JP6024241B2 - Heat pump system - Google Patents

Heat pump system Download PDF

Info

Publication number
JP6024241B2
JP6024241B2 JP2012147831A JP2012147831A JP6024241B2 JP 6024241 B2 JP6024241 B2 JP 6024241B2 JP 2012147831 A JP2012147831 A JP 2012147831A JP 2012147831 A JP2012147831 A JP 2012147831A JP 6024241 B2 JP6024241 B2 JP 6024241B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
refrigerant
temperature
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012147831A
Other languages
Japanese (ja)
Other versions
JP2014009899A (en
Inventor
森脇 道雄
道雄 森脇
岡本 昌和
昌和 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012147831A priority Critical patent/JP6024241B2/en
Publication of JP2014009899A publication Critical patent/JP2014009899A/en
Application granted granted Critical
Publication of JP6024241B2 publication Critical patent/JP6024241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ヒートポンプシステムに関し、特に補助加熱部を備えるものに関する。     The present invention relates to a heat pump system, and more particularly to a device including an auxiliary heating unit.

従来より、第1熱交換器と第2熱交換器とが接続された熱媒体回路を備え、この熱媒体回路を循環する熱媒体が、前記第1熱交換器で冷凍サイクルを行う冷媒回路の冷媒から吸熱し且つ前記第2熱交換器で対象流体へ放熱するヒートポンプシステムが知られている。そして、これらのヒートポンプシステムの中には、特許文献1に示すように、熱媒体回路の第1熱交換器とは別に、熱媒体回路の熱媒体を加熱する加熱ヒータが設けられているものがある。     Conventionally, a heat medium circuit having a first heat exchanger and a second heat exchanger connected to each other, and the heat medium circulating through the heat medium circuit is a refrigerant circuit that performs a refrigeration cycle in the first heat exchanger. There is known a heat pump system that absorbs heat from a refrigerant and dissipates heat to a target fluid using the second heat exchanger. In addition, among these heat pump systems, as shown in Patent Document 1, a heater that heats the heat medium of the heat medium circuit is provided separately from the first heat exchanger of the heat medium circuit. is there.

この加熱ヒータは、前記熱媒体回路の第1熱交換器と第2熱交換器との間に接続され、第1熱交換器から第2熱交換器へ向かう熱媒体を加熱するように構成されている。これにより、第1熱交換器で加熱された熱媒体をさらに加熱ヒータで加熱することができるので、第2熱交換器における熱媒体から対象流体への加熱量を増大させることができる。     The heater is connected between the first heat exchanger and the second heat exchanger of the heat medium circuit, and is configured to heat the heat medium traveling from the first heat exchanger to the second heat exchanger. ing. Accordingly, the heat medium heated by the first heat exchanger can be further heated by the heater, so that the amount of heating from the heat medium to the target fluid in the second heat exchanger can be increased.

特開2004−132612号公報JP 2004-132612 A

しかしながら、前記加熱ヒータを構成する補助加熱部で熱媒体回路の熱媒体を加熱し過ぎると、第1熱交換器へ流入する熱媒体の温度が、第1熱交換器の冷媒の温度を超えてしまう場合があり、冷媒が熱媒体へ放熱できなくなる。この結果、冷媒回路の冷凍サイクルの動作がうまく行われなくなる。このような事態を避けるためには、補助加熱部の加熱量を強制的に低下させなければならず、対象流体を十分に加熱できないという問題がある。     However, if the heating medium of the heating medium circuit is heated too much by the auxiliary heating unit constituting the heating heater, the temperature of the heating medium flowing into the first heat exchanger exceeds the temperature of the refrigerant of the first heat exchanger. The refrigerant cannot radiate heat to the heat medium. As a result, the operation of the refrigeration cycle of the refrigerant circuit is not performed well. In order to avoid such a situation, the heating amount of the auxiliary heating unit must be forcibly reduced, and there is a problem that the target fluid cannot be heated sufficiently.

本発明は、かかる点に鑑みてなされたものであり、その目的は、補助加熱部による熱媒体の加熱量を抑えずに、冷媒回路の動作を継続させながら対象流体を加熱できるようにすることにある。     The present invention has been made in view of such points, and an object thereof is to enable heating of a target fluid while continuing the operation of a refrigerant circuit without suppressing the heating amount of a heat medium by an auxiliary heating unit. It is in.

第1の発明は、放熱器として機能する第1熱交換器(12)の1次側流路(12a)が接
続されて冷媒が循環する蒸気圧縮式冷凍サイクルの冷媒回路(50)と、前記第1熱交換器(12)の2次側流路(12b)と第2熱交換器(22)とが接続され且つ前記第1熱交換器(12)と前記第2熱交換器(22)との間を熱媒体が循環して、前記第1熱交換器(12)で前記熱媒体が前記冷媒回路(50)の冷媒から加熱されるとともに前記第2熱交換器(22)で前記熱媒体が対象流体を加熱する熱媒体回路(20)とを備えたヒートポンプシステムである。
According to a first aspect of the present invention, there is provided a refrigerant circuit (50) of a vapor compression refrigeration cycle to which a refrigerant is circulated by connecting a primary flow path (12a) of a first heat exchanger (12) functioning as a radiator. The secondary side flow path (12b) of the first heat exchanger (12) and the second heat exchanger (22) are connected and the first heat exchanger (12) and the second heat exchanger (22). And the heat medium is heated from the refrigerant in the refrigerant circuit (50) by the first heat exchanger (12) and the heat by the second heat exchanger (22). A heat pump system including a heat medium circuit (20) in which a medium heats a target fluid.

