WO2014083674A1 - Compressor, refrigeration cycle device, and heat pump hot-water supply device - Google Patents

Compressor, refrigeration cycle device, and heat pump hot-water supply device Download PDF

Info

Publication number
WO2014083674A1
WO2014083674A1 PCT/JP2012/081031 JP2012081031W WO2014083674A1 WO 2014083674 A1 WO2014083674 A1 WO 2014083674A1 JP 2012081031 W JP2012081031 W JP 2012081031W WO 2014083674 A1 WO2014083674 A1 WO 2014083674A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
sealed container
compressor
discharge passage
suction passage
Prior art date
Application number
PCT/JP2012/081031
Other languages
French (fr)
Japanese (ja)
Inventor
野本 宗
謙作 畑中
啓輔 高山
酒井 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/081031 priority Critical patent/WO2014083674A1/en
Priority to PCT/JP2013/073336 priority patent/WO2014083901A1/en
Priority to EP13859532.7A priority patent/EP2930449B1/en
Priority to JP2014550053A priority patent/JP5892261B2/en
Publication of WO2014083674A1 publication Critical patent/WO2014083674A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor

Definitions

  • the present invention relates to a compressor, a refrigeration cycle apparatus, and a heat pump hot water supply apparatus.
  • Patent Document 1 has a compression element and an electric element in a hermetic container and hermetically seals a suction pipe (first suction passage) that directly leads a low-pressure side refrigerant to the compression element and a high-pressure refrigerant compressed by the compression element.
  • a suction pipe first suction passage
  • a discharge pipe (first discharge passage) that discharges directly to the outside of the sealed container without releasing it into the container, and a refrigerant reintroduction pipe (first discharge pipe) that is discharged from the discharge pipe and guides the refrigerant after heat exchange back into the sealed container 2) and a refrigerant re-discharge pipe (second discharge passage) for re-introducing the refrigerant into the sealed container and discharging the refrigerant after passing through the electric element to the outside of the sealed container is disclosed.
  • the present invention has been made in order to solve the above-described problems, and an object thereof is to provide a compressor capable of reducing the amount of refrigerating machine oil flowing out from the first discharge passage.
  • An object of the present invention is to provide a refrigeration cycle apparatus and a heat pump hot water supply apparatus provided with a compressor.
  • a compressor includes a sealed container, a first suction passage for sucking refrigerant, a compression element that is provided in the sealed container and compresses the refrigerant sucked from the first suction passage, and a compression element.
  • a first discharge passage for discharging the compressed refrigerant to the outside of the sealed container; a second suction passage for discharging the refrigerant discharged from the first discharge passage and passing through the external heat exchanger into the sealed container;
  • a second discharge passage for discharging the refrigerant sucked into the sealed container from the second suction passage to the outside of the sealed container; and an oil return means for guiding the refrigeration oil in the first discharge passage into the sealed container.
  • the amount of refrigerating machine oil flowing out from the first discharge passage can be reduced. As a result, it is possible to suppress heat transfer inhibition and an increase in pressure loss in the heat exchanger that exchanges heat with the refrigerant discharged from the first discharge passage, and to suppress a decrease in refrigerating machine oil inside the compressor. It becomes possible.
  • FIG. 1 is a configuration diagram illustrating a heat pump hot water supply apparatus including the compressor according to the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a hot water storage type hot water supply system including the heat pump hot water supply apparatus shown in FIG. 1.
  • FIG. 3 is a cross-sectional view showing the compressor according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing the flow state of the refrigerant gas and the refrigerating machine oil.
  • FIG. 5 is a cross-sectional view of the oil return means provided in the compressor according to Embodiment 1 of the present invention.
  • FIG. 6 is a cross-sectional view of the inner pipe of the first discharge passage provided in the compressor according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the oil return means provided in the compressor according to Embodiment 3 of the present invention.
  • FIG. 8 is a longitudinal sectional view of the vicinity of the downstream end of the second suction passage provided in the compressor according to the fourth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the vicinity of the downstream end of the second suction passage provided in the compressor according to the fourth embodiment of the present invention.
  • FIG. 10 is a view showing the vicinity of the downstream end of the second suction passage provided in the compressor according to the fifth embodiment of the present invention.
  • FIG. 1 is a configuration diagram illustrating a heat pump hot water supply apparatus including the compressor according to the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a hot water storage type hot water supply system including the heat pump hot water supply apparatus shown in FIG. 1. As shown in FIG.
  • the heat pump water heater 1 of the present embodiment includes a compressor 3, a first water refrigerant heat exchanger 4 (first heat exchanger), and a second water refrigerant heat exchanger 5 (first 2 heat exchanger), a refrigerant circuit including an expansion valve 6 (expansion means) and an evaporator 7, and a water flow path for circulating hot water through the first water refrigerant heat exchanger 4 and the second water refrigerant heat exchanger 5.
  • the evaporator 7 in the present embodiment is an air refrigerant heat exchanger that performs heat exchange between air and refrigerant.
  • the heat pump hot water supply apparatus 1 of the present embodiment further includes a blower 8 that blows air to the evaporator 7 and a high and low pressure heat exchanger 9 that performs heat exchange between the high pressure side refrigerant and the low pressure side refrigerant.
  • the compressor 3, the first water refrigerant heat exchanger 4, the second water refrigerant heat exchanger 5, the expansion valve 6, the evaporator 7 and the high and low pressure heat exchanger 9 are connected via a pipe through which the refrigerant passes, A refrigerant circuit is formed.
  • the heat pump water heater 1 operates the refrigeration cycle by operating the compressor 3 during the heating operation.
  • the heat pump hot water supply apparatus 1 of the present embodiment can be used as a hot water storage type hot water supply system by combining with the tank unit 2.
  • a hot water storage tank 2a for storing hot water and a water pump 2b are installed in the tank unit 2.
  • the heat pump hot water supply device 1 and the tank unit 2 are connected via a pipe 11 and a pipe 12 through which water flows, and an electric wiring (not shown).
  • One end of the pipe 11 is connected to the water inlet 1 a of the heat pump hot water supply apparatus 1.
  • the other end of the pipe 11 is connected to the lower part of the hot water storage tank 2 a in the tank unit 2.
  • a water pump 2 b is installed in the middle of the pipe 11 in the tank unit 2.
  • One end of the pipe 12 is connected to the hot water outlet 1 b of the heat pump hot water supply apparatus 1.
  • the other end of the pipe 12 is connected to the upper part of the hot water storage tank 2 a in the tank unit 2.
  • the water pump 2b may be disposed in the heat pump water heater 1.
  • the compressor 3 of the heat pump water heater 1 includes a sealed container 31, a compression element 32 and an electric element 33 provided in the sealed container 31, a first suction passage 34, and a first suction passage 34.
  • the discharge passage 35, the second suction passage 36, and the second discharge passage 37 are provided.
  • the refrigerant sucked from the first suction passage 34 flows into the compression element 32.
  • the compression element 32 is driven by the electric element 33 and compresses the refrigerant.
  • the refrigerant compressed by the compression element 32 is discharged out of the sealed container 31 through the first discharge passage 35.
  • the refrigerant discharged from the first discharge passage 35 passes through the pipe 10 and reaches the first water refrigerant heat exchanger 4.
  • the refrigerant that has passed through the first water-refrigerant heat exchanger 4 passes through the pipe 17 and reaches the second suction passage 36.
  • the refrigerant flowing into the sealed container 31 of the compressor 3 from the second suction passage 36 cools the electric element 33 by passing between the rotor and the stator of the electric element 33 and then the second discharge. It is discharged out of the sealed container 31 from the passage 37.
  • the refrigerant discharged from the second discharge passage 37 passes through the pipe 18 and reaches the second water refrigerant heat exchanger 5.
  • the refrigerant that has passed through the second water refrigerant heat exchanger 5 passes through the pipe 19 and reaches the expansion valve 6.
  • the refrigerant that has passed through the expansion valve 6 flows into the evaporator 7 through the pipe 20.
  • the refrigerant that has passed through the evaporator 7 reaches the first suction passage 34 through the pipe 21 and is sucked into the compressor 3.
  • the high / low pressure heat exchanger 9 exchanges heat between the high-pressure refrigerant passing through the pipe 19 and the low-pressure refrigerant passing through the pipe 21.
  • the heat pump water heater 1 includes a water flow path 23 connecting the water inlet 1a and the inlet of the second water refrigerant heat exchanger 5, an outlet of the second water refrigerant heat exchanger 5, and the first water refrigerant heat exchanger.
  • 4 is further provided with a water channel 24 that connects the four inlets, and a water channel 26 that connects the outlet of the first water refrigerant heat exchanger 4 and the hot water outlet 1b.
  • water flowing in from the water inlet 1 a flows into the second water refrigerant heat exchanger 5 through the water flow path 23 and is heated by the heat of the refrigerant in the second water refrigerant heat exchanger 5.
  • Hot water generated by being heated in the second water-refrigerant heat exchanger 5 flows into the first water-refrigerant heat exchanger 4 through the water flow path 24, and in the first water-refrigerant heat exchanger 4. Then, it is further heated by the heat of the refrigerant. Hot water that has been heated further by being further heated in the first water-refrigerant heat exchanger 4 reaches the outlet 1b through the water channel 26, and is sent to the tank unit 2 through the pipe 12.
  • a refrigerant capable of producing high temperature hot water for example, a refrigerant such as carbon dioxide, R410A, propane, propylene or the like is suitable, but is not particularly limited thereto.
  • the high-temperature and high-pressure refrigerant gas discharged from the first discharge passage 35 of the compressor 3 decreases in temperature while dissipating heat while passing through the first water-refrigerant heat exchanger 4.
  • the refrigerant whose temperature has decreased while passing through the first water-refrigerant heat exchanger 4 is drawn into the sealed container 31 from the second suction passage 36 and cools the electric element 33, whereby the electric element The temperature of 33 and the surface temperature of the sealed container 31 can be lowered.
  • the motor efficiency of the electric element 33 can be improved, and the heat dissipation loss from the surface of the sealed container 31 can be reduced.
  • the refrigerant gas sucked into the sealed container 31 rises in temperature by taking the heat of the electric element 33, is then discharged from the second discharge passage 37 and flows into the second water refrigerant heat exchanger 5. While passing through the water / refrigerant heat exchanger 5, the temperature decreases while releasing heat.
  • the high-pressure refrigerant whose temperature has been lowered passes through the expansion valve 6 after heating the low-pressure refrigerant while passing through the high-low pressure heat exchanger 9.
  • the refrigerant is decompressed to a low-pressure gas-liquid two-phase state.
  • the refrigerant that has passed through the expansion valve 6 absorbs heat from the outside air while passing through the evaporator 7 and is evaporated into gas.
  • the low-pressure refrigerant exiting the evaporator 7 is heated by the high-low pressure heat exchanger 9 and then sucked into the compressor 3 from the first suction passage 34.
  • the refrigerant in the first water refrigerant heat exchanger 4 and the second water refrigerant heat exchanger 5 decreases in temperature without undergoing a gas-liquid phase transition in a supercritical state. To dissipate heat. If the high-pressure side refrigerant pressure is equal to or lower than the critical pressure, the refrigerant radiates heat while liquefying. In the present embodiment, it is preferable to set the high-pressure side refrigerant pressure to be equal to or higher than the critical pressure by using carbon dioxide or the like as the refrigerant.
  • the liquefied refrigerant When the high-pressure side refrigerant pressure is equal to or higher than the critical pressure, the liquefied refrigerant can be reliably prevented from flowing into the sealed container 31 from the second suction passage 36. For this reason, it can prevent reliably that the liquefied refrigerant
  • a water supply pipe 13 is further connected to the lower part of the hot water storage tank 2 a of the tank unit 2.
  • Water supplied from an external water source such as water supply flows through the water supply pipe 13 into the hot water storage tank 2a and is stored.
  • the hot water storage tank 2a is always maintained in a full water state when water flows in from the water supply pipe 13.
  • a hot water supply mixing valve 2c is further provided.
  • the hot water supply mixing valve 2 c is connected to the upper part of the hot water storage tank 2 a through the hot water discharge pipe 14.
  • a water supply branch pipe 15 branched from the water supply pipe 13 is connected to the hot water supply mixing valve 2c.
  • One end of a hot water supply pipe 16 is further connected to the hot water supply mixing valve 2c.
  • the other end of the hot water supply pipe 16 is connected to a hot water supply terminal such as a faucet, a shower, or a bathtub.
  • the water stored in the hot water storage tank 2a is sent to the heat pump water heater 1 through the pipe 11 by the water pump 2b. Is heated to hot water.
  • the hot water generated in the heat pump hot water supply apparatus 1 returns to the tank unit 2 through the pipe 12, and flows into the hot water storage tank 2a from the upper part.
  • hot water in the hot water storage tank 2 a is supplied to the hot water supply mixing valve 2 c through the hot water supply pipe 14, and low temperature water is supplied to the hot water supply pipe through the water supply branch pipe 15. It is supplied to the mixing valve 2c.
  • the hot water and the low temperature water are mixed by the hot water supply mixing valve 2 c and then supplied to the hot water supply terminal through the hot water supply pipe 16.
  • the hot water supply mixing valve 2c has a function of adjusting the mixing ratio of the hot water and the low temperature water so that the hot water temperature set by the user is obtained.
  • This hot water storage type hot water supply system includes a control unit 50.
  • the control unit 50 is electrically connected to actuators and sensors (not shown) and a user interface device (not shown) included in the heat pump hot water supply device 1 and the tank unit 2, respectively. It functions as a control means for controlling the operation of the system.
  • the control unit 50 is installed in the heat pump hot water supply apparatus 1, but the installation location of the control unit 50 is not limited to the heat pump hot water supply apparatus 1.
  • the control unit 50 may be installed in the tank unit 2. Moreover, you may make it the structure which distribute
  • the controller 50 controls the temperature of the hot water supplied from the heat pump hot water supply apparatus 1 to the tank unit 2 (hereinafter referred to as “hot water temperature”) at the target hot water temperature during the heating operation.
  • the target hot water temperature is set to 65 ° C. to 90 ° C., for example.
  • the control part 50 controls the tapping temperature by adjusting the rotation speed of the water pump 2b.
  • the control unit 50 detects the tapping temperature with a temperature sensor (not shown) provided in the water flow path 26, and increases the rotation speed of the water pump 2b when the tapping temperature detected is higher than the target tapping temperature. If the hot water temperature is lower than the target hot water temperature, the rotational speed of the water pump 2b is corrected.
  • control unit 50 can perform control so that the tapping temperature matches the target tapping temperature.
  • the temperature of the hot water may be controlled by controlling the temperature of the refrigerant discharged from the first discharge passage 35 of the compressor 3 or the rotational speed of the compressor 3.
  • FIG. 3 is a cross-sectional view showing the compressor according to the first embodiment of the present invention.
  • the compressor 3 of the present embodiment will be further described with reference to FIG.
  • the sealed container 31 of the compressor 3 of the present embodiment has a substantially cylindrical shape.
  • An accumulator 27 is installed adjacent to the sealed container 31 of the compressor 3. The refrigerant passes through the accumulator 27 and is then sucked into the compressor 3 from the first suction passage 34. Note that the accumulator 27 is not shown in FIG. 1 described above.
  • a compression element 32 is disposed below the electric element 33.
  • the electric element 33 drives the compression element 32 via the rotating shaft 331.
  • the compression element 32 includes a compression chamber 321, a muffler 322, and a frame 323.
  • the refrigerant gas sucked from the first suction passage 34 flows into the compression chamber 321 and is compressed.
  • the refrigerant gas compressed in the compression chamber 321 is discharged into the muffler 322.
  • the refrigerant gas discharged into the muffler 322 passes through the frame 323 and is discharged out of the sealed container 31 through the first discharge passage 35.
  • the refrigerant gas discharged from the first discharge passage 35 passes through the path passing through the first water-refrigerant heat exchanger 4 and is sucked into the sealed container 31 from the second suction passage 36. .
  • the first suction passage 34, the first discharge passage 35, and the second suction passage 36 each protrude from the side surface of the sealed container 31.
  • the second suction passage 36 is disposed above the first discharge passage 35.
  • the second suction passage 36 opens in the space below the electric element 33 in the sealed container 31.
  • Refrigerating machine oil (not shown) is stored in the lower part of the sealed container 31.
  • the oil level of the refrigerating machine oil in the hermetic container 31 is lower than the first discharge passage 35.
  • the second discharge passage 37 opens into the space above the electric element 33 in the sealed container 31.
  • the refrigerant gas that has flowed into the space below the electric element 33 in the hermetic container 31 through the second suction passage 36 passes through a gap such as between the rotor and the stator of the electric element 33. Reaches the upper space of the air and is discharged out of the sealed container 31 through the second discharge passage 37.
  • the refrigerant gas discharged from the second discharge passage 37 passes through the path passing through the second water refrigerant heat exchanger 5, the expansion valve 6, the evaporator 7, and the like, and then the compressor 3 Return to the first suction passage 34.
  • Compressor oil stored in the sealed container 31 is supplied into the compression chamber 321 in order to lubricate and seal the sliding portion and reduce friction and gap leakage.
  • the refrigerating machine oil supplied into the compression chamber 321 is discharged from the first discharge passage 35 together with the compressed refrigerant gas. This refrigerant gas and refrigerating machine oil form a gas-liquid two-phase flow.
