WO2020217418A1 - Gas-liquid separation device and refrigeration cycle device - Google Patents

Gas-liquid separation device and refrigeration cycle device Download PDF

Info

Publication number
WO2020217418A1
WO2020217418A1 PCT/JP2019/017756 JP2019017756W WO2020217418A1 WO 2020217418 A1 WO2020217418 A1 WO 2020217418A1 JP 2019017756 W JP2019017756 W JP 2019017756W WO 2020217418 A1 WO2020217418 A1 WO 2020217418A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
central axis
container
separation device
Prior art date
Application number
PCT/JP2019/017756
Other languages
French (fr)
Japanese (ja)
Inventor
駿 加藤
伊東 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/017756 priority Critical patent/WO2020217418A1/en
Priority to JP2021515431A priority patent/JP7204899B2/en
Publication of WO2020217418A1 publication Critical patent/WO2020217418A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a gas-liquid separation device and a refrigeration cycle device.
  • an oil separator is used to separate the oil from the oil-containing refrigerant discharged from the compressor and return the oil to the compressor.
  • the gaseous refrigerant and the liquid oil are separated. That is, the gas-liquid two-phase flow in which gas and liquid are mixed is separated into gas and liquid.
  • the gas-liquid separator that separates the gas-liquid two-phase flow into gas and liquid is not limited to oil separators, but is used in various devices.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-324561
  • a gas-liquid separator that separates water from waste hydrogen gas and waste air used in a reaction in a fuel cell body.
  • a plurality of spiral swivel blades are provided on the peripheral surface of the shaft arranged inside the receiving duct over the circumferential direction of the shaft.
  • a swirling flow is generated by a plurality of spiral swivel blades. Gas and liquid are separated by the centrifugal force of this swirling flow.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a gas-liquid separation device and a refrigeration cycle device capable of improving the separation efficiency of gas and liquid.
  • the gas-liquid separation device of the present invention separates a gas-liquid two-phase fluid into a gas and a liquid.
  • the gas-liquid separation device includes a container, an inflow pipe, a liquid discharge pipe, a gas discharge pipe, and a swirl vane.
  • the container extends along a central axis extending vertically and has an inner wall surface surrounding the central axis.
  • the inflow pipe has an inflow port for flowing a gas-liquid two-phase fluid into the container.
  • the liquid discharge pipe has a liquid discharge port for discharging the liquid separated from the gas-liquid two-phase fluid from the container.
  • the gas discharge pipe has a gas discharge port for discharging the gas separated from the gas-liquid two-phase fluid from the container.
  • the swivel blades are arranged in the container.
  • the inflow port of the inflow pipe is arranged above the swirl vane.
  • the liquid discharge port of the liquid discharge pipe is arranged below the swirl vane.
  • the gas discharge port of the gas discharge pipe is located below the swirl vane and above the liquid discharge port.
  • the swivel blades include a plurality of spiral plates, each of which extends spirally along a central axis. Each of the plurality of spiral plates is arranged so as to deviate from the central axis when viewed from the direction along the central axis.
  • each of the plurality of spiral plates is arranged so as to deviate from the central axis when viewed from the direction along the central axis. Therefore, it is possible to suppress a decrease in the flow velocity of the gas-liquid two-phase fluid around the central axis. This makes it possible to prevent the liquid from collecting around the central axis. Therefore, the separation efficiency of gas and liquid can be improved.
  • FIG. 1 It is a refrigerant circuit diagram of the refrigerating cycle apparatus provided with the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention. It is a perspective view which shows the structure which the swirl vane of the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention is arranged in a container. It is a perspective view which shows the swirling vane of the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention. It is sectional drawing which follows the VV line of FIG. It is sectional drawing which follows the VI-VI line of FIG. It is a top view of FIG.
  • FIG. 1 It is a conceptual diagram of the swirl vane of the gas-liquid separation device which concerns on Embodiment 1 of this invention. It is sectional drawing for demonstrating how the gas and the liquid are separated in the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention. It is sectional drawing for demonstrating how the gas and the liquid are separated in the gas-liquid separation apparatus of the comparative example. It is a perspective view which shows the structure which the swirl vane of the modification of the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention is arranged in a container. It is a perspective view which shows the swirling vane of the modification of the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention. It is sectional drawing which follows the XIII-XIII line of FIG.
  • FIG. 15 is a top view of FIG. It is a conceptual diagram of the swirl vane of the gas-liquid separation device which concerns on Embodiment 2 of this invention.
  • FIG. 2 is a cross-sectional view taken along the line XXIV-XXIV of FIG. It is sectional drawing which follows the XXV-XXV line of FIG.
  • FIG. 1 is a refrigerant circuit diagram of the refrigeration cycle device 100 according to the present embodiment.
  • the refrigeration cycle device 100 in the present embodiment is, for example, an air conditioner. Further, an oil separator will be described as an example of the gas-liquid separator 10.
  • the refrigerating cycle apparatus 100 in the present embodiment includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow rate adjusting valve 4, an indoor heat exchanger 5, and gas. It mainly includes a liquid separator (oil separator) 10.
  • the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the flow rate regulating valve 4, the indoor heat exchanger 5, and the gas-liquid separator 10 are connected by pipes. In this way, the refrigerant circuit of the refrigeration cycle device 100 is configured.
  • a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow rate adjusting valve 4, and a gas-liquid separator 10 are arranged in the outdoor unit unit 100a.
  • the indoor heat exchanger 5 is arranged in the indoor unit unit 100b.
  • the outdoor unit unit 100a and the indoor unit 100b are connected by extension pipes 6a and 6b.
  • the compressor 1 is configured to compress and discharge the sucked refrigerant.
  • the compressor 1 is configured to compress the refrigerant flowing into the outdoor heat exchanger 3 or the indoor heat exchanger 5.
  • the compressor 1 may be a constant-speed compressor having a constant compression capacity, or may be an inverter compressor having a variable compression capacity. This inverter compressor is configured so that the rotation speed can be variably controlled.
  • the four-way valve 2 is configured to switch the flow of the refrigerant. Specifically, the four-way valve 2 is configured to switch the flow of the refrigerant to the outdoor heat exchanger 3 or the indoor heat exchanger 5 depending on the heating operation and the cooling operation.
  • the outdoor heat exchanger 3 is connected to the four-way valve 2 and the flow rate adjusting valve 4.
  • the outdoor heat exchanger 3 is a condenser that condenses the refrigerant compressed by the compressor 1 during the cooling operation. Further, the outdoor heat exchanger 3 is an evaporator that evaporates the refrigerant decompressed by the flow rate adjusting valve 4 during the heating operation.
  • the outdoor heat exchanger 3 is for exchanging heat between the refrigerant and air.
  • the outdoor heat exchanger 3 includes, for example, a pipe (heat transfer tube) through which the refrigerant flows inside, and fins attached to the outside of the pipe.
  • the flow rate adjusting valve 4 is connected to the outdoor heat exchanger 3 and the indoor heat exchanger 5.
  • the flow rate adjusting valve 4 is a throttle device that reduces the pressure of the refrigerant condensed by the outdoor heat exchanger 3 during the cooling operation. Further, the flow rate adjusting valve 4 is a throttle device for reducing the pressure of the refrigerant condensed by the indoor heat exchanger 5 during the heating operation.
  • the flow rate adjusting valve 4 is, for example, a capillary tube, an electronic expansion valve, or the like.
  • the indoor heat exchanger 5 is connected to the four-way valve 2 and the flow rate adjusting valve 4.
  • the indoor heat exchanger 5 is an evaporator that evaporates the refrigerant decompressed by the flow rate adjusting valve 4 during the cooling operation.
  • the indoor heat exchanger 5 is a condenser that condenses the refrigerant compressed by the compressor 1 during the heating operation.
  • the indoor heat exchanger 5 is for exchanging heat between the refrigerant and air. It includes an indoor heat exchanger 5, for example, a pipe (heat transfer tube) through which a refrigerant flows inside, and fins attached to the outside of the pipe.
  • the gas-liquid separation device 10 is connected to the downstream side of the discharge pipe of the compressor 1.
  • the gas-liquid separation device 10 is configured to separate a gas-liquid two-phase fluid into a gas and a liquid.
  • the oil separator as the gas-liquid separator 10 is configured to separate oil from the oil-containing refrigerant discharged from the compressor 1. Further, the oil separator as the gas-liquid separator 10 is connected to the upstream side of the suction pipe of the compressor 1 so as to return the oil separated from the oil-containing refrigerant to the compressor 1.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the gas-liquid separation device 10 according to the present embodiment.
  • the gas-liquid separation device 10 according to the present embodiment includes a container 11, an inflow pipe 12, a liquid discharge pipe 13, a gas discharge pipe 14, and a swirl vane 15. There is.
  • a separation method using a swirling downward flow is used.
  • the gas-liquid separation device 10 according to the present embodiment has an inflow unit 10a, a separation unit 10b, a run-up section 10c1, a transition unit 10c2, and a liquid collection unit (oil collection unit) 10d. ..
  • the inflow portion 10a is a portion where the gas-liquid two-phase fluid flows into the gas-liquid separation device 10.
  • the inflow portion 10a is composed of an inflow pipe 12.
  • the separation unit 10b is a portion that separates the gas-liquid two-phase fluid into a gas and a liquid.
  • the separating portion 10b is composed of an upper portion of the container 11 and a swirling vane 15.
  • the approach section 10c1 is a section between the gas discharge pipe 14 and the swirl vane 15.
  • the approach section 10c1 is provided in the transition portion 10c2.
  • the transition portion 10c2 is a portion where the gas is separated and discharged from the gas discharge pipe 14.
  • the transition portion 10c2 is composed of a central portion of the container 11 and an upper portion of the gas discharge pipe 14.
  • the liquid collecting part (oil collecting part) 10d is a part for collecting the separated liquids.
  • the liquid collecting portion (oil collecting portion) 10d is composed of a lower portion of the container 11 and a central portion of the gas discharge pipe 14.
  • the liquid discharge pipe 13 is connected to the liquid collecting portion (oil collecting portion) 10d.
  • the container 11 extends along the central axis CL extending vertically.
  • the central axis CL of the container 11 extends in the vertical direction.
  • the container 11 has an internal space.
  • the container 11 has an inner wall surface IS surrounding the central axis CL.
  • the inner wall surface IS of the container 11 is configured so that the cross section orthogonal to the central axis CL has a circular shape.
  • the container 11 is configured so that the diameters (inner diameter and outer diameter) of the separating portion 10b and the transition portion 10c2 are equal to each other, and the diameter of the liquid collecting portion (oil collecting portion) 10d is larger than that of the transition portion 10c2. It is configured in.
  • the inflow pipe 12 is connected to the discharge side of the compressor 1 shown in FIG.
  • the inflow pipe 12 is connected to the upper end of the container 11.
  • the inflow pipe 12 is arranged coaxially with the central axis CL of the container 11.
  • the inflow pipe 12 penetrates the ceiling portion of the container 11.
  • the inflow pipe 12 is configured to allow a gas-liquid two-phase fluid to flow into the container 11.
  • the inflow pipe 12 has an inflow port 12a for flowing a gas-liquid two-phase fluid into the container 11.
  • the inflow pipe 12 is configured to allow the oil-containing refrigerant to flow into the container 11.
  • the inflow port 12a of the inflow pipe 12 is arranged above the swirl vane 15.
  • the liquid discharge pipe 13 is connected to the oil return pipe 20 shown in FIG.
  • the liquid discharge pipe 13 is connected to the lower end of the container 11.
  • the liquid discharge pipe 13 is arranged at a position different from the central axis CL of the container 11.
  • the liquid discharge pipe 13 penetrates the bottom of the container 11.
  • the liquid discharge pipe 13 is configured to discharge the liquid separated from the gas-liquid two-phase fluid from the container 11.
  • the liquid discharge pipe 13 has a liquid discharge port 13a for discharging the liquid separated from the gas-liquid two-phase fluid from the container 11.
  • the liquid discharge pipe 13 is configured to discharge the oil separated from the oil-containing refrigerant from the container 11.
  • the liquid discharge port 13a of the liquid discharge pipe 13 is arranged below the swirl vane 15.
  • the gas discharge pipe 14 is connected to the four-way valve 2 shown in FIG.
  • the gas discharge pipe 14 is connected to the lower side of the container 11.
  • the gas discharge pipe 14 is arranged coaxially with the central axis CL of the container 11.
  • the gas discharge pipe 14 penetrates the bottom of the container 11.
  • the gas discharge pipe 14 has a gas discharge port 14a for discharging the gas separated from the gas-liquid two-phase fluid from the container 11.
  • the gas discharge pipe 14 is configured to discharge the refrigerant in which the oil is separated from the oil-containing refrigerant from the container 11.
  • the gas discharge port 14a is arranged so as to overlap the central axis CL.
  • the gas discharge port 14a of the gas discharge pipe 14 is located below the swirling vane 15 and above the liquid discharge port 13a. That is, the gas discharge port 14a of the gas discharge pipe 14 is arranged between the swivel blade 15 and the liquid discharge port 13a in the vertical direction.
  • the gas discharge port 14a is provided at the tip of the gas discharge pipe 14 arranged in the container 11.
  • the gas discharge port 14a is arranged directly below the swirl vane 15.
  • the gas discharge port 14a is arranged so as to have a run-up section 10c1 between it and the swirl vane 15 in the vertical direction.
  • the gas discharge pipe 14 has an outer diameter smaller than the inner diameter of the container 11.
  • the swirling blade 15 is configured to flow the gas-liquid two-phase fluid from above to below while swirling.
  • the swirling blade 15 is configured to generate a swirling flow.
  • the swirling blade 15 is configured to flow the liquid separated from the gas-liquid two-phase fluid by the swirling force of the swirling flow from above to below while orbiting along the inner wall surface IS.
  • the swivel blade 15 is arranged in the container 11.
  • the swivel blade 15 is arranged on the upper side inside the container 11.
  • the swivel vane 15 is arranged directly below the inflow port 12a of the inflow pipe 12.
  • FIG. 3 is a perspective view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11.
  • the swirl vane 15 has a plurality of spiral plates 15a.
  • FIG. 4 is a perspective view schematically showing the configuration of the swivel vane 15.
  • each of the plurality of spiral plates 15a is configured to extend spirally along the central axis CL.
  • Each of the plurality of spiral plates 15a is configured to generate a swirling force with respect to the gas-liquid two-phase fluid.
  • the plurality of spiral plates 15a are configured to be spirally twisted at a rotation angle of 180 degrees about the central axis CL.
  • both ends of each of the plurality of spiral plates 15a are in contact with the inner wall surface IS of the container 11.
  • each end face of the plurality of spiral plates 15a is formed in an arc shape.
  • Each of the plurality of spiral plates 15a is curved so as to project from the central axis CL toward the inner wall surface IS of the container 11.
  • the swivel blade 15 has four spiral plates 15a.
  • the number of spiral plates 15a of the swivel blade 15 is not limited to four.
  • the swirl vane 15 has a first spiral plate 15a1, a second spiral plate 15a2, a third spiral plate 15a3, and a fourth spiral plate 15a4.
  • the first spiral plate 15a1 is arranged in the center of the container 11 when viewed from the direction along the central axis CL. Both ends of the first spiral plate 15a1 are in contact with the inner wall surface IS at the position where the inner diameter of the container 11 is maximized when viewed from the direction along the central axis CL.
  • the length of the first spiral plate 15a1 in the radial direction of the container 11 is the maximum dimension of the inner diameter of the container 11.
  • the second spiral plate 15a2 is arranged in the center of the container 11 when viewed from the direction along the central axis CL. Both ends of the second spiral plate 15a2 are in contact with the inner wall surface IS at the position where the inner diameter of the container 11 is maximized when viewed from the direction along the central axis CL.
  • the length of the second spiral plate 15a2 in the radial direction of the container 11 is the maximum dimension of the inner diameter of the container 11.
  • the first spiral plate 15a1 and the second spiral plate 15a2 are arranged so as to face each other.
  • the first spiral plate 15a1 and the second spiral plate 15a2 are curved so as to project in opposite directions when viewed from the direction along the central axis CL.
  • a first flow path F1 is provided between the first spiral plate 15a1 and the second spiral plate 15a2.
  • the first flow path F1 is surrounded by a first spiral plate 15a1 and a second spiral plate 15a2.
  • the first flow path F1 is formed in a substantially elliptical shape when viewed from the direction along the central axis CL.
  • the first flow path F1 extends spirally along the central axis CL.
  • the first flow path F1 is configured to twist spirally around the central axis CL.
  • the third spiral plate 15a3 is arranged outside the first spiral plate 15a1.
  • the third spiral plate 15a3 is arranged on the side opposite to the central axis CL with respect to the first spiral plate 15a1.
  • the third spiral plate 15a3 is arranged between the first spiral plate 15a1 and the inner wall surface IS of the container 11.
  • the third spiral plate 15a3 is arranged along the first spiral plate 15a1 with a gap between the third spiral plate 15a3 and the first spiral plate 15a1.
  • a second flow path F2 is provided between the first spiral plate 15a1 and the third spiral plate 15a3.
  • the second flow path F2 is an inner wall surface IS of the container 11 located between the first spiral plate 15a1, the third spiral plate 15a3, the first spiral plate 15a1, and the third spiral plate 15a3. Surrounded by.
  • the second flow path F2 extends spirally along the central axis CL.
  • the second flow path F2 is configured to twist spirally around the central axis CL.
  • the fourth spiral plate 15a4 is arranged outside the second spiral plate 15a2.
  • the fourth spiral plate 15a4 is arranged on the side opposite to the central axis CL with respect to the second spiral plate 15a2.
  • the fourth spiral plate 15a4 is arranged between the second spiral plate 15a2 and the inner wall surface IS of the container 11.
  • the fourth spiral plate 15a4 is arranged along the second spiral plate 15a2 with a gap between the fourth spiral plate 15a4 and the second spiral plate 15a2.
