JP2008121625A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2008121625A
JP2008121625A JP2006308785A JP2006308785A JP2008121625A JP 2008121625 A JP2008121625 A JP 2008121625A JP 2006308785 A JP2006308785 A JP 2006308785A JP 2006308785 A JP2006308785 A JP 2006308785A JP 2008121625 A JP2008121625 A JP 2008121625A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
ester oil
viscosity
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006308785A
Other languages
Japanese (ja)
Inventor
Hideo Hirano
秀夫 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006308785A priority Critical patent/JP2008121625A/en
Publication of JP2008121625A publication Critical patent/JP2008121625A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the increase in power consumption of a compressor by polyalkylene glycol in a refrigeration device with low environmental load using carbon dioxide as refrigerant. <P>SOLUTION: A refrigerant having GWP of 150 or less and an ester oil having a kinematic viscosity at 40°C of 50-200 mm<SP>2</SP>/s and a viscosity index of 80-200 are used. According to this, since the high-pressure viscosity of the ester oil enhances lubricity, the viscosity can be reduced to reduce the power loss by viscosity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、環境負荷が小さい冷凍装置に使用される圧縮機に関するものである。   The present invention relates to a compressor used in a refrigeration apparatus with a low environmental load.

従来、この種の圧縮機は、特許文献1に開示されている。   Conventionally, this type of compressor is disclosed in Patent Document 1.

図2は、特許文献1に記載された冷凍装置の冷凍回路を示す概念図である。図2に示すように、圧縮機30、放熱器31、膨張機構32および蒸発器33を含む冷凍回路に冷媒として二酸化炭素を循環させる冷凍装置であって、圧縮機30に用いる冷凍機油として粘度が40℃において5〜300cStで、体積固有抵抗が108Ω・cm以上で、また二酸化炭素が飽和溶解したときの流動点が−30℃以下であるポリアルキレングリコール冷凍機油を使用して成るものである。
特許第3600108号公報
FIG. 2 is a conceptual diagram showing a refrigeration circuit of the refrigeration apparatus described in Patent Document 1. As shown in FIG. 2, a refrigeration apparatus that circulates carbon dioxide as a refrigerant in a refrigeration circuit including a compressor 30, a radiator 31, an expansion mechanism 32, and an evaporator 33, and has a viscosity as refrigeration oil used for the compressor 30. A polyalkylene glycol refrigerating machine oil having a volume resistivity of 108 Ω · cm or more at 40 ° C. and a pour point of −30 ° C. or less when carbon dioxide is saturated and dissolved is obtained.
Japanese Patent No. 3600108

前記従来の構成では、確かに圧縮機30への冷凍機油の戻りは良好で焼き付きを防止できるが、ポリアルキレングリコールは螺旋状の分子構造であるがために分子が伸びやすく、軸受などの高温かつ高面圧な摺動部では油膜切れが発生する可能性があり、その防止のために粘度が高い冷凍機油を採用せざるを得ない。その結果、圧縮機30の消費電力が増加することになり、その抑制が課題となっている。   In the conventional configuration, the refrigerating machine oil is surely returned to the compressor 30 and can be prevented from being seized, but the polyalkylene glycol has a helical molecular structure, so the molecules are easy to extend, The sliding part with a high surface pressure may cause the oil film to be cut off, and a refrigeration oil having a high viscosity must be employed to prevent this. As a result, the power consumption of the compressor 30 increases, and its suppression is a problem.

本発明は、前記従来の課題を解決するもので、高効率な低GWP冷媒用の圧縮機を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a highly efficient compressor for a low GWP refrigerant.

前記従来の課題を解決するために、本発明の圧縮機は、GWPが150以下の冷媒と、40℃における動粘度が50〜200mm/sで粘度指数が80〜200のエステル油を用いたものである。 In order to solve the conventional problems, the compressor of the present invention uses a refrigerant having a GWP of 150 or less and an ester oil having a kinematic viscosity at 40 ° C. of 50 to 200 mm 2 / s and a viscosity index of 80 to 200. Is.