  • FIG. 4 is a cross-sectional view schematically showing the flow state of the refrigerant gas and the refrigerating machine oil.
  • the flow state of the refrigerant gas and the refrigerating machine oil is a state called an annular flow or an annular spray flow. That is, the refrigerating machine oil that is in the liquid phase flows as an annular liquid film along the tube wall, and the refrigerant gas that is in the gas phase flows in the center of the tube. Such a state is called an annular flow.
  • a part of the refrigerating machine oil may be scattered to form a spray. Such a state is called an annular spray flow.
  • the compressor 3 includes oil return means for guiding the refrigeration oil in the first discharge passage 35 into the sealed container 31.
  • the oil return means for guiding the refrigeration oil in the first discharge passage 35 into the sealed container 31.
  • FIG. 5 is a cross-sectional view of the oil return means provided in the compressor 3 according to Embodiment 1 of the present invention.
  • the first discharge passage 35 has an outer tube 351 and an inner tube 352 disposed inside the outer tube 351.
  • the upstream end of the outer tube 351 is airtightly fitted into a hole provided in the wall of the sealed container 31.
  • the upstream end surface of the outer tube 351 is in contact with the frame 323 of the compression element 32.
  • the inner tube 352 protrudes from the upstream end surface of the outer tube 351 and is inserted into a passage 324 formed in the frame 323.
  • the upstream end of the inner tube 352 is fitted in the passage 324 in an airtight manner.
  • a plurality of side holes 353 through which refrigerating machine oil can pass are formed in the side wall of the inner pipe 352.
  • the side hole 353 is open to the inner wall and the outer wall of the inner tube 352.
  • a gap is formed between the inner peripheral surface of the outer tube 351 and the outer peripheral surface of the inner tube 352. This gap constitutes a first oil return channel 354 through which the refrigeration oil can pass.
  • a sealing member 355 is sealed between the outer peripheral surface of the downstream end of the inner tube 352 and the inner peripheral surface of the outer tube 351.
  • the frame 323 is formed with a second oil return channel 325 through which refrigeration oil can pass.
  • the second oil return channel 325 includes an annular groove that communicates with the first oil return channel 354 and a through channel that passes between the groove and the lower surface of the frame 323. In this way, the side hole 353 communicates with the inside of the sealed container 31 via the first oil return channel 354 and the second oil return channel 325.
  • the refrigerating machine oil supplied into the compression chamber 321 of the compression element 32 flows into the inner pipe 352 of the first discharge passage 35 through the muffler 322 and the passage 324 in the frame 323 together with the compressed refrigerant gas.
  • the refrigerant gas and the refrigerating machine oil form an annular flow. That is, most of the refrigerating machine oil in the inner pipe 352 flows as an annular liquid film along the inner surface of the inner pipe 352.
  • the refrigerating machine oil that exists as a liquid film on the inner surface of the inner pipe 352 is sucked from the side hole 353 as shown by a thin arrow in FIG. 5, and the first oil return channel 354 and the second oil return channel are drawn.
  • the refrigerating machine oil has a higher density than the refrigerant gas, the refrigerating machine oil that has flowed out from the outlet of the second oil return channel 325 falls due to gravity and accumulates in the lower part of the sealed container 31.
  • the refrigerant gas passes through the inner pipe 352, reaches the outer pipe 351, and is sent to the first water refrigerant heat exchanger 4 side.
  • the oil return means as described above is provided in the compressor 3 so that the refrigeration oil in the first discharge passage 35 can be returned into the sealed container 31.
  • the amount of the refrigeration oil flowing from the first discharge passage 35 to the first water refrigerant heat exchanger 4 can be reduced, and an increase in pressure loss due to the refrigeration oil and the first water refrigerant heat exchanger 4 can be reduced.
  • Heat transfer inhibition can be reliably suppressed. Thereby, the performance of the heat pump hot-water supply apparatus 1 can be improved.
  • the reliability of the compressor 3 can be improved.
  • the above-described effects can be achieved with an extremely simple configuration that can be provided in the vicinity of the first discharge passage 35 of the compressor 3. For this reason, compared with the structure which isolate
  • the refrigerant gas discharged from the first discharge passage 35 passes through the pipe 10, the first water refrigerant heat exchanger 4, and the pipe 17 and reaches the second suction passage 36.
  • pressure loss occurs.
  • the pressure in the second suction passage 36 is lower than the pressure in the first discharge passage 35 by the amount of the pressure loss.
  • the pressure in the sealed container 31 is equal to the pressure in the second suction passage 36. Therefore, the pressure in the first discharge passage 35 is higher than the pressure in the sealed container 31.
  • the refrigerating machine oil in the inner pipe 352 is naturally sucked into the side hole 353 and the first oil return The air is guided into the sealed container 31 through the flow path 354 and the second oil return flow path 325. For this reason, the refrigeration oil in the inner pipe 352 can be returned to the sealed container 31 efficiently and reliably.
  • FIG. 6 is a cross-sectional view of the inner pipe 352 of the first discharge passage 35 provided in the compressor 3 according to Embodiment 2 of the present invention.
  • a groove 356 is formed along the longitudinal direction on the inner wall of the inner tube 352 of the first discharge passage 35.
  • a large number of grooves 356 are formed in parallel, and the grooves 356 are disposed on the inner circumference of the inner tube 352 over the entire circumference.
  • the second embodiment is the same as the first embodiment except that such a groove 356 is formed on the inner wall of the inner tube 352.
  • the refrigeration oil is more reliably captured on the inner wall of the inner tube 352 by the action of surface tension. For this reason, refrigeration oil can be made to flow more efficiently into the side hole 353 formed in the inner pipe 352. Therefore, the refrigeration oil can be more reliably separated from the refrigerant gas in the first discharge passage 35 and returned to the sealed container 31.
  • the cross-sectional shape of the groove 356 is substantially V-shaped.
  • the cross-sectional shape of the groove 356 may be a rectangular shape, a semicircular shape, or the like.
  • the groove 356 may not be completely parallel to the axial direction of the inner tube 352, and the groove 356 may be formed with a twist angle with respect to the axial direction of the inner tube 352.
  • FIG. 7 is a cross-sectional view of the oil return means provided in the compressor 3 according to Embodiment 3 of the present invention.
  • the third embodiment is the same as the first embodiment except that the configuration of the oil return means is different.
  • the oil return means with which the compressor 3 of this Embodiment 3 is provided is demonstrated.
  • the first discharge passage 35 includes an outer tube 351 and an inner tube 352 disposed inside the outer tube 351.
  • the upstream end of the outer tube 351 is airtightly fitted into a hole provided in the wall of the sealed container 31.
  • the upstream end surface of the outer tube 351 is in contact with the frame 323 of the compression element 32.
  • the inner tube 352 protrudes from the upstream end surface of the outer tube 351 and is inserted into a passage 324 formed in the frame 323.
  • the upstream end of the inner tube 352 is fitted in the passage 324 in an airtight manner.
  • a plurality of side holes 353 through which refrigerating machine oil can pass are formed in the side wall of the inner pipe 352.
  • the side hole 353 is open to the inner wall and the outer wall of the inner tube 352.
  • a gap is formed between the inner peripheral surface of the outer tube 351 and the outer peripheral surface of the inner tube 352.
  • This gap constitutes a first oil return channel 354 through which the refrigeration oil can pass.
  • a sealing member 355 is sealed between the outer peripheral surface of the downstream end of the inner tube 352 and the inner peripheral surface of the outer tube 351.
  • the first oil return channel 354 communicates with the second suction passage 36 via the second oil return channel 357.
  • a side hole formed in the outer pipe 351 outside the first oil return channel 354 and a side hole formed in the pipe wall of the second suction passage 36 are connected by a pipe.
  • the second oil return channel 357 is configured by this tube. In this way, the side hole 353 communicates with the inside of the second suction passage 36 via the first oil return channel 354 and the second oil return channel 357.
  • the refrigerating machine oil supplied into the compression chamber 321 of the compression element 32 flows into the inner pipe 352 of the first discharge passage 35 through the muffler 322 and the passage 324 in the frame 323 together with the compressed refrigerant gas.
  • An annular flow is formed.
  • the refrigerating machine oil existing as a liquid film on the inner surface of the inner pipe 352 is sucked from the side hole 353 and passes through the first oil return channel 354 and the second oil return channel 357 as shown by thin arrows in FIG.
  • the second suction passage 36 flows out from the outlet of the second suction passage 36, falls due to gravity, and accumulates in the lower portion of the sealed container 31.
  • the refrigerant gas in the inner pipe 352 passes through the inner pipe 352, reaches the outer pipe 351, and is sent to the first water refrigerant heat exchanger 4.
  • the refrigeration oil in the first discharge passage 35 can be returned into the sealed container 31 by the oil return means as described above. For this reason, the amount of the refrigeration oil flowing from the first discharge passage 35 to the first water refrigerant heat exchanger 4 can be reduced, and an increase in pressure loss due to the refrigeration oil and the first water refrigerant heat exchanger 4 can be reduced. Heat transfer inhibition can be reliably suppressed. Thereby, the performance of the heat pump hot-water supply apparatus 1 can be improved. Moreover, since it can suppress that the quantity of the refrigeration oil in the airtight container 31 reduces, the reliability of the compressor 3 can be improved.
  • the above effect can be achieved with an extremely simple configuration that can be provided in the vicinity of the first discharge passage 35 and the second suction passage 36 of the compressor 3. it can. For this reason, compared with the structure which isolate
  • the refrigerating machine oil in the inner pipe 352 is naturally discharged due to the pressure difference between the pressure in the first discharge passage 35 and the pressure in the sealed container 31. Then, the air is sucked into the side hole 353 and guided into the sealed container 31 through the first oil return channel 354, the second oil return channel 357, and the outlet of the second suction channel 36. For this reason, the refrigeration oil in the inner pipe 352 can be returned to the sealed container 31 efficiently and reliably.
  • a groove 356 may be formed on the inner wall of the inner tube 352 as in the second embodiment.
  • FIG. 8 is a longitudinal sectional view of the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to Embodiment 4 of the present invention.
  • FIG. 9 is a cross-sectional view of the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to Embodiment 4 of the present invention.
  • the refrigerating machine oil in the first discharge passage 35 is guided into the second suction passage 36 and flows into the sealed container 31 from the outlet of the second suction passage 36.
  • the refrigeration oil may be wound up by the flow of the refrigerant gas ejected from the outlet of the second suction passage 36.
  • Part of the rolled up refrigerating machine oil is atomized and mixed in the refrigerant gas. While passing through the electric element 33, the mixed refrigerating machine oil is separated from the refrigerant gas, but it is difficult to completely separate the refrigerating machine oil.
  • the refrigerating machine oil that has passed through the electric element 33 together with the refrigerant gas flows out from the second discharge passage 37 and circulates in the refrigerant circuit such as the second water refrigerant heat exchanger 5.
  • the heat transfer in the second water-refrigerant heat exchanger 5 may be impeded by the refrigerating machine oil, or the pressure loss may increase, so that the performance of the heat pump water heater 1 may deteriorate.
  • the compressor 3 of the fourth embodiment suppresses the mixing of the refrigerant gas flowing from the second suction passage 36 and the refrigerating machine oil.
  • a mixing suppression means is further provided.
  • the structure of the mixing suppression means in the fourth embodiment will be described.
  • the compressor 3 of the fourth embodiment includes an inner pipe 38 inside the second suction passage 36.
  • the refrigerant gas can pass through the inner pipe 38. That is, the inner pipe 38 has a flow path cross-sectional area through which the refrigerant gas can pass smoothly.
  • the refrigerating machine oil introduced from the first discharge passage 35 into the second suction passage 36 can pass between the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38. . That is, a gap is formed between the inner wall of the second suction passage 36 and the outer wall of the inner tube 38 so as to have a flow path cross-sectional area through which the refrigerating machine oil can smoothly pass.
  • the downstream end of the inner pipe 38 protrudes from the downstream end of the second suction passage 36. That is, the position of the downstream end of the inner pipe 38 is a position protruding toward the inside of the sealed container 31 as compared with the position of the downstream end of the second suction passage 36.
  • such an inner pipe 38 is provided as a mixing suppression means.
  • the refrigerating machine oil flows out from the downstream end of the second suction passage 36 and falls to the lower part in the sealed container 31.
  • the refrigerant gas is jetted into the sealed container 31 from the downstream end of the inner tube 38.
  • the refrigeration oil flowing out from the downstream end of the second suction passage 36 does not collide with the flow of the refrigerant gas ejected from the downstream end of the inner pipe 38, the refrigeration oil is wound up by the flow of the refrigerant gas. It is possible to reliably prevent scattering.
  • the refrigeration oil flowing out from the downstream end of the second suction passage 36 can be reliably dropped and separated into the lower part in the sealed container 31 in this way. For this reason, mixing of the refrigerant gas flowing into the sealed container 31 from the second suction passage 36 and the refrigerating machine oil can be suppressed. As a result, the amount of refrigerating machine oil flowing out from the second discharge passage 37 mixed with the refrigerant can be reduced.
  • the circulation rate of the refrigerating machine oil to the second water refrigerant heat exchanger 5, the expansion valve 6, the evaporator 7 and the like can be reduced, and the increase in pressure loss due to the refrigerating machine oil and the second water refrigerant heat exchanger
  • the heat transfer inhibition at 5 can be reliably suppressed.
  • the performance of the heat pump hot water supply apparatus 1 can be further improved.
  • it can suppress more reliably that the quantity of the refrigerating machine oil in the airtight container 31 reduces, and the reliability of the compressor 3 can further be improved.
  • a groove 364 along the longitudinal direction is formed on the inner wall of the second suction passage 36 so that the refrigerator oil can pass through the groove 364. ing.
  • a large number of grooves 364 are formed in parallel, and the grooves 364 are arranged on the entire inner periphery of the second suction passage 36.
  • the cross-sectional shape of the groove 364 is substantially V-shaped, but the cross-sectional shape of the groove 364 may be rectangular, semicircular, or the like.
  • the groove 364 may not be completely parallel to the axial direction of the second suction passage 36, and the groove 364 may be formed with a twist angle with respect to the axial direction of the second suction passage 36. Good.
  • the fourth embodiment since such a groove 364 is formed on the inner wall of the second suction passage 36, the refrigeration oil flowing in the second suction passage 36 is reliably captured by the groove 364 by the surface tension. The For this reason, the refrigerating machine oil is reliably prevented from being scattered and atomized in the refrigerant gas in the central portion of the second suction passage 36, and the gap between the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38. The refrigerating machine oil can be guided more reliably.
  • the groove 364 on the inner wall of the second suction passage 36 may be omitted. That is, the inner wall of the second suction passage 36 may be smooth. In the fourth embodiment, it is only necessary to provide a gap through which the refrigerating machine oil can pass between the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38.
  • FIG. 10 is a view showing the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to the fifth embodiment of the present invention.
  • the compressor 3 of the fifth embodiment for the same reason as in the fourth embodiment, in addition to the configuration of the third embodiment, the refrigerant gas flowing from the second suction passage 36 and the refrigerating machine oil are mixed. Further, a mixing suppression means for suppressing the above is provided. Hereinafter, the configuration of the mixing suppression unit in the fifth embodiment will be described.
  • a cylindrical mesh member 39 is connected to the downstream end of the second suction passage 36 in the sealed container 31.
  • the mesh member 39 is made of, for example, a metal material and has substantially the same diameter as the second suction passage 36.
  • such a net member 39 is provided as a mixing suppression means.
  • the refrigerating machine oil that has flowed out from the downstream end of the second suction passage 36 is captured by the mesh member 39, travels along the mesh member 39, gathers at the lower portion of the mesh member 39, and falls to the lower portion of the sealed container 31.
  • the fifth embodiment it is possible to reliably prevent the refrigeration oil flowing out from the downstream end of the second suction passage 36 from being wound up and scattered by the flow of the refrigerant gas. For this reason, mixing of the refrigerant gas flowing into the sealed container 31 from the second suction passage 36 and the refrigerating machine oil can be suppressed, and the same effect as in the fourth embodiment can be obtained.
  • a groove 364 similar to that in the fourth embodiment is formed on the inner wall of the second suction passage 36.
  • the refrigerating machine oil flowing in the second suction passage 36 is reliably captured in the groove 364 by the surface tension.
  • mixing of the refrigerant gas flowing into the sealed container 31 from the second suction passage 36 and the refrigerating machine oil can be more reliably suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The purpose of the present invention is to provide: a compressor capable of reducing the amount of refrigerator oil that flows from a first discharge path; a refrigeration cycle device comprising said compressor; and a heat pump hot-water supply device. This compressor comprises: a sealed container; a first intake path that takes in refrigerant; a compression element provided inside the sealed container and which compresses refrigerant taken in from the first intake path; the first discharge path that discharges refrigerant compressed by the compression element to outside the sealed container; a second intake path that takes into the sealed container refrigerant that has been discharged from the first discharge path and has passed through an external heat exchanger; a second discharge path that discharges to outside the sealed container refrigerant that has been taken inside the sealed container from the second intake path; and an oil return means that guides refrigerator oil that is inside the first discharge path to inside the sealed container.

