JP2004251150A - Multistage compression type rotary compressor - Google Patents

Multistage compression type rotary compressor Download PDF

Info

Publication number
JP2004251150A
JP2004251150A JP2003040152A JP2003040152A JP2004251150A JP 2004251150 A JP2004251150 A JP 2004251150A JP 2003040152 A JP2003040152 A JP 2003040152A JP 2003040152 A JP2003040152 A JP 2003040152A JP 2004251150 A JP2004251150 A JP 2004251150A
Authority
JP
Japan
Prior art keywords
cylinder
support member
rotary
rotary compression
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003040152A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ebara
俊行 江原
Hiroyuki Matsumori
裕之 松森
Takashi Sato
孝 佐藤
Masaru Matsuura
大 松浦
Takayasu Saito
隆泰 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003040152A priority Critical patent/JP2004251150A/en
Publication of JP2004251150A publication Critical patent/JP2004251150A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties

Abstract

<P>PROBLEM TO BE SOLVED: To improve compression efficiency and reliability by increasing the heat insulation of a cylinder in a multistage compression type rotary compressor. <P>SOLUTION: The rotary compressor comprises: a lower cylinder (first cylinder) 40 and an upper cylinder (second cylinder) 38 constituting first and second rotary compression elements 32, 34, respectively; an intermediate partition board 36 interposed between the cylinders 38, 40 to partition the first and second rotary compression elements 32, 34; an upper support member (second support member 54) closing opening faces of the upper and lower cylinders 38, 40 and having a bearing of a rotating shaft 16 of an electric element 14, and a lower support member 56 (first support member); and a heat insulating plate 140 having an insulation property is interposed between the upper cylinder 38 and the upper support member 54, and a heat insulating plate 141 having an insulation property is interposed between the upper cylinder 38 and the intermediate partition board 36. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、密閉容器内に駆動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された冷媒を第2の回転圧縮要素に吸い込んで圧縮する多段圧縮式ロータリコンプレッサに関するものである。
【0002】
【従来の技術】
従来のこの種多段圧縮式ロータリコンプレッサ、例えば縦型の内部中間圧型多段(2段)圧縮式ロータリコンプレッサでは、密閉容器の内部空間の上側に駆動要素としての電動要素が設けられ、この電動要素の下側に電動要素の回転軸にて駆動される第1及び第2の回転圧縮要素から成る回転圧縮機構部が設けられている。また、第2の回転圧縮要素は第1の回転圧縮要素の上側に設けられており、第1の回転圧縮要素と第2の回転圧縮要素との間には中間仕切板が挟持されている。
【0003】
即ち、第1の回転圧縮要素と第2の回転圧縮要素は、中間仕切板と、この中間仕切板の上下に配置された上シリンダ、下シリンダと、この上下シリンダ内を、180度の位相差を有して回転軸に設けられた上下偏心部により偏心回転される上下ローラと、この上下ローラに当接して上下シリンダ内をそれぞれ低圧室側と高圧室側に区画するベーンと、上シリンダの上側の開口面及び下シリンダの下側の開口面を閉塞して回転軸の軸受けを兼用する支持部材としての上部支持部材及び下部支持部材にて構成されている。
【0004】
そして、第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て外部の放熱器などに流入する構成とされている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特許第2507047号公報
【0006】
【発明が解決しようとする課題】
ところで、係るロータリコンプレッサに二酸化炭素のような熱伝導性が良く、圧縮時の温度上昇が著しい冷媒を使用した場合、圧縮室であるシリンダが吐出消音室に吐出された冷媒や密閉容器内の中間圧の冷媒の熱などにより加熱され易く、その結果、コンプレッサの圧縮効率や信頼性が低下するという問題が生じていた。
【0007】
本発明は、係る技術的課題を解決するために成されたものであり、シリンダの断熱性を向上させて多段圧縮式ロータリコンプレッサの圧縮効率及び信頼性の向上を図ることを目的とする。
【0008】
【課題を解決するための手段】
即ち、請求項1の発明の多段圧縮式ロータリコンプレッサでは、第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、これらシリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、第1及び第2のシリンダの開口面をそれぞれ閉塞し、駆動要素の回転軸の軸受けを有する第1及び第2の支持部材とを備え、第1のシリンダ、及び/又は、第2のシリンダと中間仕切板、及び/又は、支持部材との間に、断熱性を有するプレートを介設したので、シリンダ及びシリンダ内に吸い込まれる冷媒が加熱され難くなる。
【0009】
請求項2の発明では上記発明に加えて、第2の支持部材とプレートとの間に隙間を形成したので、プレートがより一層加熱され難くなり、第2のシリンダの断熱性が向上する。
【0010】
請求項3の発明の多段圧縮式ロータリコンプレッサでは、第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、これらシリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、第1及び第2のシリンダの開口面をそれぞれ閉塞し、駆動要素の回転軸の軸受けを有する第1及び第2の支持部材とを備え、少なくとも第2のシリンダと第2の支持部材を異なる金属素材にて構成したので、第2のシリンダと第2の支持部材との間の熱伝導を抑制できる。
【0011】
請求項4の発明では上記各発明に加えて、冷媒として二酸化炭素を用いるので、より一層の効果が期待できる。
【0012】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の多段圧縮式ロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式のロータリコンプレッサ10の縦断面図、図2は図1のロータリコンプレッサ10の回転圧縮機構部18の拡大図、図3はロータリコンプレッサ10の平断面図を示している。
【0013】
各図において、10は例えば電気自動車(HEVやPEV)などの車両のエンジンルームに搭載される内部中間圧型多段(2段)圧縮式のロータリコンプレッサで、二酸化炭素(CO)を冷媒として使用している。このコンプレッサ10は円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された駆動要素としての電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。
【0014】
実施例の密閉容器12はアルミニウム材により形成され、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成されている。このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。尚、21はこのターミナル20に接続される外部配線である。また、容器本体12Aの上端は外側に拡張されていると共に、他の部分より肉厚に形成されており、この拡張部13Aの内壁にエンドキャップ12Bの下端が挿入され、拡張部13Aの内壁にエンドキャップ12Bを挿入した状態で外側からアーク溶接して固定することで密閉容器12が形成されている。
【0015】
また、前記ターミナル20は当該ターミナル20を保護するためのカバーとしての金属製(アルミニウムなど)ターミナルカバー100により全周を覆われている。このターミナルカバー100の周辺部には複数のボルト孔が形成されている。また、このターミナルカバー100のボルト孔に対応するエンドキャップ12Bにはボルト溝が形成されており、ターミナルカバー100のボルト孔とエンドキャップ12Bのボルト溝が一致するように配置して、ターミナルカバー100の上側からボルト溝にボルト102をねじ込んで固定することにより、ターミナルカバー100はエンドキャップ12B上端中央部に取り付けられている。
【0016】
電動要素14は所謂磁極集中巻き式のDCモータであり、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。ステータ22は、ドーナッツ状の電磁鋼板を積層して構成され、密閉容器12の内面に焼嵌めされた積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24はステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0017】
また、回転軸16の下端部には給油手段としてのオイルポンプ99が形成されている。このオイルポンプ99により、密閉容器12内の底部に構成されたオイル溜めから潤滑用のオイルが吸い上げられて、回転軸16内の軸中心に鉛直方向に形成された図示しないオイル孔を経て、このオイル孔に連通する横方向の給油孔82、84(上下偏心部42、44にも形成されている)から上下偏心部42、44や第1及び第2の回転圧縮要素32、34の摺動部等にオイルが供給される。これにより、第1及び第2の回転圧縮要素32、34の摩耗の防止やシールが行われる。
【0018】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。この中間仕切板36は上シリンダ38と下シリンダ40との間に介在して第1及び第2の回転圧縮要素32、34を仕切っている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ(第2のシリンダ)38、下シリンダ(第1のシリンダ)40と、この上下シリンダ38、40内を、180度の位相差を有して回転軸16に設けられた前記上下偏心部42、44により偏心回転される上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画する図示しないベーンと、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材(第2の支持部材)54及び下部支持部材(第1の支持部材)56にて構成されている。
【0019】
上部支持部材54および下部支持部材56には、吸込ポート161(下側の吸込ポートは図示せず)にて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上部カバー66、下部カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0020】
この上部カバー66はアルミニウム材により構成され、外周面は密閉容器12内壁に当接するように形成されている。また、上部カバー66の外周面は図示する如く縦方向(回転軸の軸方向。実施例では上方向。)に拡張されており、この拡張された外周面と密閉容器12とをタック溶接することで、密閉容器12に取り付けられている。そして、上部カバー66は上部支持部材54の凹陥部の上面開口を閉塞することで、この上部支持部材54内に、第2の回転圧縮要素34の上シリンダ38内部と図示しない吐出ポートにて連通した吐出消音室62を画成すると共に、この上部カバー66の上側に、当該上部カバー66と所定間隔を存して電動要素14が設けられる。
【0021】
上部カバー66は前記上部支持部材54の軸受け54Aが貫通する孔が形成された略ドーナッツ状の円形アルミ板から構成されており、周辺部が4本の主ボルト78・・・により、上から上部支持部材54に固定されている。この主ボルト78・・・は上部支持部材54を貫通し、それらの先端は下部支持部材56に螺合して、上部カバー66、上部支持部材54、上シリンダ38、中間仕切板36、下シリンダ40及び下部支持部材56を一体化する。尚、下部カバー68は下部支持部材56にボルト固定されている。
【0022】
ここで、図2に示すように前記上シリンダ38の上下面、即ち、上シリンダ38と上部支持部材54との間、及び、上シリンダ38と中間仕切板36との間に、断熱性を有する断熱プレート140及び141を介設している。こられ断熱プレート140、141は熱伝導率の低い断熱性の金属、例えばステンレスの板材を圧延して0.3mmから0.5mmの板状に成型したものである。そして、断熱プレート140、141の中心部には回転軸16が挿通するための孔が形成されており、全体として略ドーナッツ形状を呈している。
【0023】
また、断熱プレート141には後述する連通孔133が形成されており、この連通孔133の上端にあたるシリンダ38に形成された連通孔134に接続されている。一方、断熱プレート140には図示しない連通孔(縦孔)が形成されており、連通孔の下端は上シリンダ38に設けられた図示しない吐出ポートと連通している。この連通孔の上端は上部支持部材に形成された吐出消音室62と連通している。
【0024】
係る断熱プレート140の存在により、上シリンダ38の上側に設けられた上部支持部材54に形成された吐出消音室62に吐出された高温高圧の冷媒ガスの熱及び密閉容器12内に吐出された中間圧の冷媒ガスの熱が上シリンダ38に伝達され難くなる。これにより、上シリンダ38が吐出消音室62に吐出された高圧高温の冷媒ガス及び密閉容器12内に吐出された中間圧の冷媒ガスにより加熱される不都合を防ぐことができるようになる。
【0025】
また、断熱プレート140と上部支持部材54とは間に僅かな隙間を形成している。これにより、上部支持部材54の熱が断熱プレート140に伝わり難くなり、上シリンダ38がより一層加熱され難くなるので、第2の回転圧縮要素34の圧縮効率の向上を図ることができるようになる。
【0026】
また、断熱プレート141の存在により、第1の回転圧縮要素32からの熱が上シリンダ38に伝達され難くなる。これにより、上シリンダ38が第1の回転圧縮要素32にて圧縮された冷媒ガス等により加熱される不都合を回避することができるようになる。
【0027】
これらにより、吐出消音室62に吐出された高温高圧の冷媒及び第1の回転圧縮要素32からの熱により、上シリンダ38が加熱されて、上シリンダ38に吸い込まれる冷媒を加熱してしまう不都合を抑制、若しくは回避することができるので、第2の回転圧縮要素34における圧縮効率の改善を図ることができるようになる。これにより、コンプレッサ10の信頼性が向上する。
【0028】
特に、本実施例の如く二酸化炭素(CO)のように熱伝導性が良く、圧縮時の温度上昇が著しい冷媒を使用した場合には、上シリンダ38は密閉容器12内や、第1の回転圧縮要素32で圧縮された冷媒、更には第2の回転圧縮要素34で圧縮され吐出消音室62に吐出された冷媒などにより非常に加熱され易く、第1の回転圧縮要素32で圧縮された冷媒を一旦密閉容器12の外部に形成された冷媒導入部92を通過させることで冷媒を冷却して、その後、第2の回転圧縮要素34の上シリンダ38に吸い込ませたとしても、上シリンダ38が加熱されているため、吸い込まれる冷媒が上シリンダ38により加熱されてしまう。このため、冷媒を密閉容器12の外部を通過させて冷却するという効果が減少、若しくは得ることができない。
【0029】
しかしながら、断熱プレート140、141を設けることで、上シリンダ38が加熱されないので、冷却された冷媒自体も加熱作用を受けずに上シリンダ38で圧縮されるため、第2の回転圧縮要素34における圧縮効率が著しく向上する。
【0030】
一方、前記中間仕切板36は、略ドーナッツ形状を呈しており、この中間仕切板36には給油孔131が形成されている。この給油孔131は中間仕切板36上面(上シリンダ38側の面)に、内周面から外側に所定範囲で半径方向に向かって形成された溝を前記断熱プレート141で覆うことにより形成されている。
【0031】
また、断熱プレート141には、給油孔131の密閉容器12側の端部に対応する位置に前述した連通孔(縦孔)133が穿設されている。そして、上シリンダ38には断熱プレート141の連通孔133と吸込ポート161(第2の回転圧縮要素34の吸込側)とを連通するインジェクション用の連通孔134が穿設されている。ここで、中間仕切板36の給油孔131の回転軸16側の開口は、回転軸16に形成された給油孔82、84を介して図示しないオイル孔に連通している。
【0032】
この場合、後述する如く密閉容器12内は中間圧となるため、2段目で高圧となる上シリンダ38内にはオイルの供給が困難となるが、中間仕切板36を係る構成としたことにより、密閉容器12内底部のオイル溜めから汲み上げられて図示しないオイル孔を上昇し、給油孔82、84から出たオイルは、中間仕切板36の給油孔131に入り、連通孔133、134を経て上シリンダ38の吸込側(吸込ポート161)に供給されるようになる。
【0033】
そして、冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO)が使用され、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)など既存のオイルが使用される。
【0034】
密閉容器12の容器本体12Aには、上部支持部材54の図示されない吸込通路と電動要素14の直下側との間、及び、下部支持部材56の吸込通路60と吐出消音室62とに対応する位置に、前述した冷媒導入部92、及び、冷媒導入部94と冷媒吐出部96がそれぞれ形成されている。
【0035】
