JPH0462359A - Oil separator for air conditioner - Google Patents

Oil separator for air conditioner

Info

Publication number
JPH0462359A
JPH0462359A JP17315190A JP17315190A JPH0462359A JP H0462359 A JPH0462359 A JP H0462359A JP 17315190 A JP17315190 A JP 17315190A JP 17315190 A JP17315190 A JP 17315190A JP H0462359 A JPH0462359 A JP H0462359A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
chamber
expansion chamber
refrigerant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17315190A
Other languages
Japanese (ja)
Inventor
Yasuo Saito
靖夫 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17315190A priority Critical patent/JPH0462359A/en
Publication of JPH0462359A publication Critical patent/JPH0462359A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil

Landscapes

  • Compressor (AREA)

Abstract

PURPOSE:To separate a refrigerator oil from a refrigerant gas without increasing pressure loss, by providing a pipe line with a refrigerant inlet port faced to an inner wall of an expansion chamber, making a refrigerant outlet port of the pipe line greater than the inlet port in diameter, and connecting to a lower interior part of the chamber an oil return capillary tube through which a refrigerator oil collected in the chamber is led to a suction-side pipe line of a refrigeration cycle. CONSTITUTION:A refrigerant inlet port 10 is cut obliquely so as to face toward an inner wall of an expansion chamber 9. Therefore, a refrigerant gas flowing into the chamber 9 impinges on the inner wall of the chamber 9, as indicated by arrows 13. The cross-sectional area S2 of the chamber 9 is set greater than the cross-sectional area S1 of the inlet port 10, so that the flow velocity of the refrigerant gas introduced into the chamber 9 is reduced to or below l/5 of an initial flow velocity. Consequently, a refrigerant oil is separated from the refrigerant gas upon impingement of the gas on the inner wall of the expansion chamber 9. It is thus possible to separate the refrigerant oil from the refrigerant gas without increasing pressure loss.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、圧allから吐出される冷凍機油を冷媒から
分離して冷凍サイクル吸込側配管路へ導く空気調和機用
油分離器に係り、特に、分離器を通過する際の圧力損失
を低減した空気調和機用油分離器に関する6 (従来の技術) 近年、冷凍サイクルを用いたセパレート型空気調和機は
、設置の自由度を高めるため、室内ユニットと室外ユニ
ットとを接続する冷媒配管か長くなってきている。この
ような空気調和機においては、室外ユニット内の圧縮機
から冷媒ガスと共に吐出される冷凍機油か上記冷媒配管
に流出すると、長くなった冷媒配管内壁に冷凍機油が付
着して、圧縮機内の冷凍機油が相対的に不足し、潤滑不
良となる。また、流出した冷凍機油は、蒸発器や凝縮器
内部に付着し、それらの熱交換効率を低下させる。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention is directed to an air conditioner oil that separates refrigeration oil discharged from a pressure all from a refrigerant and guides it to a refrigeration cycle suction side piping path. 6. Related to separators, especially oil separators for air conditioners that reduce pressure loss when passing through the separator (Prior art) In recent years, separate air conditioners using a refrigeration cycle have been installed freely. To increase the temperature, refrigerant piping connecting indoor units and outdoor units is becoming longer. In such an air conditioner, when the refrigerating machine oil discharged from the compressor in the outdoor unit along with the refrigerant gas flows into the refrigerant pipe, the refrigerating machine oil adheres to the inner wall of the long refrigerant pipe, causing the refrigeration inside the compressor to There is a relative shortage of machine oil, resulting in poor lubrication. Furthermore, the leaked refrigerating machine oil adheres to the inside of the evaporator and condenser, reducing their heat exchange efficiency.

この対策として本出願人は先に第4図に示すような空気
調和機用油分離器aを開発した。図示するように、冷凍
サイクル吐出側配管!?8b(圧縮icの吐出rrs>
に油分離室dが介設されている。
As a countermeasure to this problem, the present applicant has previously developed an oil separator a for air conditioners as shown in FIG. As shown, the refrigeration cycle discharge side piping! ? 8b (compression IC discharge rrs>
An oil separation chamber d is interposed between the two.

この油分離室d内には、金属製のモールからなるデミス
タeが設けられている。このデミスタeは、冷媒流入口
fから油分離室d内に流入する冷媒ガスに抵抗を与え、
その流速を落とすことによって冷媒カス中の冷凍機油を
分離させるものである。
A demister e made of a metal molding is provided in the oil separation chamber d. This demister e provides resistance to the refrigerant gas flowing into the oil separation chamber d from the refrigerant inlet f,
By reducing the flow rate, the refrigerating machine oil in the refrigerant scum is separated.

分離された冷凍機油は、油分離室d底部に流下し、底部
に接続された油戻用キャピラリチューブgを通って冷凍
サイクル吸込側配管路h(圧縮@cの吸込側)に導かれ
るようになっている。一方、冷凍機油が分離された冷媒
カスは、冷媒流出口iを通って凝縮器や蒸発器側へ導か
れる。
The separated refrigeration oil flows down to the bottom of the oil separation chamber d, passes through the oil return capillary tube g connected to the bottom, and is guided to the refrigeration cycle suction side piping h (suction side of compression@c). It has become. On the other hand, the refrigerant residue from which the refrigerating machine oil has been separated is guided to the condenser or evaporator side through the refrigerant outlet i.

この空気調和機用油分離器aによれば、圧縮機Cから吐
出される冷凍機油は、デミスタeによって冷媒ガスから
分離され、油戻用キャピラリチューブgを通って、長く
なった冷媒配管および蒸発器や凝縮器などをバイパスし
て、冷凍サイクル吸込側配管hllllに導かれる。よ
って、圧mmcの潤滑不良や蒸発器や凝縮器などの熱交
換効率の低下が未然に防止される。
According to this air conditioner oil separator a, the refrigerating machine oil discharged from the compressor C is separated from the refrigerant gas by the demister e, passes through the oil return capillary tube g, and is passed through the elongated refrigerant pipe and evaporated. It bypasses the container, condenser, etc., and is led to the refrigeration cycle suction side piping hllll. Therefore, poor lubrication of the pressure mmc and a decrease in heat exchange efficiency of the evaporator, condenser, etc. can be prevented.

(発明が解決しようとする課題) しかしながら、上記空気調和機用油分離器aにあっては
、金属モールからなるデミスタeか冷媒カスに抵抗を与
えることによって、冷媒ガス中から冷凍機油を分離して
いるので、そこでの圧力損失か大きくなってしまう、こ
の圧力損失は、空気調和機の冷凍能力、効率などに悪影
響を与え、性能向上の妨げとなる。
(Problem to be Solved by the Invention) However, in the oil separator a for air conditioners, refrigerating machine oil is separated from the refrigerant gas by applying resistance to the refrigerant residue using the demister e made of a metal molding. This pressure loss increases the pressure loss there. This pressure loss adversely affects the refrigerating capacity and efficiency of the air conditioner, and hinders performance improvement.

以上の事情を考慮して創案された本発明の目的は、圧力
損失を大きくすることなく冷媒ガス中から冷凍機油を分
離することができる空気調和機用油分離器を提供するも
のである。
An object of the present invention, which was created in consideration of the above circumstances, is to provide an oil separator for air conditioners that can separate refrigerating machine oil from refrigerant gas without increasing pressure loss.

[発明の構成1 (課題を解決するための手段) 上記目的を達成するため本発明に係る空気調和機用油分
離器は、冷凍サイクルの吐出側配管路に、該配管路より
大きな断面積を有する膨張室を介設し、該膨張室内壁に
臨ませて上記配管路の冷媒流入口を設けると共に、上記
配管路の冷媒流出口を上記冷媒流入口の口径より大きく
設定し、且つ上記膨張室内底部に、これに捕集される冷
凍機油を冷凍サイクルの吸込側配管路へ導くための油戻
用キャピラリチューブを接続したことから構成されてい
る。
[Structure 1 of the Invention (Means for Solving the Problems) In order to achieve the above object, the oil separator for an air conditioner according to the present invention has a pipe line on the discharge side of a refrigeration cycle that has a larger cross-sectional area than that of the pipe line. A refrigerant inlet of the piping is provided so as to face the wall of the expansion chamber, and a refrigerant outlet of the piping is set to be larger than the diameter of the refrigerant inlet. It is constructed by connecting an oil return capillary tube to the bottom for guiding the refrigerating machine oil collected thereto to the suction side piping path of the refrigeration cycle.

(作 用) 上記構成によれば、冷媒流入1]から!#張室内に流入
する冷媒ガスは、その流入口か膨張室内壁に臨まされて
いることから、膨張室内壁に流れ当たる。この際、上記
W6張室は、冷媒流入口より大きな断面積になっている
ので、そのガス流速が減速され、冷媒ガス中から冷凍機
油か分離される6分離された冷凍機油は、膨張室内壁を
伝って膨張室内底部に流下しそこに捕集され、油戻用キ
ャピラリチューブを通って冷凍サイクル吸込側配管路に
導かれる。
(Function) According to the above configuration, from refrigerant inflow 1]! #The refrigerant gas flowing into the expansion chamber flows against the expansion chamber wall because its inlet port faces the expansion chamber wall. At this time, since the above-mentioned W6 expansion chamber has a larger cross-sectional area than the refrigerant inlet, the gas flow rate is decelerated and the refrigerating machine oil is separated from the refrigerant gas. The oil flows down to the bottom of the expansion chamber, where it is collected, and is led to the refrigeration cycle suction side piping through the oil return capillary tube.

また、上記膨張室の冷媒流出口は冷媒流入口より大きな
口径になっているので、膨張室から流出する冷媒ガス流
は膨張室に流入する冷媒ガス流より低速となり、上記冷
凍機油の分離が一層促進される。
Furthermore, since the refrigerant outlet of the expansion chamber has a larger diameter than the refrigerant inlet, the refrigerant gas flow flowing out of the expansion chamber has a lower speed than the refrigerant gas flow flowing into the expansion chamber, and the separation of the refrigerating machine oil is further facilitated. promoted.

(実線例) 以下に本発明の好適実施例を添付図面に基づいて説明す
る。
(Example of solid line) Preferred embodiments of the present invention will be described below based on the accompanying drawings.

第2図は、冷凍サイクルを用いた空気調和機の概略図を
表すものである0図示すように、圧縮Ifil凝縮器2
、絞り器3、蒸発器4が冷媒配管で接続されて、冷凍サ
イクルが構成されている。
FIG. 2 is a schematic diagram of an air conditioner using a refrigeration cycle. As shown in FIG.
, a restrictor 3, and an evaporator 4 are connected through refrigerant piping to form a refrigeration cycle.

この冷凍サイクル上には、冷房時と暖房時とで冷媒の流
れを逆に切り替える四方弁5か備えられており、所謂ヒ
ートポンプ式の空気調和機となっている。上記冷凍サイ
クルの吐出側配管路6(圧縮11!1の吐出側)には、
冷媒ガス中から冷凍機油を分離して、分離した冷凍機油
を冷凍サイクルの吸込側配管路7(圧ta機1の吸込f
Fl)へ導くための空気調和機用油分離器8が介設され
ている。
This refrigeration cycle is equipped with a four-way valve 5 that reverses the flow of refrigerant between cooling and heating, making it a so-called heat pump type air conditioner. In the discharge side piping line 6 (discharge side of compression 11!1) of the refrigeration cycle,
The refrigerating machine oil is separated from the refrigerant gas, and the separated refrigerating machine oil is transferred to the suction side pipe line 7 of the refrigerating cycle (the suction f of the pressure ta machine 1).
An air conditioner oil separator 8 is provided to guide the oil to Fl).

第1図に示すようにこの空気調和機用油分離器8は、そ
の外郭が、冷凍サイクルの吐出側配管路6に介設された
円筒状の膨張室9から形成されている。この膨張室9は
、その断面積S2が上記配管路6の断面積S1より大き
な断面積に形成されており、膨張室9内に流入した冷媒
カスの流速が減速されるようになっている。具体的には
、上記冷媒ガスの流速が115以下に減速されるように
断面積S、、S2が設定されている。
As shown in FIG. 1, the outer shell of this oil separator 8 for an air conditioner is formed from a cylindrical expansion chamber 9 interposed in the discharge side piping path 6 of the refrigeration cycle. The expansion chamber 9 is formed to have a cross-sectional area S2 larger than the cross-sectional area S1 of the piping path 6, so that the flow velocity of the refrigerant scum flowing into the expansion chamber 9 is reduced. Specifically, the cross-sectional areas S and S2 are set so that the flow velocity of the refrigerant gas is reduced to 115 or less.

また、上記膨張室9は、その上部に上記配管路6の入口
側配管6aが挿入接続されて冷媒流入口10か形成され
ていると共に、下部に上記配管路6の出口側配管6bが
挿入接続されて冷媒流出口11か形成されている。上記
冷媒流出口11の口径(断面積)33は、冷媒流入口1
oの口径(断面積)Slより大きく設定されており、冷
媒流入口10を通って膨張室9内に流入する冷媒ガス流
よりも、冷媒流出口11を通って流出する冷媒ガス流の
方か低速となるように構成されている。
Further, the expansion chamber 9 has an inlet side pipe 6a of the piping path 6 inserted and connected to the upper part thereof to form a refrigerant inlet 10, and an outlet side piping 6b of the piping path 6 to the lower part thereof is inserted and connected. A refrigerant outlet 11 is formed. The diameter (cross-sectional area) 33 of the refrigerant outlet 11 is the same as that of the refrigerant inlet 1.
o is set larger than the diameter (cross-sectional area) Sl, and the refrigerant gas flow flows out through the refrigerant outlet 11 rather than the refrigerant gas flow flowing into the expansion chamber 9 through the refrigerant inlet 10. It is configured to be slow.

上記入口側配管6aの冷媒流入口1oは、第1図に示す
ように、斜めにカットされて膨張室9内壁に臨むように
なっている。上記カット角度θは、実験によると40″
〜80″程度が望ましいことが解った。
The refrigerant inlet 1o of the inlet side pipe 6a is cut diagonally so as to face the inner wall of the expansion chamber 9, as shown in FIG. According to the experiment, the above cut angle θ is 40″
It was found that approximately 80″ is desirable.

また、上記膨張室9内底部には、これに捕集される冷凍
機油を、第2図に示す冷凍サイクルの吸込側配管路7(
圧!a機1の吸込側)へ導くための油戻用キャピラリチ
ューブ12が挿入接続されている。この油戻用キャピラ
リチューブ12の挿入長さは、上記出口側配管6bの挿
入長さより短くなっている。すなわち、油戻用キャピラ
リチューブ12の挿入先端部が出口側配管6bの挿入先
端部よりも水平方向からみて低く位置されている。
In addition, the refrigerating machine oil collected therein is stored in the inner bottom of the expansion chamber 9 in the suction side piping path 7 (see FIG. 2) of the refrigeration cycle.
Pressure! An oil return capillary tube 12 for guiding the oil to the suction side of the machine 1 is inserted and connected. The insertion length of this oil return capillary tube 12 is shorter than the insertion length of the outlet side piping 6b. That is, the insertion tip of the oil return capillary tube 12 is positioned lower than the insertion tip of the outlet pipe 6b when viewed from the horizontal direction.

よって、膨張室9内底部に捕集された冷凍機油は、出口
側配管6bから流出することなく必ず油戻用キャピラリ
チューブ12から流出することになる。
Therefore, the refrigerating machine oil collected at the inner bottom of the expansion chamber 9 always flows out from the oil return capillary tube 12 without flowing out from the outlet side pipe 6b.

なお、図中1は、膨張室9内底部に捕集される冷凍機油
が50cc以上となる寸法になっている。
In addition, 1 in the figure is a dimension in which the amount of refrigerating machine oil collected at the inner bottom of the expansion chamber 9 is 50 cc or more.

以上の構成からなる本実緒例の作用について述べる。The operation of this practical example with the above configuration will be described.

第1図に示すように、冷媒流入口10から膨張室9内に
流入する冷媒ガスは、その流入口10が斜めにカットさ
れて膨張室9内壁に臨まされていることから、図中矢印
13で示すように膨張室9内壁に流れ当たる。この際、
上記膨張室9の断面積S2が冷媒流入口10の断面積S
1より大きいことから、膨張室9内に流入する冷媒ガス
は、そのカス流速が減速されて略115以下のガス流速
となる。よって、冷媒ガスが膨張室9内壁に流れ当った
ときに冷媒ガス中から冷凍機油が分離される。
As shown in FIG. 1, the refrigerant gas flows into the expansion chamber 9 from the refrigerant inlet 10 because the inlet 10 is cut diagonally and faces the inner wall of the expansion chamber 9. The liquid flows against the inner wall of the expansion chamber 9 as shown in . On this occasion,
The cross-sectional area S2 of the expansion chamber 9 is the cross-sectional area S of the refrigerant inlet 10.
1, the refrigerant gas flowing into the expansion chamber 9 has its gas flow velocity reduced to a gas flow velocity of about 115 or less. Therefore, when the refrigerant gas flows against the inner wall of the expansion chamber 9, the refrigerating machine oil is separated from the refrigerant gas.

また、上記膨張室9の冷媒流出口11の口径(Ilfr
而1)面lが冷媒流入口10の口径(断面積)Slより
大きくなっているので、膨張室9がら流出する冷媒カス
流は膨張室9に流入する冷媒ガス流より低速となり、上
記冷凍機油の分離が一層促進される。
Also, the diameter of the refrigerant outlet 11 of the expansion chamber 9 (Ilfr
1) Since the surface l is larger than the diameter (cross-sectional area) Sl of the refrigerant inlet 10, the refrigerant waste flow flowing out of the expansion chamber 9 has a lower speed than the refrigerant gas flow flowing into the expansion chamber 9, and the refrigerating machine oil separation is further promoted.

このように、本実施例の油分離器8は、冷媒ガス通路を
拡大することによって冷媒ガス流速を減速させ冷凍機油
の分離をおこなっているので、圧力損失が殆ど生じない
。よって、この圧力損失に起因する空気調和機の冷凍能
力の低下、効率の低下などが生じないことになる。また
、本実施例の油分離器8は、第4図に示す油分離器aの
如くデミスタeを内蔵する必要がなことがら、低コスト
で製造できる。
In this way, the oil separator 8 of the present embodiment reduces the refrigerant gas flow velocity and separates the refrigerating machine oil by enlarging the refrigerant gas passage, so almost no pressure loss occurs. Therefore, there will be no reduction in the refrigerating capacity or efficiency of the air conditioner due to this pressure loss. Furthermore, the oil separator 8 of this embodiment can be manufactured at low cost because it does not require a built-in demister e like the oil separator a shown in FIG.

分離された冷凍機油は、膨張室9内壁を伝って膨張室内
底部に流下しそこに捕集される。捕集された冷凍機油1
4は、油戻用キャピラリチューブ12を通って、第2図
に示す冷凍サイクル吸込側配管路7に導かれる。一方、
冷凍機油1 =1か分離された冷媒ガスは、冷媒流出口
11を通って、第2図に示す四方弁5に導かれる。
The separated refrigerating machine oil flows down the inner wall of the expansion chamber 9 to the bottom of the expansion chamber and is collected there. Collected refrigeration oil 1
4 passes through the oil return capillary tube 12 and is led to the refrigeration cycle suction side piping path 7 shown in FIG. on the other hand,
The separated refrigerant gas passes through the refrigerant outlet 11 and is guided to the four-way valve 5 shown in FIG.

以上説明したように、第2図に示す圧縮機1から冷媒ガ
スと共に吐出される冷凍機油14は、上記空気調和機用
油分離器8によって冷媒ガスから分離され、四方弁5.
凝縮器2.絞り器3.蒸発器4などを接続する冷媒配管
をバイパスして、冷凍サイクル吸込側配管路7に短絡さ
れて導かれる。この結果、冷凍機油14による圧縮11
911の潤滑が常に良好に維持されると共に、冷凍機油
14が凝縮器2や蒸発器4内部に付着することによって
生じる熱交換率の低下が未然に防止される。
As explained above, the refrigerating machine oil 14 discharged together with the refrigerant gas from the compressor 1 shown in FIG. 2 is separated from the refrigerant gas by the air conditioner oil separator 8, and the four-way valve 5.
Condenser 2. Squeezer 3. It bypasses the refrigerant piping connecting the evaporator 4 and the like, and is short-circuited and guided to the refrigeration cycle suction side piping path 7. As a result, compression 11 by the refrigerating machine oil 14
911 is always kept well lubricated, and a decrease in heat exchange efficiency caused by adhesion of refrigerating machine oil 14 inside condenser 2 or evaporator 4 is prevented.

また、上記膨張室9は、圧縮機1から吐出された冷媒カ
ス流を減速させるものなので、圧1a機1の膨張形マフ
ラーとしても機能する。
Further, since the expansion chamber 9 decelerates the refrigerant waste flow discharged from the compressor 1, it also functions as an expansion type muffler of the pressure 1a machine 1.

本発明の変形実施例を第3図fa)(b)に示す。A modified embodiment of the present invention is shown in FIGS. 3fa and 3b.

図示するように、この変形実施例は、膨張室9への入口
側配管6aか曲げられて、冷媒流入口10が膨張室9内
壁に臨まされている点か第1図に示す前実施例と胃なり
、その他は全く同様の構成となっている。詳しくは、上
記入口側配管6aは、第3図(a)に示すように、冷媒
流入口10から吐出される冷媒ガスか円筒状の膨張室9
内壁に沿って旋回するように曲げられている。なお、膨
張室9内壁に沿って、冷媒カス流の旋回を案内する螺旋
状のガイドフィン(図示せず)を設けてもよい。
As shown in the figure, this modified embodiment differs from the previous embodiment shown in FIG. The stomach and other features are exactly the same. Specifically, as shown in FIG. 3(a), the inlet side pipe 6a is connected to the refrigerant gas discharged from the refrigerant inlet 10 to the cylindrical expansion chamber 9.
It is curved to pivot along the inner wall. Note that a spiral guide fin (not shown) may be provided along the inner wall of the expansion chamber 9 to guide the swirling of the refrigerant waste flow.

この変形実施例にあっては、冷媒流入口10からの冷媒
ガスが膨張室9内壁に沿って旋回することから、冷媒ガ
ス中の冷凍機油は遠心作用を受け、冷媒ガス中からの冷
凍機油の分離が一層促進されることになる。
In this modified embodiment, since the refrigerant gas from the refrigerant inlet 10 swirls along the inner wall of the expansion chamber 9, the refrigerating machine oil in the refrigerant gas is subjected to centrifugal action, and the refrigerating machine oil from the refrigerant gas is Separation will be further promoted.

[発明の効果] 以上説明したように本発明によれば、圧力損失を大きく
することなく冷媒カス中から冷凍機油を分離することが
できるという優れた効果を発揮することができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to exhibit the excellent effect of being able to separate refrigerant oil from refrigerant scum without increasing pressure loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を表す空気調和機用油分離器
の一1断面図、第2図は上記空気調和機用油分離器を備
えた空気調和機の冷凍サイクル図、第3図ft+)は本
発明の変形実施例を表す空気調和機用油分離器の側断面
図、第3図(a)は第3図(b)の上面図、第4図は本
出顯人か先に開発した空気調和機用油分離器の側断面図
である。 図中、6は冷凍サイクルの吐出側配管路、7は冷凍サイ
クルの吸込側配管路、8は空気調和機用油分離器、9は
膨張室、10は冷!a流入口、11は冷媒流出口、12
は油戻用キャピラリチューブ、14は冷凍機油である。
FIG. 1 is a sectional view of an oil separator for an air conditioner representing an embodiment of the present invention, FIG. 2 is a refrigeration cycle diagram of an air conditioner equipped with the oil separator for an air conditioner, and FIG. Figure ft+) is a side sectional view of an oil separator for an air conditioner representing a modified embodiment of the present invention, Figure 3(a) is a top view of Figure 3(b), and Figure 4 is the author of this publication. FIG. 2 is a side sectional view of the previously developed oil separator for air conditioners. In the figure, 6 is a piping path on the discharge side of the refrigeration cycle, 7 is a piping path on the suction side of the refrigeration cycle, 8 is an oil separator for an air conditioner, 9 is an expansion chamber, and 10 is a cold! a inlet, 11 refrigerant outlet, 12
14 is a capillary tube for oil return, and refrigeration oil.

Claims (1)

【特許請求の範囲】[Claims] 1、冷凍サイクルの吐出側配管路に、該配管路より大き
な断面積を有する膨張室を介設し、該膨張室内壁に臨ま
せて上記配管路の冷媒流入口を設けると共に、上記配管
路の冷媒流出口を上記冷媒流入口の口径より大きく設定
し、且つ上記膨張室内底部に、これに捕集される冷凍機
油を冷凍サイクルの吸込側配管路へ導くための油戻用キ
ャピラリチューブを接続したことを特徴とする空気調和
機用油分離器。
1. An expansion chamber having a larger cross-sectional area than that of the piping is provided in the discharge side piping of the refrigeration cycle, and a refrigerant inlet of the piping is provided facing the wall of the expansion chamber. The refrigerant outlet is set larger than the diameter of the refrigerant inlet, and an oil return capillary tube is connected to the bottom of the expansion chamber to guide the refrigerating machine oil collected thereto to the suction side piping of the refrigeration cycle. An oil separator for air conditioners characterized by:
JP17315190A 1990-06-29 1990-06-29 Oil separator for air conditioner Pending JPH0462359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17315190A JPH0462359A (en) 1990-06-29 1990-06-29 Oil separator for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17315190A JPH0462359A (en) 1990-06-29 1990-06-29 Oil separator for air conditioner

Publications (1)

Publication Number Publication Date
JPH0462359A true JPH0462359A (en) 1992-02-27

Family

ID=15955050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17315190A Pending JPH0462359A (en) 1990-06-29 1990-06-29 Oil separator for air conditioner

Country Status (1)

Country Link
JP (1) JPH0462359A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915367A (en) * 1996-09-03 1999-06-29 Hitachi, Ltd. Igniter for internal combustion engine having outer packing case equipped with coil and igniter unit
EP1248057A3 (en) * 2001-03-26 2004-01-14 Visteon Global Technologies, Inc. Oil separator
EP1975370A1 (en) * 2007-03-28 2008-10-01 Fujitsu General Limited Rotary compressor with accumulator and heat pump system
JP4699758B2 (en) * 2002-10-25 2011-06-15 ハネウェル・インターナショナル・インコーポレーテッド Compositions containing fluorine-substituted olefins
WO2014083674A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP5892261B2 (en) * 2012-11-30 2016-03-23 三菱電機株式会社 Refrigeration cycle apparatus and heat pump water heater
WO2016181558A1 (en) * 2015-05-14 2016-11-17 三菱電機株式会社 Compressor muffler

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915367A (en) * 1996-09-03 1999-06-29 Hitachi, Ltd. Igniter for internal combustion engine having outer packing case equipped with coil and igniter unit
US6055969A (en) * 1996-09-03 2000-05-02 Hitachi, Ltd. Igniter for internal combustion engine having outer packing case equipped with coil and igniter unit
EP1248057A3 (en) * 2001-03-26 2004-01-14 Visteon Global Technologies, Inc. Oil separator
JP4699758B2 (en) * 2002-10-25 2011-06-15 ハネウェル・インターナショナル・インコーポレーテッド Compositions containing fluorine-substituted olefins
EP1975370A1 (en) * 2007-03-28 2008-10-01 Fujitsu General Limited Rotary compressor with accumulator and heat pump system
WO2014083674A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
WO2014083901A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP5892261B2 (en) * 2012-11-30 2016-03-23 三菱電機株式会社 Refrigeration cycle apparatus and heat pump water heater
JPWO2014083901A1 (en) * 2012-11-30 2017-01-05 三菱電機株式会社 Refrigeration cycle apparatus and heat pump water heater
WO2016181558A1 (en) * 2015-05-14 2016-11-17 三菱電機株式会社 Compressor muffler
JPWO2016181558A1 (en) * 2015-05-14 2018-01-11 三菱電機株式会社 Compressor muffler

Similar Documents

Publication Publication Date Title
US8372172B2 (en) Gas-liquid separator and air conditioner equipped with the same
JP4356214B2 (en) Oil separator and outdoor unit
EP2778569B1 (en) Air conditioner
KR20110119553A (en) Gas-liquid separator and refrigerating apparatus equipped therewith
JP3617083B2 (en) Receiver integrated refrigerant condenser
US11112157B2 (en) Suction conduit flow control for lubricant management
US20080190122A1 (en) Accumulator Integration with Heat Exchanger Header
JPH0462359A (en) Oil separator for air conditioner
JP2004524497A (en) Apparatus and method for discharging vapor and liquid
JP2006266524A (en) Accumulator
CN109579380A (en) Gas-liquid separator
JP5072523B2 (en) Gas-liquid separator and air conditioner
CN215571412U (en) Oil separator, compressor, and electric appliance
JP2000199658A (en) Gas/liquid separator for cooling device
KR100819015B1 (en) Internal oil separator for compressor
CN105091432B (en) Oil eliminator and the air-conditioning with the oil eliminator
JP6782517B2 (en) Oil separator
JP2014152946A (en) Oil separator
JP2005233470A (en) Gas-liquid separator
WO2020174660A1 (en) Gas-liquid separation device and refrigeration cycle device
US4474030A (en) Reversible refrigerant heat pump system
JPH11173707A (en) Refrigeration cycle apparatus and oil separator therefor
CN220187143U (en) High-efficiency oil separator for air conditioner and refrigerating system
WO2023007620A1 (en) Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
WO2024029028A1 (en) Oil separator and refrigeration cycle device