そして、ヒートポンプシステムは、前記熱媒体回路(20)の第2熱交換器(22)から第1熱交換器(12)へ向かう熱媒体から吸熱して、前記熱媒体回路(20)の第1熱交換器(12)から第2熱交換器(22)へ向かう熱媒体へ放熱する熱電素子部(2b)と、前記第1熱交換器(12)の熱媒体の入口温度が前記第1熱交換器(12)の冷媒の出口温度よりも低く且つ前記対象流体の温度が目標温度に近づくように熱電素子部(2b)の動作を制御する第1動作を行う制御部(40)とを備えている。     And a heat pump system absorbs heat from the heat medium which goes to the 1st heat exchanger (12) from the 2nd heat exchanger (22) of the above-mentioned heat medium circuit (20), and the 1st of the above-mentioned heat medium circuit (20). The thermoelectric element portion (2b) that radiates heat to the heat medium heading from the heat exchanger (12) to the second heat exchanger (22), and the inlet temperature of the heat medium of the first heat exchanger (12) is the first heat. And a controller (40) that performs a first operation that controls the operation of the thermoelectric element (2b) so that the temperature of the target fluid is lower than the outlet temperature of the refrigerant of the exchanger (12) and approaches the target temperature. ing.

第1の発明では、前記熱媒体回路(20)の熱媒体が、前記第1熱交換器(12)で前記冷媒回路(50)の冷媒によって加熱された後、さらに前記熱電素子部(2b)で加熱される。該熱電素子部(2b)で加熱された熱媒体は、前記第2熱交換器(22)を通過する際に対象流体へ放熱した後、前記熱電素子部(2b)で冷却される。この冷却された状態の熱媒体が前記第1熱交換器(12)へ流入する。     In the first invention, after the heat medium of the heat medium circuit (20) is heated by the refrigerant of the refrigerant circuit (50) in the first heat exchanger (12), the thermoelectric element unit (2b) Is heated. The heat medium heated by the thermoelectric element part (2b) is radiated to the target fluid when passing through the second heat exchanger (22), and then cooled by the thermoelectric element part (2b). The cooled heat medium flows into the first heat exchanger (12).

また、第1の発明では、前記冷媒回路(50)の冷媒は、臨界温度が110℃未満の冷媒であり、前記制御部(40)は、前記熱媒体回路(20)の第1熱交換器(12)から第2熱交換器(22)へ向かう熱媒体の温度が100℃以上になるように熱電素子部(2b)の動作を制御する第3動作を行う。In the first aspect of the invention, the refrigerant in the refrigerant circuit (50) is a refrigerant having a critical temperature of less than 110 ° C., and the control unit (40) includes the first heat exchanger of the heat medium circuit (20). A third operation for controlling the operation of the thermoelectric element section (2b) is performed so that the temperature of the heat medium from (12) toward the second heat exchanger (22) becomes 100 ° C. or higher.

この第1の発明では、前記冷媒回路(50)の凝縮温度が100℃未満であった場合でも、熱電素子部(2b)の動作により、熱媒体が100℃以上に加熱される。In the first invention, even when the condensation temperature of the refrigerant circuit (50) is less than 100 ° C., the heat medium is heated to 100 ° C. or more by the operation of the thermoelectric element (2b).

第2の発明は、第1の発明において、前記制御部(40)は、前記第1熱交換器(12)の熱媒体の入口温度を前記第1熱交換器(12)の冷媒の出口温度よりも低く保ちながら、前記対象流体の温度が目標温度に近づくように熱電素子部(2b)の入力電圧をPI制御又はPID制御で調整する第2動作を行う。     In a second aspect based on the first aspect, the controller (40) sets the inlet temperature of the heat medium of the first heat exchanger (12) to the outlet temperature of the refrigerant of the first heat exchanger (12). The second operation of adjusting the input voltage of the thermoelectric element (2b) by PI control or PID control is performed so that the temperature of the target fluid approaches the target temperature while keeping the temperature lower.

第2の発明では、前記第1熱交換器(12)の熱媒体の入口温度を前記第1熱交換器(12)の冷媒の出口温度よりも低く保つことが可能な前記熱電素子部(2b)の入力電圧の範囲内で、対象流体の温度が目標温度に近づくに連れて、前記熱電素子部(2b)の入力電圧が徐々に減少する。 In the second invention, the thermoelectric element section (2b) capable of keeping the inlet temperature of the heat medium of the first heat exchanger (12) lower than the outlet temperature of the refrigerant of the first heat exchanger (12). ), The input voltage of the thermoelectric element (2b) gradually decreases as the temperature of the target fluid approaches the target temperature .

