WO2024029028A1 - Oil separator and refrigeration cycle device - Google Patents
Oil separator and refrigeration cycle device Download PDFInfo
- Publication number
- WO2024029028A1 WO2024029028A1 PCT/JP2022/029922 JP2022029922W WO2024029028A1 WO 2024029028 A1 WO2024029028 A1 WO 2024029028A1 JP 2022029922 W JP2022029922 W JP 2022029922W WO 2024029028 A1 WO2024029028 A1 WO 2024029028A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- refrigerant
- discharge pipe
- opening
- container
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims description 23
- 239000003507 refrigerant Substances 0.000 claims abstract description 339
- 239000012530 fluid Substances 0.000 claims abstract description 4
- 238000000926 separation method Methods 0.000 claims description 26
- 238000005192 partition Methods 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 238000007599 discharging Methods 0.000 claims description 5
- 239000003921 oil Substances 0.000 description 339
- 230000005484 gravity Effects 0.000 description 16
- 238000001816 cooling Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 239000000295 fuel oil Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/02—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
Definitions
- the present invention relates to an oil separator and a refrigeration cycle device.
- a compressor used as a driving force for an air conditioner or a refrigeration cycle device is filled with refrigeration oil (hereinafter referred to as oil) that lubricates the inside of the compressor.
- oil refrigeration oil
- the oil is discharged out of the compressor together with the compressed high-pressure gas refrigerant.
- seizure may occur inside the compressor due to lack of oil. Therefore, an oil separator is used to separate oil from a mixed fluid of gas refrigerant and oil (hereinafter referred to as oil-containing refrigerant) discharged from a compressor and return the oil to the compressor.
- oil separators are required to efficiently separate oil from oil-containing refrigerants.
- Patent Document 1 discloses a technique for suppressing re-scattering of separated oil.
- a conventional oil separator there is a technique in which grooves are provided along the direction of gravity on the inner wall surface of the oil separator in order to suppress re-scattering of separated oil. Since the oil separated by centrifugal force and remaining on the inner wall surface of the oil separator is captured in the groove, re-scattering of the oil remaining on the inner wall surface of the oil separator is suppressed.
- the grooves on the inner wall surface of the oil separator alone cannot prevent the oil remaining in the lower part of the oil separator from being re-scattering due to the swirling flow inside the oil separator. Therefore, the separated oil flows out together with the separated gas refrigerant.
- the present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to obtain an oil separator that suppresses the re-scattering of oil accumulated in the lower part of the oil separator due to swirling flow. .
- the oil separator separates oil from an oil-containing refrigerant that is a mixed fluid of oil and refrigerant, and has an inner circumferential surface that extends along a vertically extending central axis and has a circular cross section perpendicular to the central axis.
- the refrigerant discharge pipe includes a refrigerant discharge pipe for discharging the refrigerant, and an inflow pipe connected to the upper part of the refrigerant discharge pipe for causing oil-containing refrigerant to flow into the refrigerant discharge pipe.
- the oil separator of the present disclosure includes a swirling section that generates a swirling flow of oil-containing refrigerant, a separation section that separates oil and refrigerant from the oil-containing refrigerant, and an oil collection section that retains the separated oil for refrigerant discharge.
- 1 is a refrigerant circuit diagram of a refrigeration cycle device equipped with an oil separator according to the present invention.
- 1 is a sectional view of an oil separator according to Embodiment 1 of the present invention.
- 1 is a sectional view taken along line II of the oil separator according to Embodiment 1 of the present invention.
- 1 is a sectional view taken along the line II-II of the oil separator according to Embodiment 1 of the present invention.
- 1 is a sectional view taken along the line III-III of the oil separator according to Embodiment 1 of the present invention.
- 1 is a sectional view showing the operating principle of oil separation of the oil separator according to Embodiment 1 of the present invention.
- FIG. 1 is a cross-sectional view showing the operating principle of oil separation along the line II of the oil separator according to Embodiment 1 of the present invention.
- FIG. 2 is a sectional view showing the operating principle of oil separation along the line II-II of the oil separator according to Embodiment 1 of the present invention.
- FIG. 2 is a sectional view showing the operating principle of oil separation along the line III-III of the oil separator according to Embodiment 1 of the present invention.
- 1 is a diagram showing the positions of points A to C of the oil separator according to Embodiment 1 of the present invention.
- FIG. It is a sectional view of the oil separator concerning Embodiment 2 of the present invention.
- FIG. 7 is a diagram showing the positions of points D to F of the oil separator according to Embodiment 2 of the present invention. It is a sectional view of the oil separator concerning Embodiment 3 of the present invention.
- FIG. 7 is a sectional view taken along the line IV-IV of an oil separator according to Embodiment 3 of the present invention.
- FIG. 3 is a cross-sectional view taken along the line VV of an oil separator according to Embodiment 3 of the present invention.
- FIG. 7 is a sectional view taken along the line VI-VI of an oil separator according to Embodiment 3 of the present invention.
- FIG. 7 is a sectional view showing the operating principle of oil separation of the oil separator according to Embodiment 3 of the present invention.
- FIG. 7 is a sectional view showing the operating principle of oil separation along the IV-IV section line of the oil separator according to Embodiment 3 of the present invention.
- FIG. 7 is a cross-sectional view showing the operating principle of oil separation along the VV cutting line of the oil separator according to Embodiment 3 of the present invention.
- FIG. 7 is a sectional view showing the operating principle of oil separation along the line VI-VI of the oil separator according to Embodiment 3 of the present invention. It is a sectional view of the oil separator concerning Embodiment 4 of the present invention. It is a sectional view of the oil separator concerning Embodiment 5 of the present invention. It is a perspective view which showed the swirl vane based on Embodiment 5 of this invention.
- FIG. 7 is a perspective view showing a configuration in which swirling vanes according to Embodiment 5 of the present invention are arranged in a refrigerant discharge pipe.
- FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device 100 according to the present embodiment.
- Refrigeration cycle device 100 in this embodiment is, for example, an air conditioner.
- an oil separator 10 will be described as an example of a gas-liquid separator.
- the refrigeration cycle device 100 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow rate adjustment valve 4, an indoor heat exchanger 5, and an oil A separator 10 is provided.
- the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the flow rate adjustment valve 4, the indoor heat exchanger 5, and the oil separator 10 are connected by piping.
- the outdoor unit 100a includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow rate adjustment valve 4, and an oil separator 10.
- the indoor unit 100b includes an indoor heat exchanger 5.
- the outdoor unit 100a and the indoor unit 100b are connected by extension pipes 6a and 6b.
- the compressor 1 is configured to compress and discharge the sucked refrigerant.
- the compressor 1 is configured to compress refrigerant flowing into the outdoor heat exchanger 3 or the indoor heat exchanger 5.
- the compressor 1 may be a constant speed compressor with a constant compression capacity, or may be an inverter compressor with a variable compression capacity. This inverter compressor is configured such that its rotation speed can be variably controlled.
- the four-way valve 2 is configured to switch the flow of refrigerant. Specifically, the four-way valve 2 is configured to switch the flow of refrigerant to the outdoor heat exchanger 3 or the indoor heat exchanger 5 depending on heating operation and cooling operation.
- the outdoor heat exchanger 3 is connected to the four-way valve 2 and the flow rate adjustment valve 4.
- the outdoor heat exchanger 3 serves as a condenser that condenses the refrigerant compressed by the compressor 1 during cooling operation.
- the outdoor heat exchanger 3 serves as an evaporator that evaporates the refrigerant whose pressure has been reduced by the flow rate adjustment valve 4 during heating operation.
- the outdoor heat exchanger 3 is for exchanging heat between refrigerant and air.
- the outdoor heat exchanger 3 includes, for example, a pipe (heat transfer tube) through which a refrigerant flows, and fins attached to the outside of the pipe.
- the flow rate adjustment valve 4 is connected to the outdoor heat exchanger 3 and the indoor heat exchanger 5.
- the flow rate adjustment valve 4 serves as a throttle device that reduces the pressure of the refrigerant condensed by the outdoor heat exchanger 3 during cooling operation. Further, the flow rate adjustment valve 4 serves as a throttle device that reduces the pressure of the refrigerant condensed by the indoor heat exchanger 5 during heating operation.
- the flow rate regulating valve 4 is, for example, a capillary tube or an electronic expansion valve.
- the indoor heat exchanger 5 is connected to the four-way valve 2 and the flow rate adjustment valve 4.
- the indoor heat exchanger 5 serves as an evaporator that evaporates the refrigerant whose pressure has been reduced by the flow rate adjustment valve 4 during cooling operation.
- the indoor heat exchanger 5 serves as a condenser that condenses the refrigerant compressed by the compressor 1 during heating operation.
- the indoor heat exchanger 5 is for exchanging heat between refrigerant and air.
- the indoor heat exchanger 5 includes, for example, a pipe (heat transfer tube) through which a refrigerant flows, and fins attached to the outside of the pipe.
- the oil separator 10 is connected to the downstream side of the discharge pipe of the compressor 1.
- the oil separator 10 is configured to separate oil-containing refrigerant discharged from the compressor 1 into gas refrigerant and oil. Further, the oil separator 10 is connected to the upstream side of the suction pipe of the compressor 1 through an oil return pipe 20 so as to return the oil separated from the oil-containing refrigerant to the compressor 1.
- Solid arrows in the figure indicate the flow of refrigerant during cooling operation
- dashed arrows in the figure indicate the flow of refrigerant during heating operation.
- the refrigeration cycle device 100 in this embodiment can selectively perform cooling operation and heating operation.
- refrigerant circulates through the refrigerant circuit in the order of compressor 1, oil separator 10, four-way valve 2, outdoor heat exchanger 3, flow rate adjustment valve 4, and indoor heat exchanger 5.
- the outdoor heat exchanger 3 functions as a condenser
- the indoor heat exchanger 5 functions as an evaporator.
- refrigerant circulates through the refrigerant circuit in the order of compressor 1, oil separator 10, four-way valve 2, indoor heat exchanger 5, flow rate adjustment valve 4, and outdoor heat exchanger 3.
- the indoor heat exchanger 5 functions as a condenser
- the outdoor heat exchanger 3 functions as an evaporator.
- This gas refrigerant contains oil that lubricates the inside of the compressor.
- this gas refrigerant is an oil-containing refrigerant.
- the high-temperature, high-pressure oil-containing refrigerant discharged from the compressor 1 flows into the oil separator 10 .
- Oil is separated from the oil-containing refrigerant in an oil separator 10.
- the gas refrigerant from which oil has been separated in the oil separator 10 flows into the outdoor heat exchanger 3 via the four-way valve 2 .
- heat exchange is performed between the gas refrigerant that has flowed in and the outdoor air.
- the high-temperature, high-pressure gas refrigerant is condensed and becomes a high-pressure liquid refrigerant.
- the high-pressure liquid refrigerant sent out from the outdoor heat exchanger 3 is turned into a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the flow rate adjustment valve 4.
- the two-phase refrigerant flows into the indoor heat exchanger 5.
- heat exchange is performed between the two-phase refrigerant that has flowed in and the indoor air.
- the liquid refrigerant evaporates and becomes a low-pressure gas refrigerant. This heat exchange cools the room.
- the low-pressure gas refrigerant sent out from the indoor heat exchanger 5 flows into the compressor 1 via the four-way valve 2, is compressed, becomes high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 1 again. Thereafter, this cycle is repeated.
- the high-pressure liquid refrigerant sent out from the indoor heat exchanger 5 is turned into a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the flow rate adjustment valve 4.
- the two-phase refrigerant flows into the outdoor heat exchanger 3.
- heat exchange is performed between the two-phase refrigerant that has flowed in and outdoor air.
- the liquid refrigerant evaporates and becomes a low-pressure gas refrigerant.
- the low-pressure gas refrigerant sent out from the outdoor heat exchanger 3 flows into the compressor 1 via the four-way valve 2, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 1 again. Thereafter, this cycle is repeated.
- FIG. 2 is a sectional view showing the configuration of the oil separator 10 according to the present embodiment.
- 3a to 3c are cross-sectional views showing the structure of the oil separator 10 according to the present embodiment along cutting lines.
- the oil separator 10 includes a container 11, an inflow pipe 12, a refrigerant discharge pipe 13, and an oil discharge pipe 14.
- the inflow pipe 12 has an inflow port 12a.
- the refrigerant discharge pipe 13 has a refrigerant discharge port 13a, a first opening 13b, and a second opening 13c.
- the oil discharge pipe 14 has an oil discharge port 14a.
- the oil separator 10 according to this embodiment uses a separation method using swirling downward flow.
- the container 11 extends along a central axis CL that extends vertically.
- Container 11 has an internal space.
- Container 11 has an inner wall surface IS surrounding central axis CL.
- the inner wall surface IS of the container 11 is configured such that a cross section perpendicular to the central axis CL is circular.
- the inflow pipe 12 is connected at the upstream end to the discharge side of the compressor 1 shown in FIG. 1, and at the downstream end is connected above the refrigerant discharge pipe 13.
- the inflow pipe 12 has an inlet 12 a through which the oil-containing refrigerant flows into the wall surface of the refrigerant discharge pipe 13 .
- the inlet 12 a of the inflow pipe 12 is arranged above the refrigerant discharge pipe 13 .
- the inflow pipe 12 according to the embodiment of the present invention is connected so as to be offset from the central axis of the refrigerant discharge pipe 13, but the inflow pipe 12 is connected so as to be aligned with the central axis of the refrigerant discharge pipe 13. may be connected to.
- the refrigerant discharge pipe 13 is connected to the inflow pipe 12 at the upstream end and to the four-way valve 2 shown in FIG. 1 at the downstream end.
- the refrigerant discharge pipe 13 is arranged coaxially with the central axis CL of the container 11.
- the refrigerant discharge pipe 13 passes through the upper and lower parts of the container 11.
- the refrigerant discharge pipe 13 is configured to discharge the gas refrigerant separated from the oil-containing refrigerant from the container 11 .
- the refrigerant discharge pipe 13 has a refrigerant discharge port 13a that discharges the gas refrigerant separated from the oil-containing refrigerant from the container 11.
- the refrigerant discharge port 13a is arranged so as to overlap the central axis CL.
- the peripheral wall (side wall) of the refrigerant discharge pipe 13 has a first opening 13b and a second opening 13c that communicate the inside of the refrigerant discharge pipe 13 and the internal space of the container 11.
- the first opening 13b and the second opening 13c are arranged symmetrically across the central axis CL of the container 11, but they do not have to be symmetrical.
- the first opening 13b is located below the inlet 12a and above the second opening 13c. That is, the first opening 13b is arranged between the inlet 12a and the second opening 13c in the vertical direction.
- the second opening 13c is located below the first opening 13b and above the oil discharge port 14a. That is, the second opening 13c is arranged between the first opening 13b and the oil discharge port 14a in the vertical direction.
- the oil discharge pipe 14 is connected at the upstream end to the lower end of the container 11 and at the downstream end to the oil return pipe 20 shown in FIG.
- the oil discharge pipe 14 is arranged at a position different from the central axis CL of the container 11.