Description

圧縮機、冷凍サイクル装置およびヒートポンプ給湯装置Compressor, refrigeration cycle device and heat pump hot water supply device
 本発明は、圧縮機、冷凍サイクル装置およびヒートポンプ給湯装置に関する。 The present invention relates to a compressor, a refrigeration cycle apparatus, and a heat pump hot water supply apparatus.
 特許文献1には、密閉容器内に圧縮要素および電動要素を有し、低圧側の冷媒を圧縮要素に直接導く吸入管(第1の吸入通路)と、圧縮要素で圧縮した高圧の冷媒を密閉容器内に放出することなく直接密閉容器外に吐出する吐出管(第1の吐出通路)と、吐出管より吐出され、熱交換後の冷媒を、密閉容器内に再度導く冷媒再導入管(第2の吸入通路)と、密閉容器内に再度導入し、電動要素を通過後の冷媒を密閉容器外に吐出する冷媒再吐出管(第2の吐出通路)とを備えた給湯用圧縮機が開示されている。 Patent Document 1 has a compression element and an electric element in a hermetic container and hermetically seals a suction pipe (first suction passage) that directly leads a low-pressure side refrigerant to the compression element and a high-pressure refrigerant compressed by the compression element. A discharge pipe (first discharge passage) that discharges directly to the outside of the sealed container without releasing it into the container, and a refrigerant reintroduction pipe (first discharge pipe) that is discharged from the discharge pipe and guides the refrigerant after heat exchange back into the sealed container 2) and a refrigerant re-discharge pipe (second discharge passage) for re-introducing the refrigerant into the sealed container and discharging the refrigerant after passing through the electric element to the outside of the sealed container is disclosed. Has been.
日本特開2006-132427号公報Japanese Unexamined Patent Publication No. 2006-132427
 上述した従来の圧縮機では、圧縮要素の圧縮室内に、摺動部を潤滑およびシールし、摩擦および隙間漏れを軽減するために、冷凍機油が供給される。このため、第1の吐出通路からは、圧縮された冷媒ガスとともに、多量の冷凍機油が圧縮機外部へ流出する。この冷媒ガスと冷凍機油とは、気液二相流になり、外部の熱交換器へ流入する。その結果、熱交換器での伝熱が冷凍機油によって阻害されたり、冷凍機油の影響で圧力損失が増加したりすることにより、冷凍サイクルの性能が低下するという問題がある。また、圧縮機内部の冷凍機油の量が減少するため、信頼性に影響が及ぶおそれもある。 In the conventional compressor described above, refrigeration oil is supplied in the compression chamber of the compression element in order to lubricate and seal the sliding portion and reduce friction and gap leakage. For this reason, a large amount of refrigerating machine oil flows out of the compressor together with the compressed refrigerant gas from the first discharge passage. The refrigerant gas and the refrigerating machine oil form a gas-liquid two-phase flow and flow into an external heat exchanger. As a result, there is a problem that the performance of the refrigeration cycle is lowered due to the heat transfer in the heat exchanger being hindered by the refrigeration oil or the pressure loss being increased due to the influence of the refrigeration oil. In addition, since the amount of refrigerating machine oil inside the compressor is reduced, there is a possibility that reliability may be affected.
 本発明は、上述のような課題を解決するためになされたもので、第1の吐出通路から流出する冷凍機油の量を低減することのできる圧縮機を提供することを目的とし、更に、当該圧縮機を備えた冷凍サイクル装置およびヒートポンプ給湯装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and an object thereof is to provide a compressor capable of reducing the amount of refrigerating machine oil flowing out from the first discharge passage. An object of the present invention is to provide a refrigeration cycle apparatus and a heat pump hot water supply apparatus provided with a compressor.
 本発明に係る圧縮機は、密閉容器と、冷媒を吸入する第1の吸入通路と、密閉容器内に設けられ、第1の吸入通路から吸入された冷媒を圧縮する圧縮要素と、圧縮要素により圧縮された冷媒を密閉容器外に吐出する第1の吐出通路と、第1の吐出通路から吐出されて外部の熱交換器を経由した冷媒を密閉容器内に吸入する第2の吸入通路と、第2の吸入通路から密閉容器内に吸入された冷媒を密閉容器外に吐出する第2の吐出通路と、第1の吐出通路内の冷凍機油を密閉容器内に導く油戻し手段と、を備える。 A compressor according to the present invention includes a sealed container, a first suction passage for sucking refrigerant, a compression element that is provided in the sealed container and compresses the refrigerant sucked from the first suction passage, and a compression element. A first discharge passage for discharging the compressed refrigerant to the outside of the sealed container; a second suction passage for discharging the refrigerant discharged from the first discharge passage and passing through the external heat exchanger into the sealed container; A second discharge passage for discharging the refrigerant sucked into the sealed container from the second suction passage to the outside of the sealed container; and an oil return means for guiding the refrigeration oil in the first discharge passage into the sealed container. .
 本発明によれば、第1の吐出通路から流出する冷凍機油の量を低減することができる。その結果、第1の吐出通路から吐出された冷媒を熱交換させる熱交換器での伝熱阻害および圧力損失増加を抑制することが可能となり、また、圧縮機内部の冷凍機油の減少を抑制することが可能となる。 According to the present invention, the amount of refrigerating machine oil flowing out from the first discharge passage can be reduced. As a result, it is possible to suppress heat transfer inhibition and an increase in pressure loss in the heat exchanger that exchanges heat with the refrigerant discharged from the first discharge passage, and to suppress a decrease in refrigerating machine oil inside the compressor. It becomes possible.
図1は、本発明の実施の形態1の圧縮機を備えるヒートポンプ給湯装置を示す構成図である。FIG. 1 is a configuration diagram illustrating a heat pump hot water supply apparatus including the compressor according to the first embodiment of the present invention. 図2は、図1に示すヒートポンプ給湯装置を備えた貯湯式給湯システムを示す構成図である。FIG. 2 is a configuration diagram showing a hot water storage type hot water supply system including the heat pump hot water supply apparatus shown in FIG. 1. 図3は、本発明の実施の形態1の圧縮機を示す断面図である。FIG. 3 is a cross-sectional view showing the compressor according to the first embodiment of the present invention. 図4は、冷媒ガスおよび冷凍機油の流動状態を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing the flow state of the refrigerant gas and the refrigerating machine oil. 図5は、本発明の実施の形態1の圧縮機が備える油戻し手段の断面図である。FIG. 5 is a cross-sectional view of the oil return means provided in the compressor according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態2の圧縮機が備える第1の吐出通路の内管の横断面図である。FIG. 6 is a cross-sectional view of the inner pipe of the first discharge passage provided in the compressor according to the second embodiment of the present invention. 図7は、本発明の実施の形態3の圧縮機が備える油戻し手段の断面図である。FIG. 7 is a cross-sectional view of the oil return means provided in the compressor according to Embodiment 3 of the present invention. 図8は、本発明の実施の形態4の圧縮機が備える第2の吸入通路の下流端付近の縦断面図である。FIG. 8 is a longitudinal sectional view of the vicinity of the downstream end of the second suction passage provided in the compressor according to the fourth embodiment of the present invention. 図9は、本発明の実施の形態4の圧縮機が備える第2の吸入通路の下流端付近の横断面図である。FIG. 9 is a cross-sectional view of the vicinity of the downstream end of the second suction passage provided in the compressor according to the fourth embodiment of the present invention. 図10は、本発明の実施の形態5の圧縮機が備える第2の吸入通路の下流端付近を示す図である。FIG. 10 is a view showing the vicinity of the downstream end of the second suction passage provided in the compressor according to the fifth embodiment of the present invention.
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。
実施の形態1.
 図1は、本発明の実施の形態1の圧縮機を備えるヒートポンプ給湯装置を示す構成図である。図2は、図1に示すヒートポンプ給湯装置を備えた貯湯式給湯システムを示す構成図である。図1に示すように、本実施形態のヒートポンプ給湯装置1は、圧縮機3、第1の水冷媒熱交換器4(第1の熱交換器)、第2の水冷媒熱交換器5(第2の熱交換器)、膨張弁6(膨張手段)および蒸発器7を含む冷媒回路と、第1の水冷媒熱交換器4および第2の水冷媒熱交換器5に湯水を流通させる水流路とを備えている。本実施形態における蒸発器7は、空気と冷媒との熱交換を行う空気冷媒熱交換器で構成されている。また、本実施形態のヒートポンプ給湯装置1は、蒸発器7に送風する送風機8と、高圧側冷媒と低圧側冷媒との熱交換を行う高低圧熱交換器9とを更に備えている。圧縮機3、第1の水冷媒熱交換器4、第2の水冷媒熱交換器5、膨張弁6、蒸発器7および高低圧熱交換器9は、冷媒が通る管を介して接続され、冷媒回路を形成している。ヒートポンプ給湯装置1は、加熱運転時には、圧縮機3を作動させることにより、冷凍サイクルを稼動させる。
Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.
Embodiment 1 FIG.
FIG. 1 is a configuration diagram illustrating a heat pump hot water supply apparatus including the compressor according to the first embodiment of the present invention. FIG. 2 is a configuration diagram showing a hot water storage type hot water supply system including the heat pump hot water supply apparatus shown in FIG. 1. As shown in FIG. 1, the heat pump water heater 1 of the present embodiment includes a compressor 3, a first water refrigerant heat exchanger 4 (first heat exchanger), and a second water refrigerant heat exchanger 5 (first 2 heat exchanger), a refrigerant circuit including an expansion valve 6 (expansion means) and an evaporator 7, and a water flow path for circulating hot water through the first water refrigerant heat exchanger 4 and the second water refrigerant heat exchanger 5. And. The evaporator 7 in the present embodiment is an air refrigerant heat exchanger that performs heat exchange between air and refrigerant. The heat pump hot water supply apparatus 1 of the present embodiment further includes a blower 8 that blows air to the evaporator 7 and a high and low pressure heat exchanger 9 that performs heat exchange between the high pressure side refrigerant and the low pressure side refrigerant. The compressor 3, the first water refrigerant heat exchanger 4, the second water refrigerant heat exchanger 5, the expansion valve 6, the evaporator 7 and the high and low pressure heat exchanger 9 are connected via a pipe through which the refrigerant passes, A refrigerant circuit is formed. The heat pump water heater 1 operates the refrigeration cycle by operating the compressor 3 during the heating operation.
 図2に示すように、本実施形態のヒートポンプ給湯装置1は、タンクユニット2と組み合わせることによって、貯湯式給湯システムとして用いることができる。タンクユニット2内には、湯水を貯留する貯湯タンク2aと、水ポンプ2bとが設置されている。ヒートポンプ給湯装置1と、タンクユニット2とは、水が流れる管11および管12と、図示しない電気配線とを介して接続される。管11の一端は、ヒートポンプ給湯装置1の入水口1aに接続されている。管11の他端は、タンクユニット2内で貯湯タンク2aの下部に接続されている。タンクユニット2内の管11の途中に水ポンプ2bが設置されている。管12の一端は、ヒートポンプ給湯装置1の出湯口1bに接続されている。管12の他端は、タンクユニット2内で貯湯タンク2aの上部に接続されている。図示の構成に代えて、水ポンプ2bをヒートポンプ給湯装置1内に配置してもよい。 As shown in FIG. 2, the heat pump hot water supply apparatus 1 of the present embodiment can be used as a hot water storage type hot water supply system by combining with the tank unit 2. In the tank unit 2, a hot water storage tank 2a for storing hot water and a water pump 2b are installed. The heat pump hot water supply device 1 and the tank unit 2 are connected via a pipe 11 and a pipe 12 through which water flows, and an electric wiring (not shown). One end of the pipe 11 is connected to the water inlet 1 a of the heat pump hot water supply apparatus 1. The other end of the pipe 11 is connected to the lower part of the hot water storage tank 2 a in the tank unit 2. A water pump 2 b is installed in the middle of the pipe 11 in the tank unit 2. One end of the pipe 12 is connected to the hot water outlet 1 b of the heat pump hot water supply apparatus 1. The other end of the pipe 12 is connected to the upper part of the hot water storage tank 2 a in the tank unit 2. Instead of the illustrated configuration, the water pump 2b may be disposed in the heat pump water heater 1.
 図1に示すように、ヒートポンプ給湯装置1の圧縮機3は、密閉容器31と、この密閉容器31内に設けられた圧縮要素32および電動要素33と、第1の吸入通路34と、第1の吐出通路35と、第2の吸入通路36と、第2の吐出通路37とを有している。第1の吸入通路34から吸入された冷媒は、圧縮要素32内に流入する。圧縮要素32は、電動要素33により駆動され、冷媒を圧縮する。圧縮要素32で圧縮された冷媒は、第1の吐出通路35を通って密閉容器31外に吐出される。第1の吐出通路35から吐出された冷媒は、管10を通って、第1の水冷媒熱交換器4に至る。第1の水冷媒熱交換器4を通過した冷媒は、管17を通って、第2の吸入通路36に至る。第2の吸入通路36から圧縮機3の密閉容器31内に流入した冷媒は、電動要素33の回転子と固定子との間等を通ることで電動要素33を冷却した後、第2の吐出通路37から密閉容器31外に吐出される。第2の吐出通路37から吐出された冷媒は、管18を通って、第2の水冷媒熱交換器5に至る。第2の水冷媒熱交換器5を通過した冷媒は、管19を通って、膨張弁6に至る。膨張弁6を通過した冷媒は、管20を通って、蒸発器7に流入する。蒸発器7を通過した冷媒は、管21を通って第1の吸入通路34に至り、圧縮機3に吸入される。高低圧熱交換器9は、管19を通る高圧冷媒と、管21を通る低圧冷媒とを熱交換させる。 As shown in FIG. 1, the compressor 3 of the heat pump water heater 1 includes a sealed container 31, a compression element 32 and an electric element 33 provided in the sealed container 31, a first suction passage 34, and a first suction passage 34. The discharge passage 35, the second suction passage 36, and the second discharge passage 37 are provided. The refrigerant sucked from the first suction passage 34 flows into the compression element 32. The compression element 32 is driven by the electric element 33 and compresses the refrigerant. The refrigerant compressed by the compression element 32 is discharged out of the sealed container 31 through the first discharge passage 35. The refrigerant discharged from the first discharge passage 35 passes through the pipe 10 and reaches the first water refrigerant heat exchanger 4. The refrigerant that has passed through the first water-refrigerant heat exchanger 4 passes through the pipe 17 and reaches the second suction passage 36. The refrigerant flowing into the sealed container 31 of the compressor 3 from the second suction passage 36 cools the electric element 33 by passing between the rotor and the stator of the electric element 33 and then the second discharge. It is discharged out of the sealed container 31 from the passage 37. The refrigerant discharged from the second discharge passage 37 passes through the pipe 18 and reaches the second water refrigerant heat exchanger 5. The refrigerant that has passed through the second water refrigerant heat exchanger 5 passes through the pipe 19 and reaches the expansion valve 6. The refrigerant that has passed through the expansion valve 6 flows into the evaporator 7 through the pipe 20. The refrigerant that has passed through the evaporator 7 reaches the first suction passage 34 through the pipe 21 and is sucked into the compressor 3. The high / low pressure heat exchanger 9 exchanges heat between the high-pressure refrigerant passing through the pipe 19 and the low-pressure refrigerant passing through the pipe 21.
 ヒートポンプ給湯装置1は、入水口1aと第2の水冷媒熱交換器5の入口とを接続する水流路23と、第2の水冷媒熱交換器5の出口と第1の水冷媒熱交換器4の入口とを接続する水流路24と、第1の水冷媒熱交換器4の出口と出湯口1bとを接続する水流路26とを更に備えている。加熱運転時には、入水口1aから流入した水が水流路23を通って第2の水冷媒熱交換器5に流入し、第2の水冷媒熱交換器5内で冷媒の熱により加熱される。第2の水冷媒熱交換器5内で加熱されることで生成した湯は、水流路24を通って第1の水冷媒熱交換器4に流入し、第1の水冷媒熱交換器4内で冷媒の熱により更に加熱される。第1の水冷媒熱交換器4内で更に加熱されることで更に高温になった湯は、水流路26を通って出湯口1bに至り、管12を通ってタンクユニット2へ送られる。 The heat pump water heater 1 includes a water flow path 23 connecting the water inlet 1a and the inlet of the second water refrigerant heat exchanger 5, an outlet of the second water refrigerant heat exchanger 5, and the first water refrigerant heat exchanger. 4 is further provided with a water channel 24 that connects the four inlets, and a water channel 26 that connects the outlet of the first water refrigerant heat exchanger 4 and the hot water outlet 1b. During the heating operation, water flowing in from the water inlet 1 a flows into the second water refrigerant heat exchanger 5 through the water flow path 23 and is heated by the heat of the refrigerant in the second water refrigerant heat exchanger 5. Hot water generated by being heated in the second water-refrigerant heat exchanger 5 flows into the first water-refrigerant heat exchanger 4 through the water flow path 24, and in the first water-refrigerant heat exchanger 4. Then, it is further heated by the heat of the refrigerant. Hot water that has been heated further by being further heated in the first water-refrigerant heat exchanger 4 reaches the outlet 1b through the water channel 26, and is sent to the tank unit 2 through the pipe 12.
 冷媒としては、高温出湯ができる冷媒、例えば、二酸化炭素、R410A、プロパン、プロピレンなどの冷媒が適しているが、特にこれらに限定されるものではない。 As the refrigerant, a refrigerant capable of producing high temperature hot water, for example, a refrigerant such as carbon dioxide, R410A, propane, propylene or the like is suitable, but is not particularly limited thereto.