  • a third flow path F3 is provided between the second spiral plate 15a2 and the fourth spiral plate 15a4.
  • the third flow path F3 is an inner wall surface IS of the container 11 located between the second spiral plate 15a2, the fourth spiral plate 15a4, the second spiral plate 15a2, and the fourth spiral plate 15a4. It is surrounded by.
  • the third flow path F3 extends spirally along the central axis CL.
  • the third flow path F3 is configured to twist spirally around the central axis CL.
  • a fourth flow path F4 is provided between the third spiral plate 15a3 and the inner wall surface IS of the container 11.
  • the fourth flow path F4 is surrounded by the third spiral plate 15a3 and the inner wall surface IS of the container 11, and the fourth flow path F4 extends spirally along the central axis CL.
  • the fourth flow path F4 is configured to twist spirally around the central axis CL.
  • a fifth flow path F5 is provided between the fourth spiral plate 15a4 and the inner wall surface IS of the container 11.
  • the fifth flow path F5 is surrounded by the fourth spiral plate 15a4 and the inner wall surface IS of the container 11.
  • the fifth flow path F5 extends spirally along the central axis CL.
  • the fifth flow path F5 is configured to twist spirally around the central axis CL.
  • FIG. 5 is a cross-sectional view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11.
  • FIG. 5 is a cross section that passes through the central axis CL and passes through the short direction of the first flow path F1 when the swivel blade 15 is viewed from above to downward along the central axis CL.
  • FIG. 6 is a cross-sectional view schematically showing a configuration in which the swirl vanes 15 are arranged in the container 11 in a cross section orthogonal to the cross-sectional position of FIG.
  • FIG. 6 is a cross section that passes through the central axis CL and passes through the longitudinal direction of the first flow path F1 when the swivel vane 15 is viewed from above to downward along the central axis CL.
  • the swivel vane 15 is provided with a hollow region HP extending along the central axis CL.
  • the hollow region HP is provided from the upper end to the lower end of the swirl vane 15 in the vertical direction.
  • the hollow region HP penetrates the swivel blade 15 in the vertical direction.
  • the swivel blade 15 is provided with a cavity along the central axis CL.
  • FIG. 7 is a top view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11.
  • each of the plurality of spiral plates 15a is arranged so as to deviate from the central axis CL when viewed from the direction along the central axis CL.
  • Each of the plurality of spiral plates 15a does not overlap the central axis CL when viewed from the direction along the central axis CL.
  • the center of the swirl vane 15 is hollow when viewed from the direction along the central axis CL.
  • the swivel blade 15 does not have a shaft in the center. When the swivel blade 15 is viewed from above to below along the central axis CL, the hollow region HP is formed in a circular shape.
  • the swivel blade 15 When the swivel blade 15 is viewed from above to downward along the central axis CL, the other region of the hollow region HP is covered with the swivel blade 15. When the swivel blade 15 is viewed from above to below along the central axis CL, there is no gap other than the hollow region HP.
  • the central CP of the swivel blade 15 is located at the center of gravity of the swivel blade 15 when the swivel blade 15 is viewed from above to downward along the central axis CL.
  • the central CP of the swivel vane 15 is located on the central axis CL of the container 11.
  • the first spiral plate 15a1 is arranged point-symmetrically with the second spiral plate 15a2 with respect to the central CP of the swivel blade 15 when the swivel blade 15 is viewed from above to downward along the central axis CL. Has been done.
  • the third spiral plate 15a3 is arranged point-symmetrically with the fourth spiral plate 15a4 with respect to the central CP of the swivel blade 15 when the swivel blade 15 is viewed from above to downward along the central axis CL. Has been done.
  • FIG. 8 is a conceptual diagram of the swivel blade 15 according to the present embodiment.
  • the swirl vane 15 is configured to have a shape drawn by the cross-sectional shape 101 and the locus 102 when the cross-sectional shape 101 passes through the spiral locus 102.
  • the center of the locus 102 is the center of the x-axis, y-axis, and z-axis in FIG.
  • the x-axis corresponds to the front-rear direction of the swivel vane 15
  • the y-axis corresponds to the left-right direction of the swivel vane
  • the z-axis corresponds to the vertical direction of the swivel vane 15.
  • the cross-sectional shape 101 orthogonal to the central axis CL of the swivel vane 15 becomes similar when the cross-sectional shape 101 in any cross section is rotated about the central axis CL. That is, the cross-sectional shape 101 orthogonal to the central axis CL of the swirl vane 15 has a similar shape in any cross section.
  • the area S1 of the first flow path F1 is larger than the area S2 of each of the second flow path F2 and the third flow path F3, and the area S2 is each of the fourth flow path F4 and the fifth flow path F5. Area is larger than S3.
  • the solid line arrow in the figure indicates the refrigerant flow during the cooling operation
  • the broken line arrow in the figure indicates the refrigerant flow during the heating operation.
  • the refrigeration cycle device 100 of the present embodiment can selectively perform a cooling operation and a heating operation.
  • the refrigerant circulates in the refrigerant circuit in the order of the compressor 1, the gas-liquid separator (oil separator) 10, the four-way valve 2, the outdoor heat exchanger 3, the flow rate adjusting valve 4, and the indoor heat exchanger 5.
  • the outdoor heat exchanger 3 functions as a condenser
  • the indoor heat exchanger 5 functions as an evaporator.
  • the refrigerant circulates in the refrigerant circuit in the order of the compressor 1, the gas-liquid separator 10, the four-way valve 2, the indoor heat exchanger 5, the flow rate adjusting valve 4, and the outdoor heat exchanger 3.
  • the indoor heat exchanger 5 functions as a condenser
  • the outdoor heat exchanger 3 functions as an evaporator.
  • the compressor 1 When the compressor 1 is driven, the refrigerant in a high-temperature and high-pressure gas state is discharged from the compressor 1.
  • This refrigerant contains oil that lubricates the inside of the compressor. That is, this refrigerant is an oil-containing refrigerant.
  • the oil-containing refrigerant in a high-temperature and high-pressure gas state discharged from the compressor 1 flows into the gas-liquid separator 10.
  • the gas-liquid separator 10 separates the oil from the oil-containing refrigerant.
  • the refrigerant from which the oil has been separated by the gas-liquid separator 10 flows into the outdoor heat exchanger 3 via the four-way valve 2. In the outdoor heat exchanger 3, heat exchange is performed between the gas refrigerant that has flowed in and the outdoor air.
  • the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant sent out from the outdoor heat exchanger 3 becomes a two-phase refrigerant of a low-pressure gas refrigerant and a liquid refrigerant by the flow rate adjusting valve 4.
  • the two-phase refrigerant flows into the indoor heat exchanger 5.
  • heat exchange is performed between the flowing two-phase refrigerant and the indoor air.
  • the liquid refrigerant evaporates from the two-phase refrigerant to become a low-pressure gas refrigerant. This heat exchange cools the room.
  • the low-pressure gas refrigerant sent out from the indoor heat exchanger 5 flows into the compressor 1 via the four-way valve 2, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 1 again. Hereinafter, this cycle is repeated.
  • the heating operation will be explained in detail.
  • the oil-containing refrigerant in a high-temperature and high-pressure gas state is discharged from the compressor 1.
  • the oil-containing refrigerant in a high-temperature and high-pressure gas state discharged from the compressor 1 flows into the gas-liquid separator 10.
  • the gas-liquid separator 10 separates the oil from the oil-containing refrigerant.
  • the refrigerant from which the oil has been separated by the gas-liquid separator 10 flows into the indoor heat exchanger 5 via the four-way valve 2.
  • the indoor heat exchanger 5 heat exchange is performed between the flowing refrigerant and the indoor air.
  • the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant. This heat exchange warms the room.
  • the high-pressure liquid refrigerant sent out from the indoor heat exchanger 5 becomes a two-phase refrigerant of a low-pressure gas refrigerant and a liquid refrigerant by the flow rate adjusting valve 4.
  • the two-phase refrigerant flows into the outdoor heat exchanger 3.
  • heat exchange is performed between the flowing two-phase refrigerant and the outdoor air.
  • the liquid refrigerant evaporates from the two-phase refrigerant to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant sent out from the outdoor heat exchanger 3 flows into the compressor 1 via the four-way valve 2, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 1 again.
  • this cycle is repeated.
  • FIG. 9 is a cross-sectional view for explaining how the gas (refrigerant) and the liquid (oil) are separated in the gas-liquid separation device 10 according to the present embodiment.
  • the flow of the oil-containing refrigerant is indicated by a white arrow
  • the flow of the refrigerant is indicated by a solid arrow
  • the flow of oil is indicated by a broken line arrow.
  • the oil-containing refrigerant discharged from the compressor 1 is separated into a refrigerant and oil by the gas-liquid separator 10.
  • the oil-containing refrigerant includes a refrigerant and oil (refrigerator oil) sealed in the compressor 1.
  • the refrigerant separated from the oil-containing refrigerant by the gas-liquid separator 10 is discharged to the four-way valve 2.
  • the oil separated from the oil-containing refrigerant by the gas-liquid separator 10 is discharged to the suction side of the compressor 1 through the oil return pipe 20.
  • the swirling flow generated by the plurality of spiral plates 15a of the swirling blades 15 causes the swirling flow.
  • Oil is separated from the oil-containing refrigerant.
  • the oil separated from the oil-containing refrigerant collides with the inner wall surface IS of the container 11 to form a liquid film, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 by gravity and swirling flow. In this way, the oil is collected in the oil collecting unit 10d.
  • the collected oil is discharged from the liquid discharge pipe 13.
  • the oil discharged from the liquid discharge pipe 13 is returned to the suction side of the compressor 1 through the oil return pipe 20.
  • the oil-separated refrigerant is discharged from the gas discharge pipe 14.
  • the refrigerant discharged from the gas discharge pipe 14 flows into the four-way valve 2.
  • FIG. 10 is a cross-sectional view schematically showing the configuration of the gas-liquid separation device 10 of the comparative example.
  • the configuration of the swirling vane 15 is different from that of the swirling vane 15 according to the present embodiment.
  • the swivel blade 15 of the comparative example has a shaft 15s.
  • Each of the plurality of spiral plates 15a is connected to the shaft 15s so as to intersect with each other.
  • the shaft 15s extends linearly in the vertical direction.
  • the shaft 15s of the swivel blade 15 of the comparative example is located on the central axis CL.
  • the swirling vane 15 of the comparative example since the flow velocity of the gas-liquid two-phase fluid around the shaft 15s decreases, the behavior of the liquid gathering around the shaft 15s occurs at the outlet of the swirling vane 15. Therefore, the liquid around the shaft 15s cannot be separated. This liquid falls due to gravity and enters the gas discharge port 14a. As a result, the separation efficiency of gas and liquid decreases.
  • a swirling flow is generated in the gas-liquid two-phase fluid by the plurality of spiral plates 15a of the swirling blades 15.
  • the swirling force of this swirling flow separates the liquid from the gas-liquid two-phase fluid.
  • the separated liquid flows as a liquid surface after colliding with the inner wall surface IS of the container 11, and re-scattering is suppressed. Therefore, the separation efficiency of gas and liquid can be improved.
  • the plurality of spiral plates 15a are arranged so as to deviate from the central axis CL when viewed from the direction along the central axis CL. Therefore, it is possible to suppress a decrease in the flow velocity of the gas-liquid two-phase fluid around the central axis CL. This makes it possible to prevent the liquid from collecting around the central axis CL. Therefore, the separation efficiency of gas and liquid can be improved.
  • the conventional cyclone type separator causes the gas-liquid two-phase fluid to collide vertically with the inner wall surface of the container. That is, the gas-liquid two-phase fluid collides with the inner wall surface in the horizontal direction orthogonal to the vertical direction.
  • the conventional cyclone type separator when the separation distance between the inner wall surface of the container and the gas discharge pipe is short, the separated liquid re-scatters and is sucked into the gas discharge port together with the gas, so that the gas and the liquid are separated. Separation efficiency is reduced. Therefore, it is difficult to miniaturize with a conventional cyclone type separator.
  • the gas-liquid separator 10 according to the present embodiment can be easily miniaturized as compared with the conventional cyclone type separator.
  • the efficiency of returning oil to the compressor 1 can be improved by improving the oil separation efficiency. Therefore, it is possible to prevent seizure of the sliding portion of the compressor 1 due to running out of oil. Further, it is possible to prevent the oil discharged from the compressor 1 from staying in the outdoor heat exchanger 3 and the indoor heat exchanger 5. Therefore, it is possible to suppress a decrease in the coefficient of performance (COP) of the refrigeration cycle apparatus 100.
  • COP coefficient of performance
  • the refrigeration cycle device 100 since the gas-liquid separation device 10 is provided, the separation efficiency between the gas and the liquid can be improved.
  • the modified example of the gas-liquid separation device 10 according to the present embodiment has the same configuration, operation, and effect as the gas-liquid separation device 10 according to the present embodiment. Therefore, the same components as those of the gas-liquid separation device 10 according to the present embodiment are designated by the same reference numerals, and the description will not be repeated.
  • FIG. 11 is a perspective view schematically showing a configuration in which the swirl vanes 15 in the modified example of the gas-liquid separation device 10 according to the present embodiment are arranged in the container 11.
  • FIG. 12 is a perspective view schematically showing the configuration of the swirl vane 15 in the modified example of the gas-liquid separation device 10 according to the present embodiment.
  • FIG. 13 is a cross-sectional view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11.
  • FIG. 13 is a cross section that passes through the central axis CL and passes through the lateral direction of the first flow path F1 when viewed from the direction along the central axis CL.
  • FIG. 14 is a cross-sectional view schematically showing a configuration in which the swirl vanes 15 are arranged in the container 11 in a cross section orthogonal to the cross-sectional position of FIG.
  • FIG. 14 is a cross section that passes through the central axis CL and passes through the longitudinal direction of the first flow path F1 when viewed from the direction along the central axis CL.
  • the configuration of the swirl vane 15 is different from that of the gas-liquid separation device 10 according to the present embodiment. ing.
  • the plurality of spiral plates 15a are configured to be spirally twisted at a rotation angle of 360 degrees about the central axis CL.
  • Embodiment 2 A second embodiment of the present invention will be described with reference to FIGS. 15 to 21. Unless otherwise specified, the second embodiment of the present invention has the same configuration, operation, and effect as the first embodiment of the present invention. Therefore, the same components as those in the first embodiment of the present invention will be designated by the same reference numerals, and the description will not be repeated.
  • FIG. 15 is a perspective view schematically showing a configuration in which the swivel blade 15 according to the present embodiment is arranged in the container 11. For convenience of explanation, in FIG. 15, the portions above and below the swivel blade 15 of the container 11 are not shown.
  • FIG. 16 is a perspective view schematically showing the configuration of the swivel blade 15 according to the present embodiment.
  • the swivel blade 15 includes a plurality of spiral plates 15a and a hollow cylindrical portion 15b.
  • Each of the plurality of spiral plates 15a is configured to extend spirally along the central axis CL.
  • the plurality of spiral plates 15a are arranged at equal angles around the central axis CL.
  • the plurality of spiral plates 15a are arranged so as to intersect each other via the hollow cylindrical portion 15b.
  • the swivel blade 15 has six spiral plates 15a. When the swirl vanes 15 are viewed from above to below along the central axis CL, two spiral plates 15a out of the six spiral plates 15a are arranged in a straight line via the hollow cylindrical portion 15b. Has been done.
  • the hollow cylindrical portion 15b is configured to surround the hollow region HP around the central axis CL.
  • the hollow region HP extends along the central axis CL.
  • the hollow region HP is arranged linearly from the upper end to the lower end of the swirl vane 15.
  • the hollow region HP constitutes the inner flow path F10.
  • the hollow cylindrical portion 15b is configured to extend along the central axis CL.
  • the hollow cylindrical portion 15b is formed in a cylindrical shape.
  • the central axis of the hollow cylindrical portion 15b is arranged coaxially with the central axis CL of the container 11.
  • the hollow region HP of the hollow cylindrical portion 15b is arranged so as to overlap the central axis CL when viewed from the direction along the central axis CL.
  • the hollow region HP is located at the center CP of the swivel blade 15 when the swivel blade 15 is viewed from above to downward along the central axis CL.
  • Each of the plurality of spiral plates 15a extends from the hollow cylindrical portion 15b toward the inner wall surface IS of the container 11. One end (first end) of each of the plurality of spiral plates 15a is in contact with the hollow cylindrical portion 15b, and the other end (second end) of each of the plurality of spiral plates 15a is in contact with the inner wall surface IS of the container 11. ing.
  • the swivel blade 15 includes the peripheral wall portion 15c.
  • the peripheral wall portion 15c is configured to surround the hollow cylindrical portion 15b around the central axis CL and extend along the central axis CL.
  • the peripheral wall portion 15c is formed in a substantially cylindrical shape.
  • the central axis of the peripheral wall portion 15c is arranged coaxially with the central axis CL of the container 11.
  • the peripheral wall portion 15c includes a plurality of peripheral wall portions separated by a plurality of spiral plates 15a.
  • the peripheral wall portion 15c is arranged in the radial direction of the container 11 with a gap between it and the inner wall surface IS of the container 11 and a gap between it and the hollow cylindrical portion 15b.
  • the peripheral wall portion 15c is arranged closer to the inner wall surface IS of the container 11 than the hollow cylindrical portion 15b in the radial direction of the container 11.
  • the peripheral wall portion 15c is configured to connect adjacent spiral plates 15a among a plurality of spiral plates 15a around the central axis CL.
  • FIG. 17 is a cross-sectional view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11.
  • FIG. 18 is a cross-sectional view schematically showing a configuration in which the swirl vanes 15 are arranged in the container 11 in a cross section orthogonal to the cross-sectional position of FIG.
  • a plurality of intermediate flow paths F20 are provided between the hollow cylindrical portion 15b and the peripheral wall portion 15c.
  • the plurality of intermediate flow paths F20 are separated by each of the plurality of spiral plates 15a.