- the oil drain pipe 14 passes through the side wall of the container 11, but the oil drain pipe 14 may also pass through the bottom of the container.
- Oil drain pipe 14 is configured to drain oil separated from the oil-containing refrigerant from container 11 .
- the oil discharge pipe 14 has an oil discharge port 14a for discharging the oil separated from the oil-containing refrigerant from the container 11.
- the oil discharge port 14a of the oil discharge pipe 14 is arranged below the second opening 13c.
- FIG. 4 is a cross-sectional view for explaining how oil is separated in the oil separator 10 according to the present embodiment.
- 5a to 5c are cross-sectional views along respective cutting lines for explaining how oil is separated in the oil separator 10 according to the present embodiment.
- the flow of oil-containing refrigerant is indicated by open arrows
- the flow of gaseous refrigerant is indicated by solid lines
- the flow of oil is indicated by dashed lines.
- the oil-containing refrigerant discharged from the compressor 1 is separated into gas refrigerant and oil by the oil separator 10.
- the oil separated from the oil-containing refrigerant by the oil separator 10 is discharged to the suction side of the compressor 1 via the oil return pipe 20.
- the gas refrigerant separated from the oil-containing refrigerant by the oil separator 10 is discharged to the four-way valve 2 via the refrigerant discharge pipe 13.
- oil-containing refrigerant discharged from the compressor 1 flows into the refrigerant discharge pipe 13 via the inflow pipe 12.
- the oil-containing refrigerant forms a swirling flow along the inner wall surface of the refrigerant discharge pipe 13.
- the centrifugal force of the swirling flow of the oil-containing refrigerant swirling inside the refrigerant discharge pipe 13 separates the relatively heavy oil from the oil-containing refrigerant.
- the oil separated from the oil-containing refrigerant collides with the inner wall surface of the refrigerant discharge pipe 13 to form an oil film, and is moved along the inner wall surface of the refrigerant discharge pipe 13 by gravity and swirling flow to a position near the first opening 13b. flows up to
- the oil separated from the oil-containing refrigerant near the first opening 13b is ejected from the first opening 13b into the internal space of the container 11 by the swirling flow generated within the refrigerant discharge pipe 13.
- the oil ejected into the internal space of the container 11 becomes an oil film on the inner wall surface IS, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 due to gravity. In this way, the oil 200 is collected at the bottom of the container 11.
- the collected oil 200 is discharged from the oil discharge port 14a.
- the oil discharged from the oil discharge port 14a passes through the oil return pipe 20 and is discharged to the suction side of the compressor 1.
- the gas refrigerant separated from the oil-containing refrigerant by the swirling flow along the inner wall surface of the refrigerant discharge pipe 13 is ejected into the internal space of the container 11 from the first opening 13b. Since the gas refrigerant ejected into the internal space of the container 11 has a relatively light specific gravity, it forms a swirling flow along the outer wall surface of the refrigerant discharge pipe 13 .
- the separated gas refrigerant is sucked through the second opening 13c while swirling along the outer wall surface of the refrigerant discharge pipe 13.
- the gas refrigerant sucked through the second opening 13c is discharged to the four-way valve 2 through the refrigerant discharge port 13a.
- FIG. 6 is a diagram showing the positions of points A to C of the oil separator according to the present embodiment. Referring to FIG. 6, in the oil separator 10 according to the present embodiment, the reason why the oil separated from the oil-containing refrigerant and the gas refrigerant separated from the oil-containing refrigerant are ejected or sucked as described above. Explain.
- point A is inside the refrigerant discharge pipe 13 and indicates a position near the first opening 13b.
- Point B indicates a period during which the gas refrigerant and oil separated from the oil-containing refrigerant are ejected from the first opening 13b, and the gas refrigerant is sucked through the second opening 13c.
- Point C is inside the refrigerant discharge pipe 13 and indicates a position near the second opening 13c. From FIG. 6, the pressure loss between points A and B is assumed to be ⁇ P1, and the pressure loss between points B and C is assumed to be ⁇ P2. At point A, pressure is applied because the oil-containing refrigerant discharged from the compressor 1 flows therein.
- the oil 200 separated from the oil-containing refrigerant and collected is discharged from the oil discharge pipe 14, so the pressure at point B is lower than the pressure at point A. Therefore, since ⁇ P1 occurs, the separated oil and the separated refrigerant swirling inside the refrigerant discharge pipe 13 are ejected into the internal space of the container 11 from the first opening 13b.
- point C since point C communicates with the refrigerant circuit of the refrigeration cycle device 100 via the oil discharge pipe 14, the pressure at point C is lower than the pressure at point B. Therefore, since ⁇ P2 occurs, the separated gas refrigerant is sucked into the refrigerant discharge pipe 13 from the second opening 13c.
- the oil separator 10 includes a swirl section that generates a swirl flow of oil-containing refrigerant, a separation section that separates oil and gas refrigerant from the oil-containing refrigerant, and a collection section that retains the separated oil.
- the structure has the functions of an oil section. Furthermore, the swirl section, the separation section, and the oil collection section are separated by the peripheral wall of the refrigerant discharge pipe 13. Therefore, when the separated gas refrigerant is sucked through the second opening 13c, the separated oil is re-splattered by the swirling flow of the separated refrigerant generated in the internal space of the container 11, and is returned to the refrigerant circuit. It is possible to suppress the outflow to As described above, the oil separator 10 can improve oil separation efficiency compared to an oil separator in which the swirl section, the separation section, and the oil collection section are in the same room.
- FIG. 7 is a cross-sectional view schematically showing a configuration in which a pressure loss body 15 is disposed within the refrigerant discharge pipe 13 according to the present embodiment.
- the following embodiments 2 to 5 have the same configuration, operation, and effect as the oil separator 10 according to the present embodiment described above unless otherwise described. Therefore, the same components as those of the oil separator 10 according to the present embodiment described above are given the same reference numerals, and the description will not be repeated.
- the pressure loss body 15 is coaxial with the central axis CL of the container 11. It is arranged below the first opening 13b and above the second opening 13c. That is, the first opening 13b is arranged between the inlet 12a and the second opening 13c in the vertical direction. Moreover, the pressure loss body 15 has a hole coaxially with the central axis CL of the container 11 that is smaller in cross-sectional area than the first opening 13b and the second opening 13c.
- the oil-containing refrigerant discharged from the compressor 1 flows into the refrigerant discharge pipe 13 via the inflow pipe 12. Since the inflow pipe 12 is provided so as to be offset from the central axis of the refrigerant discharge pipe 13, the oil-containing refrigerant forms a swirling flow along the inner wall surface of the refrigerant discharge pipe 13. The centrifugal force of the swirling flow of the oil-containing refrigerant swirling inside the refrigerant discharge pipe 13 separates the relatively heavy oil from the oil-containing refrigerant.
- the oil separated from the oil-containing refrigerant collides with the inner wall surface of the refrigerant discharge pipe 13 to form an oil film, and is moved along the inner wall surface of the refrigerant discharge pipe 13 by gravity and swirling flow to a position near the first opening 13b. flows up to
- the oil separated from the oil-containing refrigerant near the first opening 13b is ejected from the first opening 13b into the internal space of the container 11 by the swirling flow generated within the refrigerant discharge pipe 13.
- the oil ejected into the internal space of the container 11 becomes an oil film on the inner wall surface IS, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 due to gravity. In this way, the oil 200 is collected at the bottom of the container 11.
- the collected oil 200 is discharged from the oil discharge port 14a.
- the oil discharged from the oil discharge port 14a passes through the oil return pipe 20 and is discharged to the suction side of the compressor 1.
- the gas refrigerant separated from the oil-containing refrigerant by the swirling flow along the inner wall surface of the refrigerant discharge pipe 13 is ejected into the internal space of the container 11 from the first opening 13b. Since the gas refrigerant ejected into the internal space of the container 11 has a relatively light specific gravity, it forms a swirling flow along the outer wall surface of the refrigerant discharge pipe 13 .
- the separated gas refrigerant is sucked through the second opening 13c while swirling along the outer wall surface of the refrigerant discharge pipe 13.
- the gas refrigerant sucked through the second opening 13c is discharged from the lower end opening of the refrigerant discharge pipe 13 to the four-way valve 2.
- FIG. 8 is a diagram showing the positions of points D to F of the oil separator according to the present embodiment.
- a pressure loss body 15 is arranged in the refrigerant discharge pipe 13.
- point D is inside the refrigerant discharge pipe 13, is above the pressure loss body 15, and is located near the first opening 13b.
- Point E indicates a period during which the gas refrigerant and oil separated from the oil-containing refrigerant are ejected from the first opening 13b, and the gas refrigerant is sucked through the second opening 13c.
- Point F is inside the refrigerant discharge pipe 13, is below the pressure loss body 15, and is located near the second opening 13c. From FIG. 8, the pressure loss between points D and E is assumed to be ⁇ P4, and the pressure loss between points E and F is assumed to be ⁇ P5.
- the pressure loss between points A and C in the first embodiment is assumed to be ⁇ P3
- the pressure loss between points D and F in the second embodiment is assumed to be ⁇ P6.
- ⁇ P6 becomes larger than ⁇ P3. It is said that when the pressure drop increases, the increased energy is lost and the flow rate and flow rate decrease. Therefore, the flow rate of the separated oil swirling inside the refrigerant discharge pipe 13 and the separated refrigerant jetted out from the first opening 13b is increased compared to the first embodiment. Since the amount of oil discharged from the refrigerant discharge pipe 13 without being spouted from the first opening 13b can be suppressed, oil separation efficiency can be improved.
- FIG. 9 is a sectional view showing a configuration in which the shape of the refrigerant discharge pipe 13 according to the present embodiment is modified.
- 10a to 10c are cross-sectional views taken along cutting lines of a structure in which the shape of the refrigerant discharge pipe 13 of the oil separator 10 according to the present embodiment is modified.
- the first opening 13b is formed in a pipe 16 that protrudes from the refrigerant discharge pipe 13 toward the interior space of the container 11.
- the pipe 16 projects toward the inner space of the container 11 along the swirling direction of the swirling flow of the oil-containing refrigerant in the refrigerant discharge pipe 13 .
- the pipe 16 is cylindrical, but it does not have to be so.
- FIG. 11 is a cross-sectional view for explaining how oil is separated in the oil separator 10 according to the present embodiment.
- 12a to 12c are cross-sectional views taken along cutting lines for explaining how oil is separated in the oil separator 10 according to the present embodiment.
- the flow of oil-containing refrigerant is indicated by open arrows
- the flow of gaseous refrigerant is indicated by solid lines
- the flow of oil is indicated by dashed lines.
- oil-containing refrigerant discharged from the compressor 1 flows into the refrigerant discharge pipe 13 via the inflow pipe 12.
- the oil-containing refrigerant forms a swirling flow along the inner wall surface of the refrigerant discharge pipe 13.
- the centrifugal force of the swirling flow of the oil-containing refrigerant swirling inside the refrigerant discharge pipe 13 separates the relatively heavy oil from the oil-containing refrigerant.
- the oil separated from the oil-containing refrigerant collides with the inner wall surface of the refrigerant discharge pipe 13 to form an oil film, and is moved along the inner wall surface of the refrigerant discharge pipe 13 by gravity and swirling flow to a position near the first opening 13b. flows up to
- the oil separated from the oil-containing refrigerant near the first opening 13b is ejected from the first opening 13b into the internal space of the container 11 through the pipe 16 due to the swirling flow generated in the refrigerant discharge pipe 13. .
- the oil ejected into the internal space of the container 11 becomes an oil film on the inner wall surface IS, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 due to gravity. In this way, the oil 200 is collected at the bottom of the container 11.
- the collected oil 200 is discharged from the oil discharge port 14a.
- the oil discharged from the oil discharge port 14a passes through the oil return pipe 20 and is discharged to the suction side of the compressor 1.
- the gas refrigerant separated from the oil-containing refrigerant by the swirling flow along the inner wall surface of the refrigerant discharge pipe 13 is ejected into the internal space of the container 11 from the first opening 13b. Since the gas refrigerant ejected into the internal space of the container 11 has a relatively light specific gravity, it forms a swirling flow along the outer wall surface of the refrigerant discharge pipe 13 .
- the separated gas refrigerant is sucked through the second opening 13c while swirling along the outer wall surface of the refrigerant discharge pipe 13.
- the gas refrigerant sucked through the second opening 13c is discharged from the lower end opening of the refrigerant discharge pipe 13 to the four-way valve 2.
- the oil separated from the oil-containing refrigerant is ejected into the internal space of the container 11 through the pipe 16.
- the pipe 16 protrudes along the swirling direction of the swirling flow generated inside the refrigerant discharge pipe 13
- the separated oil and the separated refrigerant spouted from the first opening 13b are Compared to the first embodiment, it is easier to turn the interior space of the container 11. Thereby, it is possible to suppress the swirling flow of the separated refrigerant from being disturbed in the internal space of the container 11. Therefore, the amount of suction of the separated refrigerant swirling in the internal space of the container 11 from the second opening 13c is increased compared to the first embodiment.
- the separated refrigerant swirling in the interior space of the container 11 can prevent the oil 200 from being re-splattered and flowing out into the refrigerant circuit again.
- the oil separator 10 of this embodiment can improve oil separation efficiency compared to conventional oil separators.
- FIG. 13 is a cross-sectional view schematically showing a structure in which a partition wall 17 is surrounded by an outer circumferential wall of a refrigerant discharge pipe 13 according to the present embodiment.
- the partition wall 17 is surrounded by the outer peripheral wall of the refrigerant discharge pipe 13 according to the present embodiment, and is located below the second opening 13c and above the oil discharge pipe 14. It is located. Further, there is a gap sufficient between the inner wall surface IS of the container 11 and the outer periphery of the partition wall 17 for the oil film separated from the oil-containing refrigerant to flow therethrough.
- the partition wall 17 is circular, but this may not be the case.
- the oil-containing refrigerant discharged from the compressor 1 flows into the refrigerant discharge pipe 13 via the inflow pipe 12. Since the inflow pipe 12 is provided so as to be offset from the central axis of the refrigerant discharge pipe 13, the oil-containing refrigerant forms a swirling flow along the inner wall surface of the refrigerant discharge pipe 13. The centrifugal force of the swirling flow of the oil-containing refrigerant swirling inside the refrigerant discharge pipe 13 separates the relatively heavy oil from the oil-containing refrigerant.
- the oil separated from the oil-containing refrigerant collides with the inner wall surface of the refrigerant discharge pipe 13 to form an oil film, and is moved along the inner wall surface of the refrigerant discharge pipe 13 by gravity and swirling flow to a position near the first opening 13b. flows up to
- the oil separated from the oil-containing refrigerant near the first opening 13b is ejected from the first opening 13b into the internal space of the container 11 by the swirling flow generated within the refrigerant discharge pipe 13.
- the oil ejected into the internal space of the container 11 becomes an oil film on the inner wall surface IS, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 due to gravity. In this way, the oil 200 is collected at the bottom of the container 11.
- the collected oil 200 is discharged from the oil discharge port 14a.