冷媒導入部92は密閉容器12の容器本体12Aに一体成形された肉厚部13Bと、この肉厚部13Bの外面に取り付けられてこの肉厚部13Bとの間に、密閉容器12内に吐出された冷媒を第2の回転圧縮要素34に吸い込ませるための冷媒導入通路92Aを構成する蓋部材112(リリーフ手段)により構成されている。即ち、容器本体12Aに形成された肉厚部13Bと蓋部材112の対向する面に断面半円弧状の溝がそれぞれ形成されており、これらの溝が相対向することで肉厚部13Bと蓋部材112との間に図3に示すような通路としての冷媒導入通路92Aが構成されている。
【0036】
また、容器本体12Aの肉厚部13Bには密閉容器12内と前記冷媒導入通路92Aとを連通するための連通管93Aと、第2の回転圧縮要素34の図示しない吸込通路と冷媒導入通路92Aとを連通する連通管93Bが取り付けられている。そして、肉厚部13Bと蓋部材112間(冷媒導入通路92Aの周辺全体)にはパッキン(シール材)114が介設されており、蓋部材112は肉厚部13Bに係るパッキン114を介してボルト120・・・により固定されている。
【0037】
この蓋部材112は前記容器本体12Aと同様にアルミニウム材にて構成されている。そして、常には肉厚部13Bと蓋部材112は密着して冷媒導入通路92Aを外部から封止しているが、この蓋部材112自体の弾性やボルト120・・・の径(締め付け強度)を設定することにより、密閉容器12内の冷媒の圧力が所定値に上昇した場合、冷媒導入通路92Aに流入する冷媒の係る圧力により、蓋部材112が外側に離れるように蓋部材112自体若しくはボルト120・・・が変形し、肉厚部13Bと蓋部材112の間に隙間が形成されるように構成されている。この隙間により冷媒導入通路92Aの内外は連通され、当該通路内の中間圧の冷媒が密閉容器12外に逃げることになる。
【0038】
このような構成としたことにより、密閉容器12内の中間圧の冷媒の圧力が異常に上昇してしまった場合に、蓋部材112と肉厚部13Bとの間に隙間が形成され、冷媒導入通路92Aから密閉容器12内の冷媒ガスを外部に逃がすことができるようになるので、コンプレッサ10の耐久性が向上し、信頼性の向上を図ることができるようになる。
【0039】
一方、密閉容器12の容器本体12Aの下面には、支持脚150が取り付けられている。この支持脚150は、厚いアルミ板により形成されており、容器本体12A下面から外方に向けて突出して形成されている。そして、この支持脚150の下面には後述する支持装置200の弾性マウンティング204が取り付けられている。
【0040】
そして、ロータリコンプレッサ10の密閉容器12周囲には当該ロータリコンプレッサ10を支持するための前述した支持装置200が構成されている。この支持装置200は、密閉容器12の外側に所定間隔を存して設けられ、密閉容器12を囲繞する防音壁202と、密閉容器12の容器本体12Aの下面の支持脚150に取り付けられた前述した弾性マウンティング204と、防音壁202の上面に形成された孔206内に設けられた上部弾性支持部材207にて構成されている。
【0041】
防音壁202は、電動要素14の運転中に発生する騒音が外部に漏れる不都合を回避するために設けられており、密閉容器12の外側を覆うような略円筒状を呈して車両のエンジンルーム内に固定されている。防音壁202の上端には略円形の孔206が形成されており、この内側に上部弾性支持部材207が取り付けられている。
【0042】
また、容器本体12A下面の支持脚150に取り付けられた弾性マウンティング204は、密閉容器12の下部を支持するために形成されたものであり、硬質ゴムなどの弾性材から構成され、図示しないボルトにて支持脚150に取り付けられている。また、弾性マウンティング204の下面は防音壁202に固定されている。
【0043】
他方、防音壁202の孔206内に取り付けられた上部弾性支持部材207は、硬質ゴムなどの弾性材にて構成されており、全周に渡って波打つように湾曲した湾曲部208を有している。そして、この湾曲部208により、ターミナルカバー100から伝達される振動を吸収して、防音壁202に当該振動が伝わらないような構成とされている。上部弾性支持部材207の中心部には前記ターミナルカバー100を挿通するための挿通孔209が形成されている。この挿通孔209にターミナルカバー100が挿通され、全周において当該上部弾性支持部材207に固定される。これにより、ターミナルカバー100は上部弾性支持部材207を介して防音壁202の孔206の内周面に取り付けられる。即ち、ターミナルカバー100は上部弾性支持部材207を介して防音壁202に支持されている。
【0044】
このように、ロータリコンプレッサ10の密閉容器12の下部に設けられた弾性マウンティング204によりロータリコンプレッサ10の下部を支持すると共に、上部弾性支持部材207により密閉容器12の上端を支持することにより、縦型のロータリコンプレッサ10において上部が不安定になる不都合を解消することができるようになる。更に、これらを弾性部材にて構成することで防音壁202にロータリコンプレッサ10から発生する振動を伝達し難くすることができるようになる。
【0045】
以上の構成で次に本発明のロータリコンプレッサ10の動作を説明する。配線21及びターミナル20を介してロータリコンプレッサ10の電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0046】
これにより、冷媒導入部94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧の冷媒ガスは、ローラ48と図示しないベーンの動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0047】
そして、密閉容器12内の中間圧の冷媒ガスは冷媒導入部92の連通管93Aに流入する。この場合、連通管93A内に流入した中間圧の冷媒ガスの圧力が設定値より低い場合には、この連通管93Aから冷媒導入通路92A及び連通管93Bを経て上部支持部材54に形成された図示しない吸込通路を経由し、吸込ポート161から第2の回転圧縮要素34の上シリンダ38の低圧室側に吸入される。このとき、密閉容器12内に吐出された冷媒ガスを密閉容器12の外部に設けられた冷媒導入管92を通過させることで、この冷媒ガスを冷却することができる。そして、上シリンダ38の低圧室側に吸入された冷媒はローラ46と図示しないベーンの動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62を経て冷媒吐出部96より外部に吐出される。
【0048】
一方、第1の回転圧縮要素32で圧縮され、密閉容器12内に吐出された中間圧の冷媒ガスの圧力が前述した設定値まで上昇した場合、冷媒導入部92の連通管93Aから冷媒導入通路92Aに流入した冷媒の係る圧力により前述の如く(蓋部材112が外側に押されて変形、或いは、ボルト120・・の締め付け力に抗して蓋部材112が外側に移動)肉厚部13Bと蓋部材112との間に隙間が形成される。そして、この隙間から密閉容器12内の冷媒ガスの一部が外部に逃げる。
【0049】
これにより、前述した如く異常上昇した密閉容器12内の冷媒ガスを外部に逃がして係る圧力の異常上昇による損傷の発生を回避できるようになる。また、係る流出により密閉容器12内の圧力が設定値より低く規制されるので、冷媒導入通路92A及び連通管93Bを経て第2の回転圧縮要素34に吸い込まれ、第2の回転圧縮要素34で圧縮される冷媒の圧力が上がりすぎてしまう不都合を回避することができるようになる。
【0050】
尚、係るリリーフ機能によって密閉容器12内の圧力が設定値未満に低下すると、肉厚部13Bと蓋部材112の間に形成された隙間は閉塞される。
【0051】
このように、第2の回転圧縮要素34の上シリンダ38の上下面を断熱性を有する断熱プレート140、141にて閉塞しているので、上シリンダ38が加熱される不都合を防ぐことができるようになる。
【0052】
これにより、吐出消音室62に吐出された高温高圧の冷媒及び第1の回転圧縮要素32からの熱により、上シリンダ38が加熱されて、上シリンダ38に吸い込まれる冷媒を加熱してしまう不都合を抑制、若しくは回避することができるので、第2の回転圧縮要素34における圧縮効率の改善を図ることができるようになる。
【0053】
尚、本実施例では、断熱プレートをシリンダ38の上下面に設けるものとしたが、これに限らず、上シリンダ38と中間仕切板36との間のみ、又は、上シリンダ38と上部支持部材54との間のみに断熱プレートを設けても構わない。
【0054】
また、上記に加えて下シリンダ40と中間仕切板36との間に断熱プレートを設けた場合には、上シリンダ38に下シリンダ40からの熱がより一層伝わりにくくなる。また、下シリンダと下部支持部材56との間に断熱プレートを設けた場合には、下シリンダ40が下部支持部材56に形成された吐出消音室64や密閉容器12内の中間圧の冷媒によって加熱され難くなるため、第1の回転圧縮要素32における圧縮効率の改善を図ることができる。
【0055】
また、本実施例では上シリンダに熱を伝え難くするために断熱プレート140、141を設けるものとしたが、断熱プレートを設けずに、上シリンダ38と上部支持部材54とを異なる素材の金属、例えば、一方をバネ鋼材で形成して、他方をステンレス材にて構成しても良い。この場合、上シリンダ38と上部支持部材54が同じ鉄系の金属であっても材質の異なる金属で形成されるため、上シリンダ38と上部支持部材54との間の熱伝導が少なくなり、上部支持部材54からの熱が上シリンダ38に伝わり難くなる。
【0056】
更に、本実施例では縦型の内部中間圧型の多段(2段)圧縮式ロータリコンプレッサを使用したが、それに限らず、横型のロータリコンプレッサや回転圧縮要素を3段、4段或いはそれ以上の回転圧縮要素を備えた多段圧縮式ロータリコンプレッサに適応しても差し支えない。
【0057】
【発明の効果】
以上詳述した如く、請求項1の発明によれば第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、これらシリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、第1及び第2のシリンダの開口面をそれぞれ閉塞し、駆動要素の回転軸の軸受けを有する第1及び第2の支持部材とを備え、第1のシリンダ、及び/又は、第2のシリンダと中間仕切板、及び/又は、支持部材との間に、断熱性を有するプレートを介設したので、第1のシリンダと中間仕切板との間に断熱性を有するプレートを介設した場合には、第1のシリンダで圧縮された中間圧の冷媒ガスの熱により第2のシリンダが加熱される不都合を防ぐことができるようになる。
【0058】
また、第2のシリンダと中間仕切板との間に断熱性を有するプレートを介設した場合も同様に、第1の回転圧縮要素や第1の回転圧縮要素の第1のシリンダで圧縮された中間圧の冷媒ガスの熱により第2のシリンダが加熱される不都合を防ぐことができるようになる。
【0059】
更に、第2のシリンダと第2の支持部材との間に断熱性を有するプレートを介設した場合には、第2のシリンダが第2の支持部材内に形成された吐出消音室に吐出された冷媒や密閉容器内の冷媒によって加熱される不都合を防ぐことができるようになる。
【0060】
これらにより、第2のシリンダが加熱され難くなるので、第2のシリンダ内に吸い込まれる中間圧の冷媒ガスが加熱されずに圧縮することができるので、第2の回転圧縮要素における圧縮効率の向上を図ることができるようになる。
【0061】
一方、第1のシリンダと第1の支持部材との間に断熱性を有するプレートを介設した場合には、第1のシリンダが第1の支持部材内に形成された吐出消音室に吐出された冷媒や密閉容器内の冷媒によって加熱される不都合を防ぐことができるようになる。
【0062】
これにより、第1のシリンダが加熱され難くなるので、第1のシリンダ内に吸い込まれる低圧の冷媒が加熱されずに圧縮することができ、第1の回転圧縮要素における圧縮効率の向上を図ることができるようになる。
【0063】
総じて、コンプレッサの性能及び信頼性の向上を図ることができるようになる。
【0064】
請求項2の発明によれば上記発明に加えて、第2の支持部材とプレートとの間に隙間を形成したので、第2の支持部材の熱がプレートに伝わり難くなる。
【0065】
これにより、第2のシリンダがより一層加熱され難くなるので、第2の回転圧縮要素の圧縮効率の向上を図ることができるようになる。
【0066】
請求項3の発明によれば、第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、これらシリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、第1及び第2のシリンダの開口面をそれぞれ閉塞し、駆動要素の回転軸の軸受けを有する第1及び第2の支持部材とを備え、少なくとも第2のシリンダと第2の支持部材を異なる金属素材にて構成したので、第2のシリンダと第2の支持部材との間の熱伝導を抑制できる。
【0067】
これにより、第2のシリンダが第2の支持部材内に形成された吐出消音室に吐出された冷媒や密閉容器内の冷媒によって加熱され難くなり、第2のシリンダ内に吸い込まれる中間圧の冷媒ガスが加熱されずに圧縮することができるので、第2の回転圧縮要素における圧縮効率の向上を図ることができるようになる。
【0068】
そして、請求項4に示す如く、冷媒として二酸化炭素を用いた場合には、上記各発明における効果がより一層期待できると共に、環境問題にも寄与できるようになる。
【図面の簡単な説明】
【図1】本発明の実施例の多段圧縮式コンプレッサの縦断面図である。
【図2】図1のコンプレッサの回転圧縮機構部の拡大図である。
【図3】図1のコンプレッサの平断面図である。
【符号の説明】
10 コンプレッサ
12 密閉容器
12A 容器本体
12B エンドキャップ
13A 拡張部
13B 肉厚部
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38 上シリンダ
40 下シリンダ
54 上部支持部材
56 下部支持部材
66 上部カバー
68 下部カバー
92 冷媒導入部
92A 冷媒導入通路
93A、93B 連通管
94 冷媒導入部
96 冷媒吐出部
131 給油溝
133 連通孔
134 連通孔
140、141 断熱プレート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention includes first and second rotary compression elements driven by drive elements in a closed container, and sucks and compresses the refrigerant compressed by the first rotary compression element into the second rotary compression element. The present invention relates to a multi-stage compression type rotary compressor.
[0002]
[Prior art]
In a conventional multi-stage compression type rotary compressor of this type, for example, a vertical type internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor, an electric element as a driving element is provided above the internal space of the closed vessel. On the lower side, there is provided a rotary compression mechanism section including first and second rotary compression elements driven by the rotary shaft of the electric element. Further, the second rotary compression element is provided above the first rotary compression element, and an intermediate partition plate is sandwiched between the first rotary compression element and the second rotary compression element.
[0003]
That is, the first rotary compression element and the second rotary compression element include an intermediate partition plate, an upper cylinder and a lower cylinder disposed above and below the intermediate partition plate, and a phase difference of 180 degrees between the upper and lower cylinders. An upper and lower roller that is eccentrically rotated by an upper and lower eccentric part provided on the rotating shaft, a vane that abuts on the upper and lower rollers to partition the inside of the upper and lower cylinders into a low pressure chamber side and a high pressure chamber side, respectively, It comprises an upper support member and a lower support member as support members that also close the upper opening surface and the lower opening surface of the lower cylinder and also serve as bearings for the rotating shaft.
[0004]
Refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element, is compressed by the operation of the rollers and the vanes and becomes an intermediate pressure, and is discharged from the high pressure chamber side of the cylinder through the discharge port and the discharge silence chamber. Discharged into a closed container. Then, the intermediate-pressure refrigerant gas in the closed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second-stage compression is performed by the operation of the roller and the vane, so that the high-temperature high-pressure The refrigerant gas is configured to flow from the high-pressure chamber side to an external radiator through a discharge port and a discharge muffling chamber (for example, see Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent No. 2507077 [0006]