 圧縮機3の第1の吐出通路35から吐出された高温高圧の冷媒ガスは、第1の水冷媒熱交換器4を通過する間に放熱しながら温度低下する。本実施形態では、第1の水冷媒熱交換器4を通過する間に温度低下した冷媒が第2の吸入通路36から密閉容器31内に吸入されて電動要素33を冷却することにより、電動要素33の温度および密閉容器31の表面温度を低下させることができる。その結果、電動要素33のモータ効率を向上することができ、また、密閉容器31の表面からの放熱ロスを低減することができる。密閉容器31内に吸入された冷媒ガスは、電動要素33の熱を奪うことで温度上昇した後、第2の吐出通路37から吐出されて第2の水冷媒熱交換器5に流入し、第2の水冷媒熱交換器5を通過する間に放熱しながら温度低下する。この温度低下した高圧冷媒は、高低圧熱交換器9を通過する間に低圧冷媒を加熱した後、膨張弁6を通過する。膨張弁6を通過することにより、冷媒は、低圧気液二相の状態に減圧される。膨張弁6を通過した冷媒は、蒸発器7を通過する間に外気から吸熱し、蒸発ガス化される。蒸発器7を出た低圧冷媒は、高低圧熱交換器9にて加熱された後、第1の吸入通路34から圧縮機3内に吸入される。 The high-temperature and high-pressure refrigerant gas discharged from the first discharge passage 35 of the compressor 3 decreases in temperature while dissipating heat while passing through the first water-refrigerant heat exchanger 4. In the present embodiment, the refrigerant whose temperature has decreased while passing through the first water-refrigerant heat exchanger 4 is drawn into the sealed container 31 from the second suction passage 36 and cools the electric element 33, whereby the electric element The temperature of 33 and the surface temperature of the sealed container 31 can be lowered. As a result, the motor efficiency of the electric element 33 can be improved, and the heat dissipation loss from the surface of the sealed container 31 can be reduced. The refrigerant gas sucked into the sealed container 31 rises in temperature by taking the heat of the electric element 33, is then discharged from the second discharge passage 37 and flows into the second water refrigerant heat exchanger 5. While passing through the water / refrigerant heat exchanger 5, the temperature decreases while releasing heat. The high-pressure refrigerant whose temperature has been lowered passes through the expansion valve 6 after heating the low-pressure refrigerant while passing through the high-low pressure heat exchanger 9. By passing through the expansion valve 6, the refrigerant is decompressed to a low-pressure gas-liquid two-phase state. The refrigerant that has passed through the expansion valve 6 absorbs heat from the outside air while passing through the evaporator 7 and is evaporated into gas. The low-pressure refrigerant exiting the evaporator 7 is heated by the high-low pressure heat exchanger 9 and then sucked into the compressor 3 from the first suction passage 34.
 高圧側冷媒圧力が臨界圧以上であれば、第1の水冷媒熱交換器4および第2の水冷媒熱交換器5内の冷媒は、超臨界状態のまま気液相転移しないで温度低下して放熱する。また、高圧側冷媒圧力が臨界圧以下であれば、冷媒は液化しながら放熱する。本実施形態では、冷媒として二酸化炭素等を用いることにより、高圧側冷媒圧力を臨界圧以上にすることが好ましい。高圧側冷媒圧力が臨界圧以上の場合には、液化した冷媒が第2の吸入通路36から密閉容器31内に流入することを確実に防止することができる。このため、液化した冷媒が電動要素33に付着することを確実に防止することができ、電動要素33の回転抵抗を低減することができる。また、液化した冷媒が第2の吸入通路36から密閉容器31内に流入しないことにより、冷凍機油が冷媒によって希釈されることを防止するという利点もある。 If the high-pressure side refrigerant pressure is equal to or higher than the critical pressure, the refrigerant in the first water refrigerant heat exchanger 4 and the second water refrigerant heat exchanger 5 decreases in temperature without undergoing a gas-liquid phase transition in a supercritical state. To dissipate heat. If the high-pressure side refrigerant pressure is equal to or lower than the critical pressure, the refrigerant radiates heat while liquefying. In the present embodiment, it is preferable to set the high-pressure side refrigerant pressure to be equal to or higher than the critical pressure by using carbon dioxide or the like as the refrigerant. When the high-pressure side refrigerant pressure is equal to or higher than the critical pressure, the liquefied refrigerant can be reliably prevented from flowing into the sealed container 31 from the second suction passage 36. For this reason, it can prevent reliably that the liquefied refrigerant | coolant adheres to the electric element 33, and the rotational resistance of the electric element 33 can be reduced. Further, since the liquefied refrigerant does not flow into the sealed container 31 from the second suction passage 36, there is an advantage that the refrigerating machine oil is prevented from being diluted by the refrigerant.
 図2に示すように、タンクユニット2の貯湯タンク2aの下部には、給水管13が更に接続されている。水道等の外部の水源から供給される水が、給水管13を通って、貯湯タンク2a内に流入し、貯留される。貯湯タンク2a内は、給水管13から水が流入することにより、常に満水状態に維持される。タンクユニット2内には、更に、給湯用混合弁2cが設けられている。給湯用混合弁2cは、出湯管14を介して、貯湯タンク2aの上部と接続されている。また、給湯用混合弁2cには、給水管13から分岐した給水分岐管15が接続されている。給湯用混合弁2cには、給湯管16の一端が更に接続されている。給湯管16の他端は、図示を省略するが、例えば蛇口、シャワー、浴槽等の給湯端末に接続される。 As shown in FIG. 2, a water supply pipe 13 is further connected to the lower part of the hot water storage tank 2 a of the tank unit 2. Water supplied from an external water source such as water supply flows through the water supply pipe 13 into the hot water storage tank 2a and is stored. The hot water storage tank 2a is always maintained in a full water state when water flows in from the water supply pipe 13. In the tank unit 2, a hot water supply mixing valve 2c is further provided. The hot water supply mixing valve 2 c is connected to the upper part of the hot water storage tank 2 a through the hot water discharge pipe 14. In addition, a water supply branch pipe 15 branched from the water supply pipe 13 is connected to the hot water supply mixing valve 2c. One end of a hot water supply pipe 16 is further connected to the hot water supply mixing valve 2c. Although not shown, the other end of the hot water supply pipe 16 is connected to a hot water supply terminal such as a faucet, a shower, or a bathtub.
 貯湯タンク2a内に貯留された水を沸き上げる加熱運転時には、貯湯タンク2a内に貯留された水は、水ポンプ2bにより、管11を通ってヒートポンプ給湯装置1に送られ、ヒートポンプ給湯装置1内で加熱されて、高温湯になる。ヒートポンプ給湯装置1内で生成した高温湯は、管12を通ってタンクユニット2に戻り、上部から貯湯タンク2a内に流入する。このような加熱運転により、貯湯タンク2a内には、上側が高温湯になり、下側が低温水になるように、湯水が貯留される。 During the heating operation for boiling the water stored in the hot water storage tank 2a, the water stored in the hot water storage tank 2a is sent to the heat pump water heater 1 through the pipe 11 by the water pump 2b. Is heated to hot water. The hot water generated in the heat pump hot water supply apparatus 1 returns to the tank unit 2 through the pipe 12, and flows into the hot water storage tank 2a from the upper part. By such a heating operation, hot water is stored in the hot water storage tank 2a so that the upper side becomes hot water and the lower side becomes low temperature water.
 給湯管16から給湯端末に給湯する際には、貯湯タンク2a内の高温湯が出湯管14を通って給湯用混合弁2cに供給されるとともに、低温水が給水分岐管15を通って給湯用混合弁2cに供給される。この高温湯および低温水が給湯用混合弁2cで混合された上で、給湯管16を通って給湯端末に供給される。給湯用混合弁2cは、使用者により設定された給湯温度になるように、高温湯と低温水との混合比を調節する機能を有している。 When hot water is supplied from the hot water supply pipe 16 to the hot water supply terminal, hot water in the hot water storage tank 2 a is supplied to the hot water supply mixing valve 2 c through the hot water supply pipe 14, and low temperature water is supplied to the hot water supply pipe through the water supply branch pipe 15. It is supplied to the mixing valve 2c. The hot water and the low temperature water are mixed by the hot water supply mixing valve 2 c and then supplied to the hot water supply terminal through the hot water supply pipe 16. The hot water supply mixing valve 2c has a function of adjusting the mixing ratio of the hot water and the low temperature water so that the hot water temperature set by the user is obtained.
 本貯湯式給湯システムは、制御部50を備えている。制御部50は、ヒートポンプ給湯装置1およびタンクユニット2が備えるアクチュエータ類およびセンサ類(図示せず)、並びにユーザーインターフェース装置(図示せず)に対しそれぞれ電気的に接続されており、本貯湯式給湯システムの運転を制御する制御手段として機能する。なお、図2では、ヒートポンプ給湯装置1内に制御部50を設置しているが、制御部50の設置場所はヒートポンプ給湯装置1内に限定されるものではない。タンクユニット2内に制御部50を設置してもよい。また、制御部50をヒートポンプ給湯装置1内とタンクユニット2内とに分散して配置し、相互に通信可能に接続する構成にしてもよい。 This hot water storage type hot water supply system includes a control unit 50. The control unit 50 is electrically connected to actuators and sensors (not shown) and a user interface device (not shown) included in the heat pump hot water supply device 1 and the tank unit 2, respectively. It functions as a control means for controlling the operation of the system. In FIG. 2, the control unit 50 is installed in the heat pump hot water supply apparatus 1, but the installation location of the control unit 50 is not limited to the heat pump hot water supply apparatus 1. The control unit 50 may be installed in the tank unit 2. Moreover, you may make it the structure which distribute | arranges the control part 50 in the heat pump hot-water supply apparatus 1 and the tank unit 2, and is connected so that communication is mutually possible.
 制御部50は、加熱運転時に、ヒートポンプ給湯装置1からタンクユニット2へ供給される湯の温度(以下、「出湯温度」と称する)が、目標出湯温度になるように、制御する。目標出湯温度は、例えば、65℃~90℃に設定される。本実施形態では、制御部50は、水ポンプ2bの回転数を調整することによって出湯温度を制御する。制御部50は、水流路26に設けられた温度センサ(図示せず)により出湯温度を検出し、その検出された出湯温度が目標出湯温度より高い場合には水ポンプ2bの回転数を高くする方向に補正し、出湯温度が目標出湯温度より低い場合には水ポンプ2bの回転数を低くする方向に補正する。このようにして、制御部50は、出湯温度が目標出湯温度に一致するように制御することができる。ただし、圧縮機3の第1の吐出通路35から吐出される冷媒の温度、あるいは圧縮機3の回転数などを制御することによって、出湯温度を制御してもよい。 The controller 50 controls the temperature of the hot water supplied from the heat pump hot water supply apparatus 1 to the tank unit 2 (hereinafter referred to as “hot water temperature”) at the target hot water temperature during the heating operation. The target hot water temperature is set to 65 ° C. to 90 ° C., for example. In this embodiment, the control part 50 controls the tapping temperature by adjusting the rotation speed of the water pump 2b. The control unit 50 detects the tapping temperature with a temperature sensor (not shown) provided in the water flow path 26, and increases the rotation speed of the water pump 2b when the tapping temperature detected is higher than the target tapping temperature. If the hot water temperature is lower than the target hot water temperature, the rotational speed of the water pump 2b is corrected. In this way, the control unit 50 can perform control so that the tapping temperature matches the target tapping temperature. However, the temperature of the hot water may be controlled by controlling the temperature of the refrigerant discharged from the first discharge passage 35 of the compressor 3 or the rotational speed of the compressor 3.
 図3は、本発明の実施の形態1の圧縮機を示す断面図である。以下、図3を参照して、本実施形態の圧縮機3について更に説明する。図3に示すように、本実施形態の圧縮機3の密閉容器31は、略円筒形をなしている。圧縮機3の密閉容器31に隣接して、アキュムレータ27が設置されている。冷媒は、アキュムレータ27を通過した後、第1の吸入通路34から圧縮機3内に吸入される。なお、前述した図1では、アキュムレータ27の図示を省略している。 FIG. 3 is a cross-sectional view showing the compressor according to the first embodiment of the present invention. Hereinafter, the compressor 3 of the present embodiment will be further described with reference to FIG. As shown in FIG. 3, the sealed container 31 of the compressor 3 of the present embodiment has a substantially cylindrical shape. An accumulator 27 is installed adjacent to the sealed container 31 of the compressor 3. The refrigerant passes through the accumulator 27 and is then sucked into the compressor 3 from the first suction passage 34. Note that the accumulator 27 is not shown in FIG. 1 described above.
 密閉容器31内には、電動要素33の下側に圧縮要素32が配置されている。電動要素33は、回転軸331を介して、圧縮要素32を駆動する。圧縮要素32は、圧縮室321と、マフラー322と、フレーム323とを有している。第1の吸入通路34から吸入された冷媒ガスは、圧縮室321に流入し、圧縮される。圧縮室321で圧縮された冷媒ガスは、マフラー322内に吐出される。マフラー322内に吐出された冷媒ガスは、フレーム323内を経由し、第1の吐出通路35を通って密閉容器31外に吐出される。第1の吐出通路35から吐出された冷媒ガスは、前述したように、第1の水冷媒熱交換器4を経由する経路を通り、第2の吸入通路36から密閉容器31内に吸入される。 In the sealed container 31, a compression element 32 is disposed below the electric element 33. The electric element 33 drives the compression element 32 via the rotating shaft 331. The compression element 32 includes a compression chamber 321, a muffler 322, and a frame 323. The refrigerant gas sucked from the first suction passage 34 flows into the compression chamber 321 and is compressed. The refrigerant gas compressed in the compression chamber 321 is discharged into the muffler 322. The refrigerant gas discharged into the muffler 322 passes through the frame 323 and is discharged out of the sealed container 31 through the first discharge passage 35. As described above, the refrigerant gas discharged from the first discharge passage 35 passes through the path passing through the first water-refrigerant heat exchanger 4 and is sucked into the sealed container 31 from the second suction passage 36. .
 第1の吸入通路34、第1の吐出通路35および第2の吸入通路36は、それぞれ、密閉容器31の側面から突出している。第2の吸入通路36は、第1の吐出通路35の上方に配置されている。第2の吸入通路36は、密閉容器31内で、電動要素33の下側の空間に開口する。密閉容器31内の下部には、冷凍機油(図示せず)が貯留される。密閉容器31内の冷凍機油の油面は、第1の吐出通路35より低い位置にある。第2の吐出通路37は、密閉容器31内で、電動要素33の上側の空間に開口する。 The first suction passage 34, the first discharge passage 35, and the second suction passage 36 each protrude from the side surface of the sealed container 31. The second suction passage 36 is disposed above the first discharge passage 35. The second suction passage 36 opens in the space below the electric element 33 in the sealed container 31. Refrigerating machine oil (not shown) is stored in the lower part of the sealed container 31. The oil level of the refrigerating machine oil in the hermetic container 31 is lower than the first discharge passage 35. The second discharge passage 37 opens into the space above the electric element 33 in the sealed container 31.
 第2の吸入通路36を通って密閉容器31内の電動要素33の下側の空間に流入した冷媒ガスは、電動要素33の回転子と固定子との間などの隙間を通って電動要素33の上側の空間に至り、第2の吐出通路37を通って密閉容器31外に吐出される。第2の吐出通路37から吐出された冷媒ガスは、前述したように、第2の水冷媒熱交換器5、膨張弁6、蒸発器7等を経由する経路を通った後、圧縮機3の第1の吸入通路34に戻る。 The refrigerant gas that has flowed into the space below the electric element 33 in the hermetic container 31 through the second suction passage 36 passes through a gap such as between the rotor and the stator of the electric element 33. Reaches the upper space of the air and is discharged out of the sealed container 31 through the second discharge passage 37. As described above, the refrigerant gas discharged from the second discharge passage 37 passes through the path passing through the second water refrigerant heat exchanger 5, the expansion valve 6, the evaporator 7, and the like, and then the compressor 3 Return to the first suction passage 34.
 圧縮室321内には、摺動部を潤滑およびシールし、摩擦および隙間漏れを軽減するために、密閉容器31内に貯留された冷凍機油が供給される。圧縮室321内に供給された冷凍機油は、圧縮された冷媒ガスとともに、第1の吐出通路35から吐出される。この冷媒ガスと冷凍機油とは、気液二相流になる。 Compressor oil stored in the sealed container 31 is supplied into the compression chamber 321 in order to lubricate and seal the sliding portion and reduce friction and gap leakage. The refrigerating machine oil supplied into the compression chamber 321 is discharged from the first discharge passage 35 together with the compressed refrigerant gas. This refrigerant gas and refrigerating machine oil form a gas-liquid two-phase flow.
 図4は、冷媒ガスおよび冷凍機油の流動状態を模式的に示す断面図である。図4に示すように、冷媒ガスおよび冷凍機油の流動状態は、環状流あるいは環状噴霧流と呼ばれる状態になる。すなわち、液相である冷凍機油は、管壁に沿った環状液膜として流れ、気相である冷媒ガスは、管の中心部を流れる。このような状態を環状流という。また、管の中心部の冷媒ガス中には、冷凍機油の一部が飛散して、噴霧を形成する場合がある。このような状態を環状噴霧流という。 FIG. 4 is a cross-sectional view schematically showing the flow state of the refrigerant gas and the refrigerating machine oil. As shown in FIG. 4, the flow state of the refrigerant gas and the refrigerating machine oil is a state called an annular flow or an annular spray flow. That is, the refrigerating machine oil that is in the liquid phase flows as an annular liquid film along the tube wall, and the refrigerant gas that is in the gas phase flows in the center of the tube. Such a state is called an annular flow. Moreover, in the refrigerant gas at the center of the pipe, a part of the refrigerating machine oil may be scattered to form a spray. Such a state is called an annular spray flow.
 第1の吐出通路35から冷媒ガスとともに吐出された冷凍機油が第1の水冷媒熱交換器4に多量に流入すると、第1の水冷媒熱交換器4での伝熱が冷凍機油によって阻害されたり、圧力損失が増加したりすることにより、ヒートポンプ給湯装置1の性能が低下する場合がある。また、密閉容器31内の冷凍機油の量が減少すると、信頼性に影響が及ぶおそれもある。これらの点を改善するため、圧縮機3は、第1の吐出通路35内の冷凍機油を密閉容器31内に導く油戻し手段を備えている。以下、図5を参照して、本実施形態の圧縮機3が備える油戻し手段について説明する。 When a large amount of refrigerating machine oil discharged together with the refrigerant gas from the first discharge passage 35 flows into the first water refrigerant heat exchanger 4, heat transfer in the first water refrigerant heat exchanger 4 is inhibited by the refrigerating machine oil. Or the pressure loss increases, the performance of the heat pump water heater 1 may be reduced. Further, when the amount of the refrigerating machine oil in the sealed container 31 is reduced, there is a possibility that the reliability may be affected. In order to improve these points, the compressor 3 includes oil return means for guiding the refrigeration oil in the first discharge passage 35 into the sealed container 31. Hereinafter, with reference to FIG. 5, the oil return means with which the compressor 3 of this embodiment is provided is demonstrated.