- the oil discharged from the oil discharge port 14a passes through the oil return pipe 20 and is discharged to the suction side of the compressor 1.
- the gas refrigerant separated from the oil-containing refrigerant by the swirling flow along the inner wall surface of the refrigerant discharge pipe 13 is ejected into the internal space of the container 11 from the first opening 13b. Since the gas refrigerant ejected into the internal space of the container 11 has a relatively light specific gravity, it forms a swirling flow along the outer wall surface of the refrigerant discharge pipe 13 .
- the separated gas refrigerant is sucked through the second opening 13c while swirling along the outer wall surface of the refrigerant discharge pipe 13.
- the gas refrigerant sucked through the second opening 13c is discharged from the lower end opening of the refrigerant discharge pipe 13 to the four-way valve 2.
- a partition wall 17 is arranged around the outer periphery of the refrigerant discharge pipe 13, below the second opening 13c, and above the oil discharge pipe 14. The partition wall 17 can prevent the oil 200 from being sucked into the second opening 13c together with the separated gas refrigerant and flowing out into the refrigerant discharge pipe 13. Therefore, oil separation efficiency can be improved.
- FIG. 14 is a cross-sectional view schematically showing a configuration in which the swirl vane 18 is connected to the upper part of the refrigerant discharge pipe 13 according to the present embodiment.
- FIG. 15 is a perspective view showing the swirl vane 18.
- FIG. 16 is a perspective view showing a configuration in which the swirl vanes 18 are arranged inside the refrigerant discharge pipe 13.
- the inflow pipe 12, the refrigerant discharge pipe 13, and the swirl vanes 18 are arranged coaxially with the central axis CL.
- the swirl vane 18 is located below the inflow pipe 12 and above the first opening 13b. That is, the swirl vane 18 is arranged between the inflow pipe 12 and the first opening 13b in the vertical direction.
- the swirling vanes 18 are configured to generate a swirling flow.
- the swirling vanes 18 are configured to flow the oil-containing refrigerant from above to below while swirling the oil-containing refrigerant.
- the swirl vanes 18 separate oil from the oil-containing refrigerant by the centrifugal force of the swirl flow.
- the swirling blade 18 has a shaft 18a and a plurality of spiral plates 18b.
- the shaft 18a extends along the central axis CL. It is desirable that the shaft 18a be disposed coaxially with the central axis CL.
- the plurality of spiral plates 18b are connected to the shaft 18a so as to intersect with each other.
- Each of the plurality of spiral plates 18b is configured to generate a swirling force on the oil-containing refrigerant.
- Each of the plurality of spiral plates 18b extends from the shaft 18a toward the inner wall surface of the refrigerant discharge pipe 13, and also extends spirally along the central axis CL.
- the swirling blade 18 has six spiral plates 18b. Note that the number of spiral plates 18b of the swirling blade 18 may not be six.
- Each of the spiral plates 18b may be arranged at equal angles around the central axis CL.
- each of the plurality of spiral plates 18b is in contact with the inner wall surface of the refrigerant discharge pipe 13. Therefore, when the swirling blade 18 is viewed from above to below along the central axis CL, there is no gap between the outer peripheral end of the spiral plate 18b and the inner wall surface of the refrigerant discharge pipe 13.
- each of the spiral plates 18b is configured to twist by an angle equal to or greater than 360 degrees divided by the number of spiral plates 18b. That is, when the swirling blade 18 is viewed from above to below along the central axis CL, each of the spiral plates 18b is configured to twist by an angle equal to or greater than 360 degrees divided by the number of spiral plates 18b. has been done. Therefore, when the swirl vane 18 is viewed from above to below along the central axis CL, the swirl vane 18 is configured such that one end cannot be seen from the other end.
- each of the spiral plates 18b is configured to twist around the central axis CL at a rotation angle of 360 degrees or more.
- each of the spiral plates 18b is configured to twist around the central axis CL at a rotation angle of 765 degrees. Note that the rotation angle of each spiral plate 18b may not be 765 degrees.
- the oil-containing refrigerant discharged from the compressor 1 flows into the swirl vane 18 via the inflow pipe 12.
- the swirl flow generated by the plurality of spiral plates 18b of the swirl vanes 18 separates oil from the oil-containing refrigerant.
- the oil separated from the oil-containing refrigerant collides with the inner wall surface of the refrigerant discharge pipe 13 to form an oil film, and flows below the swirling vanes 18 due to gravity and swirling flow.
- the gas refrigerant and oil separated from the oil-containing refrigerant are ejected into the internal space of the container 11 from the first opening 13b.
- the oil ejected into the internal space of the container 11 becomes an oil film on the inner wall surface IS, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 due to gravity, and the oil 200 is collected.
- the collected oil 200 is discharged from the oil discharge port 14a.
- the oil discharged from the oil discharge port 14a passes through the oil return pipe 20 and is discharged to the suction side of the compressor 1.
- the gas refrigerant separated from the oil-containing refrigerant by the swirling flow along the inner wall surface of the refrigerant discharge pipe 13 is ejected into the internal space of the container 11 from the first opening 13b. Since the gas refrigerant ejected into the internal space of the container 11 has a relatively light specific gravity, it forms a swirling flow along the outer wall surface of the refrigerant discharge pipe 13 .
- the separated gas refrigerant is sucked through the second opening 13c while swirling along the outer wall surface of the refrigerant discharge pipe 13.
- the gas refrigerant sucked through the second opening 13c is discharged from the lower end opening of the refrigerant discharge pipe 13 to the four-way valve 2.
- the oil separator 10 according to this embodiment is provided with swirl vanes 18. Therefore, compared to the case where oil separation is performed using the swirling flow along the inner wall surface of the refrigerant discharge pipe 13, the surface area of the separation section that separates the gas refrigerant and oil from the oil-containing refrigerant can be increased. Thereby, oil separation efficiency can be improved compared to an oil separator not provided with swirl vanes 18.
- Refrigeration cycle equipment 100a Outdoor unit, 100b Indoor unit, 200 Oil, 1 Compressor, 2 Four-way valve, 3 Outdoor heat exchanger, 4 Flow rate adjustment valve, 5 Indoor heat exchanger, 6a Extension piping, 6b Extension piping , 10 oil separator, 11 container, 12 inflow pipe, 12a inlet, 13 refrigerant discharge pipe, 13a refrigerant discharge port, 13b first opening, 13c second opening, 14 oil discharge pipe, 14a oil discharge Mouth, 15 Pressure loss body, 16 piping, 17 bulkhead, 18 swirl vane, 18a shaft, 18b spiral plate, 20 oil return pipe, IS inner wall surface, CL central axis
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Provided is an oil separator that suppresses the re-scattering of oil that remains inside the oil separator due to a swirling flow of oil-containing refrigerant. The oil separator 10 comprises: a vessel 11 that separates oil from an oil-containing refrigerant which is a mixed fluid of oil and refrigerant, and that has an inner circumferential surface which extends along a central axis CL extending vertically and which has a circular cross-section orthogonal to the central axis CL; an oil discharge pipe 14 that is connected to a bottom portion of the vessel 11 and that discharges, from the vessel 11, the oil that has been separated from the oil-containing refrigerant; a refrigerant discharge pipe 13 that is disposed coaxial to the central axis CL of the vessel 11, that has a first opening 13b formed in a portion which passes through an upper and lower portion of the vessel 11 and which extends into the interior of the vessel 11, that has a second opening 13c formed below the first opening 13b, and that discharges, from the vessel 11, refrigerant obtained by separating the oil from the oil-containing refrigerant; and an inlet pipe 12 that is connected to an upper portion of the refrigerant discharge pipe 13 and that allows the oil-containing refrigerant to flow into the refrigerant discharge pipe 13.
Description
本発明は、油分離器および冷凍サイクル装置に関する。
The present invention relates to an oil separator and a refrigeration cycle device.
空気調和機あるいは冷凍サイクル装置の駆動力として使用される圧縮機には、圧縮機内部を潤滑する冷凍機油(以下、油)が封入されている。しかし、油は、圧縮された高圧のガス冷媒とともに圧縮機外へ吐出されてしまう。その結果、油切れによる圧縮機内部で焼付きが生じることがある。そこで、圧縮機から吐出されるガス冷媒と油の混合流体(以下、油含有冷媒)から油を分離し、圧縮機に返油するために、油分離器が用いられる。圧縮機の信頼性を確保するとともに、冷凍サイクルの性能を向上させるため、油分離器には油含有冷媒から油を効率的に分離することが求められる。
A compressor used as a driving force for an air conditioner or a refrigeration cycle device is filled with refrigeration oil (hereinafter referred to as oil) that lubricates the inside of the compressor. However, the oil is discharged out of the compressor together with the compressed high-pressure gas refrigerant. As a result, seizure may occur inside the compressor due to lack of oil. Therefore, an oil separator is used to separate oil from a mixed fluid of gas refrigerant and oil (hereinafter referred to as oil-containing refrigerant) discharged from a compressor and return the oil to the compressor. In order to ensure compressor reliability and improve refrigeration cycle performance, oil separators are required to efficiently separate oil from oil-containing refrigerants.
従来の油分離器は、油分離器内部に発生する油含有冷媒の旋回流の遠心力を利用して、ガス冷媒と油とを分離している。分離された油は、油分離器の内壁面に沿って流れて、油分離器の下部に滞留する。しかし、分離された油は油分離器の内部の旋回流によって再飛散し、分離されたガス冷媒とともに流出してしまう課題がある。上記の課題を解決すべく、特許文献1には、分離した油の再飛散を抑制する技術が開示されている。
Conventional oil separators separate gas refrigerant and oil by utilizing the centrifugal force of the swirling flow of oil-containing refrigerant generated inside the oil separator. The separated oil flows along the inner wall surface of the oil separator and stays in the lower part of the oil separator. However, there is a problem in that the separated oil is re-splattered by the swirling flow inside the oil separator and flows out together with the separated gas refrigerant. In order to solve the above problems, Patent Document 1 discloses a technique for suppressing re-scattering of separated oil.
従来の油分離器において、分離した油の再飛散を抑制するために油分離器の内壁面に、重力方向に沿って溝部を設ける技術が従来技術として挙げられる。遠心力によって分離され、油分離器の内壁面に滞留している油は溝部に捕捉されるため、油分離器の内壁面に滞留している油の再飛散は抑制される。しかし、油分離器の内壁面の溝部だけでは、油分離器の下部に滞留している油が油分離器の内部の旋回流によって再飛散することを抑制できない。よって、分離されたガス冷媒とともに分離された油は流出してしまう。
In a conventional oil separator, there is a technique in which grooves are provided along the direction of gravity on the inner wall surface of the oil separator in order to suppress re-scattering of separated oil. Since the oil separated by centrifugal force and remaining on the inner wall surface of the oil separator is captured in the groove, re-scattering of the oil remaining on the inner wall surface of the oil separator is suppressed. However, the grooves on the inner wall surface of the oil separator alone cannot prevent the oil remaining in the lower part of the oil separator from being re-scattering due to the swirling flow inside the oil separator. Therefore, the separated oil flows out together with the separated gas refrigerant.
本発明は、前述のような課題を解決するためになされたものであり、旋回流によって油分離器の下部に滞留している油の再飛散を抑制する油分離器を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to obtain an oil separator that suppresses the re-scattering of oil accumulated in the lower part of the oil separator due to swirling flow. .
本開示に係る油分離器は油と冷媒の混合流体である油含有冷媒から油を分離し、上下に延びる中心軸に沿って延在し、中心軸に直交する断面が円形状の内周面を有する容器と、容器の下部に接続され、油含有冷媒から分離された油を容器から排出する油排出管と、容器の中心軸と同軸上に配置され、容器の上部と下部を貫通し、容器の内部に延在している部分に第一開口部が形成され、第一開口部よりも下部に第二開口部が形成されており、油含有冷媒から油が分離された冷媒を容器から排出する冷媒排出管と、冷媒排出管の上部に接続され、冷媒排出管に油含有冷媒を流入させる流入管とを備える。
The oil separator according to the present disclosure separates oil from an oil-containing refrigerant that is a mixed fluid of oil and refrigerant, and has an inner circumferential surface that extends along a vertically extending central axis and has a circular cross section perpendicular to the central axis. an oil discharge pipe connected to the lower part of the container for discharging the oil separated from the oil-containing refrigerant from the container, and an oil discharge pipe arranged coaxially with the central axis of the container and penetrating the upper and lower parts of the container, A first opening is formed in a portion extending into the interior of the container, and a second opening is formed below the first opening, and the refrigerant from which oil has been separated from the oil-containing refrigerant is removed from the container. The refrigerant discharge pipe includes a refrigerant discharge pipe for discharging the refrigerant, and an inflow pipe connected to the upper part of the refrigerant discharge pipe for causing oil-containing refrigerant to flow into the refrigerant discharge pipe.
本開示の油分離器は、油含有冷媒の旋回流を発生させる旋回区間と、油含有冷媒から油と冷媒とを分離する分離区間と、分離した油を滞留させる集油区間とを、冷媒排出管によって隔てたことにより、油分離器の内部の旋回流によって油分離器の下部に滞留している油の再飛散を抑制することが可能となる。
The oil separator of the present disclosure includes a swirling section that generates a swirling flow of oil-containing refrigerant, a separation section that separates oil and refrigerant from the oil-containing refrigerant, and an oil collection section that retains the separated oil for refrigerant discharge. By separating them with the pipe, it becomes possible to suppress re-scattering of the oil staying in the lower part of the oil separator due to the swirling flow inside the oil separator.
実施の形態1.
まず、図1を参照して、本発明の実施の形態1に係る冷凍サイクル装置100の構成について説明する。図1は、本実施の形態に係る冷凍サイクル装置100の冷媒回路図である。本実施の形態における冷凍サイクル装置100は、たとえば空気調和装置などである。また、気液分離器の一例として油分離器10について説明する。Embodiment 1.
First, with reference to FIG. 1, the configuration of arefrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described. FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device 100 according to the present embodiment. Refrigeration cycle device 100 in this embodiment is, for example, an air conditioner. Further, an oil separator 10 will be described as an example of a gas-liquid separator.
まず、図1を参照して、本発明の実施の形態1に係る冷凍サイクル装置100の構成について説明する。図1は、本実施の形態に係る冷凍サイクル装置100の冷媒回路図である。本実施の形態における冷凍サイクル装置100は、たとえば空気調和装置などである。また、気液分離器の一例として油分離器10について説明する。
First, with reference to FIG. 1, the configuration of a
図1に示されるように、本実施の形態における冷凍サイクル装置100は、圧縮機1と、四方弁2と、室外熱交換器3と、流量調整弁4と、室内熱交換器5と、油分離器10とを備えている。圧縮機1と、四方弁2と、室外熱交換器3と、流量調整弁4と、室内熱交換器5と、油分離器10とは、配管によって繋がっている。このようにして冷凍サイクル装置100の冷媒回路が構成されている。室外機ユニット100aは、圧縮機1と、四方弁2と、室外熱交換器3と、流量調整弁4と、油分離器10とを備えている。室内機ユニット100bは、室内熱交換器5を備えている。室外機ユニット100aと、室内機ユニット100bとは、延長配管6a、6bで接続されている。
As shown in FIG. 1, the refrigeration cycle device 100 according to the present embodiment includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow rate adjustment valve 4, an indoor heat exchanger 5, and an oil A separator 10 is provided. The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the flow rate adjustment valve 4, the indoor heat exchanger 5, and the oil separator 10 are connected by piping. In this way, the refrigerant circuit of the refrigeration cycle device 100 is configured. The outdoor unit 100a includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow rate adjustment valve 4, and an oil separator 10. The indoor unit 100b includes an indoor heat exchanger 5. The outdoor unit 100a and the indoor unit 100b are connected by extension pipes 6a and 6b.