本発明によれば、熱媒体回路(20)の補助加熱部を従来の加熱ヒータでなく熱電素子部(2b)で構成したので、熱媒体回路(20)の熱媒体を加熱するだけでなく冷却も行うことができる。この熱電素子部(2b)の冷却動作によって、前記第1熱交換器(12)へ流入する熱媒体の温度を第1熱交換器(12)の冷媒の温度よりも低くしながら、この熱電素子部(2b)の加熱動作によって熱媒体回路(20)の熱媒体を加熱して、前記対象流体の温度を目標温度に近づけることができる。つまり、熱電素子部(2b)の熱媒体に対する加熱量を抑えずに、冷媒回路(50)の動作を継続させながら対象流体を加熱することができる。     According to the present invention, since the auxiliary heating part of the heat medium circuit (20) is constituted by the thermoelectric element part (2b) instead of the conventional heater, not only the heat medium of the heat medium circuit (20) is heated but also cooled. Can also be done. While the temperature of the heat medium flowing into the first heat exchanger (12) is lower than the temperature of the refrigerant in the first heat exchanger (12) by the cooling operation of the thermoelectric element section (2b), this thermoelectric element The heating medium of the heating medium circuit (20) can be heated by the heating operation of the section (2b), and the temperature of the target fluid can be brought close to the target temperature. That is, it is possible to heat the target fluid while continuing the operation of the refrigerant circuit (50) without suppressing the heating amount of the thermoelectric element section (2b) to the heat medium.

また、第1の発明によれば、前記冷媒回路(50)の凝縮温度が100℃未満であった場合でも、熱電素子部(2b)の動作により、熱媒体を100℃以上に加熱することができる。According to the first invention, even when the condensation temperature of the refrigerant circuit (50) is less than 100 ° C., the heat medium can be heated to 100 ° C. or more by the operation of the thermoelectric element (2b). it can.

また、前記第2の発明によれば、対象流体の温度が目標温度に近づくに連れて、所定の範囲内で、前記熱電素子部(2b)の入力電圧を徐々に減少させるようにしたので、対象流体の温度をオーバシュートさせずに目標値へ近づけることができる。 According to the second aspect of the invention, as the temperature of the target fluid approaches the target temperature, the input voltage of the thermoelectric element (2b) is gradually reduced within a predetermined range. The temperature of the target fluid can be brought close to the target value without overshooting .

本実施形態に係るヒートポンプシステムの冷媒回路図である。It is a refrigerant circuit figure of the heat pump system concerning this embodiment.

以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     The following embodiments are essentially preferable exemplifications, and are not intended to limit the scope of the present invention, its application, or its use.

本実施形態のヒートポンプシステム(1)は、産業用として用いられるものであり、熱媒体を100℃以上に加熱するものである。図1に示すように、ヒートポンプシステム(10)は、冷媒回路(50)と熱媒体回路(20)とコントローラ(40)とを備えている。     The heat pump system (1) of this embodiment is used for industrial purposes, and heats the heat medium to 100 ° C. or higher. As shown in FIG. 1, the heat pump system (10) includes a refrigerant circuit (50), a heat medium circuit (20), and a controller (40).

冷媒回路(50)は、冷媒が循環して二段圧縮式の冷凍サイクルを行うものである。冷媒回路(50)は、低段側圧縮機(11a)および高段側圧縮機(11b)と、放熱器(第1熱交換器)(12)と、膨張弁(13)と、蒸発器(14)とが順に冷媒配管によって接続されている。前記冷媒回路(50)の冷媒は、臨界温度が110℃未満の冷媒である。     The refrigerant circuit (50) performs a two-stage compression refrigeration cycle by circulating the refrigerant. The refrigerant circuit (50) includes a low-stage compressor (11a) and a high-stage compressor (11b), a radiator (first heat exchanger) (12), an expansion valve (13), an evaporator ( 14) are connected in order by refrigerant piping. The refrigerant of the refrigerant circuit (50) is a refrigerant having a critical temperature of less than 110 ° C.

低段側圧縮機(11a)および高段側圧縮機(11b)は、図示しないが、全密閉型で構成され、圧縮部とその圧縮部を回転駆動するモータとを収容したケーシング内が吸入圧力の雰囲気になる、いわゆる低圧ドーム型に構成されている。つまり、各圧縮機(11a,11b)では吸入冷媒がケーシング内に流入し、圧縮部で圧縮された冷媒がケーシング内に流出することなくケーシング外へ直接吐出される。各圧縮機(11a,11b)は、運転回転数が可変に構成されている。両圧縮機(11a,11b)は、互いに直列に接続されて冷媒を二段圧縮するものであり、冷媒の圧縮機構を構成している。     Although not shown, the low-stage compressor (11a) and the high-stage compressor (11b) are configured as a completely sealed type, and the inside of the casing that houses the compression section and the motor that rotationally drives the compression section is the suction pressure. It has a so-called low-pressure dome shape. That is, in each compressor (11a, 11b), the suction refrigerant flows into the casing, and the refrigerant compressed by the compression unit is directly discharged out of the casing without flowing out into the casing. Each compressor (11a, 11b) is configured to have a variable operating rotational speed. Both compressors (11a, 11b) are connected in series to compress the refrigerant in two stages, and constitute a refrigerant compression mechanism.

放熱器(12)は、冷媒流路(1次側流路)(12a)および熱媒体流路(2次側流路)(12b)を有している。冷媒流路(12a)は、流入端が高段側圧縮機(11b)の吐出側と接続され、流出端が後述する過冷却熱交換器(15)と接続されている。     The radiator (12) has a refrigerant channel (primary side channel) (12a) and a heat medium channel (secondary side channel) (12b). The refrigerant flow path (12a) has an inflow end connected to the discharge side of the high stage compressor (11b) and an outflow end connected to a subcooling heat exchanger (15) described later.

膨張弁(13)は、開度が調節可能な電子膨張弁で構成されている。     The expansion valve (13) is an electronic expansion valve whose opening degree can be adjusted.

蒸発器(14)は、冷水流路(14a)および冷媒流路(14b)を有している。冷媒流路(14b)は、流入端が膨張弁(13)と接続され、流出端が低段側圧縮機(11a)の吸入側と接続されている。一方、蒸発器(14)の冷水流路(14a)は冷水回路(30)に接続されている。蒸発器(14)では、冷水流路(14a)を流れる冷水回路(30)の水と冷媒流路(14b)を流れる冷媒とが熱交換し、水が冷却される。     The evaporator (14) has a cold water channel (14a) and a refrigerant channel (14b). The refrigerant flow path (14b) has an inflow end connected to the expansion valve (13) and an outflow end connected to the suction side of the low-stage compressor (11a). On the other hand, the cold water flow path (14a) of the evaporator (14) is connected to the cold water circuit (30). In the evaporator (14), the water in the cold water circuit (30) flowing through the cold water flow path (14a) exchanges heat with the refrigerant flowing through the refrigerant flow path (14b) to cool the water.

また、冷媒回路(50)には、過冷却熱交換器(15)とインジェクション通路(19)が設けられている。過冷却熱交換器(15)は、放熱器(12)と膨張弁(13)との間に接続されており、高温流路(15b)および低温流路(15a)を有している。インジェクション通路(19)は、流入端が放熱器(12)と過冷却熱交換器(15)との間に接続され、流出端が低段側圧縮機(11a)と高段側圧縮機(11b)との間に接続されている。インジェクション通路(19)には流量調整弁(16)が設けられている。流量調整弁(16)は、通過する冷媒を減圧する作用も有している。     The refrigerant circuit (50) is provided with a supercooling heat exchanger (15) and an injection passage (19). The supercooling heat exchanger (15) is connected between the radiator (12) and the expansion valve (13), and has a high temperature channel (15b) and a low temperature channel (15a). The injection passage (19) has an inflow end connected between the radiator (12) and the supercooling heat exchanger (15), and an outflow end connected to the low stage compressor (11a) and the high stage compressor (11b). ) Is connected between. A flow rate adjusting valve (16) is provided in the injection passage (19). The flow rate adjusting valve (16) also has an action of depressurizing the refrigerant passing therethrough.

過冷却熱交換器(15)の高温流路(15b)は、流入端が放熱器(12)と接続され、流出端が膨張弁(13)と接続されている。過冷却熱交換器(15)の低温流路(15a)は、インジェクション通路(19)における流量調整弁(16)の下流側に接続されている。過冷却熱交換器(15)では、高温流路(15b)を流れる放熱器(12)の出口冷媒と低温流路(15a)を流れる前記出口冷媒の分岐冷媒とが熱交換し、高温流路(15b)の出口冷媒が過冷却される一方、低温流路(15a)の分岐冷媒が蒸発する。インジェクション通路(19)は、過冷却熱交換器(15)で蒸発した分岐冷媒を、低段側圧縮機(11a)と高段側圧縮機(11b)の間の中間圧の冷媒、即ち圧縮機構における圧縮途中の冷媒と合流させるものである。     The high temperature channel (15b) of the supercooling heat exchanger (15) has an inflow end connected to the radiator (12) and an outflow end connected to the expansion valve (13). The low-temperature flow path (15a) of the supercooling heat exchanger (15) is connected to the downstream side of the flow rate adjustment valve (16) in the injection path (19). In the supercooling heat exchanger (15), the outlet refrigerant of the radiator (12) flowing through the high-temperature channel (15b) and the branch refrigerant of the outlet refrigerant flowing through the low-temperature channel (15a) exchange heat, and the high-temperature channel While the outlet refrigerant of (15b) is supercooled, the branch refrigerant of the low-temperature channel (15a) evaporates. The injection passage (19) is an intermediate pressure refrigerant between the low-stage compressor (11a) and the high-stage compressor (11b), that is, a compression mechanism. The refrigerant is joined with the refrigerant in the middle of compression.

熱媒体回路(20)は、ポンプ(21)と加熱熱交換器(第2熱交換器)(22)と放熱器(12)の熱媒体流路(12b)とが順に接続された閉回路で構成されている。熱媒体回路(20)には熱媒体(例えば、油や水)が封入されている。ポンプ(21)によって熱媒体が熱媒体回路(20)内を循環する。放熱器(12)では、冷媒流路(12a)を流れる冷媒回路(50)の高圧冷媒と熱媒体流路(12b)を流れる熱媒体回路(20)の熱媒体とが熱交換し、熱媒体が加熱される。加熱熱交換器(22)は、温水を貯留する恒温槽(23)内に設けられている。この温水が本願発明の対象流体である。尚、この対象流体は水に限定されず、例えば油や空気であってもよい。     The heat medium circuit (20) is a closed circuit in which the pump (21), the heating heat exchanger (second heat exchanger) (22), and the heat medium flow path (12b) of the radiator (12) are connected in order. It is configured. A heat medium (for example, oil or water) is enclosed in the heat medium circuit (20). A heat medium circulates in the heat medium circuit (20) by the pump (21). In the radiator (12), the high-pressure refrigerant in the refrigerant circuit (50) flowing through the refrigerant flow path (12a) and the heat medium in the heat medium circuit (20) flowing through the heat medium flow path (12b) exchange heat, and the heat medium Is heated. The heating heat exchanger (22) is provided in a constant temperature bath (23) for storing hot water. This hot water is the target fluid of the present invention. In addition, this target fluid is not limited to water, For example, oil and air may be sufficient.

この加熱熱交換器(22)では、放熱器(12)で加熱された熱媒体が恒温槽(23)内の水と熱交換し、恒温槽(23)内の水が一定温度に加熱される。また、この恒温槽(23)内には、該恒温槽(23)の水温を検出する水温度センサ(43)が設けられている。この水温度センサ(43)の検出値はコントローラ(40)へ入力される。     In this heating heat exchanger (22), the heat medium heated by the radiator (12) exchanges heat with water in the thermostat (23), and the water in the thermostat (23) is heated to a constant temperature. . Further, a water temperature sensor (43) for detecting the water temperature of the constant temperature bath (23) is provided in the constant temperature bath (23). The detection value of the water temperature sensor (43) is input to the controller (40).

この熱媒体回路(20)には、放熱器(12)及び加熱熱交換器(22)の間に補助熱交換器(1)が設けられている。この補助熱交換器(1)には、ペルチェ素子(熱電素子部)(2b)が設けられている。この補助熱交換器(1)は、高温通路(3b)と低温通路(3a)を有している。ペルチェ素子(2b)の放熱面が高温通路(3b)を区画する壁体に接触し、ペルチェ素子(2b)の吸熱面が低温通路(3a)を区画する壁体に接触している。また、補助熱交換器(1)の低温通路(3a)の一端は放熱器(12)の熱媒体流路(12b)の出口に接続され、他端は加熱熱交換器(22)の出口に接続されている。補助熱交換器(1)の高温通路(3b)の一端は放熱器(12)の熱媒体流路(12b)の出口に接続され、他端はポンプ(21)の吸入口に接続されている。この補助熱交換器(1)は、前記熱媒体回路(20)の加熱熱交換器(22)から放熱器(12)へ向かう熱媒体から吸熱して、前記熱媒体回路(20)の放熱器(12)から加熱熱交換器(22)へ向かう熱媒体へ放熱するように構成されている。 In the heat medium circuit (20), an auxiliary heat exchanger (1) is provided between the radiator (12) and the heating heat exchanger (22). The auxiliary heat exchanger (1) is provided with a Peltier element (thermoelectric element part) (2b). The auxiliary heat exchanger (1) has a high temperature passage (3b) and a low temperature passage (3a). The heat dissipation surface of the Peltier element (2b) is in contact with the wall body defining the high temperature passage (3b), and the heat absorption surface of the Peltier element (2b) is in contact with the wall body defining the low temperature passage (3a). One end of the low-temperature passage (3a) of the auxiliary heat exchanger (1) is connected to the outlet of the heat medium passage (12b) of the radiator (12), and the other end is connected to the outlet of the heating heat exchanger (22). It is connected. One end of the high-temperature passage (3b) of the auxiliary heat exchanger (1) is connected to the outlet of the heat medium passage (12b) of the radiator (12), and the other end is connected to the suction port of the pump (21). . The auxiliary heat exchanger (1) absorbs heat from the heat medium heading from the heating heat exchanger (22) of the heat medium circuit (20) to the radiator (12), and the heat radiator of the heat medium circuit (20). It is configured to radiate heat to the heat medium heading from (12) to the heating heat exchanger (22).

コントローラ(40)は、冷媒回路(50)及び熱媒体回路(20)の動作を制御する。このコントローラ(40)が行う制御の1つにペルチェ素子(2b)の動作制御がある。     The controller (40) controls the operation of the refrigerant circuit (50) and the heat medium circuit (20). One of the controls performed by the controller (40) is the operation control of the Peltier element (2b).

−運転動作−
〈冷媒回路及び熱媒体回路の運転動作〉
両圧縮機(11a,11b)が駆動されると、低段側圧縮機(11a)で圧縮された冷媒は高段側圧縮機(11b)で更に圧縮されて高圧冷媒となる。高段側圧縮機(11b)から吐出された高圧冷媒は、放熱器(12)で熱媒体回路(20)の熱媒体と熱交換して凝縮し、熱媒体が100℃以上に加熱される。放熱器(12)で凝縮した高圧冷媒は、一部がインジェクション通路(19)に流れ、残りが過冷却熱交換器(15)の高温流路(15b)に流れる。インジェクション通路(19)に流れた高圧冷媒は、流量調整弁(16)で減圧された後、過冷却熱交換器(15)の低温流路(15a)に流れて高温流路(15b)の高圧冷媒と熱交換する。これによって、高温流路(15b)の高圧冷媒は過冷却される一方、低温流路(15a)の冷媒は蒸発して中間圧の過熱ガス冷媒となる。高温流路(15b)の高圧冷媒は、過冷却されたことによって冷媒のエンタルピーが減少する。
-Driving action-
<Operation of refrigerant circuit and heat medium circuit>
When both compressors (11a, 11b) are driven, the refrigerant compressed by the low-stage compressor (11a) is further compressed by the high-stage compressor (11b) to become a high-pressure refrigerant. The high-pressure refrigerant discharged from the high-stage compressor (11b) is condensed by exchanging heat with the heat medium of the heat medium circuit (20) in the radiator (12), and the heat medium is heated to 100 ° C. or higher. A part of the high-pressure refrigerant condensed in the radiator (12) flows into the injection passage (19), and the rest flows into the high-temperature channel (15b) of the supercooling heat exchanger (15). The high-pressure refrigerant that has flowed into the injection passage (19) is depressurized by the flow control valve (16), and then flows into the low-temperature flow path (15a) of the supercooling heat exchanger (15), and the high-pressure refrigerant in the high-temperature flow path (15b). Exchange heat with refrigerant. As a result, the high-pressure refrigerant in the high-temperature channel (15b) is supercooled, while the refrigerant in the low-temperature channel (15a) evaporates to become a superheated gas refrigerant having intermediate pressure. The high-pressure refrigerant in the high-temperature channel (15b) decreases the enthalpy of the refrigerant by being supercooled.

