JP2015218982A - Gas-liquid separator - Google Patents

Gas-liquid separator Download PDF

Info

Publication number
JP2015218982A
JP2015218982A JP2014104431A JP2014104431A JP2015218982A JP 2015218982 A JP2015218982 A JP 2015218982A JP 2014104431 A JP2014104431 A JP 2014104431A JP 2014104431 A JP2014104431 A JP 2014104431A JP 2015218982 A JP2015218982 A JP 2015218982A
Authority
JP
Japan
Prior art keywords
gas
refrigerant
liquid
phase refrigerant
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014104431A
Other languages
Japanese (ja)
Inventor
実 柿沼
Minoru Kakinuma
実 柿沼
鶴羽 健
Takeshi Tsuruha
鶴羽  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014104431A priority Critical patent/JP2015218982A/en
Publication of JP2015218982A publication Critical patent/JP2015218982A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas-liquid separator capable of being easily manufactured, reducing costs with a compact and simple structure without increased in size, and improving gas-liquid separation efficiency.SOLUTION: A spiral refrigerant guide plate 12 is formed at an inner wall 11a side of a refrigerant inflow pipe 11 to which a gas-liquid two-phase refrigerant flows, the gas-liquid two-phase refrigerant flowing into the refrigerant inflow pipe 11 is circulated along a spiral refrigerant guide plate 12 formed at the inner wall 11a side of the refrigerant inflow pipe 11 to generate swirl flow in the flow of the gas-liquid two-phase refrigerant, and the gas-liquid two-phase refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant by centrifugal separating action generated by the swirl flow.

Description

本発明は、冷凍サイクル装置などで使用される気液二相冷媒(気液混合冷媒)を気相冷媒(気体冷媒)と液相冷媒(液体冷媒)とに分離する気液分離器に関する。   The present invention relates to a gas-liquid separator that separates a gas-liquid two-phase refrigerant (gas-liquid mixed refrigerant) used in a refrigeration cycle apparatus into a gas-phase refrigerant (gas refrigerant) and a liquid-phase refrigerant (liquid refrigerant).

自動販売機や冷凍/冷蔵ショーケース、飲料ディスペンサなどに設けられる断熱筐体の内部雰囲気を冷却するための冷凍サイクル装置は、圧縮機、放熱器、蒸発器、エジェクタおよび気液分離器などを備えて構成されている。   A refrigeration cycle device for cooling the internal atmosphere of a heat-insulated housing provided in vending machines, refrigerated / refrigerated showcases, beverage dispensers, etc., includes a compressor, radiator, evaporator, ejector, gas-liquid separator, etc. Configured.

圧縮機は、供給された冷媒を圧縮するものである。放熱器は、圧縮機で圧縮された高圧冷媒を放熱させるものである。蒸発器は、商品収容庫などの断熱筐体の内部に配設されており、供給された冷媒を蒸発させるものである。   The compressor compresses the supplied refrigerant. The radiator radiates heat from the high-pressure refrigerant compressed by the compressor. An evaporator is arrange | positioned inside heat insulation housing | casings, such as goods storage, and evaporates the supplied refrigerant | coolant.

エジェクタは、放熱器から供給された高圧の冷媒(高圧冷媒)を減圧させることによるエネルギーを利用して、蒸発器で蒸発した低圧の冷媒(低圧冷媒)を吸引し、吸引した低圧冷媒を高圧冷媒と混合させ、低圧冷媒を昇圧させた後に吐出するものである。気液分離器は、エジェクタから供給された気液二相冷媒を気相冷媒と液相冷媒とに分離し、気相冷媒を圧縮機に送出する一方、液相冷媒を蒸発器に送出するものである。   The ejector uses the energy generated by depressurizing the high-pressure refrigerant (high-pressure refrigerant) supplied from the radiator to suck the low-pressure refrigerant (low-pressure refrigerant) evaporated in the evaporator, and the sucked low-pressure refrigerant is used as the high-pressure refrigerant. And the low-pressure refrigerant is discharged after being pressurized. The gas-liquid separator separates the gas-liquid two-phase refrigerant supplied from the ejector into a gas-phase refrigerant and a liquid-phase refrigerant, and sends the gas-phase refrigerant to the compressor, while sending the liquid-phase refrigerant to the evaporator. It is.

そして、圧縮機、放熱器、エジェクタおよび気液分離器が冷媒管路で順次環状に接続され、エジェクタの低圧冷媒の吸入口と気液分離器の液相冷媒の送出口との間に蒸発器が設けられることにより、冷媒循環回路が構成され、この冷媒循環回路に冷媒を循環させるようにしている。これにより、蒸発器の周辺領域は、冷媒が蒸発することで熱を吸収することにより冷却され、断熱筐体の内部雰囲気が冷却される(例えば、特許文献1参照)。   A compressor, a radiator, an ejector, and a gas-liquid separator are sequentially connected in an annular manner through a refrigerant pipe, and an evaporator is provided between the low-pressure refrigerant inlet of the ejector and the liquid-phase refrigerant outlet of the gas-liquid separator. Is provided to constitute a refrigerant circulation circuit, and the refrigerant is circulated through the refrigerant circulation circuit. Thereby, the peripheral region of the evaporator is cooled by absorbing heat by evaporating the refrigerant, and the internal atmosphere of the heat insulating housing is cooled (for example, see Patent Document 1).

このような構成の冷凍サイクル装置に備えられている気液分離器で、気液二相冷媒の中の液滴を凝縮させて気相冷媒と液相冷媒に分離する方式には、主に、重力分離方式、表面張力分離方式、遠心分離方式と3つの方式がある。   In the method of condensing droplets in the gas-liquid two-phase refrigerant and separating them into the gas-phase refrigerant and the liquid-phase refrigerant in the gas-liquid separator provided in the refrigeration cycle apparatus having such a configuration, mainly, There are three methods: gravity separation method, surface tension separation method, and centrifugal separation method.