圧縮機1は、吸入した冷媒を圧縮して吐出するように構成されている。圧縮機1は、室外熱交換器3または室内熱交換器5に流入する冷媒を圧縮するように構成されている。圧縮機1は、圧縮容量が一定の一定速圧縮機であってもよく、また、圧縮容量が可変のインバーター圧縮機であってもよい。このインバーター圧縮機は、回転数を可変に制御可能に構成されている。
The compressor 1 is configured to compress and discharge the sucked refrigerant. The compressor 1 is configured to compress refrigerant flowing into the outdoor heat exchanger 3 or the indoor heat exchanger 5. The compressor 1 may be a constant speed compressor with a constant compression capacity, or may be an inverter compressor with a variable compression capacity. This inverter compressor is configured such that its rotation speed can be variably controlled.
四方弁2は、冷媒の流れを切り替えるように構成されている。具体的には、四方弁2は、暖房運転時と冷房運転時とによって、室外熱交換器3または室内熱交換器5への冷媒の流れを切り替えるように構成されている。
The four-way valve 2 is configured to switch the flow of refrigerant. Specifically, the four-way valve 2 is configured to switch the flow of refrigerant to the outdoor heat exchanger 3 or the indoor heat exchanger 5 depending on heating operation and cooling operation.
室外熱交換器3は、四方弁2と、流量調整弁4とに接続されている。室外熱交換器3は、冷房運転時、圧縮機1により圧縮された冷媒を凝縮する凝縮器となる。また、室外熱交換器3は、暖房運転時、流量調整弁4により減圧された冷媒を蒸発させる蒸発器となる。室外熱交換器3は冷媒と空気との熱交換を行うためのものである。室外熱交換器3は、たとえば、冷媒が内側を流れるパイプ(伝熱管)と、パイプの外側に取り付けられたフィンとを備えている。
The outdoor heat exchanger 3 is connected to the four-way valve 2 and the flow rate adjustment valve 4. The outdoor heat exchanger 3 serves as a condenser that condenses the refrigerant compressed by the compressor 1 during cooling operation. Moreover, the outdoor heat exchanger 3 serves as an evaporator that evaporates the refrigerant whose pressure has been reduced by the flow rate adjustment valve 4 during heating operation. The outdoor heat exchanger 3 is for exchanging heat between refrigerant and air. The outdoor heat exchanger 3 includes, for example, a pipe (heat transfer tube) through which a refrigerant flows, and fins attached to the outside of the pipe.
流量調整弁4は、室外熱交換器3と、室内熱交換器5とに接続されている。流量調整弁4は、冷房運転時、室外熱交換器3により凝縮された冷媒を減圧する絞り装置となる。また、流量調整弁4は、暖房運転時、室内熱交換器5により凝縮された冷媒を減圧する絞り装置となる。流量調整弁4は、たとえば、キャピラリーチューブ、電子膨張弁である。
The flow rate adjustment valve 4 is connected to the outdoor heat exchanger 3 and the indoor heat exchanger 5. The flow rate adjustment valve 4 serves as a throttle device that reduces the pressure of the refrigerant condensed by the outdoor heat exchanger 3 during cooling operation. Further, the flow rate adjustment valve 4 serves as a throttle device that reduces the pressure of the refrigerant condensed by the indoor heat exchanger 5 during heating operation. The flow rate regulating valve 4 is, for example, a capillary tube or an electronic expansion valve.
室内熱交換器5は、四方弁2と、流量調整弁4とに接続されている。室内熱交換器5は、冷房運転時、流量調整弁4により減圧された冷媒を蒸発させる蒸発器となる。また、室内熱交換器5は、暖房運転時、圧縮機1により圧縮された冷媒を凝縮する凝縮器となる。室内熱交換器5は冷媒と空気との熱交換を行うためのものである。室内熱交換器5は、たとえば、冷媒が内側を流れるパイプ(伝熱管)と、パイプの外側に取り付けられたフィンとを備えている。
The indoor heat exchanger 5 is connected to the four-way valve 2 and the flow rate adjustment valve 4. The indoor heat exchanger 5 serves as an evaporator that evaporates the refrigerant whose pressure has been reduced by the flow rate adjustment valve 4 during cooling operation. Moreover, the indoor heat exchanger 5 serves as a condenser that condenses the refrigerant compressed by the compressor 1 during heating operation. The indoor heat exchanger 5 is for exchanging heat between refrigerant and air. The indoor heat exchanger 5 includes, for example, a pipe (heat transfer tube) through which a refrigerant flows, and fins attached to the outside of the pipe.
油分離器10は、圧縮機1の吐出管の下流側に接続されている。油分離器10は、圧縮機1から吐出された油含有冷媒から、ガス冷媒と油とに分離するように構成されている。また、油分離器10は、油含有冷媒から分離された油を圧縮機1に返すように、油戻し管20を通って、圧縮機1の吸入管の上流側に接続されている。
The oil separator 10 is connected to the downstream side of the discharge pipe of the compressor 1. The oil separator 10 is configured to separate oil-containing refrigerant discharged from the compressor 1 into gas refrigerant and oil. Further, the oil separator 10 is connected to the upstream side of the suction pipe of the compressor 1 through an oil return pipe 20 so as to return the oil separated from the oil-containing refrigerant to the compressor 1.
次に、図1を参照して、本実施の形態における冷凍サイクル装置100の動作について説明する。図中実線矢印により冷房運転時の冷媒の流れが示され、図中破線矢印により暖房運転時の冷媒の流れが示されている。
Next, with reference to FIG. 1, the operation of the refrigeration cycle device 100 in this embodiment will be described. Solid arrows in the figure indicate the flow of refrigerant during cooling operation, and dashed arrows in the figure indicate the flow of refrigerant during heating operation.
本実施の形態における冷凍サイクル装置100は、冷房運転と暖房運転とを選択的に行うことが可能である。冷房運転においては、圧縮機1、油分離器10、四方弁2、室外熱交換器3、流量調整弁4、室内熱交換器5の順に冷媒が冷媒回路を循環する。冷房運転においては、室外熱交換器3は凝縮器として機能し、室内熱交換器5は蒸発器として機能する。暖房運転においては、圧縮機1、油分離器10、四方弁2、室内熱交換器5、流量調整弁4、室外熱交換器3の順に冷媒が冷媒回路を循環する。暖房運転においては、室内熱交換器5は凝縮器として機能し、室外熱交換器3は蒸発器として機能する。
The refrigeration cycle device 100 in this embodiment can selectively perform cooling operation and heating operation. In cooling operation, refrigerant circulates through the refrigerant circuit in the order of compressor 1, oil separator 10, four-way valve 2, outdoor heat exchanger 3, flow rate adjustment valve 4, and indoor heat exchanger 5. In cooling operation, the outdoor heat exchanger 3 functions as a condenser, and the indoor heat exchanger 5 functions as an evaporator. In heating operation, refrigerant circulates through the refrigerant circuit in the order of compressor 1, oil separator 10, four-way valve 2, indoor heat exchanger 5, flow rate adjustment valve 4, and outdoor heat exchanger 3. In heating operation, the indoor heat exchanger 5 functions as a condenser, and the outdoor heat exchanger 3 functions as an evaporator.
冷房運転について詳しく説明する。圧縮機1が駆動することによって、圧縮機1から高温高圧のガス冷媒が吐出される。このガス冷媒には圧縮機内部を潤滑する油が含有されている。つまり、このガス冷媒は油含有冷媒である。圧縮機1から吐出された高温高圧の油含有冷媒は、油分離器10に流れ込む。油分離器10で油含有冷媒から油が分離される。油分離器10で油が分離されたガス冷媒は、四方弁2を経由して室外熱交換器3に流れ込む。室外熱交換器3では、流れ込んだガス冷媒と、室外の空気との間で熱交換が行われる。これにより、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。
Let's explain the cooling operation in detail. When the compressor 1 is driven, high temperature and high pressure gas refrigerant is discharged from the compressor 1. This gas refrigerant contains oil that lubricates the inside of the compressor. In other words, this gas refrigerant is an oil-containing refrigerant. The high-temperature, high-pressure oil-containing refrigerant discharged from the compressor 1 flows into the oil separator 10 . Oil is separated from the oil-containing refrigerant in an oil separator 10. The gas refrigerant from which oil has been separated in the oil separator 10 flows into the outdoor heat exchanger 3 via the four-way valve 2 . In the outdoor heat exchanger 3, heat exchange is performed between the gas refrigerant that has flowed in and the outdoor air. As a result, the high-temperature, high-pressure gas refrigerant is condensed and becomes a high-pressure liquid refrigerant.
室外熱交換器3から送り出された高圧の液冷媒は、流量調整弁4によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、室内熱交換器5に流れ込む。室内熱交換器5では、流れ込んだ二相状態の冷媒と、室内の空気との間で熱交換が行われる。これにより、二相状態の冷媒は、液冷媒が蒸発して低圧のガス冷媒になる。この熱交換によって、室内が冷やされる。室内熱交換器5から送り出された低圧のガス冷媒は、四方弁2を介して圧縮機1に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機1から吐出される。以下、このサイクルが繰り返される。
The high-pressure liquid refrigerant sent out from the outdoor heat exchanger 3 is turned into a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the flow rate adjustment valve 4. The two-phase refrigerant flows into the indoor heat exchanger 5. In the indoor heat exchanger 5, heat exchange is performed between the two-phase refrigerant that has flowed in and the indoor air. As a result, in the two-phase refrigerant, the liquid refrigerant evaporates and becomes a low-pressure gas refrigerant. This heat exchange cools the room. The low-pressure gas refrigerant sent out from the indoor heat exchanger 5 flows into the compressor 1 via the four-way valve 2, is compressed, becomes high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 1 again. Thereafter, this cycle is repeated.
また、暖房運転について詳しく説明する。冷房運転と同様に圧縮機1が駆動することによって、圧縮機1から高温高圧の油含有冷媒が吐出される。圧縮機1から吐出された高温高圧の油含有冷媒は、油分離器10に流れ込む。油分離器10で油含有冷媒から油が分離される。油分離器10で油が分離されたガス冷媒は、四方弁2を経由して室内熱交換器5に流れ込む。室内熱交換器5では、流れ込んだガス冷媒と室内の空気との間で熱交換が行われる。これにより、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。この熱交換によって、室内が暖められる。
Also, heating operation will be explained in detail. When the compressor 1 is driven in the same manner as in the cooling operation, high temperature and high pressure oil-containing refrigerant is discharged from the compressor 1. The high-temperature, high-pressure oil-containing refrigerant discharged from the compressor 1 flows into the oil separator 10 . Oil is separated from the oil-containing refrigerant in an oil separator 10. The gas refrigerant from which oil has been separated in the oil separator 10 flows into the indoor heat exchanger 5 via the four-way valve 2. In the indoor heat exchanger 5, heat exchange is performed between the gas refrigerant that has flowed in and the indoor air. As a result, the high-temperature, high-pressure gas refrigerant is condensed and becomes a high-pressure liquid refrigerant. This heat exchange heats the room.
室内熱交換器5から送り出された高圧の液冷媒は、流量調整弁4によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、室外熱交換器3に流れ込む。室外熱交換器3では、流れ込んだ二相状態の冷媒と、室外の空気との間で熱交換が行われる。これにより、二相状態の冷媒は、液冷媒が蒸発して低圧のガス冷媒になる。室外熱交換器3から送り出された低圧のガス冷媒は、四方弁2を介して圧縮機1に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機1から吐出される。以下、このサイクルが繰り返される。
The high-pressure liquid refrigerant sent out from the indoor heat exchanger 5 is turned into a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the flow rate adjustment valve 4. The two-phase refrigerant flows into the outdoor heat exchanger 3. In the outdoor heat exchanger 3, heat exchange is performed between the two-phase refrigerant that has flowed in and outdoor air. As a result, in the two-phase refrigerant, the liquid refrigerant evaporates and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant sent out from the outdoor heat exchanger 3 flows into the compressor 1 via the four-way valve 2, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 1 again. Thereafter, this cycle is repeated.
続いて、本実施の形態に係る油分離器10の構成について詳しく説明する。図2は、本実施の形態に係る油分離器10の構成を示した断面図である。図3a~図3cは、本実施の形態に係る油分離器10の構成を各切断線で示した断面図である。
Next, the configuration of the oil separator 10 according to the present embodiment will be described in detail. FIG. 2 is a sectional view showing the configuration of the oil separator 10 according to the present embodiment. 3a to 3c are cross-sectional views showing the structure of the oil separator 10 according to the present embodiment along cutting lines.
図2に示されるように、本実施の形態に係る油分離器10は、容器11と、流入管12と、冷媒排出管13と、油排出管14とを有している。流入管12は、流入口12aを有している。冷媒排出管13は、冷媒排出口13aと、第一開口部13bと、第二開口部13cとを有している。油排出管14は、油排出口14aを有している。本実施の形態に係る油分離器10では、旋回下降流による分離方式が用いられている。
As shown in FIG. 2, the oil separator 10 according to the present embodiment includes a container 11, an inflow pipe 12, a refrigerant discharge pipe 13, and an oil discharge pipe 14. The inflow pipe 12 has an inflow port 12a. The refrigerant discharge pipe 13 has a refrigerant discharge port 13a, a first opening 13b, and a second opening 13c. The oil discharge pipe 14 has an oil discharge port 14a. The oil separator 10 according to this embodiment uses a separation method using swirling downward flow.
容器11は、上下に延びる中心軸CLに沿って延在している。容器11は、内部空間を有している。容器11は、中心軸CLを取り囲む内壁面ISを有する。容器11の内壁面ISは、中心軸CLに直行する断面が円形状となるように構成されている。
The container 11 extends along a central axis CL that extends vertically. Container 11 has an internal space. Container 11 has an inner wall surface IS surrounding central axis CL. The inner wall surface IS of the container 11 is configured such that a cross section perpendicular to the central axis CL is circular.