[Problems to be solved by the invention]
By the way, when a refrigerant having good thermal conductivity such as carbon dioxide and a remarkable rise in temperature during compression is used for the rotary compressor, the cylinder which is a compression chamber is discharged to the discharge muffling chamber or the intermediate space in the closed container. Therefore, there is a problem that the compression efficiency and the reliability of the compressor are lowered as a result of being easily heated by the heat of the pressure refrigerant.
[0007]
The present invention has been made to solve such technical problems, and an object of the present invention is to improve the heat insulating properties of a cylinder to improve the compression efficiency and reliability of a multistage compression type rotary compressor.
[0008]
[Means for Solving the Problems]
That is, in the multistage compression type rotary compressor according to the first aspect of the present invention, the first and second cylinders for forming the first and second rotary compression elements, respectively, and the rotary compression elements interposed between the cylinders. , And first and second support members that close the opening surfaces of the first and second cylinders and have bearings for the rotating shaft of the drive element, respectively, the first cylinder, and / or Alternatively, since a heat-insulating plate is provided between the second cylinder and the intermediate partition plate and / or the support member, the cylinder and the refrigerant sucked into the cylinder are less likely to be heated.
[0009]
According to the second aspect of the present invention, in addition to the above-described invention, since a gap is formed between the second support member and the plate, the plate is more difficult to be heated, and the heat insulation of the second cylinder is improved.
[0010]
In the multistage compression type rotary compressor according to the third aspect of the present invention, the first and second cylinders for forming the first and second rotary compression elements, respectively, and the rotary compression elements are interposed between the cylinders to partition the rotary compression elements. An intermediate partition plate, and first and second support members that respectively close the opening surfaces of the first and second cylinders and have bearings for the rotation shaft of the driving element, and include at least a second cylinder and a second cylinder. Since the support member is made of a different metal material, heat conduction between the second cylinder and the second support member can be suppressed.
[0011]
According to the fourth aspect of the invention, carbon dioxide is used as a refrigerant in addition to each of the above-mentioned aspects, so that further effects can be expected.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor 10 including first and second rotary compression elements 32 and 34 as an embodiment of a multi-stage compression type rotary compressor of the present invention. FIG. 2 is an enlarged view of the rotary compression mechanism 18 of the rotary compressor 10 of FIG. 1, and FIG. 3 is a plan sectional view of the rotary compressor 10.
[0013]
In each of the figures, reference numeral 10 denotes an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor mounted in an engine room of a vehicle such as an electric vehicle (HEV or PEV), which uses carbon dioxide (CO 2 ) as a refrigerant. ing. The compressor 10 has a cylindrical hermetic container 12, an electric element 14 as a driving element disposed and housed above the internal space of the hermetic container 12, and is disposed below the electric element 14. The rotary compression mechanism 18 includes a first rotary compression element 32 (first stage) and a second rotary compression element 34 (second stage) driven by the shaft 16.
[0014]
The closed container 12 of the embodiment is formed of an aluminum material, and has a container main body 12A for housing the electric element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (lid) for closing an upper opening of the container main body 12A. 12B. A circular mounting hole 12D is formed at the center of the upper surface of the end cap 12B, and a terminal (wiring omitted) 20 for supplying electric power to the electric element 14 is mounted in the mounting hole 12D. Reference numeral 21 denotes an external wiring connected to the terminal 20. In addition, the upper end of the container body 12A is expanded outward and is formed thicker than the other parts. The lower end of the end cap 12B is inserted into the inner wall of the expanded portion 13A, and the inner wall of the expanded portion 13A is inserted. The sealed container 12 is formed by fixing the end cap 12B by arc welding from the outside in the inserted state.
[0015]
The terminal 20 is entirely covered with a metal (aluminum or the like) terminal cover 100 as a cover for protecting the terminal 20. A plurality of bolt holes are formed around the terminal cover 100. Further, a bolt groove is formed in the end cap 12B corresponding to the bolt hole of the terminal cover 100, and the terminal cover 100 is arranged so that the bolt hole of the terminal cover 100 and the bolt groove of the end cap 12B coincide with each other. The terminal cover 100 is attached to the center of the upper end of the end cap 12B by screwing and fixing the bolt 102 into the bolt groove from above.
[0016]
The electric element 14 is a so-called magnetic pole concentrated winding type DC motor, and is inserted into the stator 22 annularly attached along the inner peripheral surface of the upper space of the closed casing 12 with a slight interval provided inside the stator 22. And an installed rotor 24. The rotor 24 is fixed to the rotating shaft 16 that extends vertically through the center. The stator 22 is formed by laminating donut-shaped electromagnetic steel sheets, and is wound around the inner surface of the closed container 12 by shrink-fitting, and is wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. Stator coil 28. The rotor 24 is formed of a laminated body 30 of electromagnetic steel sheets similarly to the stator 22, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0017]
An oil pump 99 is formed at the lower end of the rotary shaft 16 as oil supply means. The oil pump 99 sucks up lubricating oil from an oil reservoir formed at the bottom of the sealed container 12, and passes through an oil hole (not shown) formed in the center of the rotating shaft 16 in a vertical direction. Sliding of the upper and lower eccentric portions 42 and 44 and the first and second rotary compression elements 32 and 34 from lateral oil supply holes 82 and 84 (also formed on the upper and lower eccentric portions 42 and 44) communicating with the oil holes. Oil is supplied to the parts and the like. As a result, the first and second rotary compression elements 32 and 34 are prevented from being worn and sealed.
[0018]
An intermediate partition plate 36 is held between the first rotary compression element 32 and the second rotary compression element 34. The intermediate partition plate 36 is interposed between the upper cylinder 38 and the lower cylinder 40 to partition the first and second rotary compression elements 32 and 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder (second cylinder) 38 disposed above and below the intermediate partition plate 36, and a lower cylinder (second cylinder). And the upper and lower cylinders 38, 40, and upper and lower rollers 46, 48, which are eccentrically rotated by the upper and lower eccentric portions 42, 44 provided on the rotating shaft 16 with a phase difference of 180 degrees. A vane (not shown) which abuts the upper and lower rollers 46 and 48 to partition the inside of the upper and lower cylinders 38 and 40 into a low pressure chamber side and a high pressure chamber side, respectively, and an upper opening surface of the upper cylinder 38 and a lower side of the lower cylinder 40. An upper support member (second support member) 54 and a lower support member (first support member) 56 as support members that also serve as bearings for the rotating shaft 16 by closing the opening surface.
[0019]
In the upper support member 54 and the lower support member 56, a suction passage 60 (the upper suction passage is shown in the drawing) communicating with the insides of the upper and lower cylinders 38 and 40 at a suction port 161 (the lower suction port is not shown). ), And discharge muffling chambers 62 and 64 formed by partially recessing and closing the recess with the upper cover 66 and the lower cover 68.
[0020]
