JPH0320707Y2 - - Google Patents

Info

Publication number
JPH0320707Y2
JPH0320707Y2 JP17531285U JP17531285U JPH0320707Y2 JP H0320707 Y2 JPH0320707 Y2 JP H0320707Y2 JP 17531285 U JP17531285 U JP 17531285U JP 17531285 U JP17531285 U JP 17531285U JP H0320707 Y2 JPH0320707 Y2 JP H0320707Y2
Authority
JP
Japan
Prior art keywords
refrigerant gas
oil
diameter pipe
refrigerant
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17531285U
Other languages
Japanese (ja)
Other versions
JPS6283155U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17531285U priority Critical patent/JPH0320707Y2/ja
Publication of JPS6283155U publication Critical patent/JPS6283155U/ja
Application granted granted Critical
Publication of JPH0320707Y2 publication Critical patent/JPH0320707Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、冷凍装置において使用される油分離
器に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an oil separator used in a refrigeration system.

(従来の技術) 一般に、冷凍装置では、冷凍機油が蒸発器内に
入り込み伝熱効果を阻害するのを防止し、或いは
クランクケース内の必要油量を保持するために当
該冷凍装置の圧縮機と凝縮器との間に所定の油分
離器を設け、圧縮機の吐出し管より吐き出される
冷媒ガス中の冷凍機油を分離回収するようになつ
ている。
(Prior Art) Generally, in a refrigeration system, the compressor and the refrigeration system are used to prevent refrigeration oil from entering the evaporator and impeding the heat transfer effect, or to maintain the required amount of oil in the crankcase. A predetermined oil separator is provided between the compressor and the condenser to separate and recover refrigerating machine oil in the refrigerant gas discharged from the discharge pipe of the compressor.

そして、従来、このような油分離器としては、
例えば第3図に示すような、デミスタ等フイルタ
方式の油分離器が多く採用されている(社団法人
日本冷凍協会発行「新版冷凍空調便覧」第4版基
礎編第363頁の図7.4参照)。
Conventionally, such oil separators are
For example, as shown in Figure 3, a filter-type oil separator such as a demister is often used (see Figure 7.4 on page 363 of the 4th edition basic edition of the New Refrigeration and Air Conditioning Handbook published by the Japan Refrigeration Association).

すなわち、第3図において符号31は、当該油
分離器の本体を構成するドラム状の中空シエルで
あり、このシエル31の上端部には冷媒ガス流出
口32が、また下端部には油取出し口33がそれ
ぞれ形成されている。そして、上記シエル31内
は、中央部より上方に位置させて設けられたワイ
ヤーデミスタ等のフイルタ部材34により上方側
の第1室35と下方側の第2室36との2室に仕
切られ、上方側の第1室35と下方側の第2室3
6とは上記フイルタ部材34内の線条間空間を介
して連通せしめられる一方、上記下方側の第2室
36側方には冷媒ガス流入口37が形成され、こ
の冷媒ガス流入口37には冷凍装置の圧縮機側冷
媒ガス吐出し管38が接続されている。
That is, in FIG. 3, reference numeral 31 is a drum-shaped hollow shell that constitutes the main body of the oil separator, and the shell 31 has a refrigerant gas outlet 32 at its upper end and an oil outlet at its lower end. 33 are formed respectively. The inside of the shell 31 is partitioned into two chambers, a first chamber 35 on the upper side and a second chamber 36 on the lower side, by a filter member 34 such as a wire demister located above the central part, The first chamber 35 on the upper side and the second chamber 3 on the lower side
A refrigerant gas inlet 37 is formed on the side of the second chamber 36 on the lower side. A refrigerant gas discharge pipe 38 on the compressor side of the refrigeration system is connected thereto.

従つて、上記冷媒ガス吐出し管38内の冷媒ガ
スは、上記冷媒ガス流入口37を介してシエル3
1内の上記第2室36に導入された後、上記フイ
ルタ部材34の線条間空間を介して上記上方側第
1室35に流入しさらに冷媒ガス流出口32より
蒸発器側に流出する。そして、上記流通過程にお
いて、上記フイルタ部材34の線条部で当該冷媒
ガス中に含まれる油粒子が捕集分離される。そし
て、この捕集分離された油は下方に滴下し、油取
出し口33から取出されて例えば圧縮機のクラン
クケース内に戻される。
Therefore, the refrigerant gas in the refrigerant gas discharge pipe 38 flows into the shell 3 through the refrigerant gas inlet 37.
After being introduced into the second chamber 36 of the refrigerant gas 1, the refrigerant gas flows into the upper first chamber 35 through the interfilament space of the filter member 34, and further flows out through the refrigerant gas outlet 32 toward the evaporator. During the flow process, oil particles contained in the refrigerant gas are collected and separated by the linear portions of the filter member 34. The collected and separated oil drips downward, is taken out from the oil outlet 33, and is returned, for example, to the crankcase of the compressor.

(考案が解決しようとする問題点) ところが、このようなデミスタ等フイルタ方式
の油分離器は先ず一般的に当該フイルタ部材部分
での目詰りが生じ易いとともに圧力損失も高くな
る。また一方、圧縮機での油上り量が少なく冷媒
ガス中の油分粒子が小さくその量も少ない時に
は、上記フイルタ部材の捕集効率が低く、圧縮機
での油上り量によつて油分離効率に差が生じるな
どの問題点があつた。特に、当該油上り量の少な
い領域で分離効率を高くしようとすると、必然的
に上記フイルタ部材を高密度なものにする必要が
あるが、そのようにすると、上記目詰りがより生
じ易くなり、同時に圧力損失もはるかに大きくな
る。
(Problems to be Solved by the Invention) However, in such a filter-type oil separator such as a demister, clogging is likely to occur in the filter member portion, and the pressure loss is also high. On the other hand, when the amount of oil coming up in the compressor is small and the oil particles in the refrigerant gas are small and their amount is small, the collection efficiency of the filter member is low, and the oil separation efficiency depends on the amount of oil coming up in the compressor. There were problems such as discrepancies. In particular, in order to increase the separation efficiency in a region where the amount of oil coming up is small, it is necessary to make the filter member high-density, but if this is done, the clogging becomes more likely to occur. At the same time, the pressure loss will also be much greater.

(問題点を解決するための手段) 本考案は、上記の問題点を改善することを目的
としてなされたもので、第1図に例示するよう
に、シエル1下部に油取出し口3を、またその上
方に冷媒ガス流入口部6並びに冷媒ガス流出口部
2をそれぞれ形成するとともに上記冷媒ガス流入
口部6と冷媒ガス流出口部2との間に油分離用の
フイルタ部材4を介装させた油分離器において、
上記冷媒ガス流入口部6または流出口部2を、冷
媒ガスの流通方向上流側に位置する大径管13と
当該冷媒流通方向下流側に位置して上記大径管1
3の対向する端部内に所定の間〓を保つて所定長
嵌挿された小径管14とにより構成し、上記大径
管13の上記小径管14との嵌挿部における冷媒
流通方向終端位置に油抜き孔19を形成してなる
ものである。
(Means for Solving the Problems) The present invention was made for the purpose of improving the above problems, and as illustrated in FIG. A refrigerant gas inlet portion 6 and a refrigerant gas outlet portion 2 are formed above the refrigerant gas inlet portion 6 and a refrigerant gas outlet portion 2, and a filter member 4 for oil separation is interposed between the refrigerant gas inlet portion 6 and the refrigerant gas outlet portion 2. In the oil separator,
The refrigerant gas inlet part 6 or the outlet part 2 is connected to the large diameter pipe 13 located on the upstream side in the refrigerant gas flow direction and the large diameter pipe 1 located on the downstream side in the refrigerant flow direction.
3 and a small diameter pipe 14 inserted for a predetermined length while maintaining a predetermined distance between the opposing ends of the large diameter pipe 13, and at the end position in the refrigerant flow direction at the insertion part of the large diameter pipe 13 with the small diameter pipe 14. An oil drain hole 19 is formed therein.