流入管12は、上流は図1に示される圧縮機1の吐出側に接続され、下流は冷媒排出管13の上方に接続されている。流入管12は、冷媒排出管13の壁面に油含有冷媒を流入させる流入口12aを有している。流入管12の流入口12aは、冷媒排出管13の上方に配置されている。図3aに示すように本発明の実施の形態に係る流入管12は、冷媒排出管13の中心軸からずれるように接続されているが、流入管12は冷媒排出管13の中心軸と合うように接続されていてもよい。
The inflow pipe 12 is connected at the upstream end to the discharge side of the compressor 1 shown in FIG. 1, and at the downstream end is connected above the refrigerant discharge pipe 13. The inflow pipe 12 has an inlet 12 a through which the oil-containing refrigerant flows into the wall surface of the refrigerant discharge pipe 13 . The inlet 12 a of the inflow pipe 12 is arranged above the refrigerant discharge pipe 13 . As shown in FIG. 3a, the inflow pipe 12 according to the embodiment of the present invention is connected so as to be offset from the central axis of the refrigerant discharge pipe 13, but the inflow pipe 12 is connected so as to be aligned with the central axis of the refrigerant discharge pipe 13. may be connected to.
冷媒排出管13は、上流は流入管12に接続され、下流は図1に示される四方弁2に接続されている。冷媒排出管13は、容器11の中心軸CLと同軸上に配置されている。冷媒排出管13は、容器11の上部と下部を貫通している。冷媒排出管13は、油含有冷媒から分離されたガス冷媒を容器11から排出するように構成されている。冷媒排出管13は、油含有冷媒から分離されたガス冷媒を容器11から排出する冷媒排出口13aを有している。冷媒排出口13aは、中心軸CLに重なるように配置されている。
The refrigerant discharge pipe 13 is connected to the inflow pipe 12 at the upstream end and to the four-way valve 2 shown in FIG. 1 at the downstream end. The refrigerant discharge pipe 13 is arranged coaxially with the central axis CL of the container 11. The refrigerant discharge pipe 13 passes through the upper and lower parts of the container 11. The refrigerant discharge pipe 13 is configured to discharge the gas refrigerant separated from the oil-containing refrigerant from the container 11 . The refrigerant discharge pipe 13 has a refrigerant discharge port 13a that discharges the gas refrigerant separated from the oil-containing refrigerant from the container 11. The refrigerant discharge port 13a is arranged so as to overlap the central axis CL.
冷媒排出管13の周壁(側壁)には、冷媒排出管13の内部と容器11の内部空間とを連通する第一開口部13bと、第二開口部13cとを有している。本発明の実施の形態では、第一開口部13bと第二開口部13cは、容器11の中心軸CLを挟んで対称に配置されているが、対称でなくともよい。第一開口部13bは、流入口12aよりも下方であり、かつ第二開口部13cよりも上方に配置されている。つまり、第一開口部13bは上下方向において、流入口12aと第二開口部13cとの間に配置されている。第二開口部13cは、第一開口部13bよりも下方であり、かつ油排出口14aよりも上方に配置されている。つまり、第二開口部13cは上下方向において、第一開口部13bと油排出口14aとの間に配置されている。
The peripheral wall (side wall) of the refrigerant discharge pipe 13 has a first opening 13b and a second opening 13c that communicate the inside of the refrigerant discharge pipe 13 and the internal space of the container 11. In the embodiment of the present invention, the first opening 13b and the second opening 13c are arranged symmetrically across the central axis CL of the container 11, but they do not have to be symmetrical. The first opening 13b is located below the inlet 12a and above the second opening 13c. That is, the first opening 13b is arranged between the inlet 12a and the second opening 13c in the vertical direction. The second opening 13c is located below the first opening 13b and above the oil discharge port 14a. That is, the second opening 13c is arranged between the first opening 13b and the oil discharge port 14a in the vertical direction.
油排出管14は、上流は容器11の下端に接続され、下流は図1に示される油戻し管20に接続されている。油排出管14は、容器11の中心軸CLと異なる位置に配接されている。本発明の実施の形態では、油排出管14は容器11の側壁を貫通しているが、油排出管14は容器の底部を貫通していてもよい。油排出管14は、油含有冷媒から分離された油を容器11から排出するように構成されている。油排出管14は、油含有冷媒から分離された油を容器11から排出する油排出口14aを有している。油排出管14の油排出口14aは、第二開口部13cよりも下方に配置されている。
The oil discharge pipe 14 is connected at the upstream end to the lower end of the container 11 and at the downstream end to the oil return pipe 20 shown in FIG. The oil discharge pipe 14 is arranged at a position different from the central axis CL of the container 11. In the embodiment of the present invention, the oil drain pipe 14 passes through the side wall of the container 11, but the oil drain pipe 14 may also pass through the bottom of the container. Oil drain pipe 14 is configured to drain oil separated from the oil-containing refrigerant from container 11 . The oil discharge pipe 14 has an oil discharge port 14a for discharging the oil separated from the oil-containing refrigerant from the container 11. The oil discharge port 14a of the oil discharge pipe 14 is arranged below the second opening 13c.
続いて、本実施の形態に係る油分離器10の油分離の動作原理について説明する。図4は、本実施の形態に係る油分離器10内での油が分離される様子を説明するための断面図である。図5a~図5cは、本実施の形態に係る油分離器10内での油が分離される様子を説明するための各切断線での断面図である。図4および図5a~図5cでは、油含有冷媒の流れは白抜き矢印で示され、ガス冷媒の流れは実線で示され、油の流れは破線で示されている。
Next, the operating principle of oil separation of the oil separator 10 according to the present embodiment will be explained. FIG. 4 is a cross-sectional view for explaining how oil is separated in the oil separator 10 according to the present embodiment. 5a to 5c are cross-sectional views along respective cutting lines for explaining how oil is separated in the oil separator 10 according to the present embodiment. In Figures 4 and 5a-5c, the flow of oil-containing refrigerant is indicated by open arrows, the flow of gaseous refrigerant is indicated by solid lines, and the flow of oil is indicated by dashed lines.
図1に示されるように、冷凍サイクル装置100の冷媒回路において、圧縮機1から吐出された油含有冷媒は、油分離器10によってガス冷媒と油とに分離される。油分離器10により油含有冷媒から分離された油は、油戻し管20を介して圧縮機1の吸入側へ排出される。他方、油分離器10により油含有冷媒から分離されたガス冷媒は、冷媒排出管13を介して四方弁2へ排出される。
As shown in FIG. 1, in the refrigerant circuit of the refrigeration cycle device 100, the oil-containing refrigerant discharged from the compressor 1 is separated into gas refrigerant and oil by the oil separator 10. The oil separated from the oil-containing refrigerant by the oil separator 10 is discharged to the suction side of the compressor 1 via the oil return pipe 20. On the other hand, the gas refrigerant separated from the oil-containing refrigerant by the oil separator 10 is discharged to the four-way valve 2 via the refrigerant discharge pipe 13.
図4に示されるように、冷凍サイクル装置100の動作によって、圧縮機1から吐出された油含有冷媒が、流入管12を経て冷媒排出管13に流入する。図5aに示されるように、流入管12は、冷媒排出管13の中心軸とはずれるように設けられているため、油含有冷媒は、冷媒排出管13の内壁面に沿う旋回流となる。冷媒排出管13の内部で旋回している油含有冷媒は、旋回流の遠心力により、相対的に比重の重い油は、油含有冷媒から分離される。油含有冷媒から分離された油は、冷媒排出管13の内壁面へ衝突することで油膜となり、重力と旋回流とによって冷媒排出管13の内壁面に沿って、第一開口部13b付近の位置まで流れる。第一開口部13b付近にある油含有冷媒から分離した油は、冷媒排出管13内に発生している旋回流によって、第一開口部13bから容器11の内部空間に噴出される。容器11の内部空間に噴出された油は、内壁面IS上で油膜となり、重力によって、容器11の内壁面ISに沿って容器11の底部へ流れる。このようにして、容器11の底部に油200が集油される。集油された油200は油排出口14aから排出される。油排出口14aから排出された油は、油戻し管20を通って圧縮機1の吸入側へ排出される。
As shown in FIG. 4, as the refrigeration cycle device 100 operates, oil-containing refrigerant discharged from the compressor 1 flows into the refrigerant discharge pipe 13 via the inflow pipe 12. As shown in FIG. 5A, since the inflow pipe 12 is provided so as to be offset from the central axis of the refrigerant discharge pipe 13, the oil-containing refrigerant forms a swirling flow along the inner wall surface of the refrigerant discharge pipe 13. The centrifugal force of the swirling flow of the oil-containing refrigerant swirling inside the refrigerant discharge pipe 13 separates the relatively heavy oil from the oil-containing refrigerant. The oil separated from the oil-containing refrigerant collides with the inner wall surface of the refrigerant discharge pipe 13 to form an oil film, and is moved along the inner wall surface of the refrigerant discharge pipe 13 by gravity and swirling flow to a position near the first opening 13b. flows up to The oil separated from the oil-containing refrigerant near the first opening 13b is ejected from the first opening 13b into the internal space of the container 11 by the swirling flow generated within the refrigerant discharge pipe 13. The oil ejected into the internal space of the container 11 becomes an oil film on the inner wall surface IS, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 due to gravity. In this way, the oil 200 is collected at the bottom of the container 11. The collected oil 200 is discharged from the oil discharge port 14a. The oil discharged from the oil discharge port 14a passes through the oil return pipe 20 and is discharged to the suction side of the compressor 1.
他方、冷媒排出管13の内壁面に沿う旋回流によって油含有冷媒から分離されたガス冷媒は、第一開口部13bから容器11の内部空間に噴出される。容器11の内部空間に噴出されたガス冷媒は相対的に比重が軽いため、冷媒排出管13の外壁面に沿う旋回流となる。分離されたガス冷媒は、冷媒排出管13の外壁面に沿って旋回しながら第二開口部13cより吸引される。第二開口部13cから吸引されたガス冷媒は、冷媒排出口13aから、四方弁2へ排出される。
On the other hand, the gas refrigerant separated from the oil-containing refrigerant by the swirling flow along the inner wall surface of the refrigerant discharge pipe 13 is ejected into the internal space of the container 11 from the first opening 13b. Since the gas refrigerant ejected into the internal space of the container 11 has a relatively light specific gravity, it forms a swirling flow along the outer wall surface of the refrigerant discharge pipe 13 . The separated gas refrigerant is sucked through the second opening 13c while swirling along the outer wall surface of the refrigerant discharge pipe 13. The gas refrigerant sucked through the second opening 13c is discharged to the four-way valve 2 through the refrigerant discharge port 13a.
図6は、本実施の形態に係る油分離器の点A~点Cの位置を示した図である。図6を参照して、本実施の形態に係る油分離器10において、油含有冷媒から分離された油と、油含有冷媒から分離されたガス冷媒が上記のように、噴出または吸引される理由を説明する。
FIG. 6 is a diagram showing the positions of points A to C of the oil separator according to the present embodiment. Referring to FIG. 6, in the oil separator 10 according to the present embodiment, the reason why the oil separated from the oil-containing refrigerant and the gas refrigerant separated from the oil-containing refrigerant are ejected or sucked as described above. Explain.
図6において、点Aは、冷媒排出管13の内部であり、かつ第一開口部13b付近の位置を示している点である。点Bは、油含有冷媒から分離されたガス冷媒と油が第一開口部13bから噴出されて、第二開口部13cからガス冷媒が吸入される間を示している点である。点Cは、冷媒排出管13の内部であり、かつ第二開口部13c付近の位置を示している点である。図6より、点Aと点Bの圧力損失をΔP1とし、点Bと点Cの圧力損失をΔP2とする。点Aは、圧縮機1から吐出された油含有冷媒が流入するため、圧力が掛かる。点Bでは、油排出管14より油含有冷媒から分離されて集油された油200が排出されるため、点Aの圧力と比較して、点Bの圧力が下がる。よって、ΔP1が生じるため、冷媒排出管13の内部を旋回している分離された油と分離された冷媒は、第一開口部13bから容器11の内部空間に噴出する。一方、点Cでは、油排出管14を介して冷凍サイクル装置100の冷媒回路に通じているため、点Bの圧力と比較して、点Cの圧力が下がる。よって、ΔP2が生じるため、分離されたガス冷媒は、第二開口部13cから冷媒排出管13に吸引される。
In FIG. 6, point A is inside the refrigerant discharge pipe 13 and indicates a position near the first opening 13b. Point B indicates a period during which the gas refrigerant and oil separated from the oil-containing refrigerant are ejected from the first opening 13b, and the gas refrigerant is sucked through the second opening 13c. Point C is inside the refrigerant discharge pipe 13 and indicates a position near the second opening 13c. From FIG. 6, the pressure loss between points A and B is assumed to be ΔP1, and the pressure loss between points B and C is assumed to be ΔP2. At point A, pressure is applied because the oil-containing refrigerant discharged from the compressor 1 flows therein. At point B, the oil 200 separated from the oil-containing refrigerant and collected is discharged from the oil discharge pipe 14, so the pressure at point B is lower than the pressure at point A. Therefore, since ΔP1 occurs, the separated oil and the separated refrigerant swirling inside the refrigerant discharge pipe 13 are ejected into the internal space of the container 11 from the first opening 13b. On the other hand, since point C communicates with the refrigerant circuit of the refrigeration cycle device 100 via the oil discharge pipe 14, the pressure at point C is lower than the pressure at point B. Therefore, since ΔP2 occurs, the separated gas refrigerant is sucked into the refrigerant discharge pipe 13 from the second opening 13c.
本発明の実施の形態に係る油分離器10は、油含有冷媒の旋回流を発生させる旋回区間と、油含有冷媒から油とガス冷媒とを分離する分離区間と、分離した油を滞留させる集油区間の機能を持ち合わせた構造となっている。さらに、旋回区間と、分離区間と、集油区間とが、冷媒排出管13の周壁によって隔たれた構造となっている。したがって、分離されたガス冷媒が第二開口部13cから吸引される際に、分離された油が容器11の内部空間で発生している分離された冷媒の旋回流によって再飛散し、再び冷媒回路へ流出することを抑制できる。以上より、油分離器10は、旋回区間と、分離区間と、集油区間とが、同室になっている油分離器と比較して、油分離効率を向上させることができる。
The oil separator 10 according to the embodiment of the present invention includes a swirl section that generates a swirl flow of oil-containing refrigerant, a separation section that separates oil and gas refrigerant from the oil-containing refrigerant, and a collection section that retains the separated oil. The structure has the functions of an oil section. Furthermore, the swirl section, the separation section, and the oil collection section are separated by the peripheral wall of the refrigerant discharge pipe 13. Therefore, when the separated gas refrigerant is sucked through the second opening 13c, the separated oil is re-splattered by the swirling flow of the separated refrigerant generated in the internal space of the container 11, and is returned to the refrigerant circuit. It is possible to suppress the outflow to As described above, the oil separator 10 can improve oil separation efficiency compared to an oil separator in which the swirl section, the separation section, and the oil collection section are in the same room.
実施の形態2.
図7を参照して、本発明の実施の形態2について説明する。図7は、本実施の形態に係る冷媒排出管13内に圧損体15が配置された構成を概略的に示す断面図である。なお、以下の実施の形態2~実施の形態5は、特に説明しない限り上記の本実施の形態に係る油分離器10と同一の構成、動作、および効果を有している。したがって、上記の本実施の形態に係る油分離器10と同一の構成には同一の符号を付し、説明を繰り返さない。Embodiment 2.