The upper cover 66 is made of an aluminum material, and has an outer peripheral surface formed so as to contact the inner wall of the closed container 12. Further, the outer peripheral surface of the upper cover 66 is extended in the vertical direction (axial direction of the rotation shaft; upward direction in the embodiment) as shown in the figure, and the expanded outer peripheral surface and the sealed container 12 are tack-welded. And is attached to the closed container 12. The upper cover 66 closes the upper opening of the concave portion of the upper support member 54, and communicates with the inside of the upper cylinder 38 of the second rotary compression element 34 via a discharge port (not shown). In addition to defining the discharge muffling chamber 62, the electric element 14 is provided above the upper cover 66 at a predetermined interval from the upper cover 66.
[0021]
The upper cover 66 is formed of a substantially donut-shaped circular aluminum plate having a hole through which the bearing 54A of the upper support member 54 penetrates, and its peripheral portion is formed by four main bolts 78. It is fixed to the support member 54. The main bolts 78 penetrate through the upper support member 54, and their ends are screwed into the lower support member 56 to form the upper cover 66, the upper support member 54, the upper cylinder 38, the intermediate partition plate 36, and the lower cylinder. 40 and the lower support member 56 are integrated. The lower cover 68 is fixed to the lower support member 56 with bolts.
[0022]
Here, as shown in FIG. 2, the upper and lower surfaces of the upper cylinder 38, that is, between the upper cylinder 38 and the upper support member 54, and between the upper cylinder 38 and the intermediate partition plate 36 have heat insulating properties. Heat insulation plates 140 and 141 are interposed. These heat insulating plates 140 and 141 are formed by rolling a heat-insulating metal having a low thermal conductivity, for example, a stainless steel plate into a 0.3 to 0.5 mm plate shape. A hole for inserting the rotating shaft 16 is formed at the center of the heat insulating plates 140 and 141, and has a substantially donut shape as a whole.
[0023]
A communication hole 133 described later is formed in the heat insulating plate 141, and is connected to a communication hole 134 formed in the cylinder 38 at the upper end of the communication hole 133. On the other hand, a communication hole (vertical hole) (not shown) is formed in the heat insulating plate 140, and the lower end of the communication hole communicates with a discharge port (not shown) provided in the upper cylinder 38. The upper end of the communication hole communicates with a discharge muffling chamber 62 formed in the upper support member.
[0024]
Due to the presence of the heat insulating plate 140, the heat of the high-temperature and high-pressure refrigerant gas discharged into the discharge muffling chamber 62 formed in the upper support member 54 provided above the upper cylinder 38 and the intermediate gas discharged into the closed container 12 It becomes difficult for the heat of the pressure refrigerant gas to be transmitted to the upper cylinder 38. Thus, it is possible to prevent the upper cylinder 38 from being heated by the high-pressure and high-temperature refrigerant gas discharged into the discharge muffling chamber 62 and the intermediate-pressure refrigerant gas discharged into the closed container 12.
[0025]
Further, a slight gap is formed between the heat insulating plate 140 and the upper support member 54. This makes it difficult for the heat of the upper support member 54 to be transmitted to the heat insulating plate 140 and makes it more difficult for the upper cylinder 38 to be heated, so that the compression efficiency of the second rotary compression element 34 can be improved. .
[0026]
Further, the heat from the first rotary compression element 32 is less likely to be transmitted to the upper cylinder 38 due to the presence of the heat insulating plate 141. Thus, it is possible to avoid the problem that the upper cylinder 38 is heated by the refrigerant gas or the like compressed by the first rotary compression element 32.
[0027]
As a result, the upper cylinder 38 is heated by the high-temperature and high-pressure refrigerant discharged into the discharge muffling chamber 62 and the heat from the first rotary compression element 32, thereby heating the refrigerant sucked into the upper cylinder 38. Since it can be suppressed or avoided, the compression efficiency of the second rotary compression element 34 can be improved. Thereby, the reliability of the compressor 10 is improved.
[0028]
In particular, when a refrigerant having good thermal conductivity such as carbon dioxide (CO 2 ) and a remarkable temperature rise during compression is used as in the present embodiment, the upper cylinder 38 is placed in the closed container 12 or the first cylinder. The refrigerant compressed by the rotary compression element 32, and further, the refrigerant compressed by the second rotary compression element 34 and discharged to the discharge muffling chamber 62, etc., is very easily heated, and is compressed by the first rotary compression element 32. Even if the refrigerant is cooled by temporarily passing the refrigerant through a refrigerant introduction portion 92 formed outside the closed container 12, and then sucked into the upper cylinder 38 of the second rotary compression element 34, the upper cylinder 38 Is heated, the sucked refrigerant is heated by the upper cylinder 38. Therefore, the effect of cooling the refrigerant by passing it through the outside of the closed container 12 cannot be reduced or obtained.
[0029]
However, since the upper cylinder 38 is not heated by providing the heat insulating plates 140 and 141, the cooled refrigerant itself is compressed by the upper cylinder 38 without being subjected to the heating action. The efficiency is significantly improved.
[0030]
On the other hand, the intermediate partition plate 36 has a substantially donut shape, and an oil supply hole 131 is formed in the intermediate partition plate 36. The oil supply hole 131 is formed by covering the groove formed in the upper surface of the intermediate partition plate 36 (the surface on the upper cylinder 38 side) from the inner peripheral surface to the outside in a predetermined range in the radial direction with the heat insulating plate 141. I have.
[0031]
The above-described communication hole (vertical hole) 133 is formed in the heat insulating plate 141 at a position corresponding to the end of the oil supply hole 131 on the closed container 12 side. The upper cylinder 38 is provided with an injection communication hole 134 for communicating the communication hole 133 of the heat insulating plate 141 with the suction port 161 (the suction side of the second rotary compression element 34). Here, the opening of the oil supply hole 131 of the intermediate partition plate 36 on the rotation shaft 16 side communicates with an oil hole (not shown) through oil supply holes 82 and 84 formed in the rotation shaft 16.
[0032]
In this case, as will be described later, the inside of the sealed container 12 has an intermediate pressure, so that it becomes difficult to supply oil into the upper cylinder 38, which becomes high in the second stage. The oil that has been pumped up from the oil reservoir at the bottom of the closed container 12 and rises through an oil hole (not shown) and has come out of the oil supply holes 82 and 84 enters the oil supply hole 131 of the intermediate partition plate 36 and passes through the communication holes 133 and 134. The air is supplied to the suction side (suction port 161) of the upper cylinder 38.
[0033]
As the refrigerant, the above-mentioned carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, is used for the earth environment, is used. Existing oils such as alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.
[0034]
In the container main body 12A of the closed container 12, a position corresponding to the suction passage (not shown) of the upper support member 54 and immediately below the electric element 14, and the position corresponding to the suction passage 60 of the lower support member 56 and the discharge muffling chamber 62. Further, the above-described refrigerant introduction part 92, and the refrigerant introduction part 94 and the refrigerant discharge part 96 are formed respectively.
[0035]
The refrigerant introduction portion 92 is discharged into the closed container 12 between the thick portion 13B integrally formed with the container body 12A of the closed container 12 and the outer surface of the thick portion 13B and between the thick portion 13B. It is constituted by a lid member 112 (relief means) which constitutes a refrigerant introduction passage 92A for sucking the drawn refrigerant into the second rotary compression element 34. That is, grooves having a semicircular cross section are formed on the opposing surfaces of the thick portion 13B formed on the container body 12A and the lid member 112, and the thick portions 13B and the lid are formed by opposing these grooves. A coolant introduction passage 92A as a passage as shown in FIG.