  • Each of the plurality of intermediate flow paths F20 is arranged side by side around the central axis CL.
  • Each of the plurality of intermediate flow paths F20 extends spirally along the central axis CL.
  • Each of the plurality of intermediate flow paths F20 is configured to twist spirally around the central axis CL.
  • Each of the plurality of intermediate flow paths F20 is arranged point-symmetrically with respect to the central axis CL.
  • a plurality of outer flow paths F30 are provided between the peripheral wall portion 15c and the inner wall surface IS of the container 11.
  • the plurality of outer flow paths F30 are separated by each of the plurality of spiral plates 15a.
  • Each of the plurality of outer flow paths F30 is arranged side by side around the central axis CL.
  • Each of the plurality of outer flow paths F30 extends spirally along the central axis CL.
  • Each of the plurality of outer flow paths F30 is configured to twist spirally around the central axis CL.
  • Each of the plurality of outer flow paths F30 is arranged point-symmetrically with respect to the central axis CL.
  • FIG. 19 is a top view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11. As shown in FIG. 19, the plurality of spiral plates 15a are arranged so as to deviate from the central axis CL when viewed from the direction along the central axis CL.
  • the area of the hollow region HP of the hollow cylindrical portion 15b is defined as the first area S10 when viewed from the direction along the central axis CL, and the hollow cylindrical portion 15b, the peripheral wall portion 15c, and a plurality of spirals.
  • the area of each region surrounded by the shape plate 15a is defined as the second area S20, and the area of each of the regions surrounded by the peripheral wall portion 15c, the inner wall surface IS of the container 11, and the plurality of spiral plates 15a is the third area S30.
  • the first area S10 is larger than the second area S20, and the second area S20 is larger than the third area S30.
  • FIG. 20 is a conceptual diagram of the swivel blade 15 according to the present embodiment.
  • the swivel vane 15 is configured to have a shape drawn by the cross-sectional shape 101 and the locus 102 when the cross-sectional shape 101 passes through the spiral locus 102.
  • the center of the locus 102 is the center of the x-axis, y-axis, and z-axis in FIG.
  • the x-axis corresponds to the front-rear direction of the swivel vane 15
  • the y-axis corresponds to the left-right direction of the swivel vane
  • the z-axis corresponds to the vertical direction of the swivel vane 15.
  • the cross-sectional shape 101 orthogonal to the central axis CL of the swivel vane 15 becomes similar when the cross-sectional shape 101 in any cross section is rotated about the central axis CL. That is, the cross-sectional shape 101 orthogonal to the central axis CL of the swirl vane 15 has a similar shape in any cross section.
  • FIG. 21 is a schematic view for explaining how the gas and the liquid are separated in the gas-liquid separation device 10.
  • the flow of the gas-liquid two-phase fluid is indicated by a solid arrow.
  • the air flowing through the intermediate flow path F20 and the outer flow path F30 rather than the flow velocity of the gas-liquid two-phase fluid flowing through the inner flow path F10.
  • the flow velocity of the liquid two-phase fluid decreases.
  • the liquid of the gas-liquid two-phase fluid is blown to the inner wall surface IS of the container 11 by the swirling flow generated by the swirling vane and the difference in flow velocity between the inner peripheral portion and the outer peripheral portion of the swirling blade. In this way, the liquid is separated from the gas-liquid two-phase fluid.
  • the hollow region HP of the hollow cylindrical portion 15b is arranged so as to overlap the central axis CL when viewed from the direction along the central axis CL. Therefore, the gas-liquid two-phase fluid that has passed through the hollow region HP of the hollow cylindrical portion 15b can flow to the gas discharge pipe 14 without disturbing the main flow. Therefore, it is possible to reduce the re-scattering of the liquid once separated from the gas-liquid two-phase fluid by the swirling blade 15. As a result, it is possible to suppress a decrease in the separation efficiency between the gas and the liquid.
  • the flow path of the gas-liquid two-phase fluid provided in the swirl vane 15 can be separated by the peripheral wall portion 15c of the swirl vane 15. Therefore, since the number of flow paths of the gas-liquid two-phase fluid can be increased, the separation efficiency between the gas and the liquid can be improved.
  • the first area S10 is larger than the second area S20, and the second area S20 is larger than the third area S30. Therefore, when the gas-liquid two-phase fluid passes through the swirling vanes 15, the flow velocity of the gas-liquid two-phase fluid flowing through the intermediate flow path F20 is lower than the flow velocity of the gas-liquid two-phase fluid flowing through the inner flow path F10. Therefore, the flow velocity of the gas-liquid two-phase fluid flowing through the outer flow path F30 can be made lower than the flow velocity of the gas-liquid two-phase fluid flowing through the intermediate flow path F20.
  • the modified example of the gas-liquid separation device 10 according to the present embodiment has the same configuration, operation, and effect as the gas-liquid separation device 10 according to the present embodiment. Therefore, the same components as those of the gas-liquid separation device 10 according to the present embodiment are designated by the same reference numerals, and the description will not be repeated.
  • FIG. 22 is a perspective view schematically showing a configuration in which the swirl vanes 15 in the modified example of the gas-liquid separation device 10 according to the present embodiment are arranged in the container 11.
  • FIG. 23 is a perspective view schematically showing the configuration of the swirl vane 15 in the modified example of the gas-liquid separation device 10 according to the present embodiment.
  • FIG. 24 is a cross-sectional view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11.
  • FIG. 25 is a cross-sectional view schematically showing a configuration in which the swirl vanes 15 are arranged in the container 11 in a cross section orthogonal to the cross-sectional position of FIG. 24.
  • the modified example of the gas-liquid separation device 10 according to the present embodiment has a different configuration of the swirl vanes 15 than the gas-liquid separation device 10 according to the present embodiment. ing.
  • the plurality of spiral plates 15a are configured to be spirally twisted at a rotation angle of 360 degrees about the central axis CL.
  • Embodiment 3 of the present invention will be described with reference to FIGS. 26 to 27.
  • the third embodiment of the present invention has the same configuration, operation, and effect as the second embodiment of the present invention. Therefore, the same components as those in the second embodiment of the present invention are designated by the same reference numerals, and the description will not be repeated.
  • FIG. 26 is a cross-sectional view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11.
  • the swirl vane 15 is composed of a porous member PM.
  • the porous member PM is configured to be able to move the liquid from the inner flow path F10 to the intermediate flow path F20, and is configured to be able to move the liquid from the intermediate flow path F20 to the outer flow path F30.
  • the porous member PM is made of, for example, a porous material. Further, the porous member PM may be formed by, for example, stacking a plurality of plates provided with a large number of through holes. Further, the porous member PM may be made of, for example, a metal.
  • FIG. 27 is a schematic view for explaining how the gas and the liquid are separated in the gas-liquid separation device 10.
  • the flow of gas-liquid two-phase fluid is indicated by a solid arrow, and the flow of liquid is indicated by a dashed arrow.
  • the liquid of the gas-liquid two-phase fluid is blown to the inner wall surface IS of the container 11 by the swirling flow generated by the swirling vane and the difference in flow velocity between the inner peripheral portion and the outer peripheral portion of the swirling blade. In this way, the liquid is separated from the gas-liquid two-phase fluid.
  • the swirl vane 15 is composed of a porous member PM. Therefore, the liquid can be moved from the inner peripheral portion to the outer peripheral portion of the swirling vane 15. As a result, the liquid can be guided toward the inner wall surface IS of the container 11. Therefore, the separation efficiency of gas and liquid can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

A gas-liquid separation device (10) comprises a container (11), an inflow pipe (12), a liquid discharge pipe (13), a gas discharge pipe (14), and swirl vanes (15). The swirl vanes (14) include a plurality of helical plates (15a) each of which extends in a helical shape along a center axis (CL). Each of the plurality of helical plates (15a) is arranged so as to be offset from the center axis (CL) when viewed from a direction along the center axis (CL).

Description

気液分離装置および冷凍サイクル装置Gas-liquid separator and refrigeration cycle equipment
 本発明は、気液分離装置および冷凍サイクル装置に関するものである。 The present invention relates to a gas-liquid separation device and a refrigeration cycle device.
 従来、一般的な空気調和装置、冷凍装置等の駆動源として使用される圧縮機では、圧縮された高圧冷媒ガスとともに圧縮機内部を潤滑する油が圧縮機外へ排出される。この結果、油切れにより圧縮機の摺動部に焼付きが生じることがある。そこで、圧縮機から吐出された油含有冷媒から油を分離して圧縮機へ返油するために、油分離器が用いられる。この油分離器では、気体状の冷媒と液体状の油とが分離される。つまり、気体と液体とが混在する気液二相流が気体と液体とに分離される。 Conventionally, in a compressor used as a drive source for a general air conditioner, refrigerating device, etc., oil that lubricates the inside of the compressor is discharged to the outside of the compressor together with compressed high-pressure refrigerant gas. As a result, seizure may occur on the sliding portion of the compressor due to running out of oil. Therefore, an oil separator is used to separate the oil from the oil-containing refrigerant discharged from the compressor and return the oil to the compressor. In this oil separator, the gaseous refrigerant and the liquid oil are separated. That is, the gas-liquid two-phase flow in which gas and liquid are mixed is separated into gas and liquid.
 気液二相流を気体と液体とに分離する気液分離装置は、油分離器に限らず、様々な装置に用いられている。たとえば、特開2002-324561号公報(特許文献1)には、燃料電池本体内で反応に使用された排水素ガスおよび排空気から水を分離する気液分離装置が記載されている。この気液分離装置では、受け入れダクトの内部に配置された軸の周面に複数の螺旋状の旋回翼が軸の周方向にわたって設けられている。複数の螺旋状の旋回翼によって旋回流が発生する。この旋回流の遠心力により気体と液体とが分離される。 The gas-liquid separator that separates the gas-liquid two-phase flow into gas and liquid is not limited to oil separators, but is used in various devices. For example, Japanese Patent Application Laid-Open No. 2002-324561 (Patent Document 1) describes a gas-liquid separator that separates water from waste hydrogen gas and waste air used in a reaction in a fuel cell body. In this gas-liquid separation device, a plurality of spiral swivel blades are provided on the peripheral surface of the shaft arranged inside the receiving duct over the circumferential direction of the shaft. A swirling flow is generated by a plurality of spiral swivel blades. Gas and liquid are separated by the centrifugal force of this swirling flow.
特開2002-324561号公報JP-A-2002-324561
 上記公報に記載された気液分離装置では、旋回翼の中心に軸が設けられているため、軸の周りでの気液二相流体の流速が低下する。このため、旋回翼の出口において軸の周りに液体が集まる。したがって、軸の周りの液体を分離することができないため、気体と液体との分離効率が低下する。 In the gas-liquid separator described in the above publication, since the shaft is provided at the center of the swivel blade, the flow velocity of the gas-liquid two-phase fluid around the shaft is reduced. Therefore, the liquid collects around the shaft at the exit of the swivel blade. Therefore, the liquid around the shaft cannot be separated, and the separation efficiency between the gas and the liquid is reduced.
 本発明は上記課題に鑑みてなされたものであり、その目的は、気体と液体との分離効率を向上させることができる気液分離装置および冷凍サイクル装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas-liquid separation device and a refrigeration cycle device capable of improving the separation efficiency of gas and liquid.
 本発明の気液分離装置は、気液二相流体を気体と液体とに分離するものである。気液分離装置は、容器と、流入管と、液体排出管と、気体排出管と、旋回羽根とを備えている。容器は、上下に延びる中心軸に沿って延在し、かつ中心軸を取り囲む内壁面を有する。流入管は、容器内に気液二相流体を流入させる流入口を有する。液体排出管は、気液二相流体から分離された液体を容器から排出する液体排出口を有する。気体排出管は、気液二相流体から分離された気体を容器から排出する気体排出口を有する。旋回羽根は、容器内に配置されている。流入管の流入口は、旋回羽根の上方に配置されている。液体排出管の液体排出口は、旋回羽根の下方に配置されている。気体排出管の気体排出口は、旋回羽根の下方であり、かつ液体排出口よりも上方に配置されている。旋回羽根は、各々が中心軸に沿って螺旋状に延在する複数の螺旋状板を含んでいる。複数の螺旋状板の各々は、中心軸に沿う方向から見て中心軸からずれるように配置されている。 The gas-liquid separation device of the present invention separates a gas-liquid two-phase fluid into a gas and a liquid. The gas-liquid separation device includes a container, an inflow pipe, a liquid discharge pipe, a gas discharge pipe, and a swirl vane. The container extends along a central axis extending vertically and has an inner wall surface surrounding the central axis. The inflow pipe has an inflow port for flowing a gas-liquid two-phase fluid into the container. The liquid discharge pipe has a liquid discharge port for discharging the liquid separated from the gas-liquid two-phase fluid from the container. The gas discharge pipe has a gas discharge port for discharging the gas separated from the gas-liquid two-phase fluid from the container. The swivel blades are arranged in the container. The inflow port of the inflow pipe is arranged above the swirl vane. The liquid discharge port of the liquid discharge pipe is arranged below the swirl vane. The gas discharge port of the gas discharge pipe is located below the swirl vane and above the liquid discharge port. The swivel blades include a plurality of spiral plates, each of which extends spirally along a central axis. Each of the plurality of spiral plates is arranged so as to deviate from the central axis when viewed from the direction along the central axis.
 本発明の気液分離装置によれば、複数の螺旋状板の各々は、中心軸に沿う方向から見て中心軸からずれるように配置されている。このため、中心軸の周りでの気液二相流体の流速低下を抑制することができる。これにより、中心軸の周りに液体が集まることを防止することができる。したがって、気体と液体との分離効率を向上させることができる。 According to the gas-liquid separator of the present invention, each of the plurality of spiral plates is arranged so as to deviate from the central axis when viewed from the direction along the central axis. Therefore, it is possible to suppress a decrease in the flow velocity of the gas-liquid two-phase fluid around the central axis. This makes it possible to prevent the liquid from collecting around the central axis. Therefore, the separation efficiency of gas and liquid can be improved.
本発明の実施の形態1に係る気液分離装置を備えた冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating cycle apparatus provided with the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る気液分離装置を示す断面図である。It is sectional drawing which shows the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る気液分離装置の旋回羽根が容器内に配置された構成を示す斜視図である。It is a perspective view which shows the structure which the swirl vane of the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention is arranged in a container. 本発明の実施の形態1に係る気液分離装置の旋回羽根を示す斜視図である。It is a perspective view which shows the swirling vane of the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention. 図3のV-V線に沿う断面図である。It is sectional drawing which follows the VV line of FIG. 図3のVI-VI線に沿う断面図である。It is sectional drawing which follows the VI-VI line of FIG. 図3の上面図である。It is a top view of FIG. 本発明の実施の形態1に係る気液分離装置の旋回羽根の概念図である。It is a conceptual diagram of the swirl vane of the gas-liquid separation device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る気液分離装置内での気体と液体とが分離される様子を説明するための断面図である。It is sectional drawing for demonstrating how the gas and the liquid are separated in the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention. 比較例の気液分離装置での気体と液体とが分離される様子を説明するための断面図である。It is sectional drawing for demonstrating how the gas and the liquid are separated in the gas-liquid separation apparatus of the comparative example. 本発明の実施の形態1に係る気液分離装置の変形例の旋回羽根が容器内に配置された構成を示す斜視図である。It is a perspective view which shows the structure which the swirl vane of the modification of the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention is arranged in a container. 本発明の実施の形態1に係る気液分離装置の変形例の旋回羽根を示す斜視図である。It is a perspective view which shows the swirling vane of the modification of the gas-liquid separation apparatus which concerns on Embodiment 1 of this invention. 図11のXIII-XIII線に沿う断面図である。It is sectional drawing which follows the XIII-XIII line of FIG. 図11のXIV-XIV線に沿う断面図である。It is sectional drawing which follows the XIV-XIV line of FIG. 本発明の実施の形態2に係る気液分離装置の旋回羽根が容器内に配置された構成を示す斜視図である。It is a perspective view which shows the structure which the swirl vane of the gas-liquid separation apparatus which concerns on Embodiment 2 of this invention is arranged in a container. 本発明の実施の形態2に係る気液分離装置の旋回羽根を示す斜視図である。It is a perspective view which shows the swirling vane of the gas-liquid separation apparatus which concerns on Embodiment 2 of this invention. 図15のXVII-XVII線に沿う断面図である。It is sectional drawing which follows the XVII-XVII line of FIG. 図15のXVIII-XVIII線に沿う断面図である。It is sectional drawing which follows the XVIII-XVIII line of FIG. 図15の上面図である。FIG. 15 is a top view of FIG. 本発明の実施の形態2に係る気液分離装置の旋回羽根の概念図である。It is a conceptual diagram of the swirl vane of the gas-liquid separation device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る気液分離装置内での気体と液体とが分離される様子を説明するための概略図である。It is a schematic diagram for demonstrating how the gas and the liquid are separated in the gas-liquid separation apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る気液分離装置の変形例の旋回羽根が容器内に配置された構成を示す斜視図である。It is a perspective view which shows the structure which the swirl vane of the modification of the gas-liquid separation apparatus which concerns on Embodiment 2 of this invention is arranged in a container. 本発明の実施の形態2に係る気液分離装置の変形例の旋回羽根を示す斜視図である。It is a perspective view which shows the swirling vane of the modification of the gas-liquid separation apparatus which concerns on Embodiment 2 of this invention. 図22のXXIV-XXIV線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line XXIV-XXIV of FIG. 図22のXXV-XXV線に沿う断面図である。It is sectional drawing which follows the XXV-XXV line of FIG. 本発明の実施の形態3に係る気液分離装置の旋回羽根が容器内に配置された構成を示す断面図である。It is sectional drawing which shows the structure which the swirl vane of the gas-liquid separation apparatus which concerns on Embodiment 3 of this invention is arranged in a container. 本発明の実施の形態3に係る気液分離装置内での気体と液体とが分離される様子を説明するための概略図である。It is a schematic diagram for demonstrating how the gas and the liquid are separated in the gas-liquid separation apparatus which concerns on Embodiment 3 of this invention.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下においては、同一または相当する部材および部位に同一の符号を付し、重複する説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, the same or corresponding members and parts will be designated by the same reference numerals, and duplicate description will not be repeated.
