JP7019212B1 - Simultaneous cold and hot temperature control device - Google Patents

Simultaneous cold and hot temperature control device Download PDF

Info

Publication number
JP7019212B1
JP7019212B1 JP2020152449A JP2020152449A JP7019212B1 JP 7019212 B1 JP7019212 B1 JP 7019212B1 JP 2020152449 A JP2020152449 A JP 2020152449A JP 2020152449 A JP2020152449 A JP 2020152449A JP 7019212 B1 JP7019212 B1 JP 7019212B1
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
temperature
heat exchange
exchange fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020152449A
Other languages
Japanese (ja)
Other versions
JP2022046847A (en
Inventor
強志 丸山
英治 高牟禮
和利 柳澤
伸慎 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2020152449A priority Critical patent/JP7019212B1/en
Application granted granted Critical
Publication of JP7019212B1 publication Critical patent/JP7019212B1/en
Publication of JP2022046847A publication Critical patent/JP2022046847A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】冷却処理負荷が大きい/小さい使用環境下においても冷却処理および加熱処理を正常に実行可能とする。【解決手段】冷却処理負荷が小さいとの第1条件が満たされ、かつ外気温が第1温度以下との第2条件が満たされたときに、第3流路を閉鎖させ、かつ熱媒液W3の第1流路および第2流路の流量を調整させつつ、低温側冷媒Rcが熱交換器16を通過する通過量が多くなるように調整させる第1制御態様と、第1条件が満たされ、かつ外気温が第2温度以上との第3条件が満たされたときに、第3流路を閉鎖させ、かつ熱媒液W3の第1流路および第2流路の流量を調整させつつ、低温側冷媒Rcが蒸発器14を通過する通過量が多くなるように調整させる第2制御態様と、冷却処理負荷が大きいとの第4条件が満たされたときに、第1流路および第2流路を閉鎖させ、かつ熱媒液W3の熱交換器24への流入を許容させる第3制御態様とで制御可能に構成されている。【選択図】図1PROBLEM TO BE SOLVED: To normally execute a cooling treatment and a heat treatment even in a usage environment where the cooling treatment load is large / small. SOLUTION: When the first condition that the cooling treatment load is small is satisfied and the second condition that the outside temperature is below the first temperature is satisfied, a third flow path is closed and a heat medium liquid is satisfied. The first control mode in which the flow rates of the first flow path and the second flow path of W3 are adjusted so that the amount of passage of the low temperature side refrigerant Rc through the heat exchanger 16 is increased, and the first condition are satisfied. When the third condition that the outside temperature is the second temperature or higher is satisfied, the third flow path is closed and the flow rates of the first flow path and the second flow path of the heat medium liquid W3 are adjusted. At the same time, when the second control mode in which the low temperature side refrigerant Rc is adjusted so that the amount of passage through the evaporator 14 is large and the fourth condition that the cooling processing load is large are satisfied, the first flow path and the first flow path and It is configured to be controllable by a third control mode in which the second flow path is closed and the heat medium liquid W3 is allowed to flow into the heat exchanger 24. [Selection diagram] Fig. 1

Description

本発明は、多元冷凍サイクルを備えて冷却対象に供給される第1熱交換流体を低温側冷凍回路によって冷却しつつ加熱対象に供給される第2熱交換流体を高温側冷凍回路によって加熱可能に構成された冷温同時温度調整装置に関するものである。 The present invention makes it possible to heat the second heat exchange fluid supplied to the heating target by the high temperature side refrigeration circuit while cooling the first heat exchange fluid supplied to the cooling target with the multiple refrigeration cycle by the low temperature side refrigeration circuit. It relates to a configured cold / hot simultaneous temperature control device.

この種の冷温同時温度調整装置として、ヒートポンプ式給湯装置(以下、単に「給湯装置」ともいう)の発明が下記の特許文献に開示されている。この給湯装置は、低段側の冷媒回路内の第1の冷媒(以下、「低段側回路」内の「低段側冷媒」ともいう)と、高段側の冷媒回路内の第2の冷媒(以下、「高段側回路」内の「高段側冷媒」ともいう)とが第1熱交換器において相互に熱交換可能に構成された二元式冷凍サイクルを備えている。また、この給湯装置は、給湯運転(給湯を目的とし、冷暖房を行わない運転)、給湯および暖房運転(以下、「給湯暖房運転」ともいう)、給湯および冷房運転(以下、「給湯冷房運転」ともいう)、暖房運転(暖房を目的とし、給湯を行わない運転)、並びに冷房運転(冷房を目的とし、給湯を行わない運転)の5種類の運転が可能に構成されている。 The invention of a heat pump type hot water supply device (hereinafter, also simply referred to