 図5は、本発明の実施の形態1の圧縮機3が備える油戻し手段の断面図である。図5に示すように、第1の吐出通路35は、外管351と、外管351の内側に配置された内管352とを有している。外管351の上流側の端部は、密閉容器31の壁に設けられた孔部に気密的に嵌合している。外管351の上流側の端面は、圧縮要素32のフレーム323に当接している。内管352は、外管351の上流側の端面から突出し、フレーム323に形成された通路324の内部に挿入している。内管352の上流側の端部は、通路324に気密的に嵌合している。内管352の側壁には、冷凍機油が通過可能な複数の側孔353が形成されている。側孔353は、内管352の内壁および外壁に開口している。外管351の内周面と、内管352の外周面との間には、隙間が形成される。この隙間は、冷凍機油が通過可能な第1油戻し流路354を構成する。内管352の下流側の端部の外周面と、外管351の内周面との間は、封止部材355により封止されている。フレーム323には、冷凍機油が通過可能な第2油戻し流路325が形成されている。第2油戻し流路325は、第1油戻し流路354に連通する環状の溝部と、この溝部とフレーム323の下面との間を貫通する貫通路とで構成されている。このようにして、側孔353は、第1油戻し流路354および第2油戻し流路325を介して、密閉容器31の内部に連通している。 FIG. 5 is a cross-sectional view of the oil return means provided in the compressor 3 according to Embodiment 1 of the present invention. As shown in FIG. 5, the first discharge passage 35 has an outer tube 351 and an inner tube 352 disposed inside the outer tube 351. The upstream end of the outer tube 351 is airtightly fitted into a hole provided in the wall of the sealed container 31. The upstream end surface of the outer tube 351 is in contact with the frame 323 of the compression element 32. The inner tube 352 protrudes from the upstream end surface of the outer tube 351 and is inserted into a passage 324 formed in the frame 323. The upstream end of the inner tube 352 is fitted in the passage 324 in an airtight manner. A plurality of side holes 353 through which refrigerating machine oil can pass are formed in the side wall of the inner pipe 352. The side hole 353 is open to the inner wall and the outer wall of the inner tube 352. A gap is formed between the inner peripheral surface of the outer tube 351 and the outer peripheral surface of the inner tube 352. This gap constitutes a first oil return channel 354 through which the refrigeration oil can pass. A sealing member 355 is sealed between the outer peripheral surface of the downstream end of the inner tube 352 and the inner peripheral surface of the outer tube 351. The frame 323 is formed with a second oil return channel 325 through which refrigeration oil can pass. The second oil return channel 325 includes an annular groove that communicates with the first oil return channel 354 and a through channel that passes between the groove and the lower surface of the frame 323. In this way, the side hole 353 communicates with the inside of the sealed container 31 via the first oil return channel 354 and the second oil return channel 325.
 圧縮要素32の圧縮室321内に供給された冷凍機油は、圧縮された冷媒ガスとともに、マフラー322およびフレーム323内の通路324を通って、第1の吐出通路35の内管352に流入する。内管352の内部では、冷媒ガスおよび冷凍機油が環状流を形成している。すなわち、内管352内の冷凍機油の大半は、内管352の内面に沿って環状液膜として流れる。そのように内管352の内面に液膜として存在する冷凍機油は、図5中の細い矢印で示すように、側孔353から吸入され、第1油戻し流路354および第2油戻し流路325を通り、第2油戻し流路325の出口から流出する。冷凍機油は、冷媒ガスに比べて密度が高いため、第2油戻し流路325の出口から流出した冷凍機油は、重力によって落下して、密閉容器31内の下部に溜まる。一方、冷媒ガスは、内管352内を通過して外管351内に至り、第1の水冷媒熱交換器4側へ送られる。 The refrigerating machine oil supplied into the compression chamber 321 of the compression element 32 flows into the inner pipe 352 of the first discharge passage 35 through the muffler 322 and the passage 324 in the frame 323 together with the compressed refrigerant gas. Inside the inner pipe 352, the refrigerant gas and the refrigerating machine oil form an annular flow. That is, most of the refrigerating machine oil in the inner pipe 352 flows as an annular liquid film along the inner surface of the inner pipe 352. The refrigerating machine oil that exists as a liquid film on the inner surface of the inner pipe 352 is sucked from the side hole 353 as shown by a thin arrow in FIG. 5, and the first oil return channel 354 and the second oil return channel are drawn. It passes through 325 and flows out from the outlet of the second oil return channel 325. Since the refrigerating machine oil has a higher density than the refrigerant gas, the refrigerating machine oil that has flowed out from the outlet of the second oil return channel 325 falls due to gravity and accumulates in the lower part of the sealed container 31. On the other hand, the refrigerant gas passes through the inner pipe 352, reaches the outer pipe 351, and is sent to the first water refrigerant heat exchanger 4 side.
 本実施形態によれば、上述したような油戻し手段を圧縮機3に設けたことにより、第1の吐出通路35内の冷凍機油を密閉容器31内に戻すことができる。このため、第1の吐出通路35から第1の水冷媒熱交換器4へ流れる冷凍機油の量を低減することができ、冷凍機油による圧力損失の増加および第1の水冷媒熱交換器4での伝熱阻害を確実に抑制することができる。これにより、ヒートポンプ給湯装置1の性能を向上することができる。また、密閉容器31内の冷凍機油の量が減少することを抑制することができるので、圧縮機3の信頼性を向上することができる。 According to this embodiment, the oil return means as described above is provided in the compressor 3 so that the refrigeration oil in the first discharge passage 35 can be returned into the sealed container 31. For this reason, the amount of the refrigeration oil flowing from the first discharge passage 35 to the first water refrigerant heat exchanger 4 can be reduced, and an increase in pressure loss due to the refrigeration oil and the first water refrigerant heat exchanger 4 can be reduced. Heat transfer inhibition can be reliably suppressed. Thereby, the performance of the heat pump hot-water supply apparatus 1 can be improved. Moreover, since it can suppress that the quantity of the refrigeration oil in the airtight container 31 reduces, the reliability of the compressor 3 can be improved.
 また、本実施形態によれば、圧縮機3の第1の吐出通路35付近に設けることのできる、極めて簡単な構成で、上記の効果を達成することができる。このため、冷媒ガスと冷凍機油とを分離するための分離器などを、圧縮機3とは別体で、冷媒回路の途中に設置するような構成に比べて、製造コストの低減、重量の軽減、および省スペース化が図れる。 Further, according to the present embodiment, the above-described effects can be achieved with an extremely simple configuration that can be provided in the vicinity of the first discharge passage 35 of the compressor 3. For this reason, compared with the structure which isolate | separates the separator for isolate | separating refrigerant gas and refrigerating machine oil from the compressor 3 and installs in the middle of a refrigerant circuit, manufacturing cost reduction and weight reduction And space saving.
 前述したように、第1の吐出通路35から吐出された冷媒ガスは、管10、第1の水冷媒熱交換器4、および管17を通って、第2の吸入通路36に至る。その過程で、圧力損失が生じる。このため、第2の吸入通路36内の圧力は、第1の吐出通路35内の圧力に比べて、その圧力損失の分だけ低くなる。密閉容器31内の圧力は、第2の吸入通路36内の圧力に等しい。したがって、第1の吐出通路35内の圧力は、密閉容器31内の圧力に比べて高くなる。本実施形態では、第1の吐出通路35内の圧力と、密閉容器31内の圧力との圧力差により、内管352内の冷凍機油は、自然に側孔353に吸入され、第1油戻し流路354および第2油戻し流路325を通って、密閉容器31内に導かれる。このため、内管352内の冷凍機油を効率良く且つ確実に密閉容器31内に戻すことができる。 As described above, the refrigerant gas discharged from the first discharge passage 35 passes through the pipe 10, the first water refrigerant heat exchanger 4, and the pipe 17 and reaches the second suction passage 36. In the process, pressure loss occurs. For this reason, the pressure in the second suction passage 36 is lower than the pressure in the first discharge passage 35 by the amount of the pressure loss. The pressure in the sealed container 31 is equal to the pressure in the second suction passage 36. Therefore, the pressure in the first discharge passage 35 is higher than the pressure in the sealed container 31. In the present embodiment, due to the pressure difference between the pressure in the first discharge passage 35 and the pressure in the sealed container 31, the refrigerating machine oil in the inner pipe 352 is naturally sucked into the side hole 353 and the first oil return The air is guided into the sealed container 31 through the flow path 354 and the second oil return flow path 325. For this reason, the refrigeration oil in the inner pipe 352 can be returned to the sealed container 31 efficiently and reliably.
 なお、圧縮室321から内管352に流入する冷凍機油の量に応じて側孔353の孔径を設定することにより、冷凍機油のみが側孔353に吸入され、冷媒ガスが側孔353に吸入されないようにすることができる。このため、内管352内の冷媒ガスが、側孔353、第1油戻し流路354および第2油戻し流路325を通って密閉容器31内に漏れ出ることを確実に防止することができる。 In addition, by setting the hole diameter of the side hole 353 according to the amount of the refrigerating machine oil flowing into the inner pipe 352 from the compression chamber 321, only the refrigerating machine oil is sucked into the side hole 353 and the refrigerant gas is not sucked into the side hole 353. Can be. For this reason, it is possible to reliably prevent the refrigerant gas in the inner pipe 352 from leaking into the sealed container 31 through the side hole 353, the first oil return channel 354, and the second oil return channel 325. .
 以上の説明では、本発明の圧縮機を用いてヒートポンプ給湯装置を構成した場合の実施の形態について説明したが、本発明は、ヒートポンプ給湯装置に限らず、例えば空調装置、保冷装置など、各種の蒸気圧縮式冷凍サイクル装置にも同様に適用可能である。 In the above description, the embodiment in the case where the heat pump hot water supply apparatus is configured using the compressor of the present invention has been described. However, the present invention is not limited to the heat pump hot water supply apparatus. The same applies to a vapor compression refrigeration cycle apparatus.
実施の形態2.
 次に、図6を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図6は、本発明の実施の形態2の圧縮機3が備える第1の吐出通路35の内管352の横断面図である。図6に示すように、本実施の形態2では、第1の吐出通路35の内管352の内壁に、長手方向に沿った溝356が形成されている。本実施形態では、多数の溝356が並行して形成されており、内管352の内周に全周に渡って溝356が配置されている。本実施の形態2は、内管352の内壁にこのような溝356が形成されていること以外は、実施の形態1と同様である。
Embodiment 2. FIG.
Next, the second embodiment of the present invention will be described with reference to FIG. 6. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted. FIG. 6 is a cross-sectional view of the inner pipe 352 of the first discharge passage 35 provided in the compressor 3 according to Embodiment 2 of the present invention. As shown in FIG. 6, in the second embodiment, a groove 356 is formed along the longitudinal direction on the inner wall of the inner tube 352 of the first discharge passage 35. In the present embodiment, a large number of grooves 356 are formed in parallel, and the grooves 356 are disposed on the inner circumference of the inner tube 352 over the entire circumference. The second embodiment is the same as the first embodiment except that such a groove 356 is formed on the inner wall of the inner tube 352.
 本実施の形態2では、内管352の内壁に溝356を形成したことにより、表面張力の作用により、冷凍機油がより確実に内管352の内壁に捕捉される。このため、内管352に形成された側孔353に冷凍機油をより効率良く流入させることができる。よって、第1の吐出通路35において冷凍機油をより確実に冷媒ガスから分離して、密閉容器31内に戻すことができる。 In the second embodiment, since the groove 356 is formed on the inner wall of the inner tube 352, the refrigeration oil is more reliably captured on the inner wall of the inner tube 352 by the action of surface tension. For this reason, refrigeration oil can be made to flow more efficiently into the side hole 353 formed in the inner pipe 352. Therefore, the refrigeration oil can be more reliably separated from the refrigerant gas in the first discharge passage 35 and returned to the sealed container 31.
 図6に示す例では、溝356の断面形状は、略V字状をなしている。溝356の断面形状は、ほかに、長方形状、半円形状などでも良い。また、溝356は、内管352の軸方向に対して完全に平行でなくてもよく、溝356が内管352の軸方向に対してねじれ角をもって形成されていてもよい。 In the example shown in FIG. 6, the cross-sectional shape of the groove 356 is substantially V-shaped. In addition, the cross-sectional shape of the groove 356 may be a rectangular shape, a semicircular shape, or the like. Further, the groove 356 may not be completely parallel to the axial direction of the inner tube 352, and the groove 356 may be formed with a twist angle with respect to the axial direction of the inner tube 352.
実施の形態3.
 次に、図7を参照して、本発明の実施の形態3について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図7は、本発明の実施の形態3の圧縮機3が備える油戻し手段の断面図である。本実施の形態3は、油戻し手段の構成が異なること以外は、実施の形態1と同様である。以下、図7を参照して、本実施の形態3の圧縮機3が備える油戻し手段について説明する。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIG. 7. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be described with the same reference numerals. Is omitted. FIG. 7 is a cross-sectional view of the oil return means provided in the compressor 3 according to Embodiment 3 of the present invention. The third embodiment is the same as the first embodiment except that the configuration of the oil return means is different. Hereinafter, with reference to FIG. 7, the oil return means with which the compressor 3 of this Embodiment 3 is provided is demonstrated.
 図7に示すように、第1の吐出通路35は、外管351と、外管351の内側に配置された内管352とを有している。外管351の上流側の端部は、密閉容器31の壁に設けられた孔部に気密的に嵌合している。外管351の上流側の端面は、圧縮要素32のフレーム323に当接している。内管352は、外管351の上流側の端面から突出し、フレーム323に形成された通路324の内部に挿入している。内管352の上流側の端部は、通路324に気密的に嵌合している。内管352の側壁には、冷凍機油が通過可能な複数の側孔353が形成されている。側孔353は、内管352の内壁および外壁に開口している。外管351の内周面と、内管352の外周面との間には、隙間が形成される。この隙間は、冷凍機油が通過可能な第1油戻し流路354を構成する。内管352の下流側の端部の外周面と、外管351の内周面との間は、封止部材355により封止されている。第1油戻し流路354は、第2油戻し流路357を介して、第2の吸入通路36内に連通している。図示の構成では、第1油戻し流路354の外側の外管351に形成された側孔と、第2の吸入通路36の管壁に形成された側孔とが、管により接続されており、この管により第2油戻し流路357が構成されている。このようにして、側孔353は、第1油戻し流路354および第2油戻し流路357を介して、第2の吸入通路36の内部に連通している。 As shown in FIG. 7, the first discharge passage 35 includes an outer tube 351 and an inner tube 352 disposed inside the outer tube 351. The upstream end of the outer tube 351 is airtightly fitted into a hole provided in the wall of the sealed container 31. The upstream end surface of the outer tube 351 is in contact with the frame 323 of the compression element 32. The inner tube 352 protrudes from the upstream end surface of the outer tube 351 and is inserted into a passage 324 formed in the frame 323. The upstream end of the inner tube 352 is fitted in the passage 324 in an airtight manner. A plurality of side holes 353 through which refrigerating machine oil can pass are formed in the side wall of the inner pipe 352. The side hole 353 is open to the inner wall and the outer wall of the inner tube 352. A gap is formed between the inner peripheral surface of the outer tube 351 and the outer peripheral surface of the inner tube 352. This gap constitutes a first oil return channel 354 through which the refrigeration oil can pass. A sealing member 355 is sealed between the outer peripheral surface of the downstream end of the inner tube 352 and the inner peripheral surface of the outer tube 351. The first oil return channel 354 communicates with the second suction passage 36 via the second oil return channel 357. In the illustrated configuration, a side hole formed in the outer pipe 351 outside the first oil return channel 354 and a side hole formed in the pipe wall of the second suction passage 36 are connected by a pipe. The second oil return channel 357 is configured by this tube. In this way, the side hole 353 communicates with the inside of the second suction passage 36 via the first oil return channel 354 and the second oil return channel 357.
 圧縮要素32の圧縮室321内に供給された冷凍機油は、圧縮された冷媒ガスとともに、マフラー322およびフレーム323内の通路324を通って、第1の吐出通路35の内管352に流入し、環状流を形成する。内管352の内面に液膜として存在する冷凍機油は、図7中の細い矢印で示すように、側孔353から吸入され、第1油戻し流路354および第2油戻し流路357を通って第2の吸入通路36内に至り、第2の吸入通路36の出口から流出して重力により落下し、密閉容器31内の下部に溜まる。一方、内管352内の冷媒ガスは、内管352内を通過して外管351内に至り、第1の水冷媒熱交換器4へ送られる。 The refrigerating machine oil supplied into the compression chamber 321 of the compression element 32 flows into the inner pipe 352 of the first discharge passage 35 through the muffler 322 and the passage 324 in the frame 323 together with the compressed refrigerant gas. An annular flow is formed. The refrigerating machine oil existing as a liquid film on the inner surface of the inner pipe 352 is sucked from the side hole 353 and passes through the first oil return channel 354 and the second oil return channel 357 as shown by thin arrows in FIG. The second suction passage 36, flows out from the outlet of the second suction passage 36, falls due to gravity, and accumulates in the lower portion of the sealed container 31. On the other hand, the refrigerant gas in the inner pipe 352 passes through the inner pipe 352, reaches the outer pipe 351, and is sent to the first water refrigerant heat exchanger 4.
 本実施の形態3の圧縮機3では、上述したような油戻し手段により、第1の吐出通路35内の冷凍機油を密閉容器31内に戻すことができる。このため、第1の吐出通路35から第1の水冷媒熱交換器4へ流れる冷凍機油の量を低減することができ、冷凍機油による圧力損失の増加および第1の水冷媒熱交換器4での伝熱阻害を確実に抑制することができる。これにより、ヒートポンプ給湯装置1の性能を向上することができる。また、密閉容器31内の冷凍機油の量が減少することを抑制することができるので、圧縮機3の信頼性を向上することができる。 In the compressor 3 according to the third embodiment, the refrigeration oil in the first discharge passage 35 can be returned into the sealed container 31 by the oil return means as described above. For this reason, the amount of the refrigeration oil flowing from the first discharge passage 35 to the first water refrigerant heat exchanger 4 can be reduced, and an increase in pressure loss due to the refrigeration oil and the first water refrigerant heat exchanger 4 can be reduced. Heat transfer inhibition can be reliably suppressed. Thereby, the performance of the heat pump hot-water supply apparatus 1 can be improved. Moreover, since it can suppress that the quantity of the refrigeration oil in the airtight container 31 reduces, the reliability of the compressor 3 can be improved.
 また、本実施の形態3によれば、圧縮機3の第1の吐出通路35および第2の吸入通路36の付近に設けることのできる、極めて簡単な構成で、上記の効果を達成することができる。このため、冷媒ガスと冷凍機油とを分離するための分離器などを、圧縮機3とは別体で、冷媒回路の途中に設置するような構成に比べて、製造コストの低減、重量の軽減、および省スペース化が図れる。 Further, according to the third embodiment, the above effect can be achieved with an extremely simple configuration that can be provided in the vicinity of the first discharge passage 35 and the second suction passage 36 of the compressor 3. it can. For this reason, compared with the structure which isolate | separates the separator for isolate | separating refrigerant gas and refrigerating machine oil from the compressor 3 and installs in the middle of a refrigerant circuit, manufacturing cost reduction and weight reduction And space saving.
 また、本実施の形態3では、実施の形態1と同様に、第1の吐出通路35内の圧力と、密閉容器31内の圧力との圧力差により、内管352内の冷凍機油は、自然に側孔353に吸入され、第1油戻し流路354、第2油戻し流路357、および第2の吸入通路36の出口を通って、密閉容器31内に導かれる。このため、内管352内の冷凍機油を効率良く且つ確実に密閉容器31内に戻すことができる。なお、本実施の形態3では、実施の形態2と同様に、内管352の内壁に溝356を形成してもよい。 Further, in the third embodiment, as in the first embodiment, the refrigerating machine oil in the inner pipe 352 is naturally discharged due to the pressure difference between the pressure in the first discharge passage 35 and the pressure in the sealed container 31. Then, the air is sucked into the side hole 353 and guided into the sealed container 31 through the first oil return channel 354, the second oil return channel 357, and the outlet of the second suction channel 36. For this reason, the refrigeration oil in the inner pipe 352 can be returned to the sealed container 31 efficiently and reliably. In the third embodiment, a groove 356 may be formed on the inner wall of the inner tube 352 as in the second embodiment.
実施の形態4.
 次に、図8および図9を参照して、本発明の実施の形態4について説明するが、上述した実施の形態3との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図8は、本発明の実施の形態4の圧縮機3が備える第2の吸入通路36の下流端付近の縦断面図である。図9は、本発明の実施の形態4の圧縮機3が備える第2の吸入通路36の下流端付近の横断面図である。
Embodiment 4 FIG.
Next, the fourth embodiment of the present invention will be described with reference to FIG. 8 and FIG. 9. The description will focus on the differences from the third embodiment described above, and the same or corresponding parts are denoted by the same reference numerals. The description is omitted. FIG. 8 is a longitudinal sectional view of the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to Embodiment 4 of the present invention. FIG. 9 is a cross-sectional view of the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to Embodiment 4 of the present invention.
 前述した実施の形態3では、第1の吐出通路35内の冷凍機油を、第2の吸入通路36内に導き、第2の吸入通路36の出口から密閉容器31内に流入させる。第2の吸入通路36の出口から冷凍機油が流出する際に、第2の吸入通路36の出口から噴出する冷媒ガスの流れによって冷凍機油が巻き上げられる可能性がある。巻き上げられた冷凍機油の一部は、霧化して冷媒ガス中に混合してしまう。電動要素33を通過する間に、混合した冷凍機油が冷媒ガスから分離されるが、冷凍機油を完全に分離することは困難である。このため、冷媒ガスとともに電動要素33を通過した冷凍機油が、第2の吐出通路37から流出し、第2の水冷媒熱交換器5等の冷媒回路に循環する。その結果、第2の水冷媒熱交換器5での伝熱が冷凍機油によって阻害されたり、圧力損失が増加したりすることにより、ヒートポンプ給湯装置1の性能が低下する場合がある。 In the third embodiment described above, the refrigerating machine oil in the first discharge passage 35 is guided into the second suction passage 36 and flows into the sealed container 31 from the outlet of the second suction passage 36. When the refrigeration oil flows out from the outlet of the second suction passage 36, the refrigeration oil may be wound up by the flow of the refrigerant gas ejected from the outlet of the second suction passage 36. Part of the rolled up refrigerating machine oil is atomized and mixed in the refrigerant gas. While passing through the electric element 33, the mixed refrigerating machine oil is separated from the refrigerant gas, but it is difficult to completely separate the refrigerating machine oil. For this reason, the refrigerating machine oil that has passed through the electric element 33 together with the refrigerant gas flows out from the second discharge passage 37 and circulates in the refrigerant circuit such as the second water refrigerant heat exchanger 5. As a result, the heat transfer in the second water-refrigerant heat exchanger 5 may be impeded by the refrigerating machine oil, or the pressure loss may increase, so that the performance of the heat pump water heater 1 may deteriorate.
 以上の事項に鑑みて、本実施の形態4の圧縮機3は、実施の形態3の構成に加えて、第2の吸入通路36から流入する冷媒ガスと冷凍機油とが混合することを抑制する混合抑制手段を更に備えている。以下、本実施の形態4における混合抑制手段の構成について説明する。 In view of the above matters, in addition to the configuration of the third embodiment, the compressor 3 of the fourth embodiment suppresses the mixing of the refrigerant gas flowing from the second suction passage 36 and the refrigerating machine oil. A mixing suppression means is further provided. Hereinafter, the structure of the mixing suppression means in the fourth embodiment will be described.
 図8に示すように、本実施の形態4の圧縮機3は、第2の吸入通路36の内側に、内管38を備えている。冷媒ガスは、内管38の内部を通過可能になっている。すなわち、内管38は、冷媒ガスが円滑に通過可能な流路断面積を有している。一方、第1の吐出通路35内から第2の吸入通路36内に導入された冷凍機油は、第2の吸入通路36の内壁と、内管38の外壁との間を通過可能になっている。すなわち、第2の吸入通路36の内壁と、内管38の外壁との間には、冷凍機油が円滑に通過可能な流路断面積になる隙間が形成されている。 As shown in FIG. 8, the compressor 3 of the fourth embodiment includes an inner pipe 38 inside the second suction passage 36. The refrigerant gas can pass through the inner pipe 38. That is, the inner pipe 38 has a flow path cross-sectional area through which the refrigerant gas can pass smoothly. On the other hand, the refrigerating machine oil introduced from the first discharge passage 35 into the second suction passage 36 can pass between the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38. . That is, a gap is formed between the inner wall of the second suction passage 36 and the outer wall of the inner tube 38 so as to have a flow path cross-sectional area through which the refrigerating machine oil can smoothly pass.
 内管38の下流端は、第2の吸入通路36の下流端から突出している。すなわち、内管38の下流端の位置は、第2の吸入通路36の下流端の位置に比べて、密閉容器31の内部に向かって突き出した位置にある。本実施の形態4では、このような内管38を、混合抑制手段として備えている。冷凍機油は、第2の吸入通路36の下流端から流出し、密閉容器31内の下部に落下する。冷媒ガスは、内管38の下流端から密閉容器31内に噴き出す。このため、第2の吸入通路36の下流端から流出した冷凍機油が内管38の下流端から噴出する冷媒ガスの流れに衝突することがないので、冷凍機油が冷媒ガスの流れによって巻き上げられて飛散することを確実に防止することができる。本実施の形態4では、このようにして、第2の吸入通路36の下流端から流出した冷凍機油を、密閉容器31内の下部に確実に落下させて分離することができる。このため、第2の吸入通路36から密閉容器31内に流入する冷媒ガスと冷凍機油との混合を抑制することができる。その結果、第2の吐出通路37から冷媒に混じって流出する冷凍機油の量を低減することができる。よって、第2の水冷媒熱交換器5、膨張弁6、蒸発器7等への冷凍機油の循環率を低下させることができ、冷凍機油による圧力損失の増加および第2の水冷媒熱交換器5での伝熱阻害を確実に抑制することができる。これにより、ヒートポンプ給湯装置1の性能を更に向上することができる。また、密閉容器31内の冷凍機油の量が減少することをより確実に抑制し、圧縮機3の信頼性を更に向上することができる。 The downstream end of the inner pipe 38 protrudes from the downstream end of the second suction passage 36. That is, the position of the downstream end of the inner pipe 38 is a position protruding toward the inside of the sealed container 31 as compared with the position of the downstream end of the second suction passage 36. In the fourth embodiment, such an inner pipe 38 is provided as a mixing suppression means. The refrigerating machine oil flows out from the downstream end of the second suction passage 36 and falls to the lower part in the sealed container 31. The refrigerant gas is jetted into the sealed container 31 from the downstream end of the inner tube 38. For this reason, since the refrigeration oil flowing out from the downstream end of the second suction passage 36 does not collide with the flow of the refrigerant gas ejected from the downstream end of the inner pipe 38, the refrigeration oil is wound up by the flow of the refrigerant gas. It is possible to reliably prevent scattering. In the fourth embodiment, the refrigeration oil flowing out from the downstream end of the second suction passage 36 can be reliably dropped and separated into the lower part in the sealed container 31 in this way. For this reason, mixing of the refrigerant gas flowing into the sealed container 31 from the second suction passage 36 and the refrigerating machine oil can be suppressed. As a result, the amount of refrigerating machine oil flowing out from the second discharge passage 37 mixed with the refrigerant can be reduced. Therefore, the circulation rate of the refrigerating machine oil to the second water refrigerant heat exchanger 5, the expansion valve 6, the evaporator 7 and the like can be reduced, and the increase in pressure loss due to the refrigerating machine oil and the second water refrigerant heat exchanger The heat transfer inhibition at 5 can be reliably suppressed. Thereby, the performance of the heat pump hot water supply apparatus 1 can be further improved. Moreover, it can suppress more reliably that the quantity of the refrigerating machine oil in the airtight container 31 reduces, and the reliability of the compressor 3 can further be improved.
 また、本実施の形態4では、図9に示すように、第2の吸入通路36の内壁に、長手方向に沿った溝364が形成されており、溝364内を冷凍機油が通過可能になっている。本実施の形態4では、多数の溝364が並行して形成されており、第2の吸入通路36の内周に全周に渡って溝364が配置されている。図示の構成では、溝364の断面形状は略V字状をなしているが、溝364の断面形状は、ほかに、長方形状、半円形状などでも良い。また、溝364は、第2の吸入通路36の軸方向に対して完全に平行でなくてもよく、溝364が第2の吸入通路36の軸方向に対してねじれ角をもって形成されていてもよい。本実施の形態4では、第2の吸入通路36の内壁にこのような溝364を形成したことにより、第2の吸入通路36内を流れる冷凍機油は、表面張力によって溝364に確実に捕捉される。このため、第2の吸入通路36の中心部の冷媒ガス中に冷凍機油が飛散して噴霧化することを確実に抑制し、第2の吸入通路36の内壁と内管38の外壁との隙間に冷凍機油をより確実に導くことができる。これにより、第2の吸入通路36から密閉容器31内に流入する冷媒ガスと冷凍機油との混合をより確実に抑制することができる。ただし、本実施の形態4では、第2の吸入通路36の内壁の溝364は無くても良い。すなわち、第2の吸入通路36の内壁が平滑でも良い。本実施の形態4では、第2の吸入通路36の内壁と内管38の外壁との間に、冷凍機油が通過可能な隙間が設けられていれば良い。 In the fourth embodiment, as shown in FIG. 9, a groove 364 along the longitudinal direction is formed on the inner wall of the second suction passage 36 so that the refrigerator oil can pass through the groove 364. ing. In the fourth embodiment, a large number of grooves 364 are formed in parallel, and the grooves 364 are arranged on the entire inner periphery of the second suction passage 36. In the configuration shown in the drawing, the cross-sectional shape of the groove 364 is substantially V-shaped, but the cross-sectional shape of the groove 364 may be rectangular, semicircular, or the like. Further, the groove 364 may not be completely parallel to the axial direction of the second suction passage 36, and the groove 364 may be formed with a twist angle with respect to the axial direction of the second suction passage 36. Good. In the fourth embodiment, since such a groove 364 is formed on the inner wall of the second suction passage 36, the refrigeration oil flowing in the second suction passage 36 is reliably captured by the groove 364 by the surface tension. The For this reason, the refrigerating machine oil is reliably prevented from being scattered and atomized in the refrigerant gas in the central portion of the second suction passage 36, and the gap between the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38. The refrigerating machine oil can be guided more reliably. Thereby, mixing of the refrigerant gas flowing into the sealed container 31 from the second suction passage 36 and the refrigerating machine oil can be more reliably suppressed. However, in the fourth embodiment, the groove 364 on the inner wall of the second suction passage 36 may be omitted. That is, the inner wall of the second suction passage 36 may be smooth. In the fourth embodiment, it is only necessary to provide a gap through which the refrigerating machine oil can pass between the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38.
実施の形態5.
 次に、図10を参照して、本発明の実施の形態5について説明するが、上述した実施の形態3および4との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図10は、本発明の実施の形態5の圧縮機3が備える第2の吸入通路36の下流端付近を示す図である。
Embodiment 5 FIG.
Next, the fifth embodiment of the present invention will be described with reference to FIG. 10. The description will focus on the differences from the third and fourth embodiments described above, and the same or corresponding parts will be denoted by the same reference numerals. The description is omitted. FIG. 10 is a view showing the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to the fifth embodiment of the present invention.
 本実施の形態5の圧縮機3は、実施の形態4と同様の理由により、実施の形態3の構成に加えて、第2の吸入通路36から流入する冷媒ガスと冷凍機油とが混合することを抑制する混合抑制手段を更に備えている。以下、本実施の形態5における混合抑制手段の構成について説明する。 In the compressor 3 of the fifth embodiment, for the same reason as in the fourth embodiment, in addition to the configuration of the third embodiment, the refrigerant gas flowing from the second suction passage 36 and the refrigerating machine oil are mixed. Further, a mixing suppression means for suppressing the above is provided. Hereinafter, the configuration of the mixing suppression unit in the fifth embodiment will be described.
 図10に示すように、本実施の形態5の圧縮機3では、密閉容器31内において、第2の吸入通路36の下流端に、筒状の網状部材39が接続されている。網状部材39は、例えば金属材料等で構成され、第2の吸入通路36とほぼ同じ直径を有している。本実施の形態5では、このような網状部材39を、混合抑制手段として備えている。第2の吸入通路36の下流端から流出した冷凍機油は、網状部材39に捕捉され、網状部材39を伝って網状部材39の下部に集まり、密閉容器31内の下部に落下する。これにより、本実施の形態5では、第2の吸入通路36の下流端から流出した冷凍機油が冷媒ガスの流れによって巻き上げられて飛散することを確実に防止することができる。このため、第2の吸入通路36から密閉容器31内に流入する冷媒ガスと冷凍機油との混合を抑制することができ、実施の形態4と同様の効果が得られる。 As shown in FIG. 10, in the compressor 3 of the fifth embodiment, a cylindrical mesh member 39 is connected to the downstream end of the second suction passage 36 in the sealed container 31. The mesh member 39 is made of, for example, a metal material and has substantially the same diameter as the second suction passage 36. In the fifth embodiment, such a net member 39 is provided as a mixing suppression means. The refrigerating machine oil that has flowed out from the downstream end of the second suction passage 36 is captured by the mesh member 39, travels along the mesh member 39, gathers at the lower portion of the mesh member 39, and falls to the lower portion of the sealed container 31. Thereby, in the fifth embodiment, it is possible to reliably prevent the refrigeration oil flowing out from the downstream end of the second suction passage 36 from being wound up and scattered by the flow of the refrigerant gas. For this reason, mixing of the refrigerant gas flowing into the sealed container 31 from the second suction passage 36 and the refrigerating machine oil can be suppressed, and the same effect as in the fourth embodiment can be obtained.
 また、本実施の形態5では、第2の吸入通路36の内壁に、実施の形態4と同様の溝364が形成されていることが望ましい。これにより、第2の吸入通路36内を流れる冷凍機油は、表面張力によって溝364に確実に捕捉される。このため、第2の吸入通路36の中心部の冷媒ガス中に冷凍機油が飛散して噴霧化することを確実に抑制し、冷凍機油を液膜として網状部材39まで確実に導くことができる。これにより、第2の吸入通路36から密閉容器31内に流入する冷媒ガスと冷凍機油との混合をより確実に抑制することができる。 In the fifth embodiment, it is desirable that a groove 364 similar to that in the fourth embodiment is formed on the inner wall of the second suction passage 36. Thereby, the refrigerating machine oil flowing in the second suction passage 36 is reliably captured in the groove 364 by the surface tension. For this reason, it is possible to reliably prevent the refrigerating machine oil from being scattered and atomized in the refrigerant gas at the center of the second suction passage 36 and to reliably lead the refrigerating machine oil to the mesh member 39 as a liquid film. Thereby, mixing of the refrigerant gas flowing into the sealed container 31 from the second suction passage 36 and the refrigerating machine oil can be more reliably suppressed.
1 ヒートポンプ給湯装置、1a 入水口、1b 出湯口、2 タンクユニット、2a 貯湯タンク、2b 水ポンプ、2c 給湯用混合弁、3 圧縮機、4 第1の水冷媒熱交換器、5 第2の水冷媒熱交換器、6 膨張弁、7 蒸発器、8 送風機、9 高低圧熱交換器、10,11,12 管、13 給水管、14 出湯管、15 給水分岐管、16 給湯管、17,18,19,20,21 管、23,24,26 水流路、27 アキュムレータ、31 密閉容器、32 圧縮要素、33 電動要素、34 第1の吸入通路、35 第1の吐出通路、36 第2の吸入通路、37 第2の吐出通路、38 内管、39 網状部材、50 制御部、321 圧縮室、322 マフラー、323 フレーム、324 通路、325 第2油戻し流路、331 回転軸、351 外管、352 内管、353 側孔、354 第1油戻し流路、355 封止部材、356 溝、357 第2油戻し流路、364 溝 1 Heat pump water heater, 1a water inlet, 1b hot water outlet, 2 tank unit, 2a hot water storage tank, 2b water pump, 2c hot water mixing valve, 3 compressor, 4 first water refrigerant heat exchanger, 5 second water Refrigerant heat exchanger, 6 expansion valve, 7 evaporator, 8 blower, 9 high / low pressure heat exchanger, 10, 11, 12 pipe, 13 water supply pipe, 14 hot water supply pipe, 15 water supply branch pipe, 16 hot water supply pipe, 17, 18 , 19, 20, 21 pipe, 23, 24, 26 water flow path, 27 accumulator, 31 sealed container, 32 compression element, 33 electric element, 34 first suction passage, 35 first discharge passage, 36 second suction Passage, 37 second discharge passage, 38 inner pipe, 39 mesh member, 50 control section, 321 compression chamber, 322 muffler, 323 frame, 324 passage, 325 second Oil return passage, 331 rotary shaft, 351 the outer tube, 352 inner pipe 353 side hole 354 first oil return passage 355 sealing member 356 groove, 357 second oil return passage, 364 grooves