 実施の形態1.
 まず、図1を参照して、本発明の実施の形態1に係る冷凍サイクル装置100の構成について説明する。図1は、本実施の形態に係る冷凍サイクル装置100の冷媒回路図である。本実施の形態における冷凍サイクル装置100は、たとえば空気調和装置などである。また、気液分離装置10の一例として油分離器について説明する。
Embodiment 1.
First, the configuration of the refrigeration cycle device 100 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a refrigerant circuit diagram of the refrigeration cycle device 100 according to the present embodiment. The refrigeration cycle device 100 in the present embodiment is, for example, an air conditioner. Further, an oil separator will be described as an example of the gas-liquid separator 10.
 図1に示されるように、本実施の形態における冷凍サイクル装置100は、圧縮機1と、四方弁2と、室外熱交換器3と、流量調整弁4と、室内熱交換器5と、気液分離装置(油分離器)10とを主に備えている。圧縮機1、四方弁2、室外熱交換器3、流量調整弁4、室内熱交換器5および気液分離装置10は配管によって繋がっている。このようにして冷凍サイクル装置100の冷媒回路が構成されている。室外機ユニット100a内に、圧縮機1と、四方弁2と、室外熱交換器3と、流量調整弁4と、気液分離装置10とが配置されている。室内機ユニット100b内に、室内熱交換器5が配置されている。室外機ユニット100aと、室内機ユニット100bとは延長配管6a,6bで接続されている。 As shown in FIG. 1, the refrigerating cycle apparatus 100 in the present embodiment includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow rate adjusting valve 4, an indoor heat exchanger 5, and gas. It mainly includes a liquid separator (oil separator) 10. The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the flow rate regulating valve 4, the indoor heat exchanger 5, and the gas-liquid separator 10 are connected by pipes. In this way, the refrigerant circuit of the refrigeration cycle device 100 is configured. A compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow rate adjusting valve 4, and a gas-liquid separator 10 are arranged in the outdoor unit unit 100a. The indoor heat exchanger 5 is arranged in the indoor unit unit 100b. The outdoor unit unit 100a and the indoor unit 100b are connected by extension pipes 6a and 6b.
 圧縮機1は、吸入した冷媒を圧縮して吐出するように構成されている。圧縮機1は、室外熱交換器3または室内熱交換器5に流入する冷媒を圧縮するように構成されている。圧縮機1は、圧縮容量が一定の一定速圧縮機であってもよく、また圧縮容量が可変のインバーター圧縮機であってもよい。このインバーター圧縮機は、回転数を可変に制御可能に構成されている。 The compressor 1 is configured to compress and discharge the sucked refrigerant. The compressor 1 is configured to compress the refrigerant flowing into the outdoor heat exchanger 3 or the indoor heat exchanger 5. The compressor 1 may be a constant-speed compressor having a constant compression capacity, or may be an inverter compressor having a variable compression capacity. This inverter compressor is configured so that the rotation speed can be variably controlled.
 四方弁2は、冷媒の流れを切り替えるように構成されている。具体的には、四方弁2は、暖房運転時と冷房運転時とによって、室外熱交換器3または室内熱交換器5への冷媒の流れを切り替えるように構成されている。 The four-way valve 2 is configured to switch the flow of the refrigerant. Specifically, the four-way valve 2 is configured to switch the flow of the refrigerant to the outdoor heat exchanger 3 or the indoor heat exchanger 5 depending on the heating operation and the cooling operation.
 室外熱交換器3は、四方弁2と、流量調整弁4とに接続されている。室外熱交換器3は、冷房運転時、圧縮機1により圧縮された冷媒を凝縮する凝縮器となる。また、室外熱交換器3は、暖房運転時、流量調整弁4により減圧された冷媒を蒸発させる蒸発器となる。室外熱交換器3は冷媒と空気との熱交換を行うためのものである。室外熱交換器3は、たとえば冷媒が内側を流れるパイプ(伝熱管)と、パイプの外側に取り付けられたフィンとを備えている。 The outdoor heat exchanger 3 is connected to the four-way valve 2 and the flow rate adjusting valve 4. The outdoor heat exchanger 3 is a condenser that condenses the refrigerant compressed by the compressor 1 during the cooling operation. Further, the outdoor heat exchanger 3 is an evaporator that evaporates the refrigerant decompressed by the flow rate adjusting valve 4 during the heating operation. The outdoor heat exchanger 3 is for exchanging heat between the refrigerant and air. The outdoor heat exchanger 3 includes, for example, a pipe (heat transfer tube) through which the refrigerant flows inside, and fins attached to the outside of the pipe.
 流量調整弁4は、室外熱交換器3と、室内熱交換器5とに接続されている。流量調整弁4は、冷房運転時、室外熱交換器3により凝縮された冷媒を減圧する絞り装置となる。また、流量調整弁4は、暖房運転時、室内熱交換器5により凝縮された冷媒を減圧する絞り装置となる。流量調整弁4は、たとえば、キャピラリーチューブ、電子膨張弁等である。 The flow rate adjusting valve 4 is connected to the outdoor heat exchanger 3 and the indoor heat exchanger 5. The flow rate adjusting valve 4 is a throttle device that reduces the pressure of the refrigerant condensed by the outdoor heat exchanger 3 during the cooling operation. Further, the flow rate adjusting valve 4 is a throttle device for reducing the pressure of the refrigerant condensed by the indoor heat exchanger 5 during the heating operation. The flow rate adjusting valve 4 is, for example, a capillary tube, an electronic expansion valve, or the like.
 室内熱交換器5は、四方弁2と、流量調整弁4とに接続されている。室内熱交換器5は、冷房運転時、流量調整弁4により減圧された冷媒を蒸発させる蒸発器となる。また、室内熱交換器5は、暖房運転時、圧縮機1により圧縮された冷媒を凝縮する凝縮器となる。室内熱交換器5は冷媒と空気との熱交換を行うためのものである。室内熱交換器5、たとえば冷媒が内側を流れるパイプ(伝熱管)と、パイプの外側に取り付けられたフィンとを備えている。 The indoor heat exchanger 5 is connected to the four-way valve 2 and the flow rate adjusting valve 4. The indoor heat exchanger 5 is an evaporator that evaporates the refrigerant decompressed by the flow rate adjusting valve 4 during the cooling operation. Further, the indoor heat exchanger 5 is a condenser that condenses the refrigerant compressed by the compressor 1 during the heating operation. The indoor heat exchanger 5 is for exchanging heat between the refrigerant and air. It includes an indoor heat exchanger 5, for example, a pipe (heat transfer tube) through which a refrigerant flows inside, and fins attached to the outside of the pipe.
 気液分離装置10は、圧縮機1の吐出管の下流側に接続されている。気液分離装置10は、気液二相流体を気体と液体とに分離するように構成されている。本実施の形態では、気液分離装置10としての油分離器は、圧縮機1から吐出された油含有冷媒から油を分離するように構成されている。また、気液分離装置10としての油分離器は、油含有冷媒から分離された油を圧縮機1に返すように、圧縮機1の吸入管の上流側に接続されている。 The gas-liquid separation device 10 is connected to the downstream side of the discharge pipe of the compressor 1. The gas-liquid separation device 10 is configured to separate a gas-liquid two-phase fluid into a gas and a liquid. In the present embodiment, the oil separator as the gas-liquid separator 10 is configured to separate oil from the oil-containing refrigerant discharged from the compressor 1. Further, the oil separator as the gas-liquid separator 10 is connected to the upstream side of the suction pipe of the compressor 1 so as to return the oil separated from the oil-containing refrigerant to the compressor 1.
 続いて、図2~図8を参照して、本実施の形態に係る気液分離装置10の構成について詳しく説明する。 Subsequently, the configuration of the gas-liquid separation device 10 according to the present embodiment will be described in detail with reference to FIGS. 2 to 8.
 図2は、本実施の形態に係る気液分離装置10の構成を概略的に示す断面図である。図2に示されるように、本実施の形態に係る気液分離装置10は、容器11と、流入管12と、液体排出管13と、気体排出管14と、旋回羽根15とを有している。本実施の形態に係る気液分離装置10では、旋回下降流による分離方式が用いられている。また、本実施の形態に係る気液分離装置10は、流入部10aと、分離部10bと、助走区間10c1と、遷移部10c2と、集液部(集油部)10dとを有している。 FIG. 2 is a cross-sectional view schematically showing the configuration of the gas-liquid separation device 10 according to the present embodiment. As shown in FIG. 2, the gas-liquid separation device 10 according to the present embodiment includes a container 11, an inflow pipe 12, a liquid discharge pipe 13, a gas discharge pipe 14, and a swirl vane 15. There is. In the gas-liquid separation device 10 according to the present embodiment, a separation method using a swirling downward flow is used. Further, the gas-liquid separation device 10 according to the present embodiment has an inflow unit 10a, a separation unit 10b, a run-up section 10c1, a transition unit 10c2, and a liquid collection unit (oil collection unit) 10d. ..
 流入部10aは、気液分離装置10に気液二相流体が流入する部分である。流入部10aは、流入管12によって構成されている。分離部10bは、気液二相流体を気体と液体とに分離する部分である。分離部10bは、容器11の上部および旋回羽根15により構成されている。助走区間10c1は、気体排出管14と旋回羽根15との間の区間である。助走区間10c1は、遷移部10c2に設けられている。遷移部10c2は、分離され気体が気体排出管14から排出される部分である。遷移部10c2は、容器11の中央部および気体排出管14の上部により構成されている。集液部(集油部)10dは、分離された液体を集める部分である。集液部(集油部)10dは、容器11の下部および気体排出管14の中央部により構成されている。集液部(集油部)10dに液体排出管13が接続されている。 The inflow portion 10a is a portion where the gas-liquid two-phase fluid flows into the gas-liquid separation device 10. The inflow portion 10a is composed of an inflow pipe 12. The separation unit 10b is a portion that separates the gas-liquid two-phase fluid into a gas and a liquid. The separating portion 10b is composed of an upper portion of the container 11 and a swirling vane 15. The approach section 10c1 is a section between the gas discharge pipe 14 and the swirl vane 15. The approach section 10c1 is provided in the transition portion 10c2. The transition portion 10c2 is a portion where the gas is separated and discharged from the gas discharge pipe 14. The transition portion 10c2 is composed of a central portion of the container 11 and an upper portion of the gas discharge pipe 14. The liquid collecting part (oil collecting part) 10d is a part for collecting the separated liquids. The liquid collecting portion (oil collecting portion) 10d is composed of a lower portion of the container 11 and a central portion of the gas discharge pipe 14. The liquid discharge pipe 13 is connected to the liquid collecting portion (oil collecting portion) 10d.
 容器11は、上下に延びる中心軸CLに沿って延在している。容器11の中心軸CLは、上下方向に延びている。容器11は、内部空間を有している。容器11は、中心軸CLを取り囲む内壁面ISを有する。容器11の内壁面ISは、中心軸CLに直交する断面が円形状となるように構成されている。容器11は、分離部10bと遷移部10c2との径(内径および外径)が等しくなるように構成されており、遷移部10c2よりも集液部(集油部)10dの径が大きくなるように構成されている。 The container 11 extends along the central axis CL extending vertically. The central axis CL of the container 11 extends in the vertical direction. The container 11 has an internal space. The container 11 has an inner wall surface IS surrounding the central axis CL. The inner wall surface IS of the container 11 is configured so that the cross section orthogonal to the central axis CL has a circular shape. The container 11 is configured so that the diameters (inner diameter and outer diameter) of the separating portion 10b and the transition portion 10c2 are equal to each other, and the diameter of the liquid collecting portion (oil collecting portion) 10d is larger than that of the transition portion 10c2. It is configured in.
 流入管12は、図1に示される圧縮機1の吐出側に接続されている。流入管12は、容器11の上端に接続されている。流入管12は、容器11の中心軸CLと同軸上に配置されている。流入管12は、容器11の天井部を貫通している。流入管12は、容器11内に気液二相流体を流入させるように構成されている。流入管12は、容器11内に気液二相流体を流入させる流入口12aを有している。本実施の形態では、流入管12は、容器11内に油含有冷媒を流入させるように構成されている。流入管12の流入口12aは旋回羽根15の上方に配置されている。 The inflow pipe 12 is connected to the discharge side of the compressor 1 shown in FIG. The inflow pipe 12 is connected to the upper end of the container 11. The inflow pipe 12 is arranged coaxially with the central axis CL of the container 11. The inflow pipe 12 penetrates the ceiling portion of the container 11. The inflow pipe 12 is configured to allow a gas-liquid two-phase fluid to flow into the container 11. The inflow pipe 12 has an inflow port 12a for flowing a gas-liquid two-phase fluid into the container 11. In the present embodiment, the inflow pipe 12 is configured to allow the oil-containing refrigerant to flow into the container 11. The inflow port 12a of the inflow pipe 12 is arranged above the swirl vane 15.
 液体排出管13は、図1に示される油戻し管20に接続されている。液体排出管13は、容器11の下端に接続されている。液体排出管13は容器11の中心軸CLと異なる位置に配置されている。液体排出管13は、容器11の底部を貫通している。液体排出管13は、気液二相流体から分離された液体を容器11から排出するように構成されている。液体排出管13は、気液二相流体から分離された液体を容器11から排出する液体排出口13aを有している。本実施の形態では、液体排出管13は、油含有冷媒から分離された油を容器11から排出するように構成されている。液体排出管13の液体排出口13aは旋回羽根15の下方に配置されている。 The liquid discharge pipe 13 is connected to the oil return pipe 20 shown in FIG. The liquid discharge pipe 13 is connected to the lower end of the container 11. The liquid discharge pipe 13 is arranged at a position different from the central axis CL of the container 11. The liquid discharge pipe 13 penetrates the bottom of the container 11. The liquid discharge pipe 13 is configured to discharge the liquid separated from the gas-liquid two-phase fluid from the container 11. The liquid discharge pipe 13 has a liquid discharge port 13a for discharging the liquid separated from the gas-liquid two-phase fluid from the container 11. In the present embodiment, the liquid discharge pipe 13 is configured to discharge the oil separated from the oil-containing refrigerant from the container 11. The liquid discharge port 13a of the liquid discharge pipe 13 is arranged below the swirl vane 15.
 気体排出管14は、図1に示される四方弁2に接続されている。気体排出管14は、容器11の下側に接続されている。気体排出管14は、容器11の中心軸CLと同軸上に配置されている。気体排出管14は、容器11の底部を貫通している。気体排出管14は、気液二相流体から分離された気体を容器11から排出する気体排出口14aを有している。本実施の形態では、気体排出管14は、油含有冷媒から油が分離された冷媒を容器11から排出するように構成されている。気体排出口14aは、中心軸CLに重なるように配置されている。 The gas discharge pipe 14 is connected to the four-way valve 2 shown in FIG. The gas discharge pipe 14 is connected to the lower side of the container 11. The gas discharge pipe 14 is arranged coaxially with the central axis CL of the container 11. The gas discharge pipe 14 penetrates the bottom of the container 11. The gas discharge pipe 14 has a gas discharge port 14a for discharging the gas separated from the gas-liquid two-phase fluid from the container 11. In the present embodiment, the gas discharge pipe 14 is configured to discharge the refrigerant in which the oil is separated from the oil-containing refrigerant from the container 11. The gas discharge port 14a is arranged so as to overlap the central axis CL.
 気体排出管14の気体排出口14aは、旋回羽根15の下方であり、かつ液体排出口13aよりも上方に配置されている。つまり、気体排出管14の気体排出口14aは、上下方向において旋回羽根15と液体排出口13aとの間に配置されている。気体排出口14aは、容器11内に配置された気体排出管14の先端に設けられている。気体排出口14aは、旋回羽根15の真下に配置されている。気体排出口14aは、上下方向において旋回羽根15との間に助走区間10c1をあけて配置されている。気体排出管14は、容器11の内径よりも小さい外径を有している。 The gas discharge port 14a of the gas discharge pipe 14 is located below the swirling vane 15 and above the liquid discharge port 13a. That is, the gas discharge port 14a of the gas discharge pipe 14 is arranged between the swivel blade 15 and the liquid discharge port 13a in the vertical direction. The gas discharge port 14a is provided at the tip of the gas discharge pipe 14 arranged in the container 11. The gas discharge port 14a is arranged directly below the swirl vane 15. The gas discharge port 14a is arranged so as to have a run-up section 10c1 between it and the swirl vane 15 in the vertical direction. The gas discharge pipe 14 has an outer diameter smaller than the inner diameter of the container 11.
 旋回羽根15は、気液二相流体を旋回させながら上方から下方へ流すように構成されている。旋回羽根15は、旋回流を発生させるように構成されている。旋回羽根15は、旋回流の旋回力によって気液二相流体から分離された液体を内壁面ISに沿って周回させながら上方から下方へ流すように構成されている。旋回羽根15は、容器11内に配置されている。旋回羽根15は、容器11内部の上側に配置されている。旋回羽根15は、流入管12の流入口12aの真下に配置されている。 The swirling blade 15 is configured to flow the gas-liquid two-phase fluid from above to below while swirling. The swirling blade 15 is configured to generate a swirling flow. The swirling blade 15 is configured to flow the liquid separated from the gas-liquid two-phase fluid by the swirling force of the swirling flow from above to below while orbiting along the inner wall surface IS. The swivel blade 15 is arranged in the container 11. The swivel blade 15 is arranged on the upper side inside the container 11. The swivel vane 15 is arranged directly below the inflow port 12a of the inflow pipe 12.