例えば、重力分離方式と表面張力分離方式とを組み合わせた気液分離器では、気液二相冷媒が流入する冷媒流入配管に管の向きが途中で曲げられている流入配管曲がり部を設け、また、冷媒流入配管の途中に冷媒流入配管の内径よりも小さな外径を持つ気相冷媒流出管を流入配管曲がり部の管壁を貫通して接続して設けて冷媒流入配管と気相冷媒流出管の中心軸を略一致させ、さらに、冷媒流入配管内側にある気相冷媒流出管の端部である気相冷媒流入口を流入配管曲がり部から所定の距離位置となるように気相冷媒流出管を配設し、そして、気液分離後に液相冷媒が流出する液相冷媒流出管を冷媒流入配管と同一の管で構成するようにしている。   For example, in a gas-liquid separator that combines a gravity separation method and a surface tension separation method, a refrigerant inflow pipe into which a gas-liquid two-phase refrigerant flows is provided with an inflow pipe bent portion in which the direction of the pipe is bent halfway. In the middle of the refrigerant inflow pipe, a gas phase refrigerant outflow pipe having an outer diameter smaller than the inner diameter of the refrigerant inflow pipe is connected through the pipe wall of the inflow pipe bent portion, and the refrigerant inflow pipe and the gas phase refrigerant outflow pipe are provided. The gas-phase refrigerant outflow pipe is arranged so that the center axis of the gas-phase refrigerant is substantially coincided and the gas-phase refrigerant inflow port, which is the end of the gas-phase refrigerant outflow pipe inside the refrigerant inflow pipe, is located at a predetermined distance from the bent part of the inflow pipe The liquid-phase refrigerant outflow pipe from which the liquid-phase refrigerant flows out after gas-liquid separation is constituted by the same pipe as the refrigerant inflow pipe.

このように気液分離器を構成することにより、気相冷媒流出管の端部付近において気液二相冷媒が環状流になっている場合、冷媒流入配管と気相冷媒流出管の中心軸は略一致しているため、気液二相冷媒の中から気相冷媒を分離して取り出すことができる。一方、気相冷媒流出管の端部付近において気液二相冷媒が環状流になっていない場合でも、流れ方向に進む慣性力が大きな液相冷媒は液相冷媒流出管方向に流れていき、気相冷媒は気相冷媒流出管を通過するため、気相冷媒を分離して取り出すことができるようになる(例えば、特許文献2参照)。   By configuring the gas-liquid separator in this way, when the gas-liquid two-phase refrigerant is in an annular flow near the end of the gas-phase refrigerant outflow pipe, the central axes of the refrigerant inflow pipe and the gas-phase refrigerant outflow pipe are Since they substantially coincide, the gas-phase refrigerant can be separated and taken out from the gas-liquid two-phase refrigerant. On the other hand, even when the gas-liquid two-phase refrigerant is not in an annular flow near the end of the gas-phase refrigerant outflow pipe, the liquid phase refrigerant with a large inertial force going in the flow direction flows in the liquid phase refrigerant outflow pipe direction, Since the gas-phase refrigerant passes through the gas-phase refrigerant outflow pipe, the gas-phase refrigerant can be separated and taken out (see, for example, Patent Document 2).

また、遠心分離方式による気液分離器は、内部に螺旋状流路が形成された本体部と、螺旋状流路の一端側に連通するように設けられた冷媒流入配管と、螺旋状流路の他端側で且つ螺旋状流路の軸線方向から見て螺旋状流路の外周側部分に連通するように設けられ、螺旋状流路内で分離された液相冷媒を流出させる液相冷媒流出管と、螺旋状流路の他端側で且つ軸線方向から見て螺旋状流路の内周側部分に連通するように設けられ、螺旋状流路内で分離された気相冷媒を流出させる気相冷媒流出管と、を備えている。   In addition, the gas-liquid separator using the centrifugal separation system includes a main body portion in which a spiral channel is formed, a refrigerant inflow pipe provided so as to communicate with one end of the spiral channel, and a spiral channel. The liquid phase refrigerant is provided so as to communicate with the outer peripheral side portion of the spiral flow path when viewed from the axial direction of the spiral flow path, and causes the liquid phase refrigerant separated in the spiral flow path to flow out. Provided to communicate with the outflow pipe and the inner peripheral side portion of the spiral flow path when viewed from the axial direction on the other end side of the spiral flow path, and flows out the gas-phase refrigerant separated in the spiral flow path A gas-phase refrigerant outflow pipe.

そして、気液分離器の本体部内に冷媒流入配管から流入した気液二相冷媒は、螺旋状流路によって旋回成分が与えられ、その遠心力によって液相冷媒と気相冷媒とに分離される。すなわち、比重の大きい液相冷媒は、より大きな遠心力を受けるため、螺旋状流路の外周側に集まる一方、比重の小さい気相冷媒はそれ以外の部分、つまり螺旋状流路の内周側に集まることになる(例えば、特許文献3参照)。   Then, the gas-liquid two-phase refrigerant that has flowed into the main body of the gas-liquid separator from the refrigerant inflow pipe is given a swirling component by the spiral flow path, and is separated into a liquid-phase refrigerant and a gas-phase refrigerant by the centrifugal force. . That is, since the liquid refrigerant having a large specific gravity receives a greater centrifugal force, it gathers on the outer peripheral side of the spiral flow path, while the gas phase refrigerant having a low specific gravity is the other part, that is, the inner peripheral side of the spiral flow path. (See, for example, Patent Document 3).

特開2008−57941号公報JP 2008-57941 A 特開2011−247473号公報JP 2011-247473 A 特開2008−51344号公報JP 2008-51344 A

しかしながら、気液二相冷媒を気相冷媒と液相冷媒に分離する気液分離器の気液分離効率を高めるためには、遠心分離方式による気液分離器は、大型化、大口径化が求められるが、コスト増加および大型化、大口径化に伴う配置スペースに制約が生じることとなる。   However, in order to increase the gas-liquid separation efficiency of the gas-liquid separator that separates the gas-liquid two-phase refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant, the centrifugal-type gas-liquid separator is increased in size and diameter. Although it is required, there is a restriction on the arrangement space accompanying the increase in cost, enlargement, and large diameter.

また、表面張力分離方式による気液分離器は、小型化に適する反面、構造が複雑となり、コスト増加および圧力損失が増加するという課題がある。   Further, the gas-liquid separator based on the surface tension separation method is suitable for downsizing, but has a problem that the structure becomes complicated, and the cost and pressure loss increase.

本発明は、以上のような課題を解決するためになされたものであり、製造が容易で、大口径化することなく、コンパクトでシンプルな構造で低コスト化が図れ、気液分離効率を高めることができる気液分離器を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is easy to manufacture, can be reduced in cost with a compact and simple structure without increasing the diameter, and increases the efficiency of gas-liquid separation. An object of the present invention is to provide a gas-liquid separator that can be used.