Claims (13)

  1.  密閉容器と、
     冷媒を吸入する第1の吸入通路と、
     前記密閉容器内に設けられ、前記第1の吸入通路から吸入された冷媒を圧縮する圧縮要素と、
     前記圧縮要素により圧縮された冷媒を前記密閉容器外に吐出する第1の吐出通路と、
     前記第1の吐出通路から吐出されて外部の熱交換器を経由した冷媒を前記密閉容器内に吸入する第2の吸入通路と、
     前記第2の吸入通路から前記密閉容器内に吸入された冷媒を前記密閉容器外に吐出する第2の吐出通路と、
     前記第1の吐出通路内の冷凍機油を前記密閉容器内に導く油戻し手段と、
     を備える圧縮機。
    A sealed container;
    A first suction passage for sucking refrigerant;
    A compression element provided in the hermetic container and compressing the refrigerant sucked from the first suction passage;
    A first discharge passage for discharging the refrigerant compressed by the compression element to the outside of the sealed container;
    A second suction passage for sucking the refrigerant discharged from the first discharge passage and passing through an external heat exchanger into the sealed container;
    A second discharge passage for discharging the refrigerant sucked into the sealed container from the second suction passage to the outside of the sealed container;
    Oil return means for guiding the refrigeration oil in the first discharge passage into the sealed container;
    A compressor comprising:
  2.  前記油戻し手段は、前記第1の吐出通路の内壁に開口する側孔を有する請求項1記載の圧縮機。 The compressor according to claim 1, wherein the oil return means has a side hole opening in an inner wall of the first discharge passage.
  3.  前記第1の吐出通路内の圧力が前記密閉容器内の圧力に比べて高くなり、前記第1の吐出通路内の圧力と前記密閉容器内の圧力との圧力差により、前記第1の吐出通路内の冷凍機油が前記側孔に吸入される請求項2記載の圧縮機。 The pressure in the first discharge passage is higher than the pressure in the sealed container, and the first discharge passage is caused by a pressure difference between the pressure in the first discharge passage and the pressure in the sealed container. The compressor according to claim 2, wherein the refrigerating machine oil is sucked into the side hole.
  4.  前記第1の吐出通路の内壁に、長手方向に沿った溝が形成されている請求項2または3記載の圧縮機。 The compressor according to claim 2 or 3, wherein a groove along the longitudinal direction is formed in an inner wall of the first discharge passage.
  5.  前記油戻し手段は、前記側孔と前記密閉容器内とを連通させる油戻し流路を有する請求項2乃至4の何れか1項記載の圧縮機。 The compressor according to any one of claims 2 to 4, wherein the oil return means includes an oil return flow path that allows the side hole and the inside of the sealed container to communicate with each other.
  6.  前記油戻し手段は、前記側孔と前記第2の吸入通路内とを連通させる油戻し流路を有する請求項2乃至4の何れか1項記載の圧縮機。 The compressor according to any one of claims 2 to 4, wherein the oil return means includes an oil return flow path that allows the side hole and the second suction passage to communicate with each other.
  7.  前記第2の吸入通路から前記密閉容器内に流入する冷媒と冷凍機油とが混合することを抑制する混合抑制手段を更に備える請求項6記載の圧縮機。 The compressor according to claim 6, further comprising a mixing suppression unit that suppresses mixing of refrigerant and refrigerant oil flowing into the sealed container from the second suction passage.
  8.  前記第2の吸入通路の内側に設けられた内管を、前記混合抑制手段として備え、
     前記内管の下流端は、前記第2の吸入通路の下流端から突出しており、
     前記内管の内部を冷媒が通過可能であり、
     前記第2の吸入通路の内壁と前記内管の外壁との間を冷凍機油が通過可能である請求項7記載の圧縮機。
    An inner tube provided inside the second suction passage is provided as the mixing suppression means,
    A downstream end of the inner pipe protrudes from a downstream end of the second suction passage;
    A refrigerant can pass through the inner pipe,
    The compressor according to claim 7, wherein refrigerating machine oil can pass between an inner wall of the second suction passage and an outer wall of the inner pipe.
  9.  前記第2の吸入通路の下流端に接続された筒状の網状部材を、前記混合抑制手段として備える請求項7記載の圧縮機。 The compressor according to claim 7, comprising a cylindrical mesh member connected to a downstream end of the second suction passage as the mixing suppression means.
  10.  前記圧縮機は、前記圧縮要素を駆動する電動要素を前記密閉容器内に備え、
     前記第2の吸入通路から前記密閉容器内に導入された前記冷媒は、前記電動要素を冷却した後に前記第2の吐出通路から吐出される請求項1乃至9の何れか1項記載の圧縮機。
    The compressor includes an electric element for driving the compression element in the sealed container,
    The compressor according to any one of claims 1 to 9, wherein the refrigerant introduced into the sealed container from the second suction passage is discharged from the second discharge passage after cooling the electric element. .
  11.  前記冷媒の高圧側の圧力が臨界圧を超える圧力になる請求項1乃至10の何れか1項記載の圧縮機。 The compressor according to any one of claims 1 to 10, wherein a pressure on a high pressure side of the refrigerant is a pressure exceeding a critical pressure.
  12.  請求項1乃至11の何れか1項記載の圧縮機と、
     前記圧縮機の前記第1の吐出通路から吐出された冷媒を放熱させる第1の熱交換器と、
     前記圧縮機の前記第2の吐出通路から吐出された冷媒を放熱させる第2の熱交換器と、
     を備える冷凍サイクル装置。
    A compressor according to any one of claims 1 to 11,
    A first heat exchanger that dissipates heat from the refrigerant discharged from the first discharge passage of the compressor;
    A second heat exchanger that dissipates heat from the refrigerant discharged from the second discharge passage of the compressor;
    A refrigeration cycle apparatus comprising:
  13.  請求項1乃至11の何れか1項記載の圧縮機と、
     前記圧縮機の前記第1の吐出通路から吐出された冷媒と水との熱交換を行う第1の水冷媒熱交換器と、
     前記圧縮機の前記第2の吐出通路から吐出された冷媒と水との熱交換を行う第2の水冷媒熱交換器と、
     を備えるヒートポンプ給湯装置。
    A compressor according to any one of claims 1 to 11,
    A first water-refrigerant heat exchanger that exchanges heat between the refrigerant discharged from the first discharge passage of the compressor and water;
    A second water refrigerant heat exchanger that performs heat exchange between the refrigerant discharged from the second discharge passage of the compressor and water;
    A heat pump hot water supply device comprising:
PCT/JP2012/081031 2012-11-30 2012-11-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device WO2014083674A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/081031 WO2014083674A1 (en) 2012-11-30 2012-11-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device
PCT/JP2013/073336 WO2014083901A1 (en) 2012-11-30 2013-08-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device
EP13859532.7A EP2930449B1 (en) 2012-11-30 2013-08-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP2014550053A JP5892261B2 (en) 2012-11-30 2013-08-30 Refrigeration cycle apparatus and heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081031 WO2014083674A1 (en) 2012-11-30 2012-11-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device