 図3は、旋回羽根15が容器11内に配置された構成を概略的に示す斜視図である。なお、説明の便宜のため、図3では、容器11の旋回羽根15よりも上側および下側の部分は記載されていない。図3に示されるように、旋回羽根15は、複数の螺旋状板15aを有している。 FIG. 3 is a perspective view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11. For convenience of explanation, in FIG. 3, the portions above and below the swivel blade 15 of the container 11 are not shown. As shown in FIG. 3, the swirl vane 15 has a plurality of spiral plates 15a.
 図4は、旋回羽根15の構成を概略的に示す斜視図である。図3および図4に示されるように、複数の螺旋状板15aは、各々が中心軸CLに沿って螺旋状に延在するように構成されている。複数の螺旋状板15aの各々は、気液二相流体に対し旋回力を発生させるように構成されている。本実施の形態では、複数の螺旋状板15aは、中心軸CLを中心として180度の回転角度で螺旋状にねじれるように構成されている。中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに、複数の螺旋状板15aの各々の両端は、容器11の内壁面ISに接している。 FIG. 4 is a perspective view schematically showing the configuration of the swivel vane 15. As shown in FIGS. 3 and 4, each of the plurality of spiral plates 15a is configured to extend spirally along the central axis CL. Each of the plurality of spiral plates 15a is configured to generate a swirling force with respect to the gas-liquid two-phase fluid. In the present embodiment, the plurality of spiral plates 15a are configured to be spirally twisted at a rotation angle of 180 degrees about the central axis CL. When the swirl vanes 15 are viewed from above to below along the central axis CL, both ends of each of the plurality of spiral plates 15a are in contact with the inner wall surface IS of the container 11.
 中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに、複数の螺旋状板15aの各々の端面は、円弧状に構成されている。複数の螺旋状板15aの各々は、中心軸CLから容器11の内壁面ISに向けて突出するように湾曲している。 When the swivel blade 15 is viewed from above to below along the central axis CL, each end face of the plurality of spiral plates 15a is formed in an arc shape. Each of the plurality of spiral plates 15a is curved so as to project from the central axis CL toward the inner wall surface IS of the container 11.
 本実施の形態では、旋回羽根15は、4枚の螺旋状板15aを有している。なお、旋回羽根15の螺旋状板15aの枚数は、4枚に限定されない。本実施の形態では、旋回羽根15は、第1の螺旋状板15a1、第2の螺旋状板15a2、第3の螺旋状板15a3、第4の螺旋状板15a4を有している。 In the present embodiment, the swivel blade 15 has four spiral plates 15a. The number of spiral plates 15a of the swivel blade 15 is not limited to four. In the present embodiment, the swirl vane 15 has a first spiral plate 15a1, a second spiral plate 15a2, a third spiral plate 15a3, and a fourth spiral plate 15a4.
 第1の螺旋状板15a1は、中心軸CLに沿う方向から見て、容器11の中央に配置されている。中心軸CLに沿う方向から見て、第1の螺旋状板15a1の両端は、容器11の内径が最大となる位置で内壁面ISに接している。容器11の径方向における第1の螺旋状板15a1の長さは、容器11の内径の最大寸法である。 The first spiral plate 15a1 is arranged in the center of the container 11 when viewed from the direction along the central axis CL. Both ends of the first spiral plate 15a1 are in contact with the inner wall surface IS at the position where the inner diameter of the container 11 is maximized when viewed from the direction along the central axis CL. The length of the first spiral plate 15a1 in the radial direction of the container 11 is the maximum dimension of the inner diameter of the container 11.
 第2の螺旋状板15a2は、中心軸CLに沿う方向から見て、容器11の中央に配置されている。中心軸CLに沿う方向から見て、第2の螺旋状板15a2の両端は、容器11の内径が最大となる位置で内壁面ISに接している。容器11の径方向における第2の螺旋状板15a2の長さは、容器11の内径の最大寸法である。 The second spiral plate 15a2 is arranged in the center of the container 11 when viewed from the direction along the central axis CL. Both ends of the second spiral plate 15a2 are in contact with the inner wall surface IS at the position where the inner diameter of the container 11 is maximized when viewed from the direction along the central axis CL. The length of the second spiral plate 15a2 in the radial direction of the container 11 is the maximum dimension of the inner diameter of the container 11.
 第1の螺旋状板15a1と第2の螺旋状板15a2とは互いに向かい合うように配置されている。第1の螺旋状板15a1と第2の螺旋状板15a2とは、中心軸CLに沿う方向から見て、互いに反対方向に突出するように湾曲している。 The first spiral plate 15a1 and the second spiral plate 15a2 are arranged so as to face each other. The first spiral plate 15a1 and the second spiral plate 15a2 are curved so as to project in opposite directions when viewed from the direction along the central axis CL.
 第1の螺旋状板15a1と第2の螺旋状板15a2との間に第1流路F1が設けられている。第1流路F1は、第1の螺旋状板15a1と第2の螺旋状板15a2とに囲まれている。第1流路F1は、中心軸CLに沿う方向から見て、略楕円状に構成されている。第1流路F1は、中心軸CLに沿って螺旋状に延在している。第1流路F1は、中心軸CL回りに螺旋状にねじれるように構成されている。 A first flow path F1 is provided between the first spiral plate 15a1 and the second spiral plate 15a2. The first flow path F1 is surrounded by a first spiral plate 15a1 and a second spiral plate 15a2. The first flow path F1 is formed in a substantially elliptical shape when viewed from the direction along the central axis CL. The first flow path F1 extends spirally along the central axis CL. The first flow path F1 is configured to twist spirally around the central axis CL.
 第3の螺旋状板15a3は、第1の螺旋状板15a1の外側に配置されている。第3の螺旋状板15a3は、第1の螺旋状板15a1に対して中心軸CLと反対側に配置されている。第3の螺旋状板15a3は、第1の螺旋状板15a1と容器11の内壁面ISとの間に配置されている。第3の螺旋状板15a3は、第1の螺旋状板15a1との間に隙間を空けて第1の螺旋状板15a1に沿うように配置されている。 The third spiral plate 15a3 is arranged outside the first spiral plate 15a1. The third spiral plate 15a3 is arranged on the side opposite to the central axis CL with respect to the first spiral plate 15a1. The third spiral plate 15a3 is arranged between the first spiral plate 15a1 and the inner wall surface IS of the container 11. The third spiral plate 15a3 is arranged along the first spiral plate 15a1 with a gap between the third spiral plate 15a3 and the first spiral plate 15a1.
 第1の螺旋状板15a1と第3の螺旋状板15a3との間に第2流路F2が設けられている。第2流路F2は、第1の螺旋状板15a1と第3の螺旋状板15a3と第1の螺旋状板15a1と第3の螺旋状板15a3との間に位置する容器11の内壁面ISとに囲まれている。第2流路F2は、中心軸CLに沿って螺旋状に延在している。第2流路F2は、中心軸CL回りに螺旋状にねじれるように構成されている。 A second flow path F2 is provided between the first spiral plate 15a1 and the third spiral plate 15a3. The second flow path F2 is an inner wall surface IS of the container 11 located between the first spiral plate 15a1, the third spiral plate 15a3, the first spiral plate 15a1, and the third spiral plate 15a3. Surrounded by. The second flow path F2 extends spirally along the central axis CL. The second flow path F2 is configured to twist spirally around the central axis CL.
 第4の螺旋状板15a4は、第2の螺旋状板15a2の外側に配置されている。第4の螺旋状板15a4は、第2の螺旋状板15a2に対して中心軸CLと反対側に配置されている。第4の螺旋状板15a4は、第2の螺旋状板15a2と容器11の内壁面ISとの間に配置されている。第4の螺旋状板15a4は、第2の螺旋状板15a2との間に隙間を空けて第2の螺旋状板15a2に沿うように配置されている。 The fourth spiral plate 15a4 is arranged outside the second spiral plate 15a2. The fourth spiral plate 15a4 is arranged on the side opposite to the central axis CL with respect to the second spiral plate 15a2. The fourth spiral plate 15a4 is arranged between the second spiral plate 15a2 and the inner wall surface IS of the container 11. The fourth spiral plate 15a4 is arranged along the second spiral plate 15a2 with a gap between the fourth spiral plate 15a4 and the second spiral plate 15a2.
 第2の螺旋状板15a2と第4の螺旋状板15a4との間に第3流路F3が設けられている。第3流路F3は、第2の螺旋状板15a2と第4の螺旋状板15a4と第2の螺旋状板15a2と第4の螺旋状板15a4との間に位置する容器11の内壁面ISとに囲まれている。第3流路F3は、中心軸CLに沿って螺旋状に延在している。第3流路F3は、中心軸CL回りに螺旋状にねじれるように構成されている。 A third flow path F3 is provided between the second spiral plate 15a2 and the fourth spiral plate 15a4. The third flow path F3 is an inner wall surface IS of the container 11 located between the second spiral plate 15a2, the fourth spiral plate 15a4, the second spiral plate 15a2, and the fourth spiral plate 15a4. It is surrounded by. The third flow path F3 extends spirally along the central axis CL. The third flow path F3 is configured to twist spirally around the central axis CL.
 第3の螺旋状板15a3と容器11の内壁面ISとの間に第4流路F4が設けられている。第4流路F4は、第3の螺旋状板15a3と容器11の内壁面ISとに囲まれている第4流路F4は、中心軸CLに沿って螺旋状に延在している。第4流路F4は、中心軸CL回りに螺旋状にねじれるように構成されている。 A fourth flow path F4 is provided between the third spiral plate 15a3 and the inner wall surface IS of the container 11. The fourth flow path F4 is surrounded by the third spiral plate 15a3 and the inner wall surface IS of the container 11, and the fourth flow path F4 extends spirally along the central axis CL. The fourth flow path F4 is configured to twist spirally around the central axis CL.
 第4の螺旋状板15a4と容器11の内壁面ISとの間に第5流路F5が設けられている。第5流路F5は、第4の螺旋状板15a4と容器11の内壁面ISとに囲まれている。第5流路F5は、中心軸CLに沿って螺旋状に延在している。第5流路F5は、中心軸CL回りに螺旋状にねじれるように構成されている。 A fifth flow path F5 is provided between the fourth spiral plate 15a4 and the inner wall surface IS of the container 11. The fifth flow path F5 is surrounded by the fourth spiral plate 15a4 and the inner wall surface IS of the container 11. The fifth flow path F5 extends spirally along the central axis CL. The fifth flow path F5 is configured to twist spirally around the central axis CL.
 図5は、旋回羽根15が容器11内に配置された構成を概略的に示す断面図である。図5は、中心軸CLを通りかつ中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに第1流路F1の短手方向を通る断面である。図6は、旋回羽根15が容器11内に配置された構成を概略的に示し図5の断面位置に直交する断面における断面図である。図6は、中心軸CLを通りかつ中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに第1流路F1の長手方向を通る断面である。 FIG. 5 is a cross-sectional view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11. FIG. 5 is a cross section that passes through the central axis CL and passes through the short direction of the first flow path F1 when the swivel blade 15 is viewed from above to downward along the central axis CL. FIG. 6 is a cross-sectional view schematically showing a configuration in which the swirl vanes 15 are arranged in the container 11 in a cross section orthogonal to the cross-sectional position of FIG. FIG. 6 is a cross section that passes through the central axis CL and passes through the longitudinal direction of the first flow path F1 when the swivel vane 15 is viewed from above to downward along the central axis CL.
 図5および図6に示されるように、旋回羽根15には、中心軸CLに沿って延在する中空領域HPが設けられている。中空領域HPは、上下方向において旋回羽根15の上端から下端にわたって設けられている。中空領域HPは、上下方向に旋回羽根15を貫通している。旋回羽根15には、中心軸CLに沿って空洞が設けられている。 As shown in FIGS. 5 and 6, the swivel vane 15 is provided with a hollow region HP extending along the central axis CL. The hollow region HP is provided from the upper end to the lower end of the swirl vane 15 in the vertical direction. The hollow region HP penetrates the swivel blade 15 in the vertical direction. The swivel blade 15 is provided with a cavity along the central axis CL.
 図7は、旋回羽根15が容器11内に配置された構成を概略的に示す上面図である。図7に示されるように、複数の螺旋状板15aの各々は、中心軸CLに沿う方向から見て中心軸CLからずれるように配置されている。複数の螺旋状板15aの各々は、中心軸CLに沿う方向から見て、中心軸CLに重なっていない。中心軸CLに沿う方向から見て、旋回羽根15の中央は中空である。旋回羽根15は、中央に軸を有していない。中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに、中空領域HPは円形状に構成されている。中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに、中空領域HPの他の領域は旋回羽根15で覆われている。中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに、中空領域HPの他には隙間がない。 FIG. 7 is a top view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11. As shown in FIG. 7, each of the plurality of spiral plates 15a is arranged so as to deviate from the central axis CL when viewed from the direction along the central axis CL. Each of the plurality of spiral plates 15a does not overlap the central axis CL when viewed from the direction along the central axis CL. The center of the swirl vane 15 is hollow when viewed from the direction along the central axis CL. The swivel blade 15 does not have a shaft in the center. When the swivel blade 15 is viewed from above to below along the central axis CL, the hollow region HP is formed in a circular shape. When the swivel blade 15 is viewed from above to downward along the central axis CL, the other region of the hollow region HP is covered with the swivel blade 15. When the swivel blade 15 is viewed from above to below along the central axis CL, there is no gap other than the hollow region HP.
 旋回羽根15の中心CPは、中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに旋回羽根15の図心に位置している。本実施の形態では、旋回羽根15の中心CPは、容器11の中心軸CLに位置している。 The central CP of the swivel blade 15 is located at the center of gravity of the swivel blade 15 when the swivel blade 15 is viewed from above to downward along the central axis CL. In the present embodiment, the central CP of the swivel vane 15 is located on the central axis CL of the container 11.
 第1の螺旋状板15a1は、中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに旋回羽根15の中心CPに対して第2の螺旋状板15a2と点対称に配置されている。第3の螺旋状板15a3は、中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに旋回羽根15の中心CPに対して第4の螺旋状板15a4と点対称に配置されている。 The first spiral plate 15a1 is arranged point-symmetrically with the second spiral plate 15a2 with respect to the central CP of the swivel blade 15 when the swivel blade 15 is viewed from above to downward along the central axis CL. Has been done. The third spiral plate 15a3 is arranged point-symmetrically with the fourth spiral plate 15a4 with respect to the central CP of the swivel blade 15 when the swivel blade 15 is viewed from above to downward along the central axis CL. Has been done.
 図8は、本実施の形態に係る旋回羽根15の概念図である。図8に示されるように、旋回羽根15は、断面形状101が螺旋状の軌跡102を通過したときに断面形状101と軌跡102とによって描かれた形状で構成されている。軌跡102の中心は、図8中のx軸、y軸、z軸の中心である。このx軸は旋回羽根15の前後方向に対応し、このy軸は旋回羽根15の左右方向に対応し、このz軸は旋回羽根15の上下方向に対応する。 FIG. 8 is a conceptual diagram of the swivel blade 15 according to the present embodiment. As shown in FIG. 8, the swirl vane 15 is configured to have a shape drawn by the cross-sectional shape 101 and the locus 102 when the cross-sectional shape 101 passes through the spiral locus 102. The center of the locus 102 is the center of the x-axis, y-axis, and z-axis in FIG. The x-axis corresponds to the front-rear direction of the swivel vane 15, the y-axis corresponds to the left-right direction of the swivel vane 15, and the z-axis corresponds to the vertical direction of the swivel vane 15.
 図3および図8に示されるように、旋回羽根15の中心軸CLに直交する断面形状101は、いずれの断面における断面形状101も中心軸CLを中心に回転したときに相似となる。つまり、旋回羽根15の中心軸CLに直交する断面形状101は、いずれの断面においても、相似形状となる。 As shown in FIGS. 3 and 8, the cross-sectional shape 101 orthogonal to the central axis CL of the swivel vane 15 becomes similar when the cross-sectional shape 101 in any cross section is rotated about the central axis CL. That is, the cross-sectional shape 101 orthogonal to the central axis CL of the swirl vane 15 has a similar shape in any cross section.
 断面形状101において、第1流路F1の面積S1は第2流路F2および第3流路F3の各々の面積S2よりも大きく、面積S2は第4流路F4および第5流路F5の各々の面積S3よりも大きい。 In the cross-sectional shape 101, the area S1 of the first flow path F1 is larger than the area S2 of each of the second flow path F2 and the third flow path F3, and the area S2 is each of the fourth flow path F4 and the fifth flow path F5. Area is larger than S3.
 次に、再び図1を参照して、本実施の形態における冷凍サイクル装置100の動作について説明する。図中実線矢印により冷房運転時の冷媒流れが示され、図中破線矢印により暖房運転時の冷媒流れが示されている。 Next, the operation of the refrigeration cycle device 100 in the present embodiment will be described with reference to FIG. 1 again. The solid line arrow in the figure indicates the refrigerant flow during the cooling operation, and the broken line arrow in the figure indicates the refrigerant flow during the heating operation.
 本実施の形態の冷凍サイクル装置100は、冷房運転と暖房運転とを選択的に行うことが可能である。冷房運転においては、圧縮機1、気液分離装置(油分離器)10、四方弁2、室外熱交換器3、流量調整弁4、室内熱交換器5の順に冷媒が冷媒回路を循環する。冷房運転においては、室外熱交換器3は凝縮器として機能し、室内熱交換器5は蒸発器として機能する。暖房運転においては、圧縮機1、気液分離装置10、四方弁2、室内熱交換器5、流量調整弁4、室外熱交換器3の順に冷媒が冷媒回路を循環する。暖房運転においては、室内熱交換器5は凝縮器として機能し、室外熱交換器3は蒸発器として機能する。 The refrigeration cycle device 100 of the present embodiment can selectively perform a cooling operation and a heating operation. In the cooling operation, the refrigerant circulates in the refrigerant circuit in the order of the compressor 1, the gas-liquid separator (oil separator) 10, the four-way valve 2, the outdoor heat exchanger 3, the flow rate adjusting valve 4, and the indoor heat exchanger 5. In the cooling operation, the outdoor heat exchanger 3 functions as a condenser, and the indoor heat exchanger 5 functions as an evaporator. In the heating operation, the refrigerant circulates in the refrigerant circuit in the order of the compressor 1, the gas-liquid separator 10, the four-way valve 2, the indoor heat exchanger 5, the flow rate adjusting valve 4, and the outdoor heat exchanger 3. In the heating operation, the indoor heat exchanger 5 functions as a condenser, and the outdoor heat exchanger 3 functions as an evaporator.
 さらに、冷房運転について詳しく説明する。圧縮機1が駆動することによって、圧縮機1から高温高圧のガス状態の冷媒が吐出される。この冷媒には圧縮機内部を潤滑する油が含有されている。つまり、この冷媒は油含有冷媒である。圧縮機1から吐出された高温高圧のガス状態の油含有冷媒は、気液分離装置10に流れ込む。気液分離装置10で油含有冷媒から油が分離される。気液分離装置10で油が分離された冷媒は、四方弁2を介して室外熱交換器3に流れ込む。室外熱交換器3では、流れ込んだガス冷媒と、室外の空気との間で熱交換が行われる。これにより、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。 Furthermore, the cooling operation will be explained in detail. When the compressor 1 is driven, the refrigerant in a high-temperature and high-pressure gas state is discharged from the compressor 1. This refrigerant contains oil that lubricates the inside of the compressor. That is, this refrigerant is an oil-containing refrigerant. The oil-containing refrigerant in a high-temperature and high-pressure gas state discharged from the compressor 1 flows into the gas-liquid separator 10. The gas-liquid separator 10 separates the oil from the oil-containing refrigerant. The refrigerant from which the oil has been separated by the gas-liquid separator 10 flows into the outdoor heat exchanger 3 via the four-way valve 2. In the outdoor heat exchanger 3, heat exchange is performed between the gas refrigerant that has flowed in and the outdoor air. As a result, the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant.
 室外熱交換器3から送り出された高圧の液冷媒は、流量調整弁4によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、室内熱交換器5に流れ込む。室内熱交換器5では、流れ込んだ二相状態の冷媒と、室内の空気との間で熱交換が行われる。これにより、二相状態の冷媒は、液冷媒が蒸発して低圧のガス冷媒になる。この熱交換によって、室内が冷やされる。室内熱交換器5から送り出された低圧のガス冷媒は、四方弁2を介して圧縮機1に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機1から吐出される。以下、このサイクルが繰り返される。 The high-pressure liquid refrigerant sent out from the outdoor heat exchanger 3 becomes a two-phase refrigerant of a low-pressure gas refrigerant and a liquid refrigerant by the flow rate adjusting valve 4. The two-phase refrigerant flows into the indoor heat exchanger 5. In the indoor heat exchanger 5, heat exchange is performed between the flowing two-phase refrigerant and the indoor air. As a result, the liquid refrigerant evaporates from the two-phase refrigerant to become a low-pressure gas refrigerant. This heat exchange cools the room. The low-pressure gas refrigerant sent out from the indoor heat exchanger 5 flows into the compressor 1 via the four-way valve 2, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 1 again. Hereinafter, this cycle is repeated.
 また、暖房運転について詳しく説明する。冷房運転と同様に圧縮機1が駆動することによって、圧縮機1から高温高圧のガス状態の油含有冷媒が吐出される。圧縮機1から吐出された高温高圧のガス状態の油含有冷媒は、気液分離装置10に流れ込む。気液分離装置10で油含有冷媒から油が分離される。気液分離装置10で油が分離された冷媒は、四方弁2を経由して室内熱交換器5に流れ込む。室内熱交換器5では、流れ込んだ冷媒と、室内の空気との間で熱交換が行われる。これにより、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。この熱交換によって、室内が暖められる。 In addition, the heating operation will be explained in detail. By driving the compressor 1 in the same manner as in the cooling operation, the oil-containing refrigerant in a high-temperature and high-pressure gas state is discharged from the compressor 1. The oil-containing refrigerant in a high-temperature and high-pressure gas state discharged from the compressor 1 flows into the gas-liquid separator 10. The gas-liquid separator 10 separates the oil from the oil-containing refrigerant. The refrigerant from which the oil has been separated by the gas-liquid separator 10 flows into the indoor heat exchanger 5 via the four-way valve 2. In the indoor heat exchanger 5, heat exchange is performed between the flowing refrigerant and the indoor air. As a result, the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant. This heat exchange warms the room.
 室内熱交換器5から送り出された高圧の液冷媒は、流量調整弁4によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、室外熱交換器3に流れ込む。室外熱交換器3では、流れ込んだ二相状態の冷媒と、室外の空気との間で熱交換が行われる。これにより、二相状態の冷媒は、液冷媒が蒸発して低圧のガス冷媒になる。室外熱交換器3から送り出された低圧のガス冷媒は、四方弁2を介して圧縮機1に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機1から吐出される。以下、このサイクルが繰り返される。 The high-pressure liquid refrigerant sent out from the indoor heat exchanger 5 becomes a two-phase refrigerant of a low-pressure gas refrigerant and a liquid refrigerant by the flow rate adjusting valve 4. The two-phase refrigerant flows into the outdoor heat exchanger 3. In the outdoor heat exchanger 3, heat exchange is performed between the flowing two-phase refrigerant and the outdoor air. As a result, the liquid refrigerant evaporates from the two-phase refrigerant to become a low-pressure gas refrigerant. The low-pressure gas refrigerant sent out from the outdoor heat exchanger 3 flows into the compressor 1 via the four-way valve 2, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 1 again. Hereinafter, this cycle is repeated.
 続いて、図1および図9を参照して、本実施の形態に係る気液分離装置(油分離器)10の動作について説明する。図9は、本実施の形態に係る気液分離装置10内での気体(冷媒)と液体(油)とが分離される様子を説明するための断面図である。図9では、油含有冷媒の流れは白抜き矢印で示され、冷媒の流れは実線矢印で示され、油の流れは破線矢印で示されている。 Subsequently, the operation of the gas-liquid separator (oil separator) 10 according to the present embodiment will be described with reference to FIGS. 1 and 9. FIG. 9 is a cross-sectional view for explaining how the gas (refrigerant) and the liquid (oil) are separated in the gas-liquid separation device 10 according to the present embodiment. In FIG. 9, the flow of the oil-containing refrigerant is indicated by a white arrow, the flow of the refrigerant is indicated by a solid arrow, and the flow of oil is indicated by a broken line arrow.
 図1に示されるように、冷凍サイクル装置100の冷媒回路において、圧縮機1から吐出された油含有冷媒は、気液分離装置10により冷媒と油とに分離される。油含有冷媒は、冷媒と、圧縮機1内に封入される油(冷凍機油)とを含んでいる。気液分離装置10により油含有冷媒から分離された冷媒は、四方弁2へ排出される。他方、気液分離装置10により油含有冷媒から分離された油は、油戻し管20を通って圧縮機1の吸入側へ排出される。 As shown in FIG. 1, in the refrigerant circuit of the refrigeration cycle device 100, the oil-containing refrigerant discharged from the compressor 1 is separated into a refrigerant and oil by the gas-liquid separator 10. The oil-containing refrigerant includes a refrigerant and oil (refrigerator oil) sealed in the compressor 1. The refrigerant separated from the oil-containing refrigerant by the gas-liquid separator 10 is discharged to the four-way valve 2. On the other hand, the oil separated from the oil-containing refrigerant by the gas-liquid separator 10 is discharged to the suction side of the compressor 1 through the oil return pipe 20.
 図9に示されるように、気液分離装置10内に流入管12から気液二相流体である油含有冷媒が流入すると、旋回羽根15の複数の螺旋状板15aにより発生した旋回流によって、油含有冷媒から油が分離される。油含有冷媒から分離された油は、容器11の内壁面ISへ衝突することで液膜となり、重力と旋回流とによって容器11の内壁面ISに沿って容器11の底部へ流れる。このようにして、集油部10dで油が集油される。集油された油は液体排出管13から排出される。液体排出管13から排出された油は、油戻し管20を通って圧縮機1の吸入側に返される。他方、油が分離された冷媒は、気体排出管14から排出される。気体排出管14から排出された冷媒は四方弁2に流れ込む。 As shown in FIG. 9, when the oil-containing refrigerant, which is a gas-liquid two-phase fluid, flows into the gas-liquid separation device 10 from the inflow pipe 12, the swirling flow generated by the plurality of spiral plates 15a of the swirling blades 15 causes the swirling flow. Oil is separated from the oil-containing refrigerant. The oil separated from the oil-containing refrigerant collides with the inner wall surface IS of the container 11 to form a liquid film, and flows to the bottom of the container 11 along the inner wall surface IS of the container 11 by gravity and swirling flow. In this way, the oil is collected in the oil collecting unit 10d. The collected oil is discharged from the liquid discharge pipe 13. The oil discharged from the liquid discharge pipe 13 is returned to the suction side of the compressor 1 through the oil return pipe 20. On the other hand, the oil-separated refrigerant is discharged from the gas discharge pipe 14. The refrigerant discharged from the gas discharge pipe 14 flows into the four-way valve 2.
 次に、本実施の形態の作用効果について比較例と対比して説明する。
 図10を参照して、比較例の気液分離装置(油分離器)10について説明する。図10は、比較例の気液分離装置10の構成を概略的に示す断面図である。図10に示されるように、比較例の気液分離装置10では、旋回羽根15の構成が本実施の形態に係る旋回羽根15と異なっている。比較例の旋回羽根15は、軸15sを有している。複数の螺旋状板15aの各々は、互いに交差するように軸15sに接続されている。軸15sは上下方向に直線状に延在している。比較例の旋回羽根15の軸15sは、中心軸CL上に位置している。比較例の旋回羽根15では、軸15sの周りの気液二相流体の流速が低下するため、旋回羽根15の出口において軸15sの周りに液体が集まる挙動が発生する。したがって、軸15sの周りの液体を分離することができない。この液体は、重力によって落下して気体排出口14aに入る。これにより、気体と液体との分離効率が低下する。
Next, the action and effect of the present embodiment will be described in comparison with the comparative example.
The gas-liquid separator (oil separator) 10 of the comparative example will be described with reference to FIG. FIG. 10 is a cross-sectional view schematically showing the configuration of the gas-liquid separation device 10 of the comparative example. As shown in FIG. 10, in the gas-liquid separation device 10 of the comparative example, the configuration of the swirling vane 15 is different from that of the swirling vane 15 according to the present embodiment. The swivel blade 15 of the comparative example has a shaft 15s. Each of the plurality of spiral plates 15a is connected to the shaft 15s so as to intersect with each other. The shaft 15s extends linearly in the vertical direction. The shaft 15s of the swivel blade 15 of the comparative example is located on the central axis CL. In the swirling vane 15 of the comparative example, since the flow velocity of the gas-liquid two-phase fluid around the shaft 15s decreases, the behavior of the liquid gathering around the shaft 15s occurs at the outlet of the swirling vane 15. Therefore, the liquid around the shaft 15s cannot be separated. This liquid falls due to gravity and enters the gas discharge port 14a. As a result, the separation efficiency of gas and liquid decreases.
 本実施の形態に係る気液分離装置10によれば、旋回羽根15の複数の螺旋状板15aにより気液二相流体に旋回流が発生する。この旋回流の旋回力により、気液二相流体から液体が分離される。分離された液体は、容器11の内壁面ISに衝突後に液面として流動することで再飛散が抑制される。したがって、気体と液体との分離効率を向上させることができる。また、複数の螺旋状板15aは中心軸CLに沿う方向から見て中心軸CLからずれるように配置されている。このため、中心軸CLの周りでの気液二相流体の流速低下を抑制することができる。これにより、中心軸CLの周りに液体が集まることを防止することができる。したがって、気体と液体との分離効率を向上させることができる。 According to the gas-liquid separation device 10 according to the present embodiment, a swirling flow is generated in the gas-liquid two-phase fluid by the plurality of spiral plates 15a of the swirling blades 15. The swirling force of this swirling flow separates the liquid from the gas-liquid two-phase fluid. The separated liquid flows as a liquid surface after colliding with the inner wall surface IS of the container 11, and re-scattering is suppressed. Therefore, the separation efficiency of gas and liquid can be improved. Further, the plurality of spiral plates 15a are arranged so as to deviate from the central axis CL when viewed from the direction along the central axis CL. Therefore, it is possible to suppress a decrease in the flow velocity of the gas-liquid two-phase fluid around the central axis CL. This makes it possible to prevent the liquid from collecting around the central axis CL. Therefore, the separation efficiency of gas and liquid can be improved.
 従来のサイクロン式分離器は、気液二相流体を容器の内壁面に垂直に衝突させる。つまり、気液二相流体は上下方向に直交する水平方向に内壁面に衝突する。しかしながら、従来のサイクロン式分離器では、容器の内壁面と気体排出管との離間距離が短い場合、分離された液体が再飛散して気体とともに気体排出口に吸引されることで気体と液体との分離効率が低下する。そのため、従来のサイクロン式分離器では小型化は困難である。これに対して、本実施の形態に係る気液分離装置10では、旋回羽根15によって容器11の内部で旋回流による遠心力を発生させることができる。したがって、本実施の形態に係る気液分離装置10では、従来のサイクロン式分離器と比較して小型化することが容易となる。 The conventional cyclone type separator causes the gas-liquid two-phase fluid to collide vertically with the inner wall surface of the container. That is, the gas-liquid two-phase fluid collides with the inner wall surface in the horizontal direction orthogonal to the vertical direction. However, in the conventional cyclone type separator, when the separation distance between the inner wall surface of the container and the gas discharge pipe is short, the separated liquid re-scatters and is sucked into the gas discharge port together with the gas, so that the gas and the liquid are separated. Separation efficiency is reduced. Therefore, it is difficult to miniaturize with a conventional cyclone type separator. On the other hand, in the gas-liquid separation device 10 according to the present embodiment, centrifugal force due to the swirling flow can be generated inside the container 11 by the swirling blade 15. Therefore, the gas-liquid separator 10 according to the present embodiment can be easily miniaturized as compared with the conventional cyclone type separator.
 本実施の形態に係る気液分離装置10としての油分離器では、油の分離効率を向上させることにより、圧縮機1への返油効率を向上させることができる。このため、油切れにより圧縮機1の摺動部に焼付きが生じることを抑制することができる。また、室外熱交換器3および室内熱交換器5に圧縮機1から排出された油が滞留することを抑制することができる。したがって、冷凍サイクル装置100の成績係数(COP:Coefficient Of Performance)の低下を抑制することができる。 In the oil separator as the gas-liquid separator 10 according to the present embodiment, the efficiency of returning oil to the compressor 1 can be improved by improving the oil separation efficiency. Therefore, it is possible to prevent seizure of the sliding portion of the compressor 1 due to running out of oil. Further, it is possible to prevent the oil discharged from the compressor 1 from staying in the outdoor heat exchanger 3 and the indoor heat exchanger 5. Therefore, it is possible to suppress a decrease in the coefficient of performance (COP) of the refrigeration cycle apparatus 100.
 本実施の形態に係る冷凍サイクル装置100によれば、気液分離装置10を備えているため、気体と液体との分離効率を向上させることができる。 According to the refrigeration cycle device 100 according to the present embodiment, since the gas-liquid separation device 10 is provided, the separation efficiency between the gas and the liquid can be improved.
 次に、本実施の形態に係る気液分離装置10の変形例について説明する。なお、本実施の形態に係る気液分離装置10の変形例は、特に説明しない限り上記の本実施の形態に係る気液分離装置10と同一の構成、動作および効果を有している。したがって、上記の本実施の形態に係る気液分離装置10と同一の構成には同一の符号を付し、説明を繰り返さない。 Next, a modified example of the gas-liquid separation device 10 according to the present embodiment will be described. Unless otherwise specified, the modified example of the gas-liquid separation device 10 according to the present embodiment has the same configuration, operation, and effect as the gas-liquid separation device 10 according to the present embodiment. Therefore, the same components as those of the gas-liquid separation device 10 according to the present embodiment are designated by the same reference numerals, and the description will not be repeated.
 図11~図14を参照して、本実施の形態に係る気液分離装置10の変形例について説明する。図11は、本実施の形態に係る気液分離装置10の変形例における旋回羽根15が容器11内に配置された構成を概略的に示す斜視図である。なお、説明の便宜のため、図11では、容器11の旋回羽根15よりも上側および下側の部分は記載されていない。図12は、本実施の形態に係る気液分離装置10の変形例における旋回羽根15の構成を概略的に示す斜視図である。 A modified example of the gas-liquid separation device 10 according to the present embodiment will be described with reference to FIGS. 11 to 14. FIG. 11 is a perspective view schematically showing a configuration in which the swirl vanes 15 in the modified example of the gas-liquid separation device 10 according to the present embodiment are arranged in the container 11. For convenience of explanation, in FIG. 11, the portions above and below the swivel blade 15 of the container 11 are not shown. FIG. 12 is a perspective view schematically showing the configuration of the swirl vane 15 in the modified example of the gas-liquid separation device 10 according to the present embodiment.
 図13は、旋回羽根15が容器11内に配置された構成を概略的に示す断面図である。図13は、中心軸CLを通りかつ中心軸CLに沿う方向から見て第1流路F1の短手方向を通る断面である。図14は、旋回羽根15が容器11内に配置された構成を概略的に示し図13の断面位置に直交する断面における断面図である。図14は、中心軸CLを通りかつ中心軸CLに沿う方向から見て第1流路F1の長手方向を通る断面である。 FIG. 13 is a cross-sectional view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11. FIG. 13 is a cross section that passes through the central axis CL and passes through the lateral direction of the first flow path F1 when viewed from the direction along the central axis CL. FIG. 14 is a cross-sectional view schematically showing a configuration in which the swirl vanes 15 are arranged in the container 11 in a cross section orthogonal to the cross-sectional position of FIG. FIG. 14 is a cross section that passes through the central axis CL and passes through the longitudinal direction of the first flow path F1 when viewed from the direction along the central axis CL.