上記の目的を達成するために、本発明の請求項1に係る気液分離器は、気液二相冷媒を気相冷媒と液相冷媒とに分離する気液分離器において、
前記気液二相冷媒が流入する冷媒流入配管の内壁側に螺旋形状の冷媒ガイド板を形成し、
前記冷媒流入配管に流入した前記気液二相冷媒を前記冷媒流入配管の内壁側に形成した前記螺旋形状の冷媒ガイド板に沿わせて通流させることで前記気液二相冷媒の流れに旋回流を発生させ、この旋回流で生じる遠心力分離作用によって前記気液二相冷媒を前記気相冷媒と前記液相冷媒とに分離させることを特徴とする。
In order to achieve the above object, a gas-liquid separator according to claim 1 of the present invention is a gas-liquid separator that separates a gas-liquid two-phase refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant.
Forming a helical refrigerant guide plate on the inner wall side of the refrigerant inflow pipe into which the gas-liquid two-phase refrigerant flows,
The gas-liquid two-phase refrigerant that has flowed into the refrigerant inflow pipe is swung into the flow of the gas-liquid two-phase refrigerant by flowing along the spiral refrigerant guide plate formed on the inner wall side of the refrigerant inflow pipe. A flow is generated, and the gas-liquid two-phase refrigerant is separated into the gas-phase refrigerant and the liquid-phase refrigerant by a centrifugal force separation action generated in the swirling flow.

また、本発明の請求項2に係る気液分離器は、上述した請求項1において、前記螺旋形状の冷媒ガイド板は、細長い薄板状の金属を前記冷媒流入配管の内径に合わせて螺旋形状に巻いてコイルを形成し、該コイルを前記冷媒流入配管内に通して内設させたことを特徴とする。   The gas-liquid separator according to claim 2 of the present invention is the gas-liquid separator according to claim 1 described above, wherein the spiral-shaped refrigerant guide plate is formed in a spiral shape in accordance with an inner diameter of the refrigerant inflow pipe. A coil is formed by winding, and the coil is passed through the refrigerant inflow pipe to be installed.

また、本発明の請求項3に係る気液分離器は、上述した請求項1または請求項2において、前記螺旋形状の冷媒ガイド板を内設した前記冷媒流入配管の一端は下方に向かって開口し、
前記気液二相冷媒から分離した前記気相冷媒を流出させるための気相冷媒流出管と、前記液相冷媒を流出させるための液相冷媒流出管と、が設けられた配管端部を前記冷媒流入配管の開口に接続していることを特徴とする。
A gas-liquid separator according to a third aspect of the present invention is the gas-liquid separator according to the first or second aspect, wherein one end of the refrigerant inflow pipe provided with the helical refrigerant guide plate is opened downward. And
A pipe end provided with a gas phase refrigerant outflow pipe for flowing out the gas phase refrigerant separated from the gas-liquid two-phase refrigerant and a liquid phase refrigerant outflow pipe for flowing out the liquid phase refrigerant It is connected to the opening of the refrigerant inflow pipe.

また、本発明の請求項4に係る気液分離器は、上述した請求項3において、前記液相冷媒流出管は前記配管端部の胴部に接続されて開口し、
前記気相冷媒流出管は前記冷媒流入配管より小さな外径を有し、前記冷媒流入配管内における前記冷媒流入配管との中心軸が略一致するように前記配管端部底面を貫通して前記液相冷媒流出管より上部に気相冷媒流出口を設けたことを特徴とする。
The gas-liquid separator according to claim 4 of the present invention is the gas-liquid separator according to claim 3, wherein the liquid-phase refrigerant outflow pipe is connected to the body of the pipe end and opens.
The gas-phase refrigerant outflow pipe has an outer diameter smaller than that of the refrigerant inflow pipe, and penetrates through the bottom face of the pipe end so that the central axis of the refrigerant inflow pipe substantially coincides with the refrigerant inflow pipe. A gas phase refrigerant outlet is provided above the phase refrigerant outlet pipe.

請求項1の発明によれば、気液二相冷媒を気相冷媒と液相冷媒とに分離する気液分離器において、前記気液二相冷媒が流入する冷媒流入配管の内壁側に螺旋形状の冷媒ガイド板を形成し、前記冷媒流入配管に流入した前記気液二相冷媒を前記冷媒流入配管の内壁側に形成した前記螺旋形状の冷媒ガイド板に沿わせて通流させることで前記気液二相冷媒の流れに旋回流を発生させ、この旋回流で生じる遠心力分離作用によって前記気液二相冷媒を前記気相冷媒と前記液相冷媒とに分離させることにより、製造が容易で、大口径化することなく、コンパクトでシンプルな構造で低コスト化が図れ、気液分離効率を高めることができる気液分離器を提供することが可能となる。   According to the first aspect of the present invention, in the gas-liquid separator that separates the gas-liquid two-phase refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant, a spiral shape is formed on the inner wall side of the refrigerant inflow pipe into which the gas-liquid two-phase refrigerant flows. The gas-liquid two-phase refrigerant that has flowed into the refrigerant inlet pipe is caused to flow along the spiral refrigerant guide plate formed on the inner wall side of the refrigerant inlet pipe. Production is facilitated by generating a swirling flow in the flow of the liquid two-phase refrigerant and separating the gas-liquid two-phase refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant by a centrifugal force separation action generated in the swirling flow. Therefore, it is possible to provide a gas-liquid separator capable of reducing the cost with a compact and simple structure without increasing the diameter and improving the gas-liquid separation efficiency.

また、請求項2の発明によれば、前記螺旋形状の冷媒ガイド板は、細長い薄板状の金属を前記冷媒流入配管の内径に合わせて螺旋形状に巻いてコイルを形成し、該コイルを前記冷媒流入配管内に通して内設させたことにより、製造が容易でコンパクトでシンプルな構造で低コスト化を図ることができる気液分離器を提供することが可能となる。   According to a second aspect of the present invention, the spiral refrigerant guide plate is formed in a coil by winding an elongated thin plate-like metal into a spiral shape in accordance with the inner diameter of the refrigerant inflow pipe, and the coil is formed into the refrigerant. By providing it through the inflow pipe, it is possible to provide a gas-liquid separator that is easy to manufacture, can be reduced in cost with a compact and simple structure.

また、請求項3の発明によれば、前記螺旋形状の冷媒ガイド板を内設した前記冷媒流入配管の一端は下方に向かって開口し、前記気液二相冷媒から分離した前記気相冷媒を流出させるための気相冷媒流出管と、前記液相冷媒を流出させるための液相冷媒流出管と、が設けられた配管端部を前記冷媒流入配管の開口に接続していることにより、コンパクトでシンプルな構造で気液分離効率を高めることができる気液分離器を提供することが可能となる。   According to a third aspect of the present invention, one end of the refrigerant inflow pipe provided with the spiral refrigerant guide plate is opened downward, and the gas-phase refrigerant separated from the gas-liquid two-phase refrigerant is removed. A pipe end provided with a gas-phase refrigerant outflow pipe for letting out and a liquid-phase refrigerant outflow pipe for letting out the liquid-phase refrigerant is connected to the opening of the refrigerant inflow pipe so as to be compact. It is possible to provide a gas-liquid separator that can increase the efficiency of gas-liquid separation with a simple structure.

また、請求項4の発明によれば、前記液相冷媒流出管は前記配管端部の胴部に接続されて開口し、前記気相冷媒流出管は前記冷媒流入配管より小さな外径を有し、前記冷媒流入配管内における前記冷媒流入配管との中心軸が略一致するように前記配管端部底面を貫通して前記液相冷媒流出管より上部に気相冷媒流出口を設けたことにより、コンパクトでシンプルな構造で気液分離効率をさらに高めることができる気液分離器を提供することが可能となる。   According to a fourth aspect of the present invention, the liquid-phase refrigerant outflow pipe is connected to and opened at a body portion of the pipe end, and the gas-phase refrigerant outflow pipe has an outer diameter smaller than that of the refrigerant inflow pipe. The gas-phase refrigerant outlet is provided above the liquid-phase refrigerant outlet pipe through the bottom face of the pipe end so that the central axis of the refrigerant inlet pipe in the refrigerant inlet pipe substantially coincides. It is possible to provide a gas-liquid separator that can further increase the gas-liquid separation efficiency with a compact and simple structure.

本発明に係る気液分離器の構成を示す外観斜視図である。It is an external appearance perspective view which shows the structure of the gas-liquid separator which concerns on this invention. 図1に示した気液分離器の一部を示す断面側面図である。It is a cross-sectional side view which shows a part of gas-liquid separator shown in FIG. 図1に示した気液分離器の冷媒流入配管の配管内径と気液分離効率を説明する図である。It is a figure explaining the piping internal diameter and gas-liquid separation efficiency of the refrigerant | coolant inflow piping of the gas-liquid separator shown in FIG. 図1に示した気液分離器の螺旋形状の冷媒ガイド板の幅および間隔による気液分離効率を説明する図である。It is a figure explaining the gas-liquid separation efficiency by the width | variety and space | interval of the helical refrigerant guide plate of the gas-liquid separator shown in FIG. 図1に示した気液分離器の冷媒流入配管の流路抵抗を説明する図である。It is a figure explaining the channel resistance of the refrigerant | coolant inflow piping of the gas-liquid separator shown in FIG. 図1に示した気液分離器の螺旋形状の冷媒ガイド板の幅および間隔を説明する図である。It is a figure explaining the width | variety and space | interval of the helical refrigerant guide plate of the gas-liquid separator shown in FIG.

以下、図面を参照しながら、本発明に係る気液分離器の好適な実施の形態について詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, preferred embodiments of a gas-liquid separator according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

この実施の形態の気液分離器は、冷凍サイクル装置などで使用されている気液二相冷媒(気液混合冷媒)の中の液滴を凝縮させて気相冷媒(気体冷媒)と液相冷媒(液体冷媒)とに分離する装置である。   The gas-liquid separator according to this embodiment condenses droplets in a gas-liquid two-phase refrigerant (gas-liquid mixed refrigerant) used in a refrigeration cycle apparatus and the like, thereby vapor-phase refrigerant (gas refrigerant) and liquid phase It is an apparatus that separates into refrigerant (liquid refrigerant).

図1は、本発明に係る気液分離器の構成を示す外観斜視図であり、図2は、図1に示した気液分離器の一部を示す断面側面図である。   FIG. 1 is an external perspective view showing a configuration of a gas-liquid separator according to the present invention, and FIG. 2 is a cross-sectional side view showing a part of the gas-liquid separator shown in FIG.

図に示すように、気液分離器1は、エジェクタ2から供給された気液二相冷媒が流入する冷媒流入配管11の内壁11a側に螺旋形状の冷媒ガイド板12を形成し、冷媒流入配管11に流入した気液二相冷媒を冷媒流入配管11の内壁11a側に形成した螺旋形状の冷媒ガイド板12に沿わせて通流させることで気液二相冷媒の流れに旋回流を発生させ、この旋回流で生じる遠心力分離作用を利用することによって気液二相冷媒を気相冷媒と液相冷媒に分離させるようにしている。   As shown in the figure, the gas-liquid separator 1 forms a helical refrigerant guide plate 12 on the inner wall 11a side of the refrigerant inflow pipe 11 into which the gas-liquid two-phase refrigerant supplied from the ejector 2 flows, and the refrigerant inflow pipe The gas-liquid two-phase refrigerant that has flowed into the flow path 11 is caused to flow along the spiral-shaped refrigerant guide plate 12 formed on the inner wall 11a side of the refrigerant flow-in pipe 11, thereby generating a swirl flow in the flow of the gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant is separated into the gas-phase refrigerant and the liquid-phase refrigerant by utilizing the centrifugal force separation action generated in the swirling flow.