Publications (1)

Publication Number Publication Date
WO2014083674A1 true WO2014083674A1 (en) 2014-06-05

Family

ID=50827346

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/081031 WO2014083674A1 (en) 2012-11-30 2012-11-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device
PCT/JP2013/073336 WO2014083901A1 (en) 2012-11-30 2013-08-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073336 WO2014083901A1 (en) 2012-11-30 2013-08-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device

Country Status (2)

Country Link
EP (1) EP2930449B1 (en)
WO (2) WO2014083674A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097612A1 (en) * 2017-11-15 2019-05-23 三菱電機株式会社 Oil separator and refrigeration cycle device
CN114867974A (en) * 2019-12-27 2022-08-05 三菱电机株式会社 Gas-liquid separator and refrigeration cycle device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006387A1 (en) * 2015-07-03 2017-01-12 三菱電機株式会社 Heat pump device
CN108980876B (en) * 2018-08-16 2024-04-19 江苏天楹环保能源成套设备有限公司 Liquid film sealing structure for high-temperature corrosive gas transition section at tail part of plasma furnace
CN110657488B (en) * 2019-10-14 2021-01-05 华育昌(肇庆)智能科技研究有限公司 Energy-saving environment-friendly air conditioning device
CN110657598A (en) * 2019-10-14 2020-01-07 华育昌(肇庆)智能科技研究有限公司 Energy-saving and environment-friendly heat pump

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320707Y2 (en) * 1985-11-13 1991-05-02
JPH03114585U (en) * 1990-03-09 1991-11-25
JPH0462359A (en) * 1990-06-29 1992-02-27 Toshiba Corp Oil separator for air conditioner
JPH0517459U (en) * 1991-08-02 1993-03-05 三菱重工業株式会社 Refrigerant circuit oil separator
JPH06323697A (en) * 1993-05-18 1994-11-25 Hitachi Ltd Oil separator for refrigerator
JPH10148422A (en) * 1996-11-15 1998-06-02 Sanyo Electric Co Ltd Oil separator
JPH11173707A (en) * 1997-12-10 1999-07-02 Mitsubishi Electric Corp Refrigeration cycle apparatus and oil separator therefor
JP2003013858A (en) * 2001-06-27 2003-01-15 Mitsubishi Heavy Ind Ltd Compressor
JP2006132427A (en) * 2004-11-05 2006-05-25 Mitsubishi Electric Corp Compressor for hot-water supply and hot-water supply cycle device
KR100619785B1 (en) * 2005-05-16 2006-09-06 엘지전자 주식회사 Oil seperator
US20090071188A1 (en) * 2007-09-19 2009-03-19 Denso Corporation Oil separator and refrigerant compressor having the same
JP2009109102A (en) * 2007-10-31 2009-05-21 Nippon Soken Inc Oil separator and refrigerant compressor provided with it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133585A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
CN201954824U (en) * 2011-02-21 2011-08-31 大连三洋冷链有限公司 Integral design of oil cooler and gas cooler of supercritical CO2 refrigeration condensation set

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320707Y2 (en) * 1985-11-13 1991-05-02
JPH03114585U (en) * 1990-03-09 1991-11-25
JPH0462359A (en) * 1990-06-29 1992-02-27 Toshiba Corp Oil separator for air conditioner
JPH0517459U (en) * 1991-08-02 1993-03-05 三菱重工業株式会社 Refrigerant circuit oil separator
JPH06323697A (en) * 1993-05-18 1994-11-25 Hitachi Ltd Oil separator for refrigerator
JPH10148422A (en) * 1996-11-15 1998-06-02 Sanyo Electric Co Ltd Oil separator
JPH11173707A (en) * 1997-12-10 1999-07-02 Mitsubishi Electric Corp Refrigeration cycle apparatus and oil separator therefor
JP2003013858A (en) * 2001-06-27 2003-01-15 Mitsubishi Heavy Ind Ltd Compressor
JP2006132427A (en) * 2004-11-05 2006-05-25 Mitsubishi Electric Corp Compressor for hot-water supply and hot-water supply cycle device
KR100619785B1 (en) * 2005-05-16 2006-09-06 엘지전자 주식회사 Oil seperator
EP1724537A1 (en) * 2005-05-16 2006-11-22 LG Electronics Inc. Oil separator and air conditioner having the same
CN1865818A (en) * 2005-05-16 2006-11-22 Lg电子株式会社 Oil separator and air conditioner having the same
JP2006322701A (en) * 2005-05-16 2006-11-30 Lg Electronics Inc Oil separator and air conditioner having the same
US20090071188A1 (en) * 2007-09-19 2009-03-19 Denso Corporation Oil separator and refrigerant compressor having the same
DE102008047447A1 (en) * 2007-09-19 2009-04-23 Denso Corp., Kariya-shi Oil separator and refrigerant compressor with this
JP2009109102A (en) * 2007-10-31 2009-05-21 Nippon Soken Inc Oil separator and refrigerant compressor provided with it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097612A1 (en) * 2017-11-15 2019-05-23 三菱電機株式会社 Oil separator and refrigeration cycle device
JPWO2019097612A1 (en) * 2017-11-15 2020-11-19 三菱電機株式会社 Oil separator and refrigeration cycle equipment
CN114867974A (en) * 2019-12-27 2022-08-05 三菱电机株式会社 Gas-liquid separator and refrigeration cycle device
CN114867974B (en) * 2019-12-27 2024-03-29 三菱电机株式会社 Gas-liquid separation device and refrigeration cycle device

Also Published As

Publication number Publication date
EP2930449A1 (en) 2015-10-14
WO2014083901A1 (en) 2014-06-05
EP2930449B1 (en) 2021-01-06
EP2930449A4 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2014083674A1 (en) Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP6552851B2 (en) Compressor driving motor and cooling method thereof
US9664191B2 (en) Rotary compressor with increased heating ability and refrigerant circuit for an air conditioner
JP2006194579A (en) Refrigerating apparatus with turbocompressor
JP2016176359A (en) Compressor driving motor and its cooling method
US10309700B2 (en) High pressure compressor and refrigerating machine having a high pressure compressor
KR20120007337A (en) Compressor
WO2014083673A1 (en) Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP6113259B2 (en) Screw compressor
JPWO2018198164A1 (en) Air conditioner
CN104079108A (en) Motor used for compressor of turbo-refrigerator
JP2006132427A (en) Compressor for hot-water supply and hot-water supply cycle device
JP6075451B2 (en) Heat pump equipment
JP6061044B2 (en) Scroll compressor
JP4963971B2 (en) Heat pump type equipment
JP2009092060A (en) Oil separator
JP5892261B2 (en) Refrigeration cycle apparatus and heat pump water heater
JP4973099B2 (en) Compressor
WO2018043329A1 (en) Scroll compressor
WO2016088207A1 (en) Refrigeration cycle circuit
WO2017119075A1 (en) Screw compressor and refrigeration cycle device
WO2018043328A1 (en) Scroll compressor
JP2013036373A (en) High-low pressure dome type compressor
JP2014029158A (en) Refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP