shown) via the suction passage 60 formed in the lower support member 56 is compressed by the operations of the lower roller 48 and the lower vane 52. It becomes an intermediate pressure. As a result, the discharge valve 128 provided in the discharge silencer chamber 64 is opened, and the discharge silencer chamber 64 and the discharge port 41 communicate with each other. Therefore, the lower support member 56 passes through the discharge port 41 from the high pressure chamber side of the lower cylinder 40. The ink is discharged into a discharge silencer chamber 64 formed in the above. The refrigerant gas discharged into the discharge silencer chamber 64 is discharged from the intermediate discharge pipe 121 into the sealed container 12 through a communication hole (not shown).
[0032]
Then, the intermediate-pressure refrigerant gas in the sealed container 12 passes through a refrigerant passage (not shown), passes through a suction passage (not shown) formed in the upper support member 54, and passes from a suction port (not shown) to the low pressure chamber side of the upper cylinder 38. Inhaled. The sucked intermediate pressure refrigerant gas is compressed at the second stage by the operation of the upper roller 46 and the upper vane 50 to become a high-temperature and high-pressure refrigerant gas. As a result, the discharge valve 127 provided in the discharge silencer chamber 62 is opened, and the discharge silencer chamber 62 and the discharge port 39 communicate with each other. Therefore, the upper support member 54 passes through the discharge port 39 from the high pressure chamber side of the upper cylinder 38. Is discharged into the discharge silencer chamber 62 formed in the above.
[0033]
The high-pressure refrigerant gas discharged into the discharge silencer chamber 62 flows through a refrigerant passage (not shown) into a radiator (not shown) of a refrigerant circuit provided outside the multistage compression rotary compressor 10.
[0034]
The refrigerant flowing into the radiator dissipates heat here and exerts a heating action. The refrigerant exiting the radiator is depressurized by a decompression device (such as an expansion valve) (not shown) of the refrigerant circuit, and then enters the evaporator (not shown) and evaporates there. Finally, the circulation sucked into the suction passage 60 of the first rotary compression element 32 is repeated.
[0035]
In this way, the ratio S2 / S1 between the area S1 of the discharge port 41 of the first rotary compression element 32 and the area S2 of the discharge port 39 of the second rotary compression element 34 is determined as an excluded volume of the first rotary compression element 32. Since it is set to be smaller than the ratio V2 / V1 of the displacement volume V2 of V1 and the second rotary compression element 34, the area S2 of the discharge port 39 of the second rotary compression element 34 is further reduced to reduce the discharge port 39. The amount of refrigerant gas remaining inside can be reduced.
[0036]
As a result, the re-expansion amount of the refrigerant gas in the discharge port 39 of the second rotary compression element 34 can be reduced, and the pressure loss due to the re-expansion of the high-pressure gas can be reduced. The performance of the compression rotary compressor can be greatly improved.
[0037]
In the embodiment, the ratio S2 / S1 between the area S1 of the discharge port 41 of the first rotary compression element 32 and the area S2 of the discharge port 41 of the second rotary compression element 34 is excluded from the first rotary compression element 32. Although the ratio V2 / V1 of the volume V1 and the displacement volume V2 of the second rotary compression element 34 is 0.55 times or more and 0.85 times or less, the discharge port 41 of the first rotary compression element 32 is not limited to this. The ratio S2 / S1 of the area S1 of the second rotary compression element 34 and the area S2 of the discharge port 41 of the second rotary compression element 34 is the ratio of the excluded volume V1 of the first rotary compression element 32 and the excluded volume V2 of the second rotary compression element 34. If it is smaller than V2 / V1, the above effects can be expected.
[0038]
Further, when the rotary compressor 10 is used in a cold region, for example, in a situation where the refrigerant flow rate is small, the area S1 of the discharge port 41 of the first rotary compression element 32 and the discharge port 41 of the second rotary compression element 34 The ratio S2 / S1 of the area S2 is set to 0.55 times or more and 067 times or less of the ratio V2 / V1 of the excluded volume V1 of the first rotary compression element 32 and the excluded volume V2 of the second rotary compression element 34. Further effects can be obtained by further reducing the amount of refrigerant gas remaining in the discharge port 39 of the second rotary compression element 34.
[0039]
On the other hand, when the compressor is used in a warm region, for example, in a situation where the refrigerant flow rate is large, the area S1 of the discharge port 41 of the first rotary compression element 32 and the area of the discharge port 41 of the second rotary compression element 34 are used. The ratio S2 / S1 of S2 is set to 0.69 or more and 0.85 or less of the ratio V2 / V1 of the excluded volume V1 of the first rotary compression element 32 and the excluded volume V2 of the second rotary compression element 34, The increase in the passage resistance of the second rotary compression element can be suppressed as much as possible to improve the performance of the compressor.
[0040]
In the embodiment, the multistage compression rotary compressor 10 in which the rotary shaft 16 is installed vertically has been described. However, it goes without saying that the present invention can be applied to a multistage compression rotary compressor in which the rotary shaft is installed horizontally.
[0041]
Further, the multi-stage compression rotary compressor has been described with the two-stage compression rotary compressor including the first and second rotary compression elements. However, the rotary compression element is not limited to this, and the rotary compression element has three, four or more rotary compressions. The present invention can be applied to a multi-stage compression rotary compressor having elements.
[0042]
【The invention's effect】
As described above in detail, according to the present invention, the area S2 of the discharge port of the second rotary compression element can be further reduced to reduce the amount of high-pressure gas remaining in the discharge port of the second rotary compression element. become able to.
[0043]
As a result, it is possible to reduce the re-expansion amount of the refrigerant gas in the discharge port of the second rotary compression element, and it is possible to suppress a decrease in compression efficiency due to the re-expansion of the high-pressure gas. On the other hand, since the volume flow rate of the refrigerant gas at the discharge port of the second rotary compression element is very small, the improvement in efficiency due to the reduction in re-expansion of the residual gas exceeds the loss due to the increase in passage resistance at the discharge port. An improvement in the operating efficiency of the compressor is achieved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a multistage compression rotary compressor according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Multistage compression rotary compressor 12 Airtight container 14 Electric element 16 Rotating shaft 18 Rotation compression mechanism part 20 Terminal 22 Stator 24 Rotor 26 Laminated body 28 Stator coil 30 Laminated body 32 1st rotational compression element 34 2nd rotation compression element 38 , 40 Cylinder 39, 41 Discharge port 54 Upper support member 56 Lower support member 62, 64 Discharge silencer chamber 66 Upper cover 68 Lower cover 127, 128 Discharge valve