この冷媒流入配管11の内壁11a側に螺旋形状の冷媒ガイド板12を形成する製造方法を詳述すると、細長い薄板状の金属(例えば、ステンレス)を配管(冷媒流入配管11)の内径に合わせて螺旋形状に巻いてコイルを形成する。次に、配管を縦置きにし、細長い薄板状の金属を螺旋形状に巻いて形成したコイルを配管内に通し、コイル最上部にろう材(例えば、銅ろう)を置いておく。この時、螺旋形状に巻いて形成したコイルと配管内側に若干の隙間を設けておく。そして、配管を縦置きの状態で加熱炉に入れて加熱し、ろう材が溶けてコイルと配管内側の隙間にろう材が行き渡ることでろう付けが完了する。このようにして、螺旋形状の冷媒ガイド板12を冷媒流入配管11の内壁11a側に内設した螺旋ガイド板付き配管が完成する。   A manufacturing method for forming the spiral refrigerant guide plate 12 on the inner wall 11a side of the refrigerant inflow pipe 11 will be described in detail. An elongated thin plate-like metal (for example, stainless steel) is matched with the inner diameter of the pipe (the refrigerant inflow pipe 11). A coil is formed by winding in a spiral shape. Next, the pipe is placed vertically, a coil formed by winding a thin and thin metal plate in a spiral shape is passed through the pipe, and a brazing material (for example, copper brazing) is placed on the top of the coil. At this time, a slight gap is provided between the coil formed by winding in a spiral shape and the inside of the pipe. Then, the pipe is placed in a heating furnace in a vertically placed state and heated, and the brazing material is melted and the brazing material is spread over the gap between the coil and the pipe, thereby completing the brazing. In this way, a pipe with a spiral guide plate in which the spiral refrigerant guide plate 12 is provided on the inner wall 11a side of the refrigerant inflow pipe 11 is completed.

螺旋ガイド板付き配管の配管径、螺旋金属の幅(高さ)、螺旋間隔(ピッチ)については任意のものが製造可能である。そして、配管径が小さいほど、螺旋金属の幅が広いほど、螺旋間隔を狭めるほど、旋回流の遠心力を大きくすることができ、よって気液二相冷媒を気相冷媒と液相冷媒とに分離させる気液分離効率を高めることができる。ただし、これらは圧力損失の増加とトレードオフの関係にあるので、両者のバランス点を考慮して決定することが重要である。   Any pipe diameter, pipe width (height), and helix interval (pitch) of the pipe with the spiral guide plate can be manufactured. The smaller the pipe diameter, the wider the spiral metal, and the narrower the spiral interval, the greater the centrifugal force of the swirl flow, and thus the gas-liquid two-phase refrigerant can be converted into a gas-phase refrigerant and a liquid-phase refrigerant. Gas-liquid separation efficiency for separation can be increased. However, since these are in a trade-off relationship with an increase in pressure loss, it is important to determine the balance between the two.

そして、図に示しているように、螺旋形状の冷媒ガイド板12を内設した冷媒流入配管11は逆U字状に曲げられて、その一端が下方に向かって開口している。この冷媒流入配管11の開口部11bには、気液二相冷媒から分離した気相冷媒を流出させるための気相冷媒流出管14と、気液二相冷媒から分離した液相冷媒を流出させるための液相冷媒流出管15とを設けた配管端部13を接続している。   As shown in the figure, the refrigerant inflow pipe 11 having a helical refrigerant guide plate 12 is bent in an inverted U shape, and one end thereof opens downward. In the opening 11b of the refrigerant inflow pipe 11, a gas phase refrigerant outflow pipe 14 for allowing the gas phase refrigerant separated from the gas-liquid two-phase refrigerant to flow out, and a liquid phase refrigerant separated from the gas-liquid two-phase refrigerant are allowed to flow out. A pipe end 13 provided with a liquid-phase refrigerant outflow pipe 15 is connected.

この液相冷媒流出管15は配管端部13の胴部13aに接続されて開口し、気相冷媒流出管14は冷媒流入配管11より小さな外径を有し、冷媒流入配管11内における冷媒流入配管11との中心軸が略一致するように配管端部13の底面13bを貫通して液相冷媒流出管15より上部に気相冷媒流出口14aを設けている。   The liquid-phase refrigerant outflow pipe 15 is connected to the body 13 a of the pipe end 13 and opens, and the gas-phase refrigerant outflow pipe 14 has an outer diameter smaller than that of the refrigerant inflow pipe 11, and the refrigerant inflow in the refrigerant inflow pipe 11. A gas-phase refrigerant outlet 14 a is provided above the liquid refrigerant outlet pipe 15 so as to pass through the bottom surface 13 b of the pipe end 13 so that the central axis of the pipe 11 substantially coincides with the pipe 11.

このように気液分離器1を構成することで、冷媒流入配管11を大口径化することなく、製造が容易で、コンパクトでシンプルな構造で低コスト化が図れ、気液二相冷媒を気相冷媒と液相冷媒に分離させる気液分離効率を高めることができる気液分離器1を提供することができる。   By configuring the gas-liquid separator 1 in this way, manufacturing is easy without reducing the diameter of the refrigerant inflow pipe 11, and the cost can be reduced with a compact and simple structure. The gas-liquid separator 1 which can improve the gas-liquid separation efficiency which makes it isolate | separate into a phase refrigerant | coolant and a liquid phase refrigerant | coolant can be provided.

次に、図3を用いて冷媒流入配管11の配管内径と気液分離効率について詳述する。冷媒流入配管11はその内径が小さい(細い)ほど、管内を通流する気液二相冷媒の旋回流の遠心力が大きくなり、気相冷媒と液相冷媒との気液分離効率を高めることができる。冷媒流入配管11を通流する気液二相冷媒流の流速が同じ場合、配管内径が小さいほど気液二相冷媒(気相冷媒と液相冷媒)に働く遠心力は大きくなり、それによって気相冷媒と液相冷媒との分離距離を大きくすることができる。   Next, the pipe inner diameter and the gas-liquid separation efficiency of the refrigerant inflow pipe 11 will be described in detail with reference to FIG. As the inner diameter of the refrigerant inflow pipe 11 is smaller (thin), the centrifugal force of the swirling flow of the gas-liquid two-phase refrigerant flowing through the pipe increases, and the gas-liquid separation efficiency between the gas-phase refrigerant and the liquid-phase refrigerant is increased. Can do. When the flow velocity of the gas-liquid two-phase refrigerant flow through the refrigerant inflow pipe 11 is the same, the centrifugal force acting on the gas-liquid two-phase refrigerant (gas-phase refrigerant and liquid-phase refrigerant) increases as the pipe inner diameter decreases. The separation distance between the phase refrigerant and the liquid phase refrigerant can be increased.

さらに、図4、図5を用いて螺旋形状の冷媒ガイド板12の幅(高さ)および間隔(ピッチ)の違いによる気液分離効率について詳述する。冷媒流入配管11の配管内径が同じ場合、螺旋形状の冷媒ガイド板12の幅を拡げるほど、配管中央の素通し(スルー)部分の領域が小さくなるため、旋回流成分が大きくなる。それによって旋回流による遠心力が大きくなり、気相冷媒と液相冷媒との気液分離効率を高めることができる。さらに、配管内部の表面積が大きくなるので、表面張力による液滴捕捉を向上させることができる。   Further, the gas-liquid separation efficiency due to the difference in the width (height) and interval (pitch) of the spiral refrigerant guide plate 12 will be described in detail with reference to FIGS. When the pipe inner diameter of the refrigerant inflow pipe 11 is the same, the wider the width of the spiral refrigerant guide plate 12, the smaller the area of the through (through) portion at the center of the pipe, so the swirl flow component increases. Thereby, the centrifugal force due to the swirling flow is increased, and the gas-liquid separation efficiency between the gas-phase refrigerant and the liquid-phase refrigerant can be increased. Furthermore, since the surface area inside the pipe is increased, it is possible to improve droplet capture by surface tension.

また、螺旋形状の冷媒ガイド板12の間隔を狭めるほど、同じ配管長でも旋回流が通過する長さを長くすることができるため、通流する気液二相冷媒に遠心力が働く長さが長くなる。これによっても気相冷媒と液相冷媒との気液分離効率を高めることができる。さらに配管内部の表面積が大きくなるので、表面張力による液滴捕捉を向上させることができる。   Further, as the interval between the spiral refrigerant guide plates 12 is reduced, the length of the swirling flow can be increased even with the same pipe length, so that the centrifugal force acts on the flowing gas-liquid two-phase refrigerant. become longer. This also increases the gas-liquid separation efficiency between the gas-phase refrigerant and the liquid-phase refrigerant. Furthermore, since the surface area inside the pipe is increased, it is possible to improve droplet capture by surface tension.

例えば、図5に示している螺旋形状の冷媒ガイド板12の幅を拡げた場合、冷媒ガイド板12の螺旋部分の流路断面積が大きくなるため流路抵抗は減少し、反対に配管中央の素通し(スルー)部分の流路断面積は小さくなるため流路抵抗は増加する。また、螺旋形状の冷媒ガイド板12の間隔を狭めた場合、冷媒ガイド板12の螺旋部分の流路断面積は小さくなるため流路抵抗は増加するが、一方で配管中央の素通し(スルー)部分の流路断面積は変わらないため流路抵抗は変化しない。   For example, when the width of the spiral-shaped refrigerant guide plate 12 shown in FIG. 5 is increased, the flow path cross-sectional area of the spiral portion of the refrigerant guide plate 12 is increased, so that the flow path resistance is decreased. Since the flow passage cross-sectional area of the through portion is reduced, the flow passage resistance is increased. Further, when the interval between the spiral refrigerant guide plates 12 is reduced, the flow passage resistance increases because the flow passage cross-sectional area of the spiral portion of the refrigerant guide plate 12 decreases, but on the other hand, the through portion at the center of the pipe The flow path resistance does not change because the cross-sectional area of the flow does not change.

そして、螺旋形状の冷媒ガイド板12の部分と配管中央の素通し(スルー)部分の流路抵抗が異なる場合は、流路抵抗が小さい側により多くの冷媒が流れることになる。仮に「螺旋形状の冷媒ガイド板12の部分の流路抵抗>配管中央の素通し(スルー)部分の流路抵抗」の場合、配管中央部分に多くの冷媒が流れ、螺旋形状の冷媒ガイド板12の部分に流れる流量は小さくなるため、螺旋形状の冷媒ガイド板12で発生する旋回流の流量は小さくなる。この場合、旋回流によって遠心力が働く流量が小さいため、高い気液分離効率を得ることができなくなる。   And when the flow path resistances of the spiral refrigerant guide plate 12 part and the through-through part at the center of the pipe are different, more refrigerant flows through the side having the smaller flow path resistance. If “the flow resistance of the spiral-shaped refrigerant guide plate 12> the flow resistance of the through-through portion at the center of the pipe”, a large amount of refrigerant flows through the central portion of the pipe. Since the flow rate flowing through the portion is reduced, the flow rate of the swirling flow generated by the spiral refrigerant guide plate 12 is reduced. In this case, since the flow rate at which the centrifugal force is applied by the swirling flow is small, high gas-liquid separation efficiency cannot be obtained.

従って、図6に示している、流路抵抗のクロス点(バランス点)を選んで螺旋形状の冷媒ガイド板12の幅および間隔を設定することにより、バランスの取れた流量の旋回流を得ることができるようになる。   Therefore, by selecting the cross point (balance point) of the flow path resistance shown in FIG. 6 and setting the width and interval of the spiral refrigerant guide plate 12, a swirling flow having a balanced flow rate can be obtained. Will be able to.

以上説明したように本発明によれば、気液二相冷媒を気相冷媒と液相冷媒とに分離する気液分離器1において、気液二相冷媒が流入する冷媒流入配管11の内壁11a側に螺旋形状の冷媒ガイド板12を形成し、冷媒流入配管11に流入した気液二相冷媒を冷媒流入配管11の内壁11a側に形成した螺旋形状の冷媒ガイド板12に沿わせて通流させることで気液二相冷媒の流れに旋回流を発生させ、この旋回流で生じる遠心力分離作用によって気液二相冷媒を気相冷媒と液相冷媒とに分離させることにより、製造が容易で、大口径化することなく、コンパクトでシンプルな構造で低コスト化が図れ、気液分離効率を高めることができる気液分離器1を提供することが可能となる。   As described above, according to the present invention, in the gas-liquid separator 1 that separates the gas-liquid two-phase refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant, the inner wall 11a of the refrigerant inflow pipe 11 into which the gas-liquid two-phase refrigerant flows. A spiral refrigerant guide plate 12 is formed on the side, and the gas-liquid two-phase refrigerant flowing into the refrigerant inflow pipe 11 flows along the spiral refrigerant guide plate 12 formed on the inner wall 11a side of the refrigerant inflow pipe 11. This makes it possible to generate a swirling flow in the flow of the gas-liquid two-phase refrigerant, and to separate the gas-liquid two-phase refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant by a centrifugal force separation action generated in the swirling flow, thereby facilitating manufacturing. Thus, it is possible to provide the gas-liquid separator 1 that can reduce the cost with a compact and simple structure without increasing the diameter and can improve the gas-liquid separation efficiency.