[0036]
In addition, a communication pipe 93A for communicating the inside of the closed container 12 and the refrigerant introduction passage 92A to the thick portion 13B of the container body 12A, a suction passage (not shown) of the second rotary compression element 34 and a refrigerant introduction passage 92A. A communication pipe 93B that communicates with is provided. A packing (seal material) 114 is provided between the thick portion 13B and the lid member 112 (the entire periphery of the coolant introduction passage 92A), and the lid member 112 is provided via the packing 114 related to the thick portion 13B. It is fixed by bolts 120.
[0037]
The lid member 112 is made of an aluminum material similarly to the container body 12A. The thick portion 13B and the lid member 112 are always in close contact with each other to seal the refrigerant introduction passage 92A from the outside. However, the elasticity of the lid member 112 itself and the diameter (tightening strength) of the bolts 120. By setting, when the pressure of the refrigerant in the closed container 12 rises to a predetermined value, the pressure of the refrigerant flowing into the refrigerant introduction passage 92A causes the lid member 112 itself or the bolt 120 so that the lid member 112 is separated outward. Are deformed, and a gap is formed between the thick portion 13B and the lid member 112. The gap connects the inside and the outside of the refrigerant introduction passage 92 </ b> A, and the medium-pressure refrigerant in the passage escapes to the outside of the closed container 12.
[0038]
With such a configuration, a gap is formed between the lid member 112 and the thick portion 13B when the pressure of the intermediate-pressure refrigerant in the closed container 12 is abnormally increased, and the refrigerant is introduced. Since the refrigerant gas in the sealed container 12 can be released to the outside from the passage 92A, the durability of the compressor 10 is improved, and the reliability can be improved.
[0039]
On the other hand, a support leg 150 is attached to the lower surface of the container body 12A of the closed container 12. The support legs 150 are formed of a thick aluminum plate, and protrude outward from the lower surface of the container body 12A. An elastic mounting 204 of the support device 200 described below is attached to a lower surface of the support leg 150.
[0040]
The above-described support device 200 for supporting the rotary compressor 10 is configured around the closed container 12 of the rotary compressor 10. The support device 200 is provided at a predetermined interval outside the closed container 12 and is attached to the soundproof wall 202 surrounding the closed container 12 and the support legs 150 on the lower surface of the container body 12A of the closed container 12. And an upper elastic support member 207 provided in a hole 206 formed on the upper surface of the soundproof wall 202.
[0041]
The soundproof wall 202 is provided in order to avoid the inconvenience that noise generated during operation of the electric element 14 leaks to the outside, and has a substantially cylindrical shape that covers the outside of the closed casing 12 and is provided inside the engine room of the vehicle. Fixed to. A substantially circular hole 206 is formed at the upper end of the soundproof wall 202, and an upper elastic support member 207 is attached inside the hole 206.
[0042]
The elastic mounting 204 attached to the support legs 150 on the lower surface of the container body 12A is formed to support the lower part of the closed container 12, is made of an elastic material such as hard rubber, and is attached to a bolt (not shown). Attached to the support leg 150. The lower surface of the elastic mounting 204 is fixed to the soundproof wall 202.
[0043]
On the other hand, the upper elastic support member 207 mounted in the hole 206 of the soundproof wall 202 is made of an elastic material such as hard rubber, and has a curved portion 208 which is curved so as to undulate over the entire circumference. I have. The curved portion 208 absorbs the vibration transmitted from the terminal cover 100, and does not transmit the vibration to the soundproof wall 202. An insertion hole 209 for inserting the terminal cover 100 is formed in the center of the upper elastic support member 207. The terminal cover 100 is inserted through the insertion hole 209, and is fixed to the upper elastic support member 207 all around. Thereby, the terminal cover 100 is attached to the inner peripheral surface of the hole 206 of the soundproof wall 202 via the upper elastic support member 207. That is, the terminal cover 100 is supported by the soundproof wall 202 via the upper elastic support member 207.
[0044]
As described above, the lower portion of the rotary compressor 10 is supported by the elastic mounting 204 provided at the lower portion of the sealed container 12 of the rotary compressor 10, and the upper end of the sealed container 12 is supported by the upper elastic support member 207. The disadvantage that the upper portion becomes unstable in the rotary compressor 10 can be eliminated. Further, by forming these with elastic members, it becomes possible to make it difficult to transmit the vibration generated from the rotary compressor 10 to the soundproof wall 202.
[0045]
Next, the operation of the rotary compressor 10 of the present invention having the above configuration will be described. When the stator coil 28 of the electric element 14 of the rotary compressor 10 is energized through the wiring 21 and the terminal 20, the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 eccentrically rotate inside the upper and lower cylinders 38 and 40.
[0046]
As a result, the low-pressure refrigerant gas sucked into the low-pressure chamber side of the cylinder 40 from the suction port (not shown) through the refrigerant introduction portion 94 and the suction passage 60 formed in the lower support member 56 is transferred to the roller 48 and the vane (not shown). Is compressed to an intermediate pressure, and is discharged from the intermediate discharge pipe 121 into the closed container 12 through a communication passage (not shown) from the high pressure chamber side of the lower cylinder 40. Thereby, the inside of the sealed container 12 has an intermediate pressure.
[0047]
Then, the intermediate-pressure refrigerant gas in the closed container 12 flows into the communication pipe 93 </ b> A of the refrigerant introduction part 92. In this case, when the pressure of the intermediate-pressure refrigerant gas flowing into the communication pipe 93A is lower than a set value, the illustration formed in the upper support member 54 from the communication pipe 93A through the refrigerant introduction passage 92A and the communication pipe 93B. The air is sucked from the suction port 161 to the low-pressure chamber side of the upper cylinder 38 of the second rotary compression element 34 via the suction passage that is not used. At this time, the refrigerant gas discharged into the closed container 12 is cooled by passing the refrigerant gas through a refrigerant introduction pipe 92 provided outside the closed container 12. The refrigerant sucked into the low-pressure chamber side of the upper cylinder 38 is compressed in the second stage by the operation of the roller 46 and a vane (not shown) to become high-pressure and high-temperature refrigerant gas, and passes through the discharge port (not shown) from the high-pressure chamber side. The refrigerant is discharged from the refrigerant discharge portion 96 to the outside through the discharge muffling chamber 62 formed in the upper support member 54.
[0048]
On the other hand, when the pressure of the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 and discharged into the closed container 12 rises to the above-described set value, the refrigerant introduction passage extends from the communication pipe 93A of the refrigerant introduction section 92 to the refrigerant introduction passage. Due to the pressure of the refrigerant flowing into 92A, the thick portion 13B is formed as described above (the lid member 112 is deformed by being pushed outward, or the lid member 112 is moved outward against the tightening force of the bolts 120...) A gap is formed between the cover member 112 and the cover member 112. Then, a part of the refrigerant gas in the closed container 12 escapes from the gap to the outside.
[0049]