Claims (1)

密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮され、吐出されたCO2冷媒ガスを前記第2の回転圧縮要素に吸引し、圧縮して吐出する多段圧縮式ロータリコンプレッサにおいて、
前記第1の回転圧縮要素の吐出ポート面積S1と前記第2の回転圧縮要素の吐出ポート面積S2の比S2/S1を、前記第1の回転圧縮要素の排除容積V1と前記第2の回転圧縮要素の排除容積V2の比V2/V1より小さく設定したことを特徴とする多段圧縮式ロータリコンプレッサ。
An airtight container is provided with an electric element and first and second rotary compression elements driven by the electric element, and the compressed CO 2 refrigerant gas discharged by the first rotary compression element is discharged into the second container. In a multi-stage compression rotary compressor that sucks, compresses and discharges the rotary compression element of
The ratio S2 / S1 between the discharge port area S1 of the first rotary compression element and the discharge port area S2 of the second rotary compression element is determined as the excluded volume V1 of the first rotary compression element and the second rotary compression element. A multi-stage compression rotary compressor characterized in that it is set smaller than the ratio V2 / V1 of the element exclusion volume V2.
JP2002098556A 2002-04-01 2002-04-01 Multi-stage rotary compressor Expired - Lifetime JP3863799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002098556A JP3863799B2 (en) 2002-04-01 2002-04-01 Multi-stage rotary compressor