(作用) 上記の手段によると、油分離器の冷媒ガス流入
口部または流出口部が大径管と小径管とを所定の
〓間を保つて嵌合した二重管構造となつており、
フイルタ部材による油の分離作用に加えて、さら
に当該二重管部分の大径管側で生じる冷媒ガスの
環状流により大径管の内壁面側にへ偏倚され該大
径管の内壁面に付着して下流側小径管方向に流れ
る油分を上記嵌合部で分離抽出することができる
ので、より油の分離効果が向上する。
(Function) According to the above means, the refrigerant gas inlet or outlet of the oil separator has a double pipe structure in which a large diameter pipe and a small diameter pipe are fitted with a predetermined distance,
In addition to the oil separation effect by the filter member, the annular flow of refrigerant gas generated on the large diameter pipe side of the double pipe section causes the refrigerant gas to be biased toward the inner wall surface of the large diameter pipe and adhere to the inner wall surface of the large diameter pipe. Since the oil flowing toward the downstream small-diameter pipe can be separated and extracted at the fitting portion, the oil separation effect is further improved.

しかも、上記二重管部分での油の分離は、デミ
スタのようなフイルタ部材による濾過作用の場合
と異なり、冷媒ガス中の油分量に直接関係なく常
に一定の分離効率をもつて行うことができること
から、上記フイルタ部材による低油上り率の範囲
での油分離効率の悪さをそれによつて充分に補償
することができるようになり、両者を組合せた全
体としての油分離効率を大きく向上させることが
可能となる。
Furthermore, unlike the case of filtration using a filter member such as a demister, oil separation in the double pipe section can always be performed with a constant separation efficiency, regardless of the amount of oil in the refrigerant gas. Therefore, it becomes possible to sufficiently compensate for the poor oil separation efficiency of the filter member in the range of low oil flow rate, and it is possible to greatly improve the oil separation efficiency as a whole by combining the two. It becomes possible.

(実施例) 第1図は、本考案の実施例に係る冷凍装置用の
油分離器を示すものである。
(Embodiment) FIG. 1 shows an oil separator for a refrigeration system according to an embodiment of the present invention.

先ず第1図において、符号1は油分離器本体を
構成するドラム状のシエルであり、このシエルの
上端部には冷媒ガス流出口部2が、また下端部に
は油取出し口3が、さらに側部には冷媒ガス流入
口部6がそれぞれ形成されている。そして、上記
冷媒ガス流入口部6と冷媒ガス流出口部2との間
にはシエル1内上方部に位置して略水平に嵌装固
定されたワイヤーデミスタ(実用新案登録請求の
範囲中のフイルタ部材に該当する)4が介装され
ており、冷媒ガス流入口部6よりシエル1内に導
入された冷媒ガスは上記ワイヤーデミスタ4を介
して冷媒ガス流出口部2より図示しない凝縮器側
に流出するようになつている。
First, in FIG. 1, reference numeral 1 denotes a drum-shaped shell that constitutes the main body of the oil separator.The upper end of this shell has a refrigerant gas outlet 2, and the lower end has an oil outlet 3. Refrigerant gas inlet portions 6 are formed on each side. Between the refrigerant gas inlet part 6 and the refrigerant gas outlet part 2, a wire demister (filter in the scope of the utility model registration claims) is located in the upper part of the shell 1 and is fitted and fixed approximately horizontally. (corresponding to a member) 4 is interposed, and the refrigerant gas introduced into the shell 1 from the refrigerant gas inlet portion 6 passes through the wire demister 4 and flows from the refrigerant gas outlet portion 2 to the condenser side (not shown). It's starting to leak out.

一方、上記冷媒ガス流入口部6は、基部側を上
記シエル1の側壁部1aに形成された嵌装孔に嵌
装して固定されたスリーブ状のボス部材7内を貫
通して保持され一端側開口部8を上記シエル1内
に突入させる一方、他端側開口部を上記シエル1
の外部に突出させて圧縮機側冷媒ガス吐き出し管
10と接続された冷媒ガス流通方向上流側に位置
する大径管13と、この大径管13の上記シエル
1内側開口端部8内に一端側を所定の長さ嵌挿さ
れた上記冷媒ガス流通方向下流側に位置する小径
管14とで構成され、上記小径管14の非嵌挿側
端部にはメツシユ部材15が冠装されている。
On the other hand, the refrigerant gas inlet 6 is held by passing through a sleeve-shaped boss member 7 whose base side is fitted into a fitting hole formed in the side wall 1a of the shell 1 and fixed. While the side opening 8 is inserted into the shell 1, the other end side opening is inserted into the shell 1.
A large-diameter pipe 13 located on the upstream side in the refrigerant gas distribution direction that projects outside and is connected to the compressor-side refrigerant gas discharge pipe 10; It consists of a small diameter pipe 14 located on the downstream side in the refrigerant gas flow direction, which is fitted for a predetermined length on one side, and a mesh member 15 is mounted on the end of the small diameter pipe 14 on the non-fitting side. .