Embodiment 2 of the present invention will be described with reference to FIG. FIG. 7 is a cross-sectional view schematically showing a configuration in which a pressure loss body 15 is disposed within the refrigerant discharge pipe 13 according to the present embodiment. Note that the following embodiments 2 to 5 have the same configuration, operation, and effect as the oil separator 10 according to the present embodiment described above unless otherwise described. Therefore, the same components as those of the oil separator 10 according to the present embodiment described above are given the same reference numerals, and the description will not be repeated.
図7を参照して、本発明の実施の形態2について説明する。図7は、本実施の形態に係る冷媒排出管13内に圧損体15が配置された構成を概略的に示す断面図である。なお、以下の実施の形態2~実施の形態5は、特に説明しない限り上記の本実施の形態に係る油分離器10と同一の構成、動作、および効果を有している。したがって、上記の本実施の形態に係る油分離器10と同一の構成には同一の符号を付し、説明を繰り返さない。
図7に示されるように、圧損体15は、容器11の中心軸CLと同軸上にある。第一開口部13bよりも下方であり、かつ第二開口部13cよりも上方に配置されている。つまり、第一開口部13bは上下方向において、流入口12aと第二開口部13cとの間に配置されている。また、圧損体15は、容器11の中心軸CLと同軸上に、第一開口部13bの断面積および第二開口部13cの断面積よりも小さい穴が開いている。
As shown in FIG. 7, the pressure loss body 15 is coaxial with the central axis CL of the container 11. It is arranged below the first opening 13b and above the second opening 13c. That is, the first opening 13b is arranged between the inlet 12a and the second opening 13c in the vertical direction. Moreover, the pressure loss body 15 has a hole coaxially with the central axis CL of the container 11 that is smaller in cross-sectional area than the first opening 13b and the second opening 13c.
冷凍サイクル装置100の動作によって、圧縮機1から吐出された油含有冷媒が、流入管12を経て冷媒排出管13に流入する。流入管12は、冷媒排出管13の中心軸とはずれるように設けられているため、油含有冷媒は、冷媒排出管13の内壁面に沿う旋回流となる。冷媒排出管13の内部で旋回している油含有冷媒は、旋回流の遠心力により、相対的に比重の重い油は、油含有冷媒から分離される。油含有冷媒から分離された油は、冷媒排出管13の内壁面へ衝突することで油膜となり、重力と旋回流とによって冷媒排出管13の内壁面に沿って、第一開口部13b付近の位置まで流れる。第一開口部13b付近にある油含有冷媒から分離した油は、冷媒排出管13内に発生している旋回流によって、第一開口部13bから容器11の内部空間に噴出される。容器11の内部空間に噴出された油は、内壁面IS上で油膜となり、重力によって、容器11の内壁面ISに沿って容器11の底部へ流れる。このようにして、容器11の底部に油200が集油される。集油された油200は油排出口14aから排出される。油排出口14aから排出された油は、油戻し管20を通って圧縮機1の吸入側へ排出される。
Due to the operation of the refrigeration cycle device 100, the oil-containing refrigerant discharged from the compressor 1 flows into the refrigerant discharge pipe 13 via the inflow pipe 12. Since the inflow pipe 12 is provided so as to be offset from the central axis of the refrigerant discharge pipe 13, the oil-containing refrigerant forms a swirling flow along the inner wall surface of the refrigerant discharge pipe 13. The centrifugal force of the swirling flow of the oil-containing refrigerant swirling inside the refrigerant discharge pipe 13 separates the relatively heavy oil from the oil-containing refrigerant. The oil separated from the oil-containing refrigerant collides with the inner wall surface of the refrigerant discharge pipe 13 to form an oil film, and is moved along the inner wall surface of the refrigerant discharge pipe 13 by gravity and swirling flow to a position near the first opening 13b. flows up to The oil separated from the oil-containing refrigerant near the first opening 13b is ejected from the first opening 13b into the internal space of the container 11 by the swirling flow generated within the refrigerant discharge pipe 13. The oil ejected into the internal space of the container 11 becomes an oil film on the inner wall surface IS, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 due to gravity. In this way, the oil 200 is collected at the bottom of the container 11. The collected oil 200 is discharged from the oil discharge port 14a. The oil discharged from the oil discharge port 14a passes through the oil return pipe 20 and is discharged to the suction side of the compressor 1.
他方、冷媒排出管13の内壁面に沿う旋回流によって油含有冷媒から分離されたガス冷媒は、第一開口部13bから容器11の内部空間に噴出される。容器11の内部空間に噴出されたガス冷媒は相対的に比重が軽いため、冷媒排出管13の外壁面に沿う旋回流となる。分離されたガス冷媒は、冷媒排出管13の外壁面に沿って旋回しながら第二開口部13cより吸引される。第二開口部13cから吸引されたガス冷媒は、冷媒排出管13の下端開口から、四方弁2へ排出される。
On the other hand, the gas refrigerant separated from the oil-containing refrigerant by the swirling flow along the inner wall surface of the refrigerant discharge pipe 13 is ejected into the internal space of the container 11 from the first opening 13b. Since the gas refrigerant ejected into the internal space of the container 11 has a relatively light specific gravity, it forms a swirling flow along the outer wall surface of the refrigerant discharge pipe 13 . The separated gas refrigerant is sucked through the second opening 13c while swirling along the outer wall surface of the refrigerant discharge pipe 13. The gas refrigerant sucked through the second opening 13c is discharged from the lower end opening of the refrigerant discharge pipe 13 to the four-way valve 2.
図8は、本実施の形態に係る油分離器の点D~点Fの位置を示した図である。図8を参照して、本実施の形態に係る油分離器10において、油含有冷媒から分離された油と、油含有冷媒から分離されたガス冷媒が上記のように、噴出または吸引される理由を説明する。
FIG. 8 is a diagram showing the positions of points D to F of the oil separator according to the present embodiment. With reference to FIG. 8, in the oil separator 10 according to the present embodiment, the reason why the oil separated from the oil-containing refrigerant and the gas refrigerant separated from the oil-containing refrigerant are ejected or sucked as described above. Explain.
図7に示すように、冷媒排出管13には圧損体15が配置されている。図8に示すように、点Dは、冷媒排出管13の内部であり、圧損体15の上部であり、かつ第一開口部13b付近の位置を示している点である。点Eは、油含有冷媒から分離されたガス冷媒と油が第一開口部13bから噴出されて、第二開口部13cからガス冷媒が吸入される間を示している点である。点Fは、冷媒排出管13の内部であり、圧損体15の下部であり、かつ第二開口部13c付近の位置を示している点である。図8より、点Dと点Eの圧力損失をΔP4とし、点Eと点Fの圧力損失をΔP5とする。点Dは、圧縮機1から吐出された油含有冷媒が流入するため、圧力が掛かる。点Eでは、油排出管14より油含有冷媒から分離されて集油された油200が排出されるため、点Dの圧力と比較して、点Eの圧力が下がる。よって、ΔP4が生じるため、冷媒排出管13の内部を旋回している分離された油と分離された冷媒は、第一開口部13bから容器11の内部空間に噴出する。一方、点Fでは、油排出管14を介して冷凍サイクル装置100の冷媒回路に通じているため、点Eの圧力と比較して、点Fの圧力が下がる。よって、ΔP5が生じるため、分離されたガス冷媒は、第二開口部13cから冷媒排出管13に吸引される。
As shown in FIG. 7, a pressure loss body 15 is arranged in the refrigerant discharge pipe 13. As shown in FIG. 8, point D is inside the refrigerant discharge pipe 13, is above the pressure loss body 15, and is located near the first opening 13b. Point E indicates a period during which the gas refrigerant and oil separated from the oil-containing refrigerant are ejected from the first opening 13b, and the gas refrigerant is sucked through the second opening 13c. Point F is inside the refrigerant discharge pipe 13, is below the pressure loss body 15, and is located near the second opening 13c. From FIG. 8, the pressure loss between points D and E is assumed to be ΔP4, and the pressure loss between points E and F is assumed to be ΔP5. Since the oil-containing refrigerant discharged from the compressor 1 flows into point D, pressure is applied thereto. At point E, the oil 200 separated from the oil-containing refrigerant and collected is discharged from the oil discharge pipe 14, so the pressure at point E is lower than the pressure at point D. Therefore, since ΔP4 occurs, the separated oil and the separated refrigerant swirling inside the refrigerant discharge pipe 13 are ejected into the internal space of the container 11 from the first opening 13b. On the other hand, since point F communicates with the refrigerant circuit of the refrigeration cycle device 100 via the oil discharge pipe 14, the pressure at point F is lower than the pressure at point E. Therefore, since ΔP5 occurs, the separated gas refrigerant is sucked into the refrigerant discharge pipe 13 from the second opening 13c.
圧損体15を配置することの効果を説明する。ここで、実施の形態1の点Aと点Cの圧力損失をΔP3とし、実施の形態2の点Dと点Fの圧力損失をΔP6とする。冷媒排出管13に圧損体15を設置することで、ΔP3と比較して、ΔP6は大きくなる。圧力損失が増加すると、その増加分のエネルギーが失われ、流量や流速は減少するとされている。よって、冷媒排出管13の内部を旋回している分離された油と分離された冷媒は、実施の形態1と比較して、第一開口部13bから噴出される流量が増加する。第一開口部13bから噴出されずに冷媒排出管13から排出される油量を抑制することができるため、油分離効率を向上させることができる。
The effect of arranging the pressure loss body 15 will be explained. Here, the pressure loss between points A and C in the first embodiment is assumed to be ΔP3, and the pressure loss between points D and F in the second embodiment is assumed to be ΔP6. By installing the pressure loss body 15 in the refrigerant discharge pipe 13, ΔP6 becomes larger than ΔP3. It is said that when the pressure drop increases, the increased energy is lost and the flow rate and flow rate decrease. Therefore, the flow rate of the separated oil swirling inside the refrigerant discharge pipe 13 and the separated refrigerant jetted out from the first opening 13b is increased compared to the first embodiment. Since the amount of oil discharged from the refrigerant discharge pipe 13 without being spouted from the first opening 13b can be suppressed, oil separation efficiency can be improved.
実施の形態3.
本発明の実施の形態3について説明する。図9は、本実施の形態に係る冷媒排出管13の形状を変形させた構成を示した断面図である。図10a~図10cは、本実施の形態に係る油分離器10冷媒排出管13の形状を変形させた構成を各切断線で示した断面図である。 Embodiment 3.
Embodiment 3 of the present invention will be described. FIG. 9 is a sectional view showing a configuration in which the shape of therefrigerant discharge pipe 13 according to the present embodiment is modified. 10a to 10c are cross-sectional views taken along cutting lines of a structure in which the shape of the refrigerant discharge pipe 13 of the oil separator 10 according to the present embodiment is modified.
本発明の実施の形態3について説明する。図9は、本実施の形態に係る冷媒排出管13の形状を変形させた構成を示した断面図である。図10a~図10cは、本実施の形態に係る油分離器10冷媒排出管13の形状を変形させた構成を各切断線で示した断面図である。 Embodiment 3.
Embodiment 3 of the present invention will be described. FIG. 9 is a sectional view showing a configuration in which the shape of the
図9および図10aに示されるように、第一開口部13bは、冷媒排出管13から容器11の内部空間側に突出した配管16に形成されている。配管16は、冷媒排出管13の油含有冷媒の旋回流の旋回方向に沿って、容器11の内部空間側に突出している。本発明の実施の形態では、配管16は筒状であるが、そうでなくともよい。
As shown in FIGS. 9 and 10a, the first opening 13b is formed in a pipe 16 that protrudes from the refrigerant discharge pipe 13 toward the interior space of the container 11. The pipe 16 projects toward the inner space of the container 11 along the swirling direction of the swirling flow of the oil-containing refrigerant in the refrigerant discharge pipe 13 . In the embodiment of the present invention, the pipe 16 is cylindrical, but it does not have to be so.
本実施の形態に係る油分離器10の油分離の動作原理について説明する。図11は、本実施の形態に係る油分離器10内での油が分離される様子を説明するための断面図である。図12a~図12cは、本実施の形態に係る油分離器10内での油が分離される様子を説明するための各切断線での断面図である。図11および図12a~図12cでは、油含有冷媒の流れは白抜き矢印で示され、ガス冷媒の流れは実線で示され、油の流れは破線で示されている。
The operating principle of oil separation of the oil separator 10 according to this embodiment will be explained. FIG. 11 is a cross-sectional view for explaining how oil is separated in the oil separator 10 according to the present embodiment. 12a to 12c are cross-sectional views taken along cutting lines for explaining how oil is separated in the oil separator 10 according to the present embodiment. In Figures 11 and 12a-12c, the flow of oil-containing refrigerant is indicated by open arrows, the flow of gaseous refrigerant is indicated by solid lines, and the flow of oil is indicated by dashed lines.
図11に示されるように、冷凍サイクル装置100の動作によって、圧縮機1から吐出された油含有冷媒が、流入管12を経て冷媒排出管13に流入する。図12aに示されるように、流入管12は、冷媒排出管13の中心軸とはずれるように設けられているため、油含有冷媒は、冷媒排出管13の内壁面に沿う旋回流となる。冷媒排出管13の内部で旋回している油含有冷媒は、旋回流の遠心力により、相対的に比重の重い油は、油含有冷媒から分離される。油含有冷媒から分離された油は、冷媒排出管13の内壁面へ衝突することで油膜となり、重力と旋回流とによって冷媒排出管13の内壁面に沿って、第一開口部13b付近の位置まで流れる。第一開口部13b付近にある油含有冷媒から分離した油は、冷媒排出管13内に発生している旋回流によって、配管16を通じて、第一開口部13bから容器11の内部空間に噴出される。容器11の内部空間に噴出された油は、内壁面IS上で油膜となり、重力によって、容器11の内壁面ISに沿って容器11の底部へ流れる。このようにして、容器11の底部に油200が集油される。集油された油200は油排出口14aから排出される。油排出口14aから排出された油は、油戻し管20を通って圧縮機1の吸入側へ排出される。
As shown in FIG. 11, as the refrigeration cycle device 100 operates, oil-containing refrigerant discharged from the compressor 1 flows into the refrigerant discharge pipe 13 via the inflow pipe 12. As shown in FIG. 12a, since the inflow pipe 12 is provided so as to be offset from the central axis of the refrigerant discharge pipe 13, the oil-containing refrigerant forms a swirling flow along the inner wall surface of the refrigerant discharge pipe 13. The centrifugal force of the swirling flow of the oil-containing refrigerant swirling inside the refrigerant discharge pipe 13 separates the relatively heavy oil from the oil-containing refrigerant. The oil separated from the oil-containing refrigerant collides with the inner wall surface of the refrigerant discharge pipe 13 to form an oil film, and is moved along the inner wall surface of the refrigerant discharge pipe 13 by gravity and swirling flow to a position near the first opening 13b. flows up to The oil separated from the oil-containing refrigerant near the first opening 13b is ejected from the first opening 13b into the internal space of the container 11 through the pipe 16 due to the swirling flow generated in the refrigerant discharge pipe 13. . The oil ejected into the internal space of the container 11 becomes an oil film on the inner wall surface IS, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 due to gravity. In this way, the oil 200 is collected at the bottom of the container 11. The collected oil 200 is discharged from the oil discharge port 14a. The oil discharged from the oil discharge port 14a passes through the oil return pipe 20 and is discharged to the suction side of the compressor 1.