As a result, the refrigerant gas in the closed container 12 that has abnormally risen as described above can be escaped to the outside to avoid the occurrence of damage due to the abnormal rise in pressure. Further, since the pressure in the closed container 12 is regulated to be lower than the set value due to the outflow, the pressure is sucked into the second rotary compression element 34 through the refrigerant introduction passage 92A and the communication pipe 93B, and the second rotary compression element 34 It is possible to avoid a disadvantage that the pressure of the compressed refrigerant is excessively increased.
[0050]
When the pressure in the closed container 12 falls below the set value by the relief function, the gap formed between the thick portion 13B and the lid member 112 is closed.
[0051]
As described above, since the upper and lower surfaces of the upper cylinder 38 of the second rotary compression element 34 are closed by the heat insulating plates 140 and 141 having heat insulating properties, the problem of the upper cylinder 38 being heated can be prevented. become.
[0052]
Thus, the upper cylinder 38 is heated by the high-temperature and high-pressure refrigerant discharged into the discharge muffling chamber 62 and the heat from the first rotary compression element 32, thereby heating the refrigerant sucked into the upper cylinder 38. Since it can be suppressed or avoided, the compression efficiency of the second rotary compression element 34 can be improved.
[0053]
In this embodiment, the heat insulating plate is provided on the upper and lower surfaces of the cylinder 38. However, the present invention is not limited to this. Only the space between the upper cylinder 38 and the intermediate partition plate 36 or the upper cylinder 38 and the upper support member 54 are provided. A heat insulating plate may be provided only between the two.
[0054]
In addition, in the case where a heat insulating plate is provided between the lower cylinder 40 and the intermediate partition plate 36 in addition to the above, heat from the lower cylinder 40 is more difficult to be transmitted to the upper cylinder 38. When a heat insulating plate is provided between the lower cylinder and the lower support member 56, the lower cylinder 40 is heated by the intermediate-pressure refrigerant in the discharge muffling chamber 64 formed in the lower support member 56 and the sealed container 12. Therefore, the compression efficiency of the first rotary compression element 32 can be improved.
[0055]
Further, in the present embodiment, the heat insulating plates 140 and 141 are provided in order to make it difficult to transmit heat to the upper cylinder. However, without providing the heat insulating plate, the upper cylinder 38 and the upper support member 54 are formed of a different material such as metal, For example, one may be formed of a spring steel material and the other may be formed of a stainless steel material. In this case, since the upper cylinder 38 and the upper support member 54 are formed of different metals even if they are the same iron-based metal, heat conduction between the upper cylinder 38 and the upper support member 54 decreases, It becomes difficult for heat from the support member 54 to be transmitted to the upper cylinder 38.
[0056]
Further, in the present embodiment, a vertical internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor is used. However, the present invention is not limited to this, and a horizontal rotary compressor or a rotary compression element may be rotated in three stages, four stages or more. It may be applied to a multi-stage compression type rotary compressor having a compression element.
[0057]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, the first and second cylinders for constituting the first and second rotary compression elements, respectively, and the respective rotary compression elements interposed between the cylinders are provided. An intermediate partition plate for partitioning, and first and second support members each closing an opening surface of the first and second cylinders and having a bearing for a rotating shaft of a driving element, wherein the first cylinder and / or Since a heat-insulating plate is interposed between the second cylinder and the intermediate partition plate and / or the support member, a heat-insulating plate is provided between the first cylinder and the intermediate partition plate. In this case, the inconvenience of heating the second cylinder by the heat of the intermediate-pressure refrigerant gas compressed by the first cylinder can be prevented.
[0058]
Similarly, when a plate having heat insulating property is interposed between the second cylinder and the intermediate partition plate, the plate is compressed by the first rotary compression element or the first cylinder of the first rotary compression element. The disadvantage that the second cylinder is heated by the heat of the intermediate-pressure refrigerant gas can be prevented.
[0059]
Further, when a plate having heat insulating property is interposed between the second cylinder and the second support member, the second cylinder is discharged to a discharge muffling chamber formed in the second support member. The disadvantage of being heated by the cooled refrigerant or the refrigerant in the closed container can be prevented.
[0060]
As a result, the second cylinder is less likely to be heated, and the intermediate-pressure refrigerant gas sucked into the second cylinder can be compressed without being heated, thereby improving the compression efficiency of the second rotary compression element. Can be achieved.
[0061]
On the other hand, when a plate having heat insulation is interposed between the first cylinder and the first support member, the first cylinder is discharged to the discharge muffling chamber formed in the first support member. The disadvantage of being heated by the cooled refrigerant or the refrigerant in the closed container can be prevented.
[0062]
This makes it difficult for the first cylinder to be heated, so that the low-pressure refrigerant sucked into the first cylinder can be compressed without being heated, thereby improving the compression efficiency of the first rotary compression element. Will be able to
[0063]
In general, the performance and reliability of the compressor can be improved.
[0064]
According to the second aspect of the present invention, in addition to the above-mentioned invention, since a gap is formed between the second support member and the plate, the heat of the second support member is less likely to be transmitted to the plate.
[0065]
This makes it more difficult for the second cylinder to be heated, so that the compression efficiency of the second rotary compression element can be improved.
[0066]
According to the invention of claim 3, the first and second cylinders for constituting the first and second rotary compression elements, respectively, and the intermediate partition plate interposed between these cylinders to partition each rotary compression element. And a first and a second support member that respectively close the opening surfaces of the first and second cylinders and have bearings for the rotating shaft of the drive element, and that at least the second cylinder and the second support member are different from each other. Since it is made of a metal material, heat conduction between the second cylinder and the second support member can be suppressed.
[0067]
This makes it difficult for the second cylinder to be heated by the refrigerant discharged into the discharge muffling chamber formed in the second support member or the refrigerant in the closed container, and the intermediate-pressure refrigerant sucked into the second cylinder. Since the gas can be compressed without being heated, the compression efficiency of the second rotary compression element can be improved.
[0068]
As described in claim 4, when carbon dioxide is used as the refrigerant, the effects in the above inventions can be further expected, and the invention can contribute to environmental problems.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a multi-stage compression compressor according to an embodiment of the present invention.
FIG. 2 is an enlarged view of a rotary compression mechanism of the compressor of FIG.
FIG. 3 is a plan sectional view of the compressor of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Compressor 12 Closed container 12A Container main body 12B End cap 13A Expansion part 13B Thick part 32 First rotary compression element 34 Second rotary compression element 36 Intermediate partition plate 38 Upper cylinder 40 Lower cylinder 54 Upper support member 56 Lower support member 66 Upper cover 68 Lower cover 92 Refrigerant introduction part 92A Refrigerant introduction passages 93A, 93B Communication pipe 94 Refrigerant introduction part 96 Refrigerant discharge part 131 Refueling groove 133 Communication hole 134 Communication hole 140, 141 Insulation plate