そして、上記大径管13のシエル1内に嵌挿さ
れた部分の管壁部16は、例えば螺旋状に螺溝が
形成されており、当該管内部を流れる冷媒ガス流
に旋回方向の遠心力を作用させるようになつてい
る。また、上記大径管13の上記小径管14との
嵌合側端部は、小径管14の管壁外周面に接合さ
れシールされており、当該接合部近傍の下方部
(冷媒ガス流通方向終端位置)に油抜き孔19を
形成している。
The tube wall portion 16 of the portion of the large-diameter tube 13 fitted into the shell 1 is formed with, for example, a spiral groove, and a centrifugal force in the swirling direction is applied to the refrigerant gas flow flowing inside the tube. It's starting to work. The end of the large-diameter pipe 13 on the side where the small-diameter pipe 14 is fitted is joined and sealed to the outer peripheral surface of the pipe wall of the small-diameter pipe 14, and the lower part near the joint (the end in the refrigerant gas flow direction) is sealed. An oil drain hole 19 is formed at the position).

従つて、上記の構成によると、圧縮機より吐出
された冷媒ガスは、先ず冷媒ガス吐出し管10か
ら冷媒ガス導入用の大径管13を経て小径管14
内に導入される。そして、この小径管14内への
冷媒ガス導入時において、上記冷媒ガス中の油の
第1段階の分離が行なわれる。
Therefore, according to the above configuration, the refrigerant gas discharged from the compressor first passes through the refrigerant gas discharge pipe 10, the large diameter pipe 13 for introducing refrigerant gas, and then the small diameter pipe 14.
be introduced within. When the refrigerant gas is introduced into the small diameter pipe 14, a first stage of separation of oil in the refrigerant gas is performed.

すなわち、上記冷媒ガス導入用の大径管13の
シエル内側管壁部16は上述のように冷媒ガス流
通方向に螺旋状となつており、そのために当該大
径管13内を流れる冷媒ガス流は効果的に環状流
となつて管壁方向に遠心力が作用するようにな
る。そして、この遠心力は当該冷媒ガス中の比重
の大きい油に対して最も大きく作用する。その結
果、油は次第に上記大径管13の螺溝部内周壁面
に集まつて下流側に流れるようになり、最終的に
は上記小径管14との嵌合部接合面付近下方に集
合せしめられるようになる。そして、この集合部
底部には油抜き孔19が形成されているから、上
記集合部に滞留する油は上記油抜き孔19よりシ
エル1内下方に滴下し、油取出し口3から外部に
取出され例えば返油路を介して圧縮機のクランク
ケース内に戻される。この場合、上記第1段階に
おける油分離作用は、上記のように冷媒ガスを螺
旋状に流すことにより当該冷媒ガス中の比重の大
きい油に対して効果的に遠心力を作用させ、油の
みを抽出するようにしているので、圧縮機での油
上り量の多寡に関係なく常に一定の分離効率を上
げることができる。
That is, the shell inner tube wall 16 of the large-diameter pipe 13 for introducing the refrigerant gas has a spiral shape in the refrigerant gas flow direction as described above, so that the refrigerant gas flow inside the large-diameter pipe 13 is The flow effectively becomes an annular flow, and centrifugal force acts in the direction of the pipe wall. This centrifugal force acts most strongly on oil, which has a high specific gravity, in the refrigerant gas. As a result, the oil gradually collects on the inner circumferential wall surface of the helical groove of the large diameter pipe 13 and flows downstream, eventually collecting near the joint surface of the fitting part with the small diameter pipe 14 and below. It becomes like this. Since an oil drain hole 19 is formed at the bottom of the collecting section, the oil remaining in the collecting section drips downward into the shell 1 through the oil drain hole 19 and is taken out from the oil outlet 3. For example, it is returned into the crankcase of the compressor via an oil return path. In this case, the oil separation action in the first stage is performed by causing the refrigerant gas to flow in a spiral manner as described above, thereby effectively applying centrifugal force to the oil with a high specific gravity in the refrigerant gas, and removing only the oil. Since the oil is extracted, it is possible to always increase the separation efficiency to a certain level regardless of the amount of oil coming up in the compressor.