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2002098556A JP3863799B2 (en) 2002-04-01 2002-04-01 Multi-stage rotary compressor
CNB031051715A CN1318760C (en) 2002-03-13 2003-03-05 Multi-stage compressive rotary compressor and refrigerant return device
KR10-2003-0015288A KR20030074372A (en) 2002-03-13 2003-03-12 Multistage rotary compressor and refrigerant circuit system using the same
EP10167960.3A EP2241758B1 (en) 2002-03-13 2003-03-13 Refrigeration circuit system with a multistage rotary compressor
TW092105429A TWI313729B (en) 2002-03-13 2003-03-13 Multistage rotary compressor
EP03251521A EP1344938B1 (en) 2002-03-13 2003-03-13 Multistage rotary compressor and refrigeration circuit system
AT03251521T AT510131T (en) 2002-03-13 2003-03-13 MULTI-STAGE ROTARY COMPRESSOR AND COOLING DEVICE
EP10167954.6A EP2233742B1 (en) 2002-03-13 2003-03-13 Multistage rotary compressor with pressure relief valve
US10/386,672 US6748754B2 (en) 2002-03-13 2003-03-13 Multistage rotary compressor and refrigeration circuit system
TW096141470A TWI323774B (en) 2002-03-13 2003-03-13 Refrigeration circuit system
DK03251521.5T DK1344938T3 (en) 2002-03-13 2003-03-13 Rotary multistage compressor and cooling circuit system

Publications (2)

Publication Number Publication Date
JP2003293973A JP2003293973A (en) 2003-10-15
JP3863799B2 true JP3863799B2 (en) 2006-12-27

Family

ID=29240498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098556A Expired - Lifetime JP3863799B2 (en) 2002-04-01 2002-04-01 Multi-stage rotary compressor

Country Status (1)

Country Link
JP (1) JP3863799B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328697B2 (en) 2010-03-02 2013-10-30 三菱電機株式会社 Two-stage compressor and heat pump device

Also Published As

Publication number Publication date
JP2003293973A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
KR20030074372A (en) Multistage rotary compressor and refrigerant circuit system using the same
JP2005003239A (en) Refrigerant cycling device
JP4289975B2 (en) Multi-stage rotary compressor
JP2006022723A (en) Compression system and refrigerating apparatus using the same
JP3728227B2 (en) Rotary compressor
JP2004251150A (en) Multistage compression type rotary compressor
JP3762693B2 (en) Multi-stage rotary compressor
JP3863799B2 (en) Multi-stage rotary compressor
JP3895976B2 (en) Multistage rotary compressor
JP3983115B2 (en) Refrigerant circuit using CO2 refrigerant
JP2006022766A (en) Multi-cylinder rotary compressor
JP2004084568A (en) Multistage compression type rotary compressor and displacement capacity ratio setting method therefor
JP2004309012A (en) Refrigerant cycle device
JP4263047B2 (en) Horizontal type compressor
JP2005147562A (en) Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it
JP2005147071A (en) Horizontal type multi-stage compression rotary compressor, and air conditioner having the same for automobile
JP4100969B2 (en) Rotary compressor
JP4020622B2 (en) Rotary compressor
JP4024067B2 (en) Horizontal multi-stage rotary compressor
JP3883837B2 (en) Rotary compressor
JP2003286985A (en) Rotary compressor
JP4169620B2 (en) Refrigerant cycle equipment
JP3762708B2 (en) Multistage rotary compressor
JP3778867B2 (en) Horizontal multi-stage rotary compressor
JP4063568B2 (en) Horizontal multistage compression rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

R151 Written notification of patent or utility model registration

Ref document number: 3863799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7