また、螺旋形状の冷媒ガイド板12は、細長い薄板状の金属を冷媒流入配管11の内径に合わせて螺旋形状に巻いてコイルを形成し、該コイルを冷媒流入配管1内に通して内設させたことにより、製造が容易でコンパクトでシンプルな構造で低コスト化を図ることができる気液分離器1を提供することが可能となる。   Further, the spiral refrigerant guide plate 12 is formed by winding a thin and thin metal plate into a spiral shape in accordance with the inner diameter of the refrigerant inflow pipe 11 to form a coil, and the coil is passed through the refrigerant inflow pipe 1 to be installed. As a result, it is possible to provide the gas-liquid separator 1 which is easy to manufacture, can be reduced in cost with a compact and simple structure.

また、螺旋形状の冷媒ガイド板12を内設した冷媒流入配管11の一端は下方に向かって開口し、気液二相冷媒から分離した気相冷媒を流出させるための気相冷媒流出管14と、液相冷媒を流出させるための液相冷媒流出管15と、が設けられた配管端部13を冷媒流入配管11の開口部11bに接続していることにより、コンパクトでシンプルな構造で気液分離効率を高めることができる気液分離器1を提供することが可能となる。   In addition, one end of a refrigerant inflow pipe 11 provided with a spiral refrigerant guide plate 12 is opened downward, and a gas phase refrigerant outflow pipe 14 for flowing out the gas phase refrigerant separated from the gas-liquid two-phase refrigerant; By connecting the pipe end portion 13 provided with the liquid phase refrigerant outflow pipe 15 for allowing the liquid phase refrigerant to flow out to the opening 11b of the refrigerant inflow pipe 11, the gas-liquid can be formed in a compact and simple structure. It is possible to provide the gas-liquid separator 1 that can increase the separation efficiency.

また、液相冷媒流出管15は配管端部13の胴部13aに接続されて開口し、気相冷媒流出管14は冷媒流入配管11より小さな外径を有し、冷媒流入配管11内における冷媒流入配管11との中心軸が略一致するように配管端部13の底面13bを貫通して液相冷媒流出管15より上部に気相冷媒流出口14aを設けたことにより、コンパクトでシンプルな構造で気液分離効率をさらに高めることができる気液分離器1を提供することが可能となる。   The liquid-phase refrigerant outflow pipe 15 is connected to and opened from the body portion 13 a of the pipe end 13, and the gas-phase refrigerant outflow pipe 14 has a smaller outer diameter than the refrigerant inflow pipe 11, and the refrigerant in the refrigerant inflow pipe 11 A gas-phase refrigerant outlet 14a is provided above the liquid-phase refrigerant outlet pipe 15 through the bottom surface 13b of the pipe end 13 so that the central axis of the inlet pipe 11 is substantially coincident with the inflow pipe 11, thereby providing a compact and simple structure. Thus, it is possible to provide the gas-liquid separator 1 that can further increase the gas-liquid separation efficiency.

1 気液分離器
2 エジェクタ
11 冷媒流入配管
12 螺旋形状の冷媒ガイド板
13 配管端部
14 気相冷媒流出管
14a 気相冷媒流出口
15 液相冷媒流出管
DESCRIPTION OF SYMBOLS 1 Gas-liquid separator 2 Ejector 11 Refrigerant inflow piping 12 Spiral-shaped refrigerant guide plate 13 Pipe end part 14 Gas-phase refrigerant outflow pipe 14a Gas-phase refrigerant outflow pipe 15 Liquid-phase refrigerant outflow pipe

Claims (4)

気液二相冷媒を気相冷媒と液相冷媒とに分離する気液分離器において、
前記気液二相冷媒が流入する冷媒流入配管の内壁側に螺旋形状の冷媒ガイド板を形成し、
前記冷媒流入配管に流入した前記気液二相冷媒を前記冷媒流入配管の内壁側に形成した前記螺旋形状の冷媒ガイド板に沿わせて通流させることで前記気液二相冷媒の流れに旋回流を発生させ、この旋回流で生じる遠心力分離作用によって前記気液二相冷媒を前記気相冷媒と前記液相冷媒とに分離させることを特徴とする気液分離器。
In a gas-liquid separator that separates a gas-liquid two-phase refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant,
Forming a helical refrigerant guide plate on the inner wall side of the refrigerant inflow pipe into which the gas-liquid two-phase refrigerant flows,
The gas-liquid two-phase refrigerant that has flowed into the refrigerant inflow pipe is swung into the flow of the gas-liquid two-phase refrigerant by flowing along the spiral refrigerant guide plate formed on the inner wall side of the refrigerant inflow pipe. A gas-liquid separator that generates a flow and separates the gas-liquid two-phase refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant by a centrifugal force separation action generated in the swirling flow.
前記螺旋形状の冷媒ガイド板は、細長い薄板状の金属を前記冷媒流入配管の内径に合わせて螺旋形状に巻いてコイルを形成し、該コイルを前記冷媒流入配管内に通して内設させたことを特徴とする請求項1に記載の気液分離器。   The spiral refrigerant guide plate is a coil formed by winding a thin and thin metal plate in a spiral shape in accordance with the inner diameter of the refrigerant inflow pipe, and the coil is passed through the refrigerant inflow pipe to be installed internally. The gas-liquid separator according to claim 1. 前記螺旋形状の冷媒ガイド板を内設した前記冷媒流入配管の一端は下方に向かって開口し、
前記気液二相冷媒から分離した前記気相冷媒を流出させるための気相冷媒流出管と、前記液相冷媒を流出させるための液相冷媒流出管と、が設けられた配管端部を前記冷媒流入配管の開口に接続していることを特徴とする請求項1または請求項2に記載の気液分離器。
One end of the refrigerant inflow pipe provided with the spiral refrigerant guide plate opens downward,
A pipe end provided with a gas phase refrigerant outflow pipe for flowing out the gas phase refrigerant separated from the gas-liquid two-phase refrigerant and a liquid phase refrigerant outflow pipe for flowing out the liquid phase refrigerant The gas-liquid separator according to claim 1 or 2, wherein the gas-liquid separator is connected to an opening of the refrigerant inflow pipe.
前記液相冷媒流出管は前記配管端部の胴部に接続されて開口し、
前記気相冷媒流出管は前記冷媒流入配管より小さな外径を有し、前記冷媒流入配管内における前記冷媒流入配管との中心軸が略一致するように前記配管端部底面を貫通して前記液相冷媒流出管より上部に気相冷媒流出口を設けたことを特徴とする請求項3に記載の気液分離器。
The liquid-phase refrigerant outflow pipe is connected to the body of the pipe end and opens,
The gas-phase refrigerant outflow pipe has an outer diameter smaller than that of the refrigerant inflow pipe, and penetrates through the bottom face of the pipe end so that the central axis of the refrigerant inflow pipe substantially coincides with the refrigerant inflow pipe. The gas-liquid separator according to claim 3, wherein a gas-phase refrigerant outlet is provided above the phase refrigerant outlet pipe.
JP2014104431A 2014-05-20 2014-05-20 Gas-liquid separator Withdrawn JP2015218982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014104431A JP2015218982A (en) 2014-05-20 2014-05-20 Gas-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014104431A JP2015218982A (en) 2014-05-20 2014-05-20 Gas-liquid separator

Publications (1)

Publication Number Publication Date
JP2015218982A true JP2015218982A (en) 2015-12-07

Family

ID=54778501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014104431A Withdrawn JP2015218982A (en) 2014-05-20 2014-05-20 Gas-liquid separator

Country Status (1)

Country Link
JP (1) JP2015218982A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091496A (en) * 2016-07-29 2016-11-09 青岛开拓隆海制冷配件有限公司 A kind of carbon dioxide coolant reservoir
WO2019064661A1 (en) * 2017-09-29 2019-04-04 株式会社デンソー Liquid recovery device
WO2020217418A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Gas-liquid separation device and refrigeration cycle device
CN113018911A (en) * 2019-12-25 2021-06-25 株式会社马勒滤清系统 Bubble separator and fluid circuit for a motor vehicle comprising a bubble separator
CN113713508A (en) * 2021-09-27 2021-11-30 台州龙江化工机械科技有限公司 Centrifugal separation pipe, gas-liquid separation device and refrigeration system with device
US11428449B2 (en) * 2017-12-25 2022-08-30 Mitsubishi Electric Corporation Separator and refrigeration cycle apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631864U (en) * 1979-08-20 1981-03-28
JPS58128602U (en) * 1982-02-22 1983-08-31 株式会社ほくさん gas liquid separator
JP2009030930A (en) * 2007-07-30 2009-02-12 Showa Denko Kk Heat exchanger
WO2012108211A1 (en) * 2011-02-11 2012-08-16 株式会社デンソー Heat pump cycle
US20130312376A1 (en) * 2011-02-14 2013-11-28 Carrier Corporation Liquid Vapor Phase Separation Apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631864U (en) * 1979-08-20 1981-03-28
JPS58128602U (en) * 1982-02-22 1983-08-31 株式会社ほくさん gas liquid separator
JP2009030930A (en) * 2007-07-30 2009-02-12 Showa Denko Kk Heat exchanger
WO2012108211A1 (en) * 2011-02-11 2012-08-16 株式会社デンソー Heat pump cycle
US20130312376A1 (en) * 2011-02-14 2013-11-28 Carrier Corporation Liquid Vapor Phase Separation Apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091496A (en) * 2016-07-29 2016-11-09 青岛开拓隆海制冷配件有限公司 A kind of carbon dioxide coolant reservoir
CN106091496B (en) * 2016-07-29 2022-07-05 青岛开拓隆海制冷配件有限公司 Liquid storage device for carbon dioxide refrigerant
CN111163854A (en) * 2017-09-29 2020-05-15 株式会社电装 Liquid recovery device
JP2019063715A (en) * 2017-09-29 2019-04-25 株式会社デンソー Liquid recovery device
CN111163854B (en) * 2017-09-29 2021-11-02 株式会社电装 Liquid recovery device
WO2019064661A1 (en) * 2017-09-29 2019-04-04 株式会社デンソー Liquid recovery device
US11428449B2 (en) * 2017-12-25 2022-08-30 Mitsubishi Electric Corporation Separator and refrigeration cycle apparatus
WO2020217418A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Gas-liquid separation device and refrigeration cycle device
JPWO2020217418A1 (en) * 2019-04-25 2021-11-25 三菱電機株式会社 Gas-liquid separation device and refrigeration cycle device
JP7204899B2 (en) 2019-04-25 2023-01-16 三菱電機株式会社 Gas-liquid separator and refrigeration cycle equipment
CN113018911A (en) * 2019-12-25 2021-06-25 株式会社马勒滤清系统 Bubble separator and fluid circuit for a motor vehicle comprising a bubble separator
CN113018911B (en) * 2019-12-25 2022-10-28 株式会社马勒滤清系统 Bubble separator and fluid circuit for a motor vehicle comprising a bubble separator
CN113713508A (en) * 2021-09-27 2021-11-30 台州龙江化工机械科技有限公司 Centrifugal separation pipe, gas-liquid separation device and refrigeration system with device

Similar Documents

Publication Publication Date Title
JP2015218982A (en) Gas-liquid separator
JP5999050B2 (en) Ejector refrigeration cycle and ejector
JP6048339B2 (en) Ejector
JP5197820B2 (en) Refrigeration cycle equipment
JP6119489B2 (en) Ejector
US10222104B2 (en) Distributor and turbo refrigerating machine and evaporator having the same
JP5452367B2 (en) Gas-liquid separator and refrigeration cycle apparatus
WO2017179630A1 (en) Evaporator, and turbo-refrigerating apparatus equipped with same
JP2014142166A (en) Ejector
JP2008196721A (en) Gas-liquid separator
JP2013148308A (en) Oil separator
JP2016035376A (en) Evaporator
JP2016114308A (en) Intermediate pressure receiver and refrigeration cycle device
JP4899641B2 (en) Mixed fluid separator
CN104813118B (en) Injector
JP2014224626A (en) Ejector
CN203949414U (en) Flooded evaporator and full-liquid type air-conditioning unit
JP2014134196A (en) Ejector
JP2014202430A (en) Ejector
JP6072899B2 (en) Refrigeration cycle equipment
JP2011185549A (en) Heat exchanger
US20190126171A1 (en) Gas-liquid separator
JP6036592B2 (en) Ejector
JP6296322B2 (en) Oil separator
JP6601022B2 (en) Gas-liquid separator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180508