次に、上記のようにして先ず第1段階の油分離
過程を終えた冷媒ガスは、上記小径管14を通つ
てさらにその出口部のメツシユ部材15によつて
上記冷媒ガス中の油滴が第2段階として捕集分離
される。
Next, the refrigerant gas that has first completed the oil separation process in the first stage as described above passes through the small diameter pipe 14 and is further filtered out by the mesh member 15 at its outlet so that the oil droplets in the refrigerant gas are removed. It is collected and separated in two stages.

この第2段階の油の分離が行われた冷媒ガス
は、続いてシエル1内空間部に導かれた後に、さ
らに上記ワイヤーデミスタ4を通して上記冷媒ガ
ス流出口部2から流出する。そして、上記ワイヤ
ーデミスタ4の部分で第3段階としての油の分離
が行われる。すなわち、上記ワイヤーデミスタ4
は、複数のワイヤー線条を高密度に組合せて構成
されており、当該線条空間に冷媒ガスを通すこと
により当該冷媒ガス中に含まれているミスト状の
油分子を捕集分離する。これにより、最終的に油
の分離が行われた冷媒ガスは、当初に含まれてい
た油滴分からミスト状の油分子分までの高範囲の
油分が除去されたものとなる。
The refrigerant gas from which the oil has been separated in the second stage is then led to the inner space of the shell 1, and then further passes through the wire demister 4 and flows out from the refrigerant gas outlet 2. Then, oil separation is performed in the wire demister 4 portion as a third stage. That is, the wire demister 4
is constructed by combining a plurality of wire filaments at high density, and by passing the refrigerant gas through the filament space, it collects and separates mist-like oil molecules contained in the refrigerant gas. As a result, the refrigerant gas from which the oil has finally been separated has a wide range of oil components from the initially contained oil droplets to mist-like oil molecules removed.

以上の第1〜第3段階の各段階における油分離
効率特性並びにそれらの組合せによる油分離効率
特性を示すと第2図のようになり、上記本考案の
実施例のように第1〜第3段階の油分離作用を組
合せると、圧縮機の油上り率の高い範囲から低い
範囲までの全ての範囲においてほぼ100%に近い
油分離効率を上げることができるようになること
が分かる。
The oil separation efficiency characteristics at each of the above-mentioned stages 1 to 3 and the oil separation efficiency characteristics according to their combination are shown in FIG. 2. It can be seen that by combining the oil separation actions of the stages, it becomes possible to increase the oil separation efficiency to nearly 100% in all ranges from high to low oil flow rates of the compressor.

なお、上記実施例においては、第1段階として
の二重管構造による油の分離作用に加えて第2段
階としてメツシユ部材15による油の分離並びに
第3段階としてのワイヤーデミスタ4による油の
分離の3種の分離作用を組合せたが、上記第2段
階のメツシユ部材15を設けることなく二重管と
ワイヤーデミスタ4のみによる油分離作用によつ
ても充分に高い油分離効率を上げることができ
る。
In addition, in the above embodiment, in addition to the oil separation effect by the double pipe structure as the first stage, oil separation by the mesh member 15 as the second stage and oil separation by the wire demister 4 as the third stage. Although three types of separation actions are combined, a sufficiently high oil separation efficiency can also be achieved by the oil separation action using only the double pipe and wire demister 4 without providing the mesh member 15 of the second stage.

また、大径管13のシエル1内管壁部16は、
必ずしも螺溝状にする必要はなく、所定値以上の
流速の場合にはストレートな管壁であつても一般
に環状流が形成されるので充分に分離効果を得る
ことができる。
In addition, the shell 1 inner tube wall portion 16 of the large diameter tube 13 is
It is not necessarily necessary to have a spiral groove shape; if the flow velocity is above a predetermined value, an annular flow is generally formed even with a straight pipe wall, so that a sufficient separation effect can be obtained.

(考案の効果) 本考案は、以上に説明したように、シエル下部
に油取出し口を、またその上方に冷媒ガス流入口
部並びに冷媒ガス流出口部をそれぞれ形成すると
ともに上記冷媒ガス流入口部と冷媒ガス流出口部
との間に油分離用のフイルタ部材を介装させた油
分離器において、上記冷媒ガス流入口部または流
出口部を、冷媒ガスの流通方向上流側に位置する
大径管と当該冷媒流通方向下流側に位置して上記
大径管の対向する端部内に所定の間〓を保つて所
定長嵌挿された小径管とにより構成し、上記大径
管の上記小径管との嵌挿部における冷媒流通方向
終端位置に油抜き孔を形成したことを特徴とする
ものである。
(Effect of the invention) As explained above, the present invention forms an oil outlet at the bottom of the shell, and above the oil outlet, a refrigerant gas inlet and a refrigerant gas outlet. In an oil separator in which a filter member for oil separation is interposed between the refrigerant gas inlet or the refrigerant gas outlet, the refrigerant gas inlet or the outlet is connected to a large-diameter filter located on the upstream side in the flow direction of the refrigerant gas. and a small-diameter pipe located downstream in the refrigerant flow direction and inserted into opposite ends of the large-diameter pipe for a predetermined distance with a predetermined distance, the small-diameter pipe of the large-diameter pipe. It is characterized in that an oil drain hole is formed at the end position in the refrigerant flow direction in the fitting part with the refrigerant.

従つて、本考案によると、油分離器の冷媒ガス
流入口部または流出口部が大径管と小径管とを所
定の〓間を保つて嵌合した二重管構造となつてお
り、フイルタ部材による油の分離作用に加えて、
さらに当該二重管部分の大径管側で生じる冷媒ガ
スの環状流により大径管の内壁面側にへ偏倚され
該大径管の内壁面に付着して下流側小径管方向に
流れる油分を上記嵌合部で分離抽出することがで
きるので、より油の分離効果が向上する。
Therefore, according to the present invention, the refrigerant gas inlet or outlet of the oil separator has a double pipe structure in which a large diameter pipe and a small diameter pipe are fitted with a predetermined distance between them. In addition to the oil separation effect of the parts,
Furthermore, due to the annular flow of refrigerant gas generated on the large diameter pipe side of the double pipe section, oil is biased toward the inner wall surface of the large diameter pipe, adheres to the inner wall surface of the large diameter pipe, and flows toward the downstream small diameter pipe. Since oil can be separated and extracted at the fitting portion, the oil separation effect is further improved.

しかも、上記二重管部分での油の分離は、デミ
スタのようなフイルタ部材による濾過作用の場合
と異なり、冷媒ガス中の油分量に直接関係なく常
に一定の分離効率をもつて行うことができること
から、上記フイルタ部材による低油上り率の範囲
での油分離効率の悪さをそれによつて充分に補償
することができるようになり、両者を組合せた全
体としての油分離効率を大きく向上させることが
可能となる。
Furthermore, unlike the case of filtration using a filter member such as a demister, oil separation in the double pipe section can always be performed with a constant separation efficiency, regardless of the amount of oil in the refrigerant gas. Therefore, it becomes possible to sufficiently compensate for the poor oil separation efficiency of the filter member in the range of low oil flow rate, and it is possible to greatly improve the oil separation efficiency as a whole by combining the two. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の実施例に係る油分離器の断
面図、第2図は、上記実施例の油分離器の油分離
効率を示すグラフ、第3図は、従来の油分離器の
中央縦断面図である。 1……シエル、2……冷媒ガス流出口部、3…
…油取出し口、4……ワイヤーデミスタ、6……
冷媒ガス流入口部、13……大径管、14……小
径管、19……油抜き孔。
Fig. 1 is a cross-sectional view of an oil separator according to an embodiment of the present invention, Fig. 2 is a graph showing the oil separation efficiency of the oil separator of the above embodiment, and Fig. 3 is a graph of a conventional oil separator. FIG. 1... Shell, 2... Refrigerant gas outlet, 3...
...Oil outlet, 4...Wire demister, 6...
Refrigerant gas inlet portion, 13...large diameter pipe, 14...small diameter pipe, 19...oil drain hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シエル1下部に油取出し口3を、またその上方
に冷媒ガス流入口部6並びに冷媒ガス流出口部2
をそれぞれ形成するとともに上記冷媒ガス流入口
部6と冷媒ガス流出口部2との間に油分離用のフ
イルタ部材4を介装させた油分離器において、上
記冷媒ガス流入口部6または流出口部2を、冷媒
ガスの流通方向上流側に位置する大径管13と当
該冷媒流通方向下流側に位置して上記大径管13
の対向する端部内に所定の間〓を保つて所定長嵌
挿された小径管14とにより構成し、上記大径管
13の上記小径管14との嵌挿部における冷媒流
通方向終端位置に油抜き孔19を形成したことを
特徴とする油分離器。
An oil outlet 3 is provided at the bottom of the shell 1, and a refrigerant gas inlet 6 and a refrigerant gas outlet 2 are provided above it.
In the oil separator in which a filter member 4 for oil separation is interposed between the refrigerant gas inlet port 6 and the refrigerant gas outlet port 2, the refrigerant gas inlet port 6 or the refrigerant gas outlet port 2 is provided. The large diameter pipe 13 is located on the upstream side in the refrigerant gas flow direction, and the large diameter pipe 13 is located on the downstream side in the refrigerant flow direction.
A small-diameter pipe 14 is inserted for a predetermined length into opposing ends of the large-diameter pipe 13 while maintaining a predetermined distance, and oil is provided at the end position in the refrigerant flow direction at the insertion portion of the large-diameter pipe 13 with the small-diameter pipe 14. An oil separator characterized in that a extraction hole 19 is formed.
JP17531285U 1985-11-13 1985-11-13 Expired JPH0320707Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17531285U JPH0320707Y2 (en) 1985-11-13 1985-11-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17531285U JPH0320707Y2 (en) 1985-11-13 1985-11-13