これによって、エステル油の高圧粘度が潤滑性を強化することになり、40℃における動粘度がより低い潤滑油を使えることになる。その結果、軸受などの摺動部で発生する粘性による動力損失を低減できる。   As a result, the high-pressure viscosity of the ester oil enhances the lubricity, and a lubricating oil having a lower kinematic viscosity at 40 ° C. can be used. As a result, it is possible to reduce power loss due to viscosity generated in a sliding portion such as a bearing.

本発明の圧縮機は、環境負荷の小さい低GWP冷媒用であり、その効率を向上できるものである。   The compressor of the present invention is for a low GWP refrigerant with a small environmental load, and can improve its efficiency.

第1の発明は、GWPが150以下の冷媒と、40℃における動粘度が50〜200mm/sで粘度指数が80〜200のエステル油を用いたことにより、潤滑油の潤滑性が強化されることになり、軸受などの摺動部における動力損失を低減することができる。 The first invention uses a refrigerant having a GWP of 150 or less and an ester oil having a kinematic viscosity at 40 ° C. of 50 to 200 mm 2 / s and a viscosity index of 80 to 200, thereby enhancing the lubricity of the lubricating oil. As a result, power loss in sliding parts such as bearings can be reduced.

第2の発明は、特に、第1の発明の冷媒を二酸化炭素にしたことにより、冷媒のGWPが1.0になり、環境負荷を最小にできる。   In the second invention, in particular, by using carbon dioxide as the refrigerant of the first invention, the GWP of the refrigerant becomes 1.0, and the environmental load can be minimized.

第3の発明は、特に、第1の発明の冷媒は混合冷媒であり、その構成冷媒の極性に差を
設けたことにより、圧力の調整が可能になり、かつ極性の大きな冷媒がエステル油によく溶解することになり、圧縮機を低コストにでき、かつ蒸発器から圧縮機へのエステル油の戻りを良好にできる。
In the third invention, in particular, the refrigerant of the first invention is a mixed refrigerant. By providing a difference in the polarity of the constituent refrigerant, the pressure can be adjusted, and the refrigerant having a large polarity can be used as the ester oil. It will dissolve well, the cost of the compressor can be reduced, and the return of ester oil from the evaporator to the compressor can be improved.

第4の発明は、特に、第2の発明の混合冷媒における構成冷媒の一つをエステル油に難相溶としたことにより、エステル油に溶解する冷媒が限られることになり、圧縮機の性能を安定化できる。   In the fourth aspect of the invention, in particular, one of the constituent refrigerants in the mixed refrigerant of the second aspect of the invention is made incompatible with the ester oil, so that the refrigerant that dissolves in the ester oil is limited, and the performance of the compressor Can be stabilized.

第5の発明は、特に、第1の発明のエステル油は末端付近に分岐を有する脂肪酸を用いたことにより、エステル油の安定性が向上することになり、圧縮機の耐コンタミ性を向上できる。   In the fifth invention, in particular, the ester oil of the first invention uses a fatty acid having a branch in the vicinity of the terminal, so that the stability of the ester oil is improved and the contamination resistance of the compressor can be improved. .

第6の発明は、特に、第1の発明のエステル油を含酸素率の異なる混合油にしたことにより、摩耗防止剤が効きやすくなり、摺動部材の耐摩耗性を向上できる。   In the sixth aspect of the invention, in particular, the ester oil of the first aspect of the present invention is a mixed oil having a different oxygen content, so that the antiwear agent becomes effective and the wear resistance of the sliding member can be improved.

第7の発明は、特に、第1の発明の圧縮機における圧縮機構部にインジェクション機構を設けたことにより、蒸発器の吸熱能力が向上することになり、冷凍装置の効率を向上できる。   In the seventh aspect of the invention, in particular, by providing the injection mechanism in the compression mechanism portion of the compressor of the first aspect of the invention, the heat absorption capability of the evaporator is improved, and the efficiency of the refrigeration apparatus can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1に本発明の第1の実施の形態を示している。本実施の形態は冷凍装置用のスクロール圧縮機の場合で、図1に全体構成を示している。
(Embodiment 1)
FIG. 1 shows a first embodiment of the present invention. This embodiment is a case of a scroll compressor for a refrigeration apparatus, and FIG.