 図11~図14に示されるように、本実施の形態に係る気液分離装置10の変形例は、上記の本実施の形態に係る気液分離装置10に比べて旋回羽根15の構成が異なっている。本実施の形態に係る気液分離装置10の変形例では、複数の螺旋状板15aは、中心軸CLを中心として360度の回転角度で螺旋状にねじれるように構成されている。 As shown in FIGS. 11 to 14, in the modified example of the gas-liquid separation device 10 according to the present embodiment, the configuration of the swirl vane 15 is different from that of the gas-liquid separation device 10 according to the present embodiment. ing. In the modified example of the gas-liquid separation device 10 according to the present embodiment, the plurality of spiral plates 15a are configured to be spirally twisted at a rotation angle of 360 degrees about the central axis CL.
 実施の形態2.
 図15~図21を参照して、本発明の実施の形態2について説明する。なお、本発明の実施の形態2は、特に説明しない限り、上記の本発明の実施の形態1と同一の構成、動作および効果を有している。したがって、上記の本発明の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 2.
A second embodiment of the present invention will be described with reference to FIGS. 15 to 21. Unless otherwise specified, the second embodiment of the present invention has the same configuration, operation, and effect as the first embodiment of the present invention. Therefore, the same components as those in the first embodiment of the present invention will be designated by the same reference numerals, and the description will not be repeated.
 図15は、本実施の形態に係る旋回羽根15が容器11内に配置された構成を概略的に示す斜視図である。なお、説明の便宜のため、図15では、容器11の旋回羽根15よりも上側および下側の部分は記載されていない。図16は、本実施の形態に係る旋回羽根15の構成を概略的に示す斜視図である。 FIG. 15 is a perspective view schematically showing a configuration in which the swivel blade 15 according to the present embodiment is arranged in the container 11. For convenience of explanation, in FIG. 15, the portions above and below the swivel blade 15 of the container 11 are not shown. FIG. 16 is a perspective view schematically showing the configuration of the swivel blade 15 according to the present embodiment.
 図15および図16に示されるように、本実施の形態に係る旋回羽根15は、複数の螺旋状板15aと、中空円筒部15bとを含んでいる。複数の螺旋状板15aの各々は、中心軸CLに沿って螺旋状に延在するように構成されている。複数の螺旋状板15aは、中心軸CL回りに均等な角度で離れて配置されている。複数の螺旋状板15aは、中空円筒部15bを介して互いに交差するように配置されている。本実施の形態では、旋回羽根15は、6枚の螺旋状板15aを有している。中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに、6枚の螺旋状板15aのうち2枚の螺旋状板15aずつは中空円筒部15bを介して一直線上に配置されている。 As shown in FIGS. 15 and 16, the swivel blade 15 according to the present embodiment includes a plurality of spiral plates 15a and a hollow cylindrical portion 15b. Each of the plurality of spiral plates 15a is configured to extend spirally along the central axis CL. The plurality of spiral plates 15a are arranged at equal angles around the central axis CL. The plurality of spiral plates 15a are arranged so as to intersect each other via the hollow cylindrical portion 15b. In the present embodiment, the swivel blade 15 has six spiral plates 15a. When the swirl vanes 15 are viewed from above to below along the central axis CL, two spiral plates 15a out of the six spiral plates 15a are arranged in a straight line via the hollow cylindrical portion 15b. Has been done.
 中空円筒部15bは、中空領域HPを中心軸CL回りに取り囲むように構成されている。中空領域HPは、中心軸CLに沿って延在する。中空領域HPは、旋回羽根15の上端から下端にわたって直線状に配置されている。中空領域HPは、内側流路F10を構成している。中空円筒部15bは、中心軸CLに沿って延在するように構成されている。中空円筒部15bは、円筒状に構成されている。中空円筒部15bの中心軸は、容器11の中心軸CLと同軸上に配置されている。 The hollow cylindrical portion 15b is configured to surround the hollow region HP around the central axis CL. The hollow region HP extends along the central axis CL. The hollow region HP is arranged linearly from the upper end to the lower end of the swirl vane 15. The hollow region HP constitutes the inner flow path F10. The hollow cylindrical portion 15b is configured to extend along the central axis CL. The hollow cylindrical portion 15b is formed in a cylindrical shape. The central axis of the hollow cylindrical portion 15b is arranged coaxially with the central axis CL of the container 11.
 中空円筒部15bの中空領域HPは、中心軸CLに沿う方向から見て中心軸CLに重なるように配置されている。中空領域HPは、中心軸CLに沿って上方から下方に向けて旋回羽根15を見たときに、旋回羽根15の中心CPに位置している。 The hollow region HP of the hollow cylindrical portion 15b is arranged so as to overlap the central axis CL when viewed from the direction along the central axis CL. The hollow region HP is located at the center CP of the swivel blade 15 when the swivel blade 15 is viewed from above to downward along the central axis CL.
 複数の螺旋状板15aの各々は、中空円筒部15bから容器11の内壁面ISに向けて延在している。複数の螺旋状板15aの各々の一端(第1端)は中空円筒部15bに接しており、複数の螺旋状板15aの各々の他端(第2端)は容器11の内壁面ISに接している。 Each of the plurality of spiral plates 15a extends from the hollow cylindrical portion 15b toward the inner wall surface IS of the container 11. One end (first end) of each of the plurality of spiral plates 15a is in contact with the hollow cylindrical portion 15b, and the other end (second end) of each of the plurality of spiral plates 15a is in contact with the inner wall surface IS of the container 11. ing.
 本実施の形態では、旋回羽根15は、周壁部15cを含んでいる。周壁部15cは、中空円筒部15bを中心軸CL回りに取り囲み、かつ中心軸CLに沿って延在するように構成されている。周壁部15cは、略円筒状に構成されている。周壁部15cの中心軸は、容器11の中心軸CLと同軸上に配置されている。周壁部15cは、複数の螺旋状板15aによって分離された複数の周壁部分を含んでいる。 In the present embodiment, the swivel blade 15 includes the peripheral wall portion 15c. The peripheral wall portion 15c is configured to surround the hollow cylindrical portion 15b around the central axis CL and extend along the central axis CL. The peripheral wall portion 15c is formed in a substantially cylindrical shape. The central axis of the peripheral wall portion 15c is arranged coaxially with the central axis CL of the container 11. The peripheral wall portion 15c includes a plurality of peripheral wall portions separated by a plurality of spiral plates 15a.
 周壁部15cは、容器11の径方向に、容器11の内壁面ISとの間に隙間をあけ、かつ中空円筒部15bとの間に隙間をあけて配置されている。周壁部15cは、容器11の径方向において、中空円筒部15bよりも容器11の内壁面ISの近くに配置されている。周壁部15cは、中心軸CL回りに複数の螺旋状板15aのうち隣り合う螺旋状板15a同士をつなぐように構成されている。 The peripheral wall portion 15c is arranged in the radial direction of the container 11 with a gap between it and the inner wall surface IS of the container 11 and a gap between it and the hollow cylindrical portion 15b. The peripheral wall portion 15c is arranged closer to the inner wall surface IS of the container 11 than the hollow cylindrical portion 15b in the radial direction of the container 11. The peripheral wall portion 15c is configured to connect adjacent spiral plates 15a among a plurality of spiral plates 15a around the central axis CL.
 図17は、旋回羽根15が容器11内に配置された構成を概略的に示す断面図である。図18は、旋回羽根15が容器11内に配置された構成を概略的に示し図17の断面位置に直交する断面における断面図である。 FIG. 17 is a cross-sectional view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11. FIG. 18 is a cross-sectional view schematically showing a configuration in which the swirl vanes 15 are arranged in the container 11 in a cross section orthogonal to the cross-sectional position of FIG.
 図15、図17および図18に示されるように、中空円筒部15bと周壁部15cとの間に複数の中間流路F20が設けられている。複数の中間流路F20は、複数の螺旋状板15aの各々によって区切られている。複数の中間流路F20の各々は、中心軸CL回りに並んで配置されている。複数の中間流路F20の各々は、中心軸CLに沿って螺旋状に延在している。複数の中間流路F20の各々は、中心軸CL回りに螺旋状にねじれるように構成されている。複数の中間流路F20の各々は互いに中心軸CLに対して点対称に配置されている。 As shown in FIGS. 15, 17, and 18, a plurality of intermediate flow paths F20 are provided between the hollow cylindrical portion 15b and the peripheral wall portion 15c. The plurality of intermediate flow paths F20 are separated by each of the plurality of spiral plates 15a. Each of the plurality of intermediate flow paths F20 is arranged side by side around the central axis CL. Each of the plurality of intermediate flow paths F20 extends spirally along the central axis CL. Each of the plurality of intermediate flow paths F20 is configured to twist spirally around the central axis CL. Each of the plurality of intermediate flow paths F20 is arranged point-symmetrically with respect to the central axis CL.
 周壁部15cと容器11の内壁面ISとの間に複数の外側流路F30が設けられている。複数の外側流路F30は、複数の螺旋状板15aの各々によって区切られている。複数の外側流路F30の各々は、中心軸CL回りに並んで配置されている。複数の外側流路F30の各々は、中心軸CLに沿って螺旋状に延在している。複数の外側流路F30の各々は、中心軸CL回りに螺旋状にねじれるように構成されている。複数の外側流路F30の各々は互いに中心軸CLに対して点対称に配置されている。 A plurality of outer flow paths F30 are provided between the peripheral wall portion 15c and the inner wall surface IS of the container 11. The plurality of outer flow paths F30 are separated by each of the plurality of spiral plates 15a. Each of the plurality of outer flow paths F30 is arranged side by side around the central axis CL. Each of the plurality of outer flow paths F30 extends spirally along the central axis CL. Each of the plurality of outer flow paths F30 is configured to twist spirally around the central axis CL. Each of the plurality of outer flow paths F30 is arranged point-symmetrically with respect to the central axis CL.
 図19は、旋回羽根15が容器11内に配置された構成を概略的に示す上面図である。図19に示されるように、複数の螺旋状板15aは、中心軸CLに沿う方向から見て中心軸CLからずれるように配置されている。 FIG. 19 is a top view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11. As shown in FIG. 19, the plurality of spiral plates 15a are arranged so as to deviate from the central axis CL when viewed from the direction along the central axis CL.
 図15および図19に示されるように、中心軸CLに沿う方向から見て、中空円筒部15bの中空領域HPの面積を第1面積S10とし、中空円筒部15bと周壁部15cと複数の螺旋状板15aで囲まれた領域の各々の面積を第2面積S20とし、周壁部15cと容器11の内壁面ISと複数の螺旋状板15aで囲まれた領域の各々の面積を第3面積S30とする。この場合、第1面積S10は前記第2面積S20よりも大きく、第2面積S20は第3面積S30よりも大きい。これらの面積は、中心軸CLに直交する断面における各領域の面積と等しい。 As shown in FIGS. 15 and 19, the area of the hollow region HP of the hollow cylindrical portion 15b is defined as the first area S10 when viewed from the direction along the central axis CL, and the hollow cylindrical portion 15b, the peripheral wall portion 15c, and a plurality of spirals. The area of each region surrounded by the shape plate 15a is defined as the second area S20, and the area of each of the regions surrounded by the peripheral wall portion 15c, the inner wall surface IS of the container 11, and the plurality of spiral plates 15a is the third area S30. And. In this case, the first area S10 is larger than the second area S20, and the second area S20 is larger than the third area S30. These areas are equal to the area of each region in the cross section orthogonal to the central axis CL.
 図20は、本実施の形態に係る旋回羽根15の概念図である。図20に示されるように、旋回羽根15は、断面形状101が螺旋状の軌跡102を通過したときに断面形状101と軌跡102とによって描かれた形状で構成されている。軌跡102の中心は、図20中のx軸、y軸、z軸の中心である。このx軸は旋回羽根15の前後方向に対応し、このy軸は旋回羽根15の左右方向に対応し、このz軸は旋回羽根15の上下方向に対応する。 FIG. 20 is a conceptual diagram of the swivel blade 15 according to the present embodiment. As shown in FIG. 20, the swivel vane 15 is configured to have a shape drawn by the cross-sectional shape 101 and the locus 102 when the cross-sectional shape 101 passes through the spiral locus 102. The center of the locus 102 is the center of the x-axis, y-axis, and z-axis in FIG. The x-axis corresponds to the front-rear direction of the swivel vane 15, the y-axis corresponds to the left-right direction of the swivel vane 15, and the z-axis corresponds to the vertical direction of the swivel vane 15.
 図15および図20に示されるように、旋回羽根15の中心軸CLに直交する断面形状101は、いずれの断面における断面形状101も中心軸CLを中心に回転したときに相似となる。つまり、旋回羽根15の中心軸CLに直交する断面形状101は、いずれの断面においても、相似形状となる。 As shown in FIGS. 15 and 20, the cross-sectional shape 101 orthogonal to the central axis CL of the swivel vane 15 becomes similar when the cross-sectional shape 101 in any cross section is rotated about the central axis CL. That is, the cross-sectional shape 101 orthogonal to the central axis CL of the swirl vane 15 has a similar shape in any cross section.
 図21は、気液分離装置10内での気体と液体とが分離される様子を説明するための概略図である。図21では気液二相流体の流れが実線矢印で示されている。図21に示されるように、気液二相流体が旋回羽根15を通過するときに、内側流路F10を流れる気液二相流体の流速よりも中間流路F20および外側流路F30を流れる気液二相流体の流速が低下する。旋回羽根15の出口において、旋回羽根で発生した旋回流と、旋回羽根の内周部と外周部との流速差とによって、気液二相流体の液体が容器11の内壁面ISに飛ばされる。このようにして、気液二相流体から液体が分離される。 FIG. 21 is a schematic view for explaining how the gas and the liquid are separated in the gas-liquid separation device 10. In FIG. 21, the flow of the gas-liquid two-phase fluid is indicated by a solid arrow. As shown in FIG. 21, when the gas-liquid two-phase fluid passes through the swirling vanes 15, the air flowing through the intermediate flow path F20 and the outer flow path F30 rather than the flow velocity of the gas-liquid two-phase fluid flowing through the inner flow path F10. The flow velocity of the liquid two-phase fluid decreases. At the outlet of the swirling vane 15, the liquid of the gas-liquid two-phase fluid is blown to the inner wall surface IS of the container 11 by the swirling flow generated by the swirling vane and the difference in flow velocity between the inner peripheral portion and the outer peripheral portion of the swirling blade. In this way, the liquid is separated from the gas-liquid two-phase fluid.
 本実施の形態に係る気液分離装置10によれば、中空円筒部15bの中空領域HPが中心軸CLに沿う方向から見て中心軸CLに重なるように配置されている。このため、中空円筒部15bの中空領域HPを通過した気液二相流体の主流の流れを乱すことなく、気体排出管14へ流動させることができる。したがって、旋回羽根15で気液二相流体から一度分離された液体の再飛散を低減させることができる。これにより、気体と液体との分離効率の低下を抑制することができる。 According to the gas-liquid separation device 10 according to the present embodiment, the hollow region HP of the hollow cylindrical portion 15b is arranged so as to overlap the central axis CL when viewed from the direction along the central axis CL. Therefore, the gas-liquid two-phase fluid that has passed through the hollow region HP of the hollow cylindrical portion 15b can flow to the gas discharge pipe 14 without disturbing the main flow. Therefore, it is possible to reduce the re-scattering of the liquid once separated from the gas-liquid two-phase fluid by the swirling blade 15. As a result, it is possible to suppress a decrease in the separation efficiency between the gas and the liquid.
 本実施の形態に係る気液分離装置10によれば、旋回羽根15の周壁部15cによって旋回羽根15に設けられる気液二相流体の流路を区分けすることができる。したがって、気液二相流体の流路を多くすることができるため、気体と液体との分離効率を向上させることができる。 According to the gas-liquid separation device 10 according to the present embodiment, the flow path of the gas-liquid two-phase fluid provided in the swirl vane 15 can be separated by the peripheral wall portion 15c of the swirl vane 15. Therefore, since the number of flow paths of the gas-liquid two-phase fluid can be increased, the separation efficiency between the gas and the liquid can be improved.
 本実施の形態に係る気液分離装置10によれば、第1面積S10は第2面積S20よりも大きく、第2面積S20は第3面積S30よりも大きい。このため、気液二相流体が旋回羽根15を通過するときに、内側流路F10を流れる気液二相流体の流速よりも中間流路F20を流れる気液二相流体の流速を低下させることができ、中間流路F20を流れる気液二相流体の流速よりも外側流路F30を流れる気液二相流体の流速を低下させることができる。 According to the gas-liquid separation device 10 according to the present embodiment, the first area S10 is larger than the second area S20, and the second area S20 is larger than the third area S30. Therefore, when the gas-liquid two-phase fluid passes through the swirling vanes 15, the flow velocity of the gas-liquid two-phase fluid flowing through the intermediate flow path F20 is lower than the flow velocity of the gas-liquid two-phase fluid flowing through the inner flow path F10. Therefore, the flow velocity of the gas-liquid two-phase fluid flowing through the outer flow path F30 can be made lower than the flow velocity of the gas-liquid two-phase fluid flowing through the intermediate flow path F20.
 次に、本実施の形態に係る気液分離装置10の変形例について説明する。なお、本実施の形態に係る気液分離装置10の変形例は、特に説明しない限り上記の本実施の形態に係る気液分離装置10と同一の構成、動作および効果を有している。したがって、上記の本実施の形態に係る気液分離装置10と同一の構成には同一の符号を付し、説明を繰り返さない。 Next, a modified example of the gas-liquid separation device 10 according to the present embodiment will be described. Unless otherwise specified, the modified example of the gas-liquid separation device 10 according to the present embodiment has the same configuration, operation, and effect as the gas-liquid separation device 10 according to the present embodiment. Therefore, the same components as those of the gas-liquid separation device 10 according to the present embodiment are designated by the same reference numerals, and the description will not be repeated.