Publications (2)

Publication Number Publication Date
JPS6283155U JPS6283155U (en) 1987-05-27
JPH0320707Y2 true JPH0320707Y2 (en) 1991-05-02

Family

ID=31114519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17531285U Expired JPH0320707Y2 (en) 1985-11-13 1985-11-13

Country Status (1)

Country Link
JP (1) JPH0320707Y2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083674A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP5892261B2 (en) * 2012-11-30 2016-03-23 三菱電機株式会社 Refrigeration cycle apparatus and heat pump water heater
JPWO2014083900A1 (en) * 2012-11-30 2017-01-05 三菱電機株式会社 Compressor, refrigeration cycle device and heat pump hot water supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083674A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
WO2014083901A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP5892261B2 (en) * 2012-11-30 2016-03-23 三菱電機株式会社 Refrigeration cycle apparatus and heat pump water heater
JPWO2014083900A1 (en) * 2012-11-30 2017-01-05 三菱電機株式会社 Compressor, refrigeration cycle device and heat pump hot water supply device
JPWO2014083901A1 (en) * 2012-11-30 2017-01-05 三菱電機株式会社 Refrigeration cycle apparatus and heat pump water heater

Also Published As

Publication number Publication date
JPS6283155U (en) 1987-05-27

Similar Documents

Publication Publication Date Title
US8147575B2 (en) Multi-stage oil separation system including a cyclonic separation stage
US5419157A (en) Air-conditioning system accumulator and method of making same
US4768355A (en) Accumulator with refrigerant processing cartridge for automotive air conditioning system
US4906264A (en) Oil separator for separating and collecting oil entrained in refrigerant
US3304697A (en) Oil separator
US6158503A (en) Air conditioning condenser having a fluid tank with interchangeable cartridge
CN103604258B (en) A kind of discharge opeing type gas-liquid separator
US4472949A (en) Oil separator
KR0118810Y1 (en) Oil separator for airconditioner
CN104729166B (en) Vertical oil separator and air-conditioning system
EP0540459A1 (en) Integral oil separator and muffler
JPH11211275A (en) Condenser for air conditioning equipped with reservoir free of replacement of fluid
CN109139428B (en) Oil-gas separator and compressor with same
US6131405A (en) Discharge separator and muffler for refrigeration, air conditioning and heat pump systems
CN104697255A (en) Separator device for separating lubricating oil and in refrigerating system and method for oil separating
CN203083225U (en) Refrigerating system and oil separator thereof
JPH0320707Y2 (en)
US2848060A (en) Apparatus for separating mist particles or droplets from gases
JPH0618127A (en) Oil separator
JPH0540308Y2 (en)
US6122929A (en) Accumulator
JP2002277109A (en) Oil separator
CN213955700U (en) Built-in vertical oil separator for compressor
CN206387156U (en) A kind of twin-stage gs-oil separator
JPH0346829Y2 (en)