図1において、1はスクロール圧縮機、2は凝縮器であり、3は第1の減圧装置、4は気液分離器、5は第2の減圧装置、6は蒸発器であり、順次接続されて冷凍サイクルを構成している。   In FIG. 1, 1 is a scroll compressor, 2 is a condenser, 3 is a first pressure reducing device, 4 is a gas-liquid separator, 5 is a second pressure reducing device, and 6 is an evaporator, which are sequentially connected. Constitutes the refrigeration cycle.

7は密閉容器であり、その内部に電動機8と、圧縮機構9を配している。圧縮機構9は、電動機8により駆動されるクランク軸10と、旋回スクロール11と、固定スクロール12と、旋回スクロール11を固定スクロール12に対して自転させずに旋回運動させるように支持するオルダムリング13と、このオルダムリング13を前記支持のために移動できるように支持するフレーム14で構成されている。   Reference numeral 7 denotes an airtight container, in which an electric motor 8 and a compression mechanism 9 are arranged. The compression mechanism 9 includes a crankshaft 10 driven by an electric motor 8, a turning scroll 11, a fixed scroll 12, and an Oldham ring 13 that supports the turning scroll 11 to make a turning motion without rotating with respect to the fixed scroll 12. And the frame 14 for supporting the Oldham ring 13 so as to be movable for the support.

クランク軸10はフレーム14の軸受16および軸受17によって支持されている。旋回スクロール11はその軸11aがクランク軸10のクランク部10aに設けられた軸受10cで支持され、一方固定スクロール12と互いに噛み合わされて圧縮室15を形成している。なお、18は吸入口であり、19は吐出口である。   The crankshaft 10 is supported by bearings 16 and 17 of the frame 14. A shaft 11 a of the orbiting scroll 11 is supported by a bearing 10 c provided on the crank portion 10 a of the crankshaft 10, and is engaged with the fixed scroll 12 to form a compression chamber 15. In addition, 18 is an inlet and 19 is an outlet.

密閉容器7の16は吸入管であり、蒸発器6に接続され、23は吐出管であり、凝縮器2に接続されている。24はインジェクション管であり、密閉容器7を介して気液分離器4と圧縮機構9の圧縮室15を接続している。   Reference numeral 16 of the sealed container 7 is a suction pipe connected to the evaporator 6, and 23 is a discharge pipe connected to the condenser 2. An injection tube 24 connects the gas-liquid separator 4 and the compression chamber 15 of the compression mechanism 9 via the sealed container 7.

密閉容器7内の最下部には油溜め20が設けられ、油溜め20内の潤滑油21はクランク軸10の油供給路10bを通じて潤滑対象部へ供給されるが、軸受16には油供給穴10dより供給される。   An oil sump 20 is provided in the lowermost part of the sealed container 7, and the lubricating oil 21 in the oil sump 20 is supplied to the lubrication target portion through the oil supply passage 10 b of the crankshaft 10, but the bearing 16 has an oil supply hole. 10d.

潤滑油21はエステル油であり、ペンタエリスリトールなどの4価のアルコールと末端
付近に比較的長い分岐を有する脂肪酸よりなるものである。この脂肪酸によって酸素の2重結合を立体的に覆ってしっかり保護している。
The lubricating oil 21 is an ester oil, and is composed of a tetravalent alcohol such as pentaerythritol and a fatty acid having a relatively long branch near the end. This fatty acid sterically covers and protects the oxygen double bond.

エステル油の40℃における動粘度は50〜200mm/sであり、50mm/s未満では潤滑性が不足し、200mm/sを超えると動力損失が増大する。粘度指数は80〜200であり脂肪酸と関係している。80未満では脂肪酸による酸素の2重結合の保護能力が低下し、200を超えても高圧粘度が低下する。粘度指数は100〜180が好ましい。 Kinematic viscosity at 40 ° C. of the ester oil is 50 to 200 mm 2 / s, is less than 50 mm 2 / s is insufficient lubricity, the power loss increases exceeds 200 mm 2 / s. The viscosity index is 80-200 and is related to fatty acids. If it is less than 80, the ability to protect double bonds of oxygen by fatty acids is reduced, and if it exceeds 200, the high-pressure viscosity is reduced. The viscosity index is preferably 100 to 180.