 図22~図25を参照して、本実施の形態に係る気液分離装置10の変形例について説明する。図22は、本実施の形態に係る気液分離装置10の変形例における旋回羽根15が容器11内に配置された構成を概略的に示す斜視図である。なお、説明の便宜のため、図22では、容器11の旋回羽根15よりも上側および下側の部分は記載されていない。図23は、本実施の形態に係る気液分離装置10の変形例における旋回羽根15の構成を概略的に示す斜視図である。 A modified example of the gas-liquid separation device 10 according to the present embodiment will be described with reference to FIGS. 22 to 25. FIG. 22 is a perspective view schematically showing a configuration in which the swirl vanes 15 in the modified example of the gas-liquid separation device 10 according to the present embodiment are arranged in the container 11. For convenience of explanation, in FIG. 22, the portions above and below the swivel blade 15 of the container 11 are not shown. FIG. 23 is a perspective view schematically showing the configuration of the swirl vane 15 in the modified example of the gas-liquid separation device 10 according to the present embodiment.
 図24は、旋回羽根15が容器11内に配置された構成を概略的に示す断面図である。図25は、旋回羽根15が容器11内に配置された構成を概略的に示し図24の断面位置に直交する断面における断面図である。 FIG. 24 is a cross-sectional view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11. FIG. 25 is a cross-sectional view schematically showing a configuration in which the swirl vanes 15 are arranged in the container 11 in a cross section orthogonal to the cross-sectional position of FIG. 24.
 図22~図25に示されるように、本実施の形態に係る気液分離装置10の変形例は、上記の本実施の形態に係る気液分離装置10に比べて旋回羽根15の構成が異なっている。本実施の形態に係る気液分離装置10の変形例では、複数の螺旋状板15aは、中心軸CLを中心として360度の回転角度で螺旋状にねじれるように構成されている。 As shown in FIGS. 22 to 25, the modified example of the gas-liquid separation device 10 according to the present embodiment has a different configuration of the swirl vanes 15 than the gas-liquid separation device 10 according to the present embodiment. ing. In the modified example of the gas-liquid separation device 10 according to the present embodiment, the plurality of spiral plates 15a are configured to be spirally twisted at a rotation angle of 360 degrees about the central axis CL.
 実施の形態3.
 図26~図27を参照して、本発明の実施の形態3について説明する。なお、本発明の実施の形態3は、特に説明しない限り、上記の本発明の実施の形態2と同一の構成、動作および効果を有している。したがって、上記の本発明の実施の形態2と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 3.
Embodiment 3 of the present invention will be described with reference to FIGS. 26 to 27. Unless otherwise specified, the third embodiment of the present invention has the same configuration, operation, and effect as the second embodiment of the present invention. Therefore, the same components as those in the second embodiment of the present invention are designated by the same reference numerals, and the description will not be repeated.
 図26は、旋回羽根15が容器11内に配置された構成を概略的に示す断面図である。図26に示されるように、本実施の形態では、旋回羽根15は、多孔質状の部材PMにより構成されている。多孔質状の部材PMは、内側流路F10から中間流路F20へ液体を移動可能に構成されており、中間流路F20から外側流路F30へ液体を移動可能に構成されている。多孔質状の部材PMは、たとえば多孔質材料により構成されている。また、多孔質状の部材PMは、たとえば多数の貫通孔が設けられた複数の板が重ねられることにより構成されていてもよい。さらに、多孔質状の部材PMは、たとえば金属により構成されていてもよい。 FIG. 26 is a cross-sectional view schematically showing a configuration in which the swivel blade 15 is arranged in the container 11. As shown in FIG. 26, in the present embodiment, the swirl vane 15 is composed of a porous member PM. The porous member PM is configured to be able to move the liquid from the inner flow path F10 to the intermediate flow path F20, and is configured to be able to move the liquid from the intermediate flow path F20 to the outer flow path F30. The porous member PM is made of, for example, a porous material. Further, the porous member PM may be formed by, for example, stacking a plurality of plates provided with a large number of through holes. Further, the porous member PM may be made of, for example, a metal.
 図27は、気液分離装置10内での気体と液体とが分離される様子を説明するための概略図である。図27では気液二相流体の流れが実線矢印で示されており、液体の流れが破線矢印で示されている。 FIG. 27 is a schematic view for explaining how the gas and the liquid are separated in the gas-liquid separation device 10. In FIG. 27, the flow of gas-liquid two-phase fluid is indicated by a solid arrow, and the flow of liquid is indicated by a dashed arrow.
 図27に示されるように、気液二相流体が旋回羽根15を通過するときに、内側流路F10を流れる気液二相流体の流速よりも中間流路F20および外側流路F30を流れる気液二相流体の流速が低下する。また、旋回羽根15の内周部を流れる気液二相流体の流速が早くなるため、旋回羽根15を内周部から外周部に向けて液体が通過する。具体的には、多孔質状の部材PMにより構成された中空円筒部15bおよび周壁部15cを通って液体が容器11の内壁面ISに向けて移動する。旋回羽根15の出口において、旋回羽根で発生した旋回流と、旋回羽根の内周部と外周部との流速差とによって、気液二相流体の液体が容器11の内壁面ISに飛ばされる。このようにして、気液二相流体から液体が分離される。 As shown in FIG. 27, when the gas-liquid two-phase fluid passes through the swirling vanes 15, the air flowing through the intermediate flow path F20 and the outer flow path F30 rather than the flow velocity of the gas-liquid two-phase fluid flowing through the inner flow path F10. The flow velocity of the liquid two-phase fluid decreases. Further, since the flow velocity of the gas-liquid two-phase fluid flowing through the inner peripheral portion of the swirling vane 15 becomes faster, the liquid passes through the swirling vane 15 from the inner peripheral portion to the outer peripheral portion. Specifically, the liquid moves toward the inner wall surface IS of the container 11 through the hollow cylindrical portion 15b and the peripheral wall portion 15c composed of the porous member PM. At the outlet of the swirling vane 15, the liquid of the gas-liquid two-phase fluid is blown to the inner wall surface IS of the container 11 by the swirling flow generated by the swirling vane and the difference in flow velocity between the inner peripheral portion and the outer peripheral portion of the swirling blade. In this way, the liquid is separated from the gas-liquid two-phase fluid.
 本実施の形態に係る気液分離装置10によれば、旋回羽根15は多孔質状の部材PMにより構成されている。このため、旋回羽根15の内周部から外周部に向けて液体を移動させることができる。これにより、容器11の内壁面ISに向けて液体を誘導することができる。したがって、気体と液体との分離効率をさらに向上させることができる。 According to the gas-liquid separation device 10 according to the present embodiment, the swirl vane 15 is composed of a porous member PM. Therefore, the liquid can be moved from the inner peripheral portion to the outer peripheral portion of the swirling vane 15. As a result, the liquid can be guided toward the inner wall surface IS of the container 11. Therefore, the separation efficiency of gas and liquid can be further improved.
 上記の各実施の形態は適宜組み合わせられ得る。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
Each of the above embodiments can be combined as appropriate.
It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope of the claims.
 1 圧縮機、2 四方弁、3 室外熱交換器、4 流量調整弁、5 室内熱交換器、10 気液分離装置、11 容器、12 流入管、12a 流入口、13 液体排出管、13a 液体排出口、14 気体排出管、14a 気体排出口、15 旋回羽根、15a 螺旋状板、15b 中空円筒部、15c 周壁部、100 冷凍サイクル装置、100a 室外機ユニット、100b 室内機ユニット、101 断面形状、102 軌跡、CL 中心軸、CP 中心、HP 中空領域、IS 内壁面。 1 compressor, 2 four-way valve, 3 outdoor heat exchanger, 4 flow control valve, 5 indoor heat exchanger, 10 gas-liquid separator, 11 container, 12 inflow pipe, 12a inlet, 13 liquid discharge pipe, 13a liquid discharge Outlet, 14 gas discharge pipe, 14a gas discharge port, 15 swivel blade, 15a spiral plate, 15b hollow cylindrical part, 15c peripheral wall part, 100 refrigeration cycle device, 100a outdoor unit unit, 100b indoor unit unit, 101 cross-sectional shape, 102 Trajectory, CL central axis, CP center, HP hollow area, IS inner wall surface.

Claims (6)

  1.  気液二相流体を気体と液体とに分離する気液分離装置であって、
     上下に延びる中心軸に沿って延在し、かつ前記中心軸を取り囲む内壁面を有する容器と、
     前記容器内に前記気液二相流体を流入させる流入口を有する流入管と、
     前記気液二相流体から分離された前記液体を前記容器から排出する液体排出口を有する液体排出管と、
     前記気液二相流体から分離された前記気体を前記容器から排出する気体排出口を有する気体排出管と、
     前記容器内に配置された旋回羽根とを備え、
     前記流入管の前記流入口は、前記旋回羽根の上方に配置されており、
     前記液体排出管の前記液体排出口は、前記旋回羽根の下方に配置されており、
     前記気体排出管の前記気体排出口は、前記旋回羽根の下方であり、かつ前記液体排出口よりも上方に配置されており、
     前記旋回羽根は、各々が前記中心軸に沿って螺旋状に延在する複数の螺旋状板を含み、
     前記複数の螺旋状板の各々は、前記中心軸に沿う方向から見て前記中心軸からずれるように配置されている、気液分離装置。
    A gas-liquid separator that separates a gas-liquid two-phase fluid into a gas and a liquid.
    A container that extends along a central axis extending vertically and has an inner wall surface that surrounds the central axis.
    An inflow pipe having an inflow port for flowing the gas-liquid two-phase fluid into the container,
    A liquid discharge pipe having a liquid discharge port for discharging the liquid separated from the gas-liquid two-phase fluid from the container,
    A gas discharge pipe having a gas discharge port for discharging the gas separated from the gas-liquid two-phase fluid from the container, and
    With a swivel vane arranged in the container
    The inflow port of the inflow pipe is arranged above the swirl vane, and
    The liquid discharge port of the liquid discharge pipe is arranged below the swirl vane.
    The gas discharge port of the gas discharge pipe is located below the swirl vane and above the liquid discharge port.
    The swivel vane comprises a plurality of spiral plates, each spirally extending along the central axis.
    A gas-liquid separator in which each of the plurality of spiral plates is arranged so as to deviate from the central axis when viewed from a direction along the central axis.
  2.  前記旋回羽根は、前記中心軸に沿って延在する中空領域を前記中心軸回りに取り囲み、かつ前記中心軸に沿って延在する中空円筒部を含み、
     前記中空円筒部の前記中空領域は、前記中心軸に沿う方向から見て前記中心軸に重なるように配置されており、
     前記複数の螺旋状板の各々は、前記中空円筒部から前記容器の前記内壁面に向けて延在している、請求項1に記載の気液分離装置。
    The swivel vane comprises a hollow cylindrical portion that surrounds a hollow region extending along the central axis around the central axis and extends along the central axis.
    The hollow region of the hollow cylindrical portion is arranged so as to overlap the central axis when viewed from a direction along the central axis.
    The gas-liquid separation device according to claim 1, wherein each of the plurality of spiral plates extends from the hollow cylindrical portion toward the inner wall surface of the container.
  3.  前記旋回羽根は、前記中空円筒部を前記中心軸回りに取り囲み、かつ前記中心軸に沿って延在する周壁部を含み、
     前記周壁部は、前記容器の径方向に、前記容器の前記内壁面との間に隙間をあけ、かつ前記中空円筒部との間に隙間をあけて配置されており、
     前記周壁部は、前記中心軸回りに前記複数の螺旋状板のうち隣り合う前記螺旋状板同士をつなぐように構成されている、請求項2に記載の気液分離装置。
    The swirl vane includes a peripheral wall portion that surrounds the hollow cylindrical portion around the central axis and extends along the central axis.
    The peripheral wall portion is arranged in the radial direction of the container with a gap between the inner wall surface and the inner wall surface of the container and a gap between the peripheral wall portion and the hollow cylindrical portion.
    The gas-liquid separation device according to claim 2, wherein the peripheral wall portion is configured to connect adjacent spiral plates among the plurality of spiral plates around the central axis.
  4.  前記中心軸に沿う方向から見て、前記中空円筒部の前記中空領域の面積を第1面積とし、前記中空円筒部と前記周壁部と前記複数の螺旋状板で囲まれた領域の各々の面積を第2面積とし、前記周壁部と前記容器の前記内壁面と前記複数の螺旋状板で囲まれた領域の各々の面積を第3面積とした場合に、
     前記第1面積は前記第2面積よりも大きく、
     前記第2面積は前記第3面積よりも大きい、請求項3に記載の気液分離装置。
    When viewed from the direction along the central axis, the area of the hollow region of the hollow cylindrical portion is defined as the first area, and the area of each of the hollow cylindrical portion, the peripheral wall portion, and the region surrounded by the plurality of spiral plates. Is the second area, and each area of the peripheral wall portion, the inner wall surface of the container, and the area surrounded by the plurality of spiral plates is the third area.
    The first area is larger than the second area,
    The gas-liquid separation device according to claim 3, wherein the second area is larger than the third area.
  5.  前記旋回羽根は、多孔質状の部材により構成されている、請求項2~4のいずれか1項に記載の気液分離装置。 The gas-liquid separation device according to any one of claims 2 to 4, wherein the swivel blade is composed of a porous member.
  6.  請求項1~5のいずれか1項に記載の気液分離装置を備えた、冷凍サイクル装置。 A refrigeration cycle device provided with the gas-liquid separation device according to any one of claims 1 to 5.
PCT/JP2019/017756 2019-04-25 2019-04-25 Gas-liquid separation device and refrigeration cycle device WO2020217418A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/017756 WO2020217418A1 (en) 2019-04-25 2019-04-25 Gas-liquid separation device and refrigeration cycle device
JP2021515431A JP7204899B2 (en) 2019-04-25 2019-04-25 Gas-liquid separator and refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017756 WO2020217418A1 (en) 2019-04-25 2019-04-25 Gas-liquid separation device and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020217418A1 true WO2020217418A1 (en) 2020-10-29

Family

ID=72941627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017756 WO2020217418A1 (en) 2019-04-25 2019-04-25 Gas-liquid separation device and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7204899B2 (en)
WO (1) WO2020217418A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357393B2 (en) * 1982-03-26 1991-08-30
US5218832A (en) * 1991-09-16 1993-06-15 Ball Corporation Separation method and apparatus for a liquid and gas mixture
JP2002324561A (en) * 2001-04-27 2002-11-08 Mitsubishi Heavy Ind Ltd Gas-liquid separator and fuel cell power-generating system using it
JP2003525976A (en) * 2000-03-08 2003-09-02 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Gas-liquid separation device
JP2005098664A (en) * 2003-08-27 2005-04-14 Fuji Koki Corp Gas-liquid separator
JP2015218982A (en) * 2014-05-20 2015-12-07 富士電機株式会社 Gas-liquid separator
JP2015217326A (en) * 2014-05-15 2015-12-07 吉雄 網本 Cyclone type gas-liquid separator having improved gas-liquid separation efficiency
WO2016063400A1 (en) * 2014-10-23 2016-04-28 三菱電機株式会社 Oil separator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148309A (en) 2012-01-23 2013-08-01 Hitachi Appliances Inc Coolant distributor and refrigeration cycle device including the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357393B2 (en) * 1982-03-26 1991-08-30
US5218832A (en) * 1991-09-16 1993-06-15 Ball Corporation Separation method and apparatus for a liquid and gas mixture
JP2003525976A (en) * 2000-03-08 2003-09-02 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Gas-liquid separation device
JP2002324561A (en) * 2001-04-27 2002-11-08 Mitsubishi Heavy Ind Ltd Gas-liquid separator and fuel cell power-generating system using it
JP2005098664A (en) * 2003-08-27 2005-04-14 Fuji Koki Corp Gas-liquid separator
JP2015217326A (en) * 2014-05-15 2015-12-07 吉雄 網本 Cyclone type gas-liquid separator having improved gas-liquid separation efficiency
JP2015218982A (en) * 2014-05-20 2015-12-07 富士電機株式会社 Gas-liquid separator
WO2016063400A1 (en) * 2014-10-23 2016-04-28 三菱電機株式会社 Oil separator

Also Published As

Publication number Publication date
JP7204899B2 (en) 2023-01-16
JPWO2020217418A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP4356214B2 (en) Oil separator and outdoor unit
KR20110119553A (en) Gas-liquid separator and refrigerating apparatus equipped therewith
JP5143040B2 (en) Gas-liquid separator and refrigeration cycle apparatus equipped with the gas-liquid separator
EP2778569B1 (en) Air conditioner
WO2014103436A1 (en) Refrigeration cycle device
JP5757415B2 (en) Refrigeration equipment such as air conditioners
CN110709665B (en) Heat exchanger and refrigeration cycle device
JP7012839B2 (en) Oil separator and refrigeration cycle equipment
JP2000274890A (en) Supercritical cycle
JP2003004343A (en) Vapor-liquid separator, and air conditioner using it
CN111512101B (en) Separator and refrigeration cycle device
WO2020217418A1 (en) Gas-liquid separation device and refrigeration cycle device
WO2020174660A1 (en) Gas-liquid separation device and refrigeration cycle device
WO2024029028A1 (en) Oil separator and refrigeration cycle device
KR101785669B1 (en) Oil separator and Air conditioner having it
WO2020217419A1 (en) Gas-liquid separation device and refrigeration cycle device
JP7343611B2 (en) Gas-liquid separation equipment and refrigeration cycle equipment
JP3780834B2 (en) Air conditioner
JP4561012B2 (en) Air conditioner
JP2006233860A (en) Oil separating device, compressor, and air conditioner
CN221005578U (en) Heat exchange device for refrigerant circulation system and refrigerant circulation system
WO2022269750A1 (en) Air conditioner
WO2023238234A1 (en) Heat exchanger
JP2022054729A (en) Oil separator and air conditioner
JP2020085424A (en) Oil separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926180

Country of ref document: EP

Kind code of ref document: A1