他方、冷媒排出管13の内壁面に沿う旋回流によって油含有冷媒から分離されたガス冷媒は、第一開口部13bから容器11の内部空間に噴出される。容器11の内部空間に噴出されたガス冷媒は相対的に比重が軽いため、冷媒排出管13の外壁面に沿う旋回流となる。分離されたガス冷媒は、冷媒排出管13の外壁面に沿って旋回しながら第二開口部13cより吸引される。第二開口部13cから吸引されたガス冷媒は、冷媒排出管13の下端開口から、四方弁2へ排出される。
On the other hand, the gas refrigerant separated from the oil-containing refrigerant by the swirling flow along the inner wall surface of the refrigerant discharge pipe 13 is ejected into the internal space of the container 11 from the first opening 13b. Since the gas refrigerant ejected into the internal space of the container 11 has a relatively light specific gravity, it forms a swirling flow along the outer wall surface of the refrigerant discharge pipe 13 . The separated gas refrigerant is sucked through the second opening 13c while swirling along the outer wall surface of the refrigerant discharge pipe 13. The gas refrigerant sucked through the second opening 13c is discharged from the lower end opening of the refrigerant discharge pipe 13 to the four-way valve 2.
図12bに示すように、油含有冷媒から分離された油は、配管16を通じて、容器11の内部空間に噴出される。このとき、配管16は冷媒排出管13の内部で発生している旋回流の旋回方向に沿って突出しているため、第一開口部13bから噴出される分離された油と分離された冷媒は、実施の形態1と比較して容器11の内部空間で旋回が容易になる。これにより、分離された冷媒の旋回流が容器11の内部空間で乱れることを抑制できる。したがって、容器11の内部空間を旋回する分離された冷媒が第二開口部13cより吸引される吸引量が実施の形態1と比較して増加する。さらに、容器11の内部空間を旋回する分離された冷媒によって、油200が再飛散し、再び冷媒回路へ流出することを抑制できる。以上より、本実施の形態の油分離器10は、従来の油分離器と比較して、油分離効率を向上させることができる。
As shown in FIG. 12b, the oil separated from the oil-containing refrigerant is ejected into the internal space of the container 11 through the pipe 16. At this time, since the pipe 16 protrudes along the swirling direction of the swirling flow generated inside the refrigerant discharge pipe 13, the separated oil and the separated refrigerant spouted from the first opening 13b are Compared to the first embodiment, it is easier to turn the interior space of the container 11. Thereby, it is possible to suppress the swirling flow of the separated refrigerant from being disturbed in the internal space of the container 11. Therefore, the amount of suction of the separated refrigerant swirling in the internal space of the container 11 from the second opening 13c is increased compared to the first embodiment. Furthermore, the separated refrigerant swirling in the interior space of the container 11 can prevent the oil 200 from being re-splattered and flowing out into the refrigerant circuit again. As described above, the oil separator 10 of this embodiment can improve oil separation efficiency compared to conventional oil separators.
実施の形態4.
図13を参照して、本発明の実施の形態4について説明する。図13は、本実施の形態に係る冷媒排出管13の外周壁に隔壁17が取り巻かれている構成を概略的に示す断面図である。Embodiment 4.
Embodiment 4 of the present invention will be described with reference to FIG. FIG. 13 is a cross-sectional view schematically showing a structure in which a partition wall 17 is surrounded by an outer circumferential wall of a refrigerant discharge pipe 13 according to the present embodiment.
図13を参照して、本発明の実施の形態4について説明する。図13は、本実施の形態に係る冷媒排出管13の外周壁に隔壁17が取り巻かれている構成を概略的に示す断面図である。
図13に示されるように、隔壁17は、本実施の形態に係る冷媒排出管13の外周壁に取り巻かれており、第二開口部13cより下部であり、かつ油排出管14よりも上部に配置されている。また、容器11の内壁面ISと隔壁17の外周には、油含有冷媒から分離された油の油膜が流通するのに十分な間隙がある。本発明の実施の形態では、隔壁17は円型であるが、そうでなくともよい。
As shown in FIG. 13, the partition wall 17 is surrounded by the outer peripheral wall of the refrigerant discharge pipe 13 according to the present embodiment, and is located below the second opening 13c and above the oil discharge pipe 14. It is located. Further, there is a gap sufficient between the inner wall surface IS of the container 11 and the outer periphery of the partition wall 17 for the oil film separated from the oil-containing refrigerant to flow therethrough. In the embodiment of the present invention, the partition wall 17 is circular, but this may not be the case.
冷凍サイクル装置100の動作によって、圧縮機1から吐出された油含有冷媒が、流入管12を経て冷媒排出管13に流入する。流入管12は、冷媒排出管13の中心軸とはずれるように設けられているため、油含有冷媒は、冷媒排出管13の内壁面に沿う旋回流となる。冷媒排出管13の内部で旋回している油含有冷媒は、旋回流の遠心力により、相対的に比重の重い油は、油含有冷媒から分離される。油含有冷媒から分離された油は、冷媒排出管13の内壁面へ衝突することで油膜となり、重力と旋回流とによって冷媒排出管13の内壁面に沿って、第一開口部13b付近の位置まで流れる。第一開口部13b付近にある油含有冷媒から分離した油は、冷媒排出管13内に発生している旋回流によって、第一開口部13bから容器11の内部空間に噴出される。容器11の内部空間に噴出された油は、内壁面IS上で油膜となり、重力によって、容器11の内壁面ISに沿って容器11の底部へ流れる。このようにして、容器11の底部に油200が集油される。集油された油200は油排出口14aから排出される。油排出口14aから排出された油は、油戻し管20を通って圧縮機1の吸入側へ排出される。
Due to the operation of the refrigeration cycle device 100, the oil-containing refrigerant discharged from the compressor 1 flows into the refrigerant discharge pipe 13 via the inflow pipe 12. Since the inflow pipe 12 is provided so as to be offset from the central axis of the refrigerant discharge pipe 13, the oil-containing refrigerant forms a swirling flow along the inner wall surface of the refrigerant discharge pipe 13. The centrifugal force of the swirling flow of the oil-containing refrigerant swirling inside the refrigerant discharge pipe 13 separates the relatively heavy oil from the oil-containing refrigerant. The oil separated from the oil-containing refrigerant collides with the inner wall surface of the refrigerant discharge pipe 13 to form an oil film, and is moved along the inner wall surface of the refrigerant discharge pipe 13 by gravity and swirling flow to a position near the first opening 13b. flows up to The oil separated from the oil-containing refrigerant near the first opening 13b is ejected from the first opening 13b into the internal space of the container 11 by the swirling flow generated within the refrigerant discharge pipe 13. The oil ejected into the internal space of the container 11 becomes an oil film on the inner wall surface IS, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 due to gravity. In this way, the oil 200 is collected at the bottom of the container 11. The collected oil 200 is discharged from the oil discharge port 14a. The oil discharged from the oil discharge port 14a passes through the oil return pipe 20 and is discharged to the suction side of the compressor 1.
他方、冷媒排出管13の内壁面に沿う旋回流によって油含有冷媒から分離されたガス冷媒は、第一開口部13bから容器11の内部空間に噴出される。容器11の内部空間に噴出されたガス冷媒は相対的に比重が軽いため、冷媒排出管13の外壁面に沿う旋回流となる。分離されたガス冷媒は、冷媒排出管13の外壁面に沿って旋回しながら第二開口部13cより吸引される。第二開口部13cから吸引されたガス冷媒は、冷媒排出管13の下端開口から、四方弁2へ排出される。
On the other hand, the gas refrigerant separated from the oil-containing refrigerant by the swirling flow along the inner wall surface of the refrigerant discharge pipe 13 is ejected into the internal space of the container 11 from the first opening 13b. Since the gas refrigerant ejected into the internal space of the container 11 has a relatively light specific gravity, it forms a swirling flow along the outer wall surface of the refrigerant discharge pipe 13 . The separated gas refrigerant is sucked through the second opening 13c while swirling along the outer wall surface of the refrigerant discharge pipe 13. The gas refrigerant sucked through the second opening 13c is discharged from the lower end opening of the refrigerant discharge pipe 13 to the four-way valve 2.
このとき、油含有冷媒から分離されたガス冷媒は、第一開口部13bから噴出し、第二開口部13cより吸入される。油200の油面が第二開口部13cの付近まで集油された場合、油200が分離されたガス冷媒と共に第二開口部13cより吸入され、冷媒排出管13へ流出する可能性がある。その結果、油分離効率の低下を招く。ここで、冷媒排出管13の外周に取り巻かれており、第二開口部13cより下部であり、かつ油排出管14よりも上部に、隔壁17を配置する。隔壁17により、油200が分離されたガス冷媒と共に第二開口部13cより吸入され、冷媒排出管13へ流出することを抑制できる。したがって、油分離効率を向上させることができる。
At this time, the gas refrigerant separated from the oil-containing refrigerant is ejected from the first opening 13b and sucked through the second opening 13c. When the oil level of the oil 200 is collected near the second opening 13c, there is a possibility that the oil 200 is sucked in through the second opening 13c together with the separated gas refrigerant and flows out to the refrigerant discharge pipe 13. As a result, oil separation efficiency decreases. Here, a partition wall 17 is arranged around the outer periphery of the refrigerant discharge pipe 13, below the second opening 13c, and above the oil discharge pipe 14. The partition wall 17 can prevent the oil 200 from being sucked into the second opening 13c together with the separated gas refrigerant and flowing out into the refrigerant discharge pipe 13. Therefore, oil separation efficiency can be improved.
実施の形態5.
図14~図16を参照して、本発明の実施の形態5について説明する。図14は、本実施の形態に係る冷媒排出管13の上部に旋回羽根18が接続されている構成を概略的に示す断面図である。図15は、旋回羽根18を示した斜視図である。図16は、旋回羽根18が冷媒排出管13内に配置された構成を示した斜視図である。Embodiment 5.
Embodiment 5 of the present invention will be described with reference to FIGS. 14 to 16. FIG. 14 is a cross-sectional view schematically showing a configuration in which the swirl vane 18 is connected to the upper part of the refrigerant discharge pipe 13 according to the present embodiment. FIG. 15 is a perspective view showing the swirl vane 18. FIG. 16 is a perspective view showing a configuration in which the swirl vanes 18 are arranged inside the refrigerant discharge pipe 13.
図14~図16を参照して、本発明の実施の形態5について説明する。図14は、本実施の形態に係る冷媒排出管13の上部に旋回羽根18が接続されている構成を概略的に示す断面図である。図15は、旋回羽根18を示した斜視図である。図16は、旋回羽根18が冷媒排出管13内に配置された構成を示した斜視図である。
図14に示されるように、流入管12と、冷媒排出管13と、旋回羽根18とが、中心軸CLと同軸上に配置されている。旋回羽根18は、流入管12よりも下部にあり、かつ第一開口部13bよりも上部にある。つまり、旋回羽根18は上下方向において、流入管12と第一開口部13bとの間に配置されている。旋回羽根18は、旋回流を発生させるように構成されている。旋回羽根18は、油含有冷媒を旋回させながら上方から下方へ流すように構成されている。旋回羽根18は、旋回流の遠心力によって油含有冷媒から油を分離する。
As shown in FIG. 14, the inflow pipe 12, the refrigerant discharge pipe 13, and the swirl vanes 18 are arranged coaxially with the central axis CL. The swirl vane 18 is located below the inflow pipe 12 and above the first opening 13b. That is, the swirl vane 18 is arranged between the inflow pipe 12 and the first opening 13b in the vertical direction. The swirling vanes 18 are configured to generate a swirling flow. The swirling vanes 18 are configured to flow the oil-containing refrigerant from above to below while swirling the oil-containing refrigerant. The swirl vanes 18 separate oil from the oil-containing refrigerant by the centrifugal force of the swirl flow.
図15に示されるように、旋回羽根18は、軸18aと、複数の螺旋状板18bとを有している。軸18aは、中心軸CLに沿って延在している。軸18aは、中心軸CLと同軸上に配置されていることが望ましい。複数の螺旋状板18bは、互いに交差するように軸18aに接続されている。複数の螺旋状板18bの各々は、油含有冷媒に対し旋回力を発生させるように構成されている。複数の螺旋状板18bの各々は、軸18aから冷媒排出管13の内壁面に向けて延在するとともに、中心軸CLに沿って螺旋状に延在する。本発明の実施の形態では、旋回羽根18は、6枚の螺旋状板18bを有している。なお、旋回羽根18の螺旋状板18bの枚数は、6枚でなくともよい。螺旋状板18bの各々は、中心軸CL周りに等角度で配置されてもよい。
As shown in FIG. 15, the swirling blade 18 has a shaft 18a and a plurality of spiral plates 18b. The shaft 18a extends along the central axis CL. It is desirable that the shaft 18a be disposed coaxially with the central axis CL. The plurality of spiral plates 18b are connected to the shaft 18a so as to intersect with each other. Each of the plurality of spiral plates 18b is configured to generate a swirling force on the oil-containing refrigerant. Each of the plurality of spiral plates 18b extends from the shaft 18a toward the inner wall surface of the refrigerant discharge pipe 13, and also extends spirally along the central axis CL. In the embodiment of the present invention, the swirling blade 18 has six spiral plates 18b. Note that the number of spiral plates 18b of the swirling blade 18 may not be six. Each of the spiral plates 18b may be arranged at equal angles around the central axis CL.
図16に示されるように、複数の螺旋状板18bの各々の外周端は、冷媒排出管13の内壁面に接している。したがって、中心軸CLに沿って上方から下方に向けて旋回羽根18を見たときに、螺旋状板18bの外周端と冷媒排出管13の内壁面との間に間隙がない。
As shown in FIG. 16, the outer peripheral end of each of the plurality of spiral plates 18b is in contact with the inner wall surface of the refrigerant discharge pipe 13. Therefore, when the swirling blade 18 is viewed from above to below along the central axis CL, there is no gap between the outer peripheral end of the spiral plate 18b and the inner wall surface of the refrigerant discharge pipe 13.
図15および図16に示されるように、螺旋状板18bの各々は、360度を螺旋状板18bの枚数で除した角度以上でねじれるように構成されている。つまり、中心軸CLに沿って上方から下方に向けて旋回羽根18を見たときに、螺旋状板18bの各々は、360度を螺旋状板18bの枚数で除した角度以上でねじれるように構成されている。したがって、中心軸CLに沿って上方から下方に向けて旋回羽根18を見たときに、旋回羽根18は、一端部から他端部が見えないように構成されている。
As shown in FIGS. 15 and 16, each of the spiral plates 18b is configured to twist by an angle equal to or greater than 360 degrees divided by the number of spiral plates 18b. That is, when the swirling blade 18 is viewed from above to below along the central axis CL, each of the spiral plates 18b is configured to twist by an angle equal to or greater than 360 degrees divided by the number of spiral plates 18b. has been done. Therefore, when the swirl vane 18 is viewed from above to below along the central axis CL, the swirl vane 18 is configured such that one end cannot be seen from the other end.