冷媒はGWPが1.0である二酸化炭素である。   The refrigerant is carbon dioxide having a GWP of 1.0.

以上のように構成されたスクロール圧縮機1について、以下その動作、作用を説明する。   About the scroll compressor 1 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

電動機8に駆動されてクランク軸10が回転すると、オルダムリング13を介し旋回スクロール11が旋回運動し、ガス冷媒を吸込管22から吸込口18へと吸入する。圧縮室15において、ガス冷媒は吸込口18に通じる外周側から吐出口19に通じる内周側に移動されながらその容積を縮小して圧縮され、吐出口19から密閉容器7内に吐出される。高温高圧のガス冷媒は、吐出管23から冷凍サイクルに供給されるが、凝縮器2で液化され、第1の減圧装置3で減圧され二相となり、気液分離器4に至る。ここで、冷媒は分離されて液冷媒は、第2の減圧装置5で更に減圧され、蒸発器6にてガス化されてスクロール圧縮機1の吸入管22に至る。一方、気液分離機で分離されたガス冷媒はインジェクション管24を経て、圧縮機構9の圧縮室15に導入され、吸入ガス冷媒と共に圧縮される。   When the crankshaft 10 is rotated by being driven by the electric motor 8, the orbiting scroll 11 is orbited through the Oldham ring 13 and sucks the gas refrigerant from the suction pipe 22 into the suction port 18. In the compression chamber 15, the gas refrigerant is compressed by reducing its volume while being moved from the outer peripheral side leading to the suction port 18 to the inner peripheral side leading to the discharge port 19, and discharged from the discharge port 19 into the sealed container 7. The high-temperature and high-pressure gas refrigerant is supplied to the refrigeration cycle from the discharge pipe 23, but is liquefied by the condenser 2, depressurized by the first decompression device 3, becomes two-phase, and reaches the gas-liquid separator 4. Here, the refrigerant is separated, and the liquid refrigerant is further decompressed by the second decompression device 5, gasified by the evaporator 6, and reaches the suction pipe 22 of the scroll compressor 1. On the other hand, the gas refrigerant separated by the gas-liquid separator is introduced into the compression chamber 15 of the compression mechanism 9 via the injection pipe 24 and compressed together with the suction gas refrigerant.

エステル油はその高い高圧粘度によって、クランク軸10、オルダムリング13および旋回スクロール11の各摺動部において高い潤滑性を発揮するため、40℃における動粘度が低いもの使用できる。その結果、各摺動部における粘性による動力損失を抑制でき、スクロール圧縮機1の効率を上げることができる。   The ester oil exhibits high lubricity in the sliding portions of the crankshaft 10, the Oldham ring 13 and the orbiting scroll 11 due to its high high-pressure viscosity, so that it can be used having a low kinematic viscosity at 40 ° C. As a result, power loss due to viscosity at each sliding portion can be suppressed, and the efficiency of the scroll compressor 1 can be increased.

また、二酸化炭素はGWPが1.0であり、環境負荷を最小にできるだけでなく、エステル油との相溶性が比較的よいため、蒸発器で二層分離しないので、蒸発器において高い伝熱性能も得られる。その結果、蒸発器を小型化できる。   Carbon dioxide has a GWP of 1.0, which not only minimizes the environmental burden, but also has relatively good compatibility with ester oil, so it does not separate into two layers in the evaporator, so high heat transfer performance in the evaporator Can also be obtained. As a result, the evaporator can be reduced in size.

また、末端付近に分岐を有する脂肪酸が酸素の2重結合を立体的に保護するので、エステル油の安定性は高くなるため、スクロール圧縮機1だけでなく冷凍装置の耐コンタミ性も向上できる。   Further, since the fatty acid having a branch near the terminal sterically protects the double bond of oxygen, the stability of the ester oil is increased, so that not only the scroll compressor 1 but also the refrigeration apparatus can be improved in contamination resistance.

また、気液分離器4で分離された液冷媒によって冷凍効果が増加するために蒸発器6の吸熱能力が向上するが、エステル油と二酸化炭素の相溶性による蒸発器6の伝熱性能の向上もあって、蒸発器の吸熱能力が高くなるため、冷凍装置の効率を向上できる。   Moreover, since the refrigeration effect is increased by the liquid refrigerant separated by the gas-liquid separator 4, the heat absorption capability of the evaporator 6 is improved. However, the heat transfer performance of the evaporator 6 is improved by the compatibility of ester oil and carbon dioxide. For this reason, the efficiency of the refrigeration apparatus can be improved because the heat absorption capacity of the evaporator is increased.

また、エステル油を含酸素率の異なる混合油にすることにより、摺動部材の摺動面に摩耗防止剤が効きやすくなるため、スクロール圧縮機1の運転可能な負荷を拡大できる。   Further, by using mixed oil having different oxygen contents as the ester oil, the antiwear agent is likely to be effective on the sliding surface of the sliding member, so that the operable load of the scroll compressor 1 can be increased.

また、冷媒を2種類の混合冷媒とすることによって運転圧力、特に高圧側の圧力を適度に調整できることになるが、更に構成冷媒の極性、特に双極子モーメントを0.5debye以上、好ましくは1.0debye以上の差を設けることによって、極性の大きな冷媒がエステル油によく溶解することになるため、蒸発器6からスクロール圧縮機1へのエステル油の戻りを良好にできる。   Further, by using two types of refrigerant as the refrigerant, the operating pressure, particularly the pressure on the high-pressure side can be adjusted moderately, but the polarity of the constituent refrigerant, particularly the dipole moment, is 0.5 debye or more, preferably 1. By providing a difference of 0 debye or more, a refrigerant having a large polarity is well dissolved in the ester oil, so that the return of the ester oil from the evaporator 6 to the scroll compressor 1 can be improved.

また、2種類の混合冷媒における構成冷媒の一つをエステル油に難相溶とすることによって、エステル油には残りの冷媒1種類のみが溶解することになるため、圧縮機の性能を安定化できる。   In addition, by making one of the constituent refrigerants in the two types of refrigerant mixture incompatible with ester oil, only one type of refrigerant is dissolved in the ester oil, so the performance of the compressor is stabilized. it can.

以上のように、本発明にかかる圧縮機は、エステル油の高圧粘度によって潤滑性を強化して摺動部における動力損失を低減するものであり、給湯設備や自動車用空調機にも適用できる。   As described above, the compressor according to the present invention enhances the lubricity by the high-pressure viscosity of the ester oil to reduce the power loss in the sliding portion, and can be applied to hot water supply facilities and automobile air conditioners.

本発明の実施の形態1におけるスクロール圧縮機の縦断面図The longitudinal cross-sectional view of the scroll compressor in Embodiment 1 of this invention 従来の冷凍装置の冷凍回路を示す概念図Conceptual diagram showing a refrigeration circuit of a conventional refrigeration system

符号の説明Explanation of symbols

1 スクロール圧縮機
9 圧縮機構
10 クランク軸
11 旋回スクロール
13 オルダムリング
21 潤滑油
DESCRIPTION OF SYMBOLS 1 Scroll compressor 9 Compression mechanism 10 Crankshaft 11 Orbiting scroll 13 Oldham ring 21 Lubricating oil

Claims (7)

GWPが150以下の冷媒と、40℃における動粘度が50〜200mm/sで粘度指数が80〜200のエステル油を用いた圧縮機。 A compressor using a refrigerant having a GWP of 150 or less and an ester oil having a kinematic viscosity at 40 ° C. of 50 to 200 mm 2 / s and a viscosity index of 80 to 200. 冷媒は二酸化炭素である請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the refrigerant is carbon dioxide. 冷媒は混合冷媒であり、その構成冷媒の極性に差を設けた請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the refrigerant is a mixed refrigerant, and a difference is provided in the polarity of the constituent refrigerant. 混合冷媒の構成冷媒の一つは、エステル油に難相溶である請求項2に記載の圧縮機。 The compressor according to claim 2, wherein one of the constituent refrigerants of the mixed refrigerant is hardly compatible with the ester oil. エステル油は末端付近に分岐を有する脂肪酸を用いた請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the ester oil uses a fatty acid having a branch near the end. エステル油は含酸素率の異なる混合油である請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the ester oil is a mixed oil having different oxygen contents. 圧縮機構部にインジェクション機構を設けた請求項1に記載の圧縮機。 The compressor according to claim 1, wherein an injection mechanism is provided in the compression mechanism section.
JP2006308785A 2006-11-15 2006-11-15 Compressor Pending JP2008121625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308785A JP2008121625A (en) 2006-11-15 2006-11-15 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308785A JP2008121625A (en) 2006-11-15 2006-11-15 Compressor

Publications (1)

Publication Number Publication Date
JP2008121625A true JP2008121625A (en) 2008-05-29

Family

ID=39506630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308785A Pending JP2008121625A (en) 2006-11-15 2006-11-15 Compressor

Country Status (1)

Country Link
JP (1) JP2008121625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114783A1 (en) * 2014-01-30 2015-08-06 三菱電機株式会社 Compressor and refrigeration cycle device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202847A (en) * 1992-01-30 1993-08-10 Hitachi Ltd Compressor for refrigerator
JPH08285410A (en) * 1995-04-12 1996-11-01 Sanyo Electric Co Ltd Freezer device
JPH09125052A (en) * 1995-11-02 1997-05-13 Matsushita Refrig Co Ltd Refrigeration system
JP2002060771A (en) * 2000-08-23 2002-02-26 Idemitsu Kosan Co Ltd Lubricant oil composition for refrigerator and working fluid composition for refrigerator by using the same
JP2002235072A (en) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd Mixed working fluid and freezing cycle device using the same
JP2004251150A (en) * 2003-02-18 2004-09-09 Sanyo Electric Co Ltd Multistage compression type rotary compressor
JP2005257240A (en) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd Transition critical refrigerating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202847A (en) * 1992-01-30 1993-08-10 Hitachi Ltd Compressor for refrigerator
JPH08285410A (en) * 1995-04-12 1996-11-01 Sanyo Electric Co Ltd Freezer device
JPH09125052A (en) * 1995-11-02 1997-05-13 Matsushita Refrig Co Ltd Refrigeration system
JP2002060771A (en) * 2000-08-23 2002-02-26 Idemitsu Kosan Co Ltd Lubricant oil composition for refrigerator and working fluid composition for refrigerator by using the same
JP2002235072A (en) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd Mixed working fluid and freezing cycle device using the same
JP2004251150A (en) * 2003-02-18 2004-09-09 Sanyo Electric Co Ltd Multistage compression type rotary compressor
JP2005257240A (en) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd Transition critical refrigerating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114783A1 (en) * 2014-01-30 2015-08-06 三菱電機株式会社 Compressor and refrigeration cycle device

Similar Documents

Publication Publication Date Title
US20220136744A1 (en) Turbo chiller
JP5339788B2 (en) Compressor and refrigeration cycle equipment
CN1670447A (en) Trans-critical refrigerating unit
JP2010243148A (en) Refrigerating cycle device
JP2004205195A (en) Screw refrigerating unit
JP2010031728A (en) Refrigerant compressor
JPH1182348A (en) Refrigerant compressor and refrigerator
JP2020051662A (en) Refrigeration air conditioner and hermetic electric compressor used in the same
JP2003139420A (en) Refrigeration unit
JP2008121625A (en) Compressor
JP2010255623A (en) Compressor
JP2006132377A (en) Fluid machine
JP2008151044A (en) Compressor
JP2008121626A (en) Compressor
JPH08151587A (en) Refrigerating apparatus for hfc-based refrigerant
JP2007024439A (en) Refrigeration cycle device
JP2008151045A (en) Compressor
JP2006189185A (en) Refrigerating cycle device
JP2008163782A (en) Hermetic refrigerant compressor
JPH09221693A (en) Refrigerating machine oil for hfc refrigerant
JP5911637B2 (en) Compressor
JP2009052497A (en) Refrigerant compressor
CN102472533A (en) Refrigeration cycle apparatus
JP2002106989A (en) Two-stage compressor, refrigerating cycle device and refrigerator
JP2008082309A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

RD01 Notification of change of attorney

Effective date: 20091014

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A521 Written amendment

Effective date: 20110810

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20111206

Free format text: JAPANESE INTERMEDIATE CODE: A02