Claims (4)

密閉容器内に駆動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮された冷媒を前記第2の回転圧縮要素に吸い込んで圧縮する多段圧縮式ロータリコンプレッサにおいて、
前記第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、
これらシリンダ間に介在して前記各回転圧縮要素を仕切る中間仕切板と、
前記第1及び第2のシリンダの開口面をそれぞれ閉塞し、前記駆動要素の回転軸の軸受けを有する第1及び第2の支持部材とを備え、
前記第1のシリンダ、及び/又は、前記第2のシリンダと前記中間仕切板、及び/又は、前記支持部材との間に、断熱性を有するプレートを介設したことを特徴とする多段圧縮式ロータリコンプレッサ。
Multistage compression in which first and second rotary compression elements driven by a drive element are provided in a closed container, and refrigerant compressed by the first rotary compression element is sucked into the second rotary compression element and compressed. Type rotary compressor,
First and second cylinders for configuring the first and second rotary compression elements, respectively;
An intermediate partition plate interposed between these cylinders to partition the rotary compression elements,
First and second support members that respectively close the opening surfaces of the first and second cylinders and have bearings for the rotation shaft of the drive element,
A multi-stage compression type wherein a plate having heat insulation properties is interposed between the first cylinder and / or the second cylinder and the intermediate partition plate and / or the support member. Rotary compressor.
前記第2の支持部材と前記プレートとの間に隙間を形成したことを特徴とする請求項1の多段圧縮式ロータリコンプレッサ。2. A multi-stage compression type rotary compressor according to claim 1, wherein a gap is formed between said second support member and said plate. 密閉容器内に駆動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮された冷媒を前記第2の回転圧縮要素に吸い込んで圧縮する多段圧縮式ロータリコンプレッサにおいて、
前記第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、
これらシリンダ間に介在して前記各回転圧縮要素を仕切る中間仕切板と、
前記第1及び第2のシリンダの開口面をそれぞれ閉塞し、前記駆動要素の回転軸の軸受けを有する第1及び第2の支持部材とを備え、
少なくとも前記第2のシリンダと第2の支持部材を異なる金属素材にて構成したことを特徴とする多段圧縮式ロータリコンプレッサ。
Multistage compression in which first and second rotary compression elements driven by a drive element are provided in a closed container, and refrigerant compressed by the first rotary compression element is sucked into the second rotary compression element and compressed. Type rotary compressor,
First and second cylinders for configuring the first and second rotary compression elements, respectively;
An intermediate partition plate interposed between these cylinders to partition the rotary compression elements,
First and second support members that respectively close the opening surfaces of the first and second cylinders and have bearings for the rotation shaft of the drive element,
A multi-stage rotary compressor, wherein at least the second cylinder and the second support member are made of different metal materials.
冷媒として二酸化炭素を用いることを特徴とする請求項1、請求項2又は請求項3の多段圧縮式ロータリコンプレッサ。4. The multi-stage compression type rotary compressor according to claim 1, wherein carbon dioxide is used as a refrigerant.
JP2003040152A 2003-02-18 2003-02-18 Multistage compression type rotary compressor Pending JP2004251150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040152A JP2004251150A (en) 2003-02-18 2003-02-18 Multistage compression type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040152A JP2004251150A (en) 2003-02-18 2003-02-18 Multistage compression type rotary compressor