過冷却熱交換器(15)で過冷却された高圧冷媒は、膨張弁(13)で減圧されて低圧冷媒となる。低圧冷媒は、蒸発器(14)に流れて、冷水回路(30)の熱源水と熱交換して蒸発し、熱源水が冷却されて冷水となる。蒸発器(14)に流れる低圧冷媒は上述したように過冷却された分だけエンタルピーが減少しているので、蒸発器(14)の蒸発能力(冷却能力)が増大する。蒸発器(14)から流出した冷媒は、低段側圧縮機(11a)に吸入されて再び圧縮される。低段側圧縮機(11a)から吐出された冷媒は、インジェクション通路(19)からの中間圧の過熱ガス冷媒と合流して高段側圧縮機(11b)に吸入される。     The high-pressure refrigerant supercooled by the supercooling heat exchanger (15) is decompressed by the expansion valve (13) to become a low-pressure refrigerant. The low-pressure refrigerant flows into the evaporator (14), exchanges heat with the heat source water of the cold water circuit (30) and evaporates, and the heat source water is cooled to become cold water. Since the enthalpy of the low-pressure refrigerant flowing through the evaporator (14) is reduced by the amount of supercooling as described above, the evaporation capacity (cooling capacity) of the evaporator (14) increases. The refrigerant flowing out of the evaporator (14) is sucked into the low stage compressor (11a) and compressed again. The refrigerant discharged from the low-stage compressor (11a) joins the intermediate-pressure superheated gas refrigerant from the injection passage (19) and is sucked into the high-stage compressor (11b).

熱媒体回路(20)では、該熱媒体回路(20)の熱媒体が、前記放熱器(12)で前記冷媒回路(50)の冷媒によって加熱された後、さらに補助熱交換器(1)のペルチェ素子(2b)で加熱される。該ペルチェ素子(2b)で加熱された熱媒体は、加熱熱交換器(22)を通過する際に恒温槽(23)の水へ放熱した後、ペルチェ素子(2b)で冷却される。この冷却された状態の熱媒体が前記放熱器(12)へ流入する。     In the heat medium circuit (20), after the heat medium of the heat medium circuit (20) is heated by the refrigerant of the refrigerant circuit (50) by the radiator (12), the heat medium circuit (20) of the auxiliary heat exchanger (1) Heated by Peltier element (2b). The heat medium heated by the Peltier element (2b) dissipates heat to the water in the thermostatic chamber (23) when passing through the heating heat exchanger (22), and is then cooled by the Peltier element (2b). The cooled heat medium flows into the radiator (12).

〈コントローラの運転制御〉
前記コントローラ(40)は、前記放熱器(12)の熱媒体の入口温度が前記放熱器(12)の冷媒の出口温度よりも低く且つ前記恒温槽(23)の水の温度が目標温度に近づくようにペルチェ素子(2b)の動作を制御する第1動作を行う。これにより、冷媒回路(50)の動作を継続しつつ、補助熱交換器(1)で熱媒体を加熱することができる。
<Operation control of controller>
The controller (40) is configured such that the inlet temperature of the heat medium of the radiator (12) is lower than the outlet temperature of the refrigerant of the radiator (12), and the temperature of the water in the thermostat (23) approaches the target temperature. Thus, the first operation for controlling the operation of the Peltier element (2b) is performed. Thus, the heat medium can be heated by the auxiliary heat exchanger (1) while continuing the operation of the refrigerant circuit (50).

また、前記コントローラ(40)は、前記放熱器(12)の熱媒体の入口温度を前記放熱器(12)の冷媒の出口温度よりも低く保ちながら、前記恒温槽(23)の水の温度が目標温度に近づくようにペルチェ素子(2b)の入力電圧をPI制御又はPID制御で調整する第2動作を行う。これにより、前記放熱器(12)の熱媒体の入口温度を前記放熱器(12)の冷媒の出口温度よりも低く保つことが可能な前記ペルチェ素子(2b)の入力電圧の範囲内で、恒温槽(23)の水の温度が目標温度に近づくに連れて、前記ペルチェ素子(2b)の入力電圧を徐々に減少させることができる。     Further, the controller (40) maintains the temperature of the water in the thermostat (23) while keeping the inlet temperature of the heat medium of the radiator (12) lower than the outlet temperature of the refrigerant of the radiator (12). A second operation for adjusting the input voltage of the Peltier element (2b) by PI control or PID control so as to approach the target temperature is performed. Thus, the temperature of the inlet of the heat medium of the radiator (12) can be kept constant within the range of the input voltage of the Peltier element (2b) capable of keeping the outlet temperature of the refrigerant of the radiator (12) lower. As the temperature of the water in the tank (23) approaches the target temperature, the input voltage of the Peltier element (2b) can be gradually decreased.