図15および図16に示されるように、螺旋状板18bの各々は、中心軸CL周りに360度以上の回転角度でねじれるように構成されている。本発明の実施の形態では、螺旋状板18bの各々は、中心軸CL周りに765度の回転角度でねじれるように構成されている。なお、螺旋状板18bの各々の回転角度は、765度でなくともよい。
As shown in FIGS. 15 and 16, each of the spiral plates 18b is configured to twist around the central axis CL at a rotation angle of 360 degrees or more. In the embodiment of the present invention, each of the spiral plates 18b is configured to twist around the central axis CL at a rotation angle of 765 degrees. Note that the rotation angle of each spiral plate 18b may not be 765 degrees.
冷凍サイクル装置100の動作によって、圧縮機1から吐出された油含有冷媒が、流入管12を経て旋回羽根18に流入する。旋回羽根18の複数の螺旋状板18bによって発生した旋回流によって、油含有冷媒から油が分離される。油含有冷媒から分離された油は、冷媒排出管13の内壁面へ衝突することで油膜となり、重力と旋回流とによって旋回羽根18の下方に流れる。油含有冷媒から分離したガス冷媒と油は、第一開口部13bより、容器11の内部空間に噴出される。容器11の内部空間に噴出された油は、内壁面IS上で油膜となり、重力によって、容器11の内壁面ISに沿って容器11の底部へ流れ、油200が集油される。集油された油200は油排出口14aから排出される。油排出口14aから排出された油は、油戻し管20を通って圧縮機1の吸入側へ排出される。
Due to the operation of the refrigeration cycle device 100, the oil-containing refrigerant discharged from the compressor 1 flows into the swirl vane 18 via the inflow pipe 12. The swirl flow generated by the plurality of spiral plates 18b of the swirl vanes 18 separates oil from the oil-containing refrigerant. The oil separated from the oil-containing refrigerant collides with the inner wall surface of the refrigerant discharge pipe 13 to form an oil film, and flows below the swirling vanes 18 due to gravity and swirling flow. The gas refrigerant and oil separated from the oil-containing refrigerant are ejected into the internal space of the container 11 from the first opening 13b. The oil ejected into the internal space of the container 11 becomes an oil film on the inner wall surface IS, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 due to gravity, and the oil 200 is collected. The collected oil 200 is discharged from the oil discharge port 14a. The oil discharged from the oil discharge port 14a passes through the oil return pipe 20 and is discharged to the suction side of the compressor 1.
他方、冷媒排出管13の内壁面に沿う旋回流によって油含有冷媒から分離されたガス冷媒は、第一開口部13bから容器11の内部空間に噴出される。容器11の内部空間に噴出されたガス冷媒は相対的に比重が軽いため、冷媒排出管13の外壁面に沿う旋回流となる。分離されたガス冷媒は、冷媒排出管13の外壁面に沿って旋回しながら第二開口部13cより吸引される。第二開口部13cから吸引されたガス冷媒は、冷媒排出管13の下端開口から、四方弁2へ排出される。
On the other hand, the gas refrigerant separated from the oil-containing refrigerant by the swirling flow along the inner wall surface of the refrigerant discharge pipe 13 is ejected into the internal space of the container 11 from the first opening 13b. Since the gas refrigerant ejected into the internal space of the container 11 has a relatively light specific gravity, it forms a swirling flow along the outer wall surface of the refrigerant discharge pipe 13 . The separated gas refrigerant is sucked through the second opening 13c while swirling along the outer wall surface of the refrigerant discharge pipe 13. The gas refrigerant sucked through the second opening 13c is discharged from the lower end opening of the refrigerant discharge pipe 13 to the four-way valve 2.
本実施の形態に係る油分離器10は、旋回羽根18を設置している。そのため、冷媒排出管13の内壁面に沿う旋回流を利用して油分離を行っている場合と比べて、油含有冷媒からガス冷媒と油を分離する分離区間の表面積が増加させることができる。これにより、旋回羽根18を設けていない油分離器と比べて、油分離効率を向上させることができる。
The oil separator 10 according to this embodiment is provided with swirl vanes 18. Therefore, compared to the case where oil separation is performed using the swirling flow along the inner wall surface of the refrigerant discharge pipe 13, the surface area of the separation section that separates the gas refrigerant and oil from the oil-containing refrigerant can be increased. Thereby, oil separation efficiency can be improved compared to an oil separator not provided with swirl vanes 18.
100 冷凍サイクル装置、 100a 室外機ユニット、 100b 室内機ユニット、 200 油、 1 圧縮機、 2 四方弁、 3 室外熱交換器、 4 流量調整弁、 5 室内熱交換器、 6a 延長配管、 6b 延長配管、 10 油分離器、 11 容器、 12 流入管、 12a 流入口、 13 冷媒排出管、 13a 冷媒排出口、 13b 第一開口部、 13c 第二開口部、 14 油排出管、 14a 油排出口、 15 圧損体、 16 配管、 17 隔壁、 18 旋回羽根、 18a 軸、 18b 螺旋状板、 20 油戻し管、 IS 内壁面、 CL 中心軸
100 Refrigeration cycle equipment, 100a Outdoor unit, 100b Indoor unit, 200 Oil, 1 Compressor, 2 Four-way valve, 3 Outdoor heat exchanger, 4 Flow rate adjustment valve, 5 Indoor heat exchanger, 6a Extension piping, 6b Extension piping , 10 oil separator, 11 container, 12 inflow pipe, 12a inlet, 13 refrigerant discharge pipe, 13a refrigerant discharge port, 13b first opening, 13c second opening, 14 oil discharge pipe, 14a oil discharge Mouth, 15 Pressure loss body, 16 piping, 17 bulkhead, 18 swirl vane, 18a shaft, 18b spiral plate, 20 oil return pipe, IS inner wall surface, CL central axis
Claims (8)
- 油と冷媒の混合流体である油含有冷媒から油を分離する油分離器であって、
上下に延びる中心軸に沿って延在し、前記中心軸に直交する断面が円形状の内周面を有する容器と、
前記容器の下部に接続され、前記油含有冷媒から分離された油を前記容器から排出する油排出管と、
前記容器の前記中心軸と同軸上に配置され、前記容器の上部と下部を貫通し、前記容器の内部に延在している部分に第一開口部が形成され、前記第一開口部よりも下部に第二開口部が形成されており、前記油含有冷媒から前記油が分離された冷媒を前記容器から排出する冷媒排出管と、
前記冷媒排出管の上部に接続され、前記冷媒排出管に前記油含有冷媒を流入させる流入管と、を備える油分離器。 An oil separator that separates oil from an oil-containing refrigerant that is a mixed fluid of oil and refrigerant,
A container that extends along a central axis that extends vertically and has an inner circumferential surface that has a circular cross section perpendicular to the central axis;
an oil discharge pipe connected to a lower part of the container for discharging oil separated from the oil-containing refrigerant from the container;
A first opening is formed in a portion that is disposed coaxially with the central axis of the container, passes through the upper and lower portions of the container, and extends into the interior of the container, and is larger than the first opening. a refrigerant discharge pipe having a second opening formed at a lower portion thereof and discharging the refrigerant from which the oil has been separated from the oil-containing refrigerant from the container;
An oil separator comprising: an inflow pipe connected to an upper part of the refrigerant discharge pipe and causing the oil-containing refrigerant to flow into the refrigerant discharge pipe. - 前記油分離器は、旋回下降流による分離方式が用いられ、
前記油分離器は、油含有冷媒の旋回流を発生させる旋回区間と、油含有冷媒から油と冷媒とに分離する分離区間と、分離した油を滞留させる集油区間の機能を持ち合わせおり、
前記旋回区間と、前記分離区間と、前記集油区間とが前記冷媒排出管の外周壁によって隔たれる、請求項1に記載の油分離器。 The oil separator uses a separation method using swirling downward flow,
The oil separator has the functions of a swirl section that generates a swirl flow of oil-containing refrigerant, a separation section that separates the oil-containing refrigerant into oil and refrigerant, and an oil collection section that retains the separated oil,
The oil separator according to claim 1, wherein the swirl section, the separation section, and the oil collection section are separated by an outer peripheral wall of the refrigerant discharge pipe. - 前記流入管は、前記中心軸を上方からみて、前記冷媒排出管の中心と合うように接続される必要はなく、前記中心からずれるように接続されている、請求項1または2のいずれか一項に記載の油分離器。 3. The inflow pipe according to claim 1, wherein the inflow pipe does not need to be connected to align with the center of the refrigerant discharge pipe when the central axis is viewed from above, but is connected to be offset from the center. Oil separator as described in section.
- 前記冷媒排出管の内部に圧損体を設け、
前記圧損体は、前記第一開口部よりも下方に配置され、
前記圧損体の中心には、前記第一開口部の断面積よりも小さい穴が形成されている、請求項1~3のいずれか一項に記載の油分離器。 A pressure loss body is provided inside the refrigerant discharge pipe,
The pressure loss body is arranged below the first opening,
The oil separator according to any one of claims 1 to 3, wherein a hole smaller than the cross-sectional area of the first opening is formed in the center of the pressure loss body. - 前記第一開口部は、前記冷媒排出管から前記容器の内部空間に突出している配管に形成されており、
前記配管は前記冷媒排出管の内部の油含有冷媒の旋回流の旋回方向に沿って設けられている、請求項1~4のいずれか一項に記載の油分離器。 The first opening is formed in a pipe protruding from the refrigerant discharge pipe into the internal space of the container,
The oil separator according to any one of claims 1 to 4, wherein the piping is provided along a swirling direction of a swirling flow of oil-containing refrigerant inside the refrigerant discharge pipe. - 前記冷媒排出管の外周壁に隔壁を設け、
前記隔壁は、前記第二開口部よりも下方で、かつ前記油排出管よりも上方に配置され、
前記容器の内壁と前記隔壁の外周には間隙が開いている、請求項1~5のいずれか一項に記載の油分離器。 A partition is provided on the outer peripheral wall of the refrigerant discharge pipe,
The partition wall is located below the second opening and above the oil discharge pipe,
The oil separator according to any one of claims 1 to 5, wherein a gap is formed between the inner wall of the container and the outer periphery of the partition wall. - 前記冷媒排出管の内部に固定翼を設け、
前記固定翼は、前記中心軸に沿って延在する軸と、
前記軸の外周面に接続され、前記軸から前記冷媒排出管の内周面に向けて延在するとともに前記中心軸に沿って螺旋状に延在する螺旋状板とを備え、
前記螺旋状板のうち、前記冷媒排出管内において互いに隣り合うように配置された前記螺旋状板の各々は、前記軸の周方向に前記軸の外周面を挟むように配置されている、請求項1~6のいずれか一項に記載の油分離器。 A fixed wing is provided inside the refrigerant discharge pipe,
The fixed wing has an axis extending along the central axis;
a spiral plate connected to the outer peripheral surface of the shaft, extending from the shaft toward the inner peripheral surface of the refrigerant discharge pipe, and spirally extending along the central axis;
Each of the spiral plates arranged adjacent to each other in the refrigerant discharge pipe is arranged so as to sandwich an outer circumferential surface of the shaft in a circumferential direction of the shaft. 7. The oil separator according to any one of 1 to 6. - 請求項1~7のいずれか一項に記載の油分離器を備えた、冷凍サイクル装置。 A refrigeration cycle device comprising the oil separator according to any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/029922 WO2024029028A1 (en) | 2022-08-04 | 2022-08-04 | Oil separator and refrigeration cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/029922 WO2024029028A1 (en) | 2022-08-04 | 2022-08-04 | Oil separator and refrigeration cycle device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024029028A1 true WO2024029028A1 (en) | 2024-02-08 |
Family
ID=89848935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/029922 WO2024029028A1 (en) | 2022-08-04 | 2022-08-04 | Oil separator and refrigeration cycle device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024029028A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04110575A (en) * | 1990-08-30 | 1992-04-13 | Toshiba Corp | Accumulator |
JPH1019423A (en) * | 1996-07-05 | 1998-01-23 | Matsushita Refrig Co Ltd | Oil separator |
WO2018207274A1 (en) * | 2017-05-10 | 2018-11-15 | 三菱電機株式会社 | Oil separation device and refrigeration cycle device |
WO2019130393A1 (en) * | 2017-12-25 | 2019-07-04 | 三菱電機株式会社 | Separator and refrigeration cycle device |
WO2019229814A1 (en) * | 2018-05-28 | 2019-12-05 | 三菱電機株式会社 | Oil separator and refrigeration cycle device |
-
2022
- 2022-08-04 WO PCT/JP2022/029922 patent/WO2024029028A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04110575A (en) * | 1990-08-30 | 1992-04-13 | Toshiba Corp | Accumulator |
JPH1019423A (en) * | 1996-07-05 | 1998-01-23 | Matsushita Refrig Co Ltd | Oil separator |
WO2018207274A1 (en) * | 2017-05-10 | 2018-11-15 | 三菱電機株式会社 | Oil separation device and refrigeration cycle device |
WO2019130393A1 (en) * | 2017-12-25 | 2019-07-04 | 三菱電機株式会社 | Separator and refrigeration cycle device |
WO2019229814A1 (en) * | 2018-05-28 | 2019-12-05 | 三菱電機株式会社 | Oil separator and refrigeration cycle device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4356214B2 (en) | Oil separator and outdoor unit | |
US8429930B2 (en) | Oil separator | |
EP2778569B1 (en) | Air conditioner | |
US8372172B2 (en) | Gas-liquid separator and air conditioner equipped with the same | |
KR20110119553A (en) | Gas-liquid separator and refrigerating apparatus equipped therewith | |
JP2009174836A (en) | Gas-liquid separation device and refrigeration system equipped therewith | |
WO2014103436A1 (en) | Refrigeration cycle device | |
EP1876401A1 (en) | Refrigeration device | |
JP5757415B2 (en) | Refrigeration equipment such as air conditioners | |
JP2008101831A (en) | Oil separator | |
JP2009008349A (en) | Gas-liquid separator | |
JP7012839B2 (en) | Oil separator and refrigeration cycle equipment | |
WO2024029028A1 (en) | Oil separator and refrigeration cycle device | |
KR101340532B1 (en) | Oil separator and air conditioner comprising the same | |
JP6169199B2 (en) | Heat exchanger and refrigeration cycle apparatus | |
JP7343611B2 (en) | Gas-liquid separation equipment and refrigeration cycle equipment | |
JP7130838B2 (en) | Gas-liquid separator and refrigeration cycle equipment | |
KR101785669B1 (en) | Oil separator and Air conditioner having it | |
JPWO2019021431A1 (en) | Refrigeration cycle device | |
JP2022054729A (en) | Oil separator and air conditioner | |
WO2020217418A1 (en) | Gas-liquid separation device and refrigeration cycle device | |
WO2020217419A1 (en) | Gas-liquid separation device and refrigeration cycle device | |
KR20210092058A (en) | Oil seperator for air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22954017 Country of ref document: EP Kind code of ref document: A1 |