Publications (1)

Publication Number Publication Date
JP2004251150A true JP2004251150A (en) 2004-09-09

Family

ID=33024126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040152A Pending JP2004251150A (en) 2003-02-18 2003-02-18 Multistage compression type rotary compressor

Country Status (1)

Country Link
JP (1) JP2004251150A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121625A (en) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd Compressor
JP2008121626A (en) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd Compressor
JP2008151044A (en) * 2006-12-19 2008-07-03 Matsushita Electric Ind Co Ltd Compressor
JP2008151045A (en) * 2006-12-19 2008-07-03 Matsushita Electric Ind Co Ltd Compressor
CN101852207A (en) * 2010-05-26 2010-10-06 珠海格力电器股份有限公司 Duplex-cylinder rotary compressor
CN104314815A (en) * 2014-09-22 2015-01-28 安徽美芝精密制造有限公司 Multi-cylinder rotary compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121625A (en) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd Compressor
JP2008121626A (en) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd Compressor
JP2008151044A (en) * 2006-12-19 2008-07-03 Matsushita Electric Ind Co Ltd Compressor
JP2008151045A (en) * 2006-12-19 2008-07-03 Matsushita Electric Ind Co Ltd Compressor
CN101852207A (en) * 2010-05-26 2010-10-06 珠海格力电器股份有限公司 Duplex-cylinder rotary compressor
CN104314815A (en) * 2014-09-22 2015-01-28 安徽美芝精密制造有限公司 Multi-cylinder rotary compressor

Similar Documents

Publication Publication Date Title
US6318981B1 (en) Two-cylinder type two-stage compression rotary compressor
KR101094599B1 (en) Rotary Compressor
JP3728227B2 (en) Rotary compressor
JP3291484B2 (en) 2-stage compression type rotary compressor
JP2004251150A (en) Multistage compression type rotary compressor
JP3762693B2 (en) Multi-stage rotary compressor
JP2004317073A (en) Refrigerant cycling device
JP2003254276A (en) Rotary compressor
JP4171321B2 (en) Multistage compression compressor
JP2003161280A (en) Rotary compressor
JP2004245178A (en) Rotary compressor
JP2006307687A (en) Compressor
JP2003201982A (en) Rotary compressor
JP2003286985A (en) Rotary compressor
JP2004237906A (en) Support device for compressor
JP3863799B2 (en) Multi-stage rotary compressor
JP3762690B2 (en) Rotary compressor
JP4100969B2 (en) Rotary compressor
JP4093801B2 (en) Horizontal rotary compressor
JP2005220752A (en) Compressor
JP2004309012A (en) Refrigerant cycle device
JP2004245177A (en) Compressor
JP2006125377A (en) Compressor
JP3963691B2 (en) Hermetic electric compressor
JP2003286980A (en) Internal intermediate pressure type multi-stage compression rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028