また、前記コントローラ(40)は、前記熱媒体回路(20)の放熱器(12)から加熱熱交換器(22)へ向かう熱媒体の温度が100℃以上になるようにペルチェ素子(2b)の動作を制御する第3動作を行う。 Further, the controller (40) is pre-Symbol heating medium circuit (20) of the radiator (12) Peltier element so that the temperature of the heat medium is equal to or higher than 100 ° C. toward the heating heat exchanger (22) from (2b) A third operation for controlling the operation is performed.

−実施形態の効果−
本実施形態によれば、熱媒体回路(20)の補助加熱部を従来の加熱ヒータでなくペルチェ素子(2b)で構成したので、熱媒体回路(20)の熱媒体を加熱するだけでなく冷却も行うことができる。このペルチェ素子(2b)の冷却動作によって、前記放熱器(12)へ流入する熱媒体の温度を放熱器(12)の冷媒の温度よりも低くしながら、このペルチェ素子(2b)の加熱動作によって熱媒体回路(20)の熱媒体を加熱して、前記恒温槽(23)の水の温度を目標温度に近づけることができる。つまり、ペルチェ素子(2b)の熱媒体に対する加熱量を抑えずに、冷媒回路(50)の動作を継続させながら恒温槽(23)の水を加熱することができる。
-Effect of the embodiment-
According to this embodiment, since the auxiliary heating part of the heat medium circuit (20) is configured by the Peltier element (2b) instead of the conventional heater, not only the heat medium of the heat medium circuit (20) is heated but also cooled. Can also be done. By the cooling operation of the Peltier element (2b), the temperature of the heat medium flowing into the radiator (12) is lower than the temperature of the refrigerant of the radiator (12), while the heating operation of the Peltier element (2b) By heating the heat medium of the heat medium circuit (20), the temperature of the water in the thermostat (23) can be brought close to the target temperature. That is, it is possible to heat the water in the thermostatic chamber (23) while continuing the operation of the refrigerant circuit (50) without suppressing the heating amount of the Peltier element (2b) to the heat medium.

また、本実施形態によれば、恒温槽(23)の水の温度が目標温度に近づくに連れて、所定の範囲内で、前記ペルチェ素子(2b)の入力電圧を徐々に減少させるようにしたので、恒温槽(23)の水の温度をオーバシュートさせずに目標値へ近づけることができる。     Further, according to the present embodiment, the input voltage of the Peltier element (2b) is gradually decreased within a predetermined range as the temperature of the water in the thermostatic chamber (23) approaches the target temperature. Therefore, the temperature of the water in the thermostatic chamber (23) can be brought close to the target value without overshooting.

また、本実施形態によれば、前記冷媒回路(50)の凝縮温度が100℃未満であった場合でも、ペルチェ素子(2b)の動作により、熱媒体を100℃以上に加熱することができる。     Further, according to the present embodiment, even when the condensation temperature of the refrigerant circuit (50) is less than 100 ° C., the heat medium can be heated to 100 ° C. or more by the operation of the Peltier element (2b).

以上説明したように、本発明は、ヒートポンプシステムに関し、特に補助加熱部を備えるものについて有用である。     As described above, the present invention relates to a heat pump system, and is particularly useful for a device including an auxiliary heating unit.

1 補助熱交換器
2b ペルチェ素子(熱電素子部)
10 ヒートポンプシステム
12 放熱器(第1熱交換器)
22 加熱熱交換器 (第2熱交換器)
23 恒温槽
20 熱媒体回路
40 コントローラ
50 冷媒回路
1 Auxiliary heat exchanger 2b Peltier element (thermoelectric element)
10 heat pump system 12 radiator (first heat exchanger)
22 Heating heat exchanger (second heat exchanger)
23 constant temperature bath
20 Heat medium circuit 40 Controller 50 Refrigerant circuit

Claims (2)

放熱器として機能する第1熱交換器(12)の1次側流路(12a)が接続されて冷媒が循環する蒸気圧縮式冷凍サイクルの冷媒回路(50)と、
前記第1熱交換器(12)の2次側流路(12b)と第2熱交換器(22)とが接続され且つ前記第1熱交換器(12)と前記第2熱交換器(22)との間を熱媒体が循環して、前記第1熱交換器(12)で前記熱媒体が前記冷媒回路(50)の冷媒から加熱されるとともに前記第2熱交換器(22)で前記熱媒体が対象流体を加熱する熱媒体回路(20)とを備えたヒートポンプシステムであって、
前記熱媒体回路(20)の第2熱交換器(22)から第1熱交換器(12)へ向かう熱媒体から吸熱して、前記熱媒体回路(20)の第1熱交換器(12)から第2熱交換器(22)へ向かう熱媒体へ放熱する熱電素子部(2b)と、
前記第1熱交換器(12)の熱媒体の入口温度が前記第1熱交換器(12)の冷媒の出口温度よりも低く且つ前記対象流体の温度が目標温度に近づくように熱電素子部(2b)の動作を制御する第1動作を行う制御部(40)と、
備え、
前記冷媒回路(50)の冷媒は、臨界温度が110℃未満の冷媒であり、
前記制御部(40)は、前記熱媒体回路(20)の第1熱交換器(12)から第2熱交換器(22)へ向かう熱媒体の温度が100℃以上になるように熱電素子部(2b)の動作を制御する第3動作を行うことを特徴とするヒートポンプシステム。
A refrigerant circuit (50) of a vapor compression refrigeration cycle to which a refrigerant is circulated by connecting the primary flow path (12a) of the first heat exchanger (12) functioning as a radiator;
The secondary side flow path (12b) of the first heat exchanger (12) and the second heat exchanger (22) are connected, and the first heat exchanger (12) and the second heat exchanger (22 ) And the heat medium is heated from the refrigerant in the refrigerant circuit (50) by the first heat exchanger (12) and the second heat exchanger (22). A heat pump system comprising a heat medium circuit (20) in which the heat medium heats the target fluid,
The first heat exchanger (12) of the heat medium circuit (20) absorbs heat from the heat medium directed from the second heat exchanger (22) of the heat medium circuit (20) to the first heat exchanger (12). A thermoelectric element (2b) that dissipates heat to a heat medium that is directed to the second heat exchanger (22),
The thermoelectric element section (so that the inlet temperature of the heat medium of the first heat exchanger (12) is lower than the outlet temperature of the refrigerant of the first heat exchanger (12) and the temperature of the target fluid approaches the target temperature. A control unit (40) for performing a first operation for controlling the operation of 2b);
Equipped with a,
The refrigerant of the refrigerant circuit (50) is a refrigerant having a critical temperature of less than 110 ° C.,
The control unit (40) includes a thermoelectric element unit so that the temperature of the heat medium from the first heat exchanger (12) to the second heat exchanger (22) of the heat medium circuit (20) is 100 ° C. or higher. A heat pump system performing a third operation for controlling the operation of (2b) .
請求項1において、
前記制御部(40)は、前記第1熱交換器(12)の熱媒体の入口温度を前記第1熱交換器(12)の冷媒の出口温度よりも低く保ちながら、前記対象流体の温度が目標温度に近づくように熱電素子部(2b)の入力電圧をPI制御又はPID制御で調整する第2動作を行うことを特徴とするヒートポンプシステム。
In claim 1,
The controller (40) is configured to maintain the temperature of the target fluid while maintaining the inlet temperature of the heat medium of the first heat exchanger (12) lower than the outlet temperature of the refrigerant of the first heat exchanger (12). A heat pump system that performs a second operation of adjusting the input voltage of the thermoelectric element section (2b) by PI control or PID control so as to approach the target temperature.
JP2012147831A 2012-06-29 2012-06-29 Heat pump system Expired - Fee Related JP6024241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012147831A JP6024241B2 (en) 2012-06-29 2012-06-29 Heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012147831A JP6024241B2 (en) 2012-06-29 2012-06-29 Heat pump system

Publications (2)

Publication Number Publication Date
JP2014009899A JP2014009899A (en) 2014-01-20
JP6024241B2 true JP6024241B2 (en) 2016-11-09

Family

ID=50106758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012147831A Expired - Fee Related JP6024241B2 (en) 2012-06-29 2012-06-29 Heat pump system

Country Status (1)

Country Link
JP (1) JP6024241B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506033B2 (en) * 2015-01-28 2019-04-24 サンデンホールディングス株式会社 Heat pump device and vending machine provided with the same
CN105972734B (en) * 2016-06-16 2022-04-19 杭州滨创能源科技有限公司 Heat-driven and heat-pump combined solution humidity conditioning unit and humidity conditioning control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043783A (en) * 1996-08-08 1998-02-17 Denso Corp Bath water cleaning device
JP4258241B2 (en) * 2002-03-28 2009-04-30 三菱電機株式会社 Heat pump system, heat pump water heater
JP2004132612A (en) * 2002-10-10 2004-04-30 Mitsubishi Electric Corp Heating and air conditioning system, and dwelling house with heating and air conditioning system
JP2004356449A (en) * 2003-05-29 2004-12-16 Keyence Corp Method for controlling peltier element and control circuit for peltier circuit
JP5685886B2 (en) * 2010-10-22 2015-03-18 ダイキン工業株式会社 Water heater

Also Published As

Publication number Publication date
JP2014009899A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
JP5639477B2 (en) CO2 refrigerant vapor compression system
JP4613916B2 (en) Heat pump water heater
JP6019837B2 (en) Heat pump system
JP2014016079A (en) Heat pump
JP2010525292A (en) Refrigerant vapor compression system and method in transcritical operation
JP6328230B2 (en) Heat pump to use environmentally compatible refrigerant, its operating method and use of working fluid
WO2015125743A1 (en) Air-conditioning device
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
JP6038382B2 (en) Air conditioner
JP2013076541A (en) Heat pump
JP4442237B2 (en) Air conditioner
JP6948796B2 (en) Refrigerant circuit system and control method
JP6024241B2 (en) Heat pump system
JP2010060181A (en) Refrigeration system
AU2020360865B2 (en) A heat pump
WO2015136595A1 (en) Heat pump system
JP2009281631A (en) Heat pump unit
JP5790675B2 (en) heat pump
JP6069910B2 (en) Heat pump system
JP2010014386A (en) Refrigerating device
JP2013092369A5 (en)
JP7019215B1 (en) Simultaneous cold and hot temperature control device
JP2010014387A (en) Refrigerating device
JP7019212B1 (en) Simultaneous cold and hot temperature control device
JP2014016078A (en) Heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R151 Written notification of patent or utility model registration

Ref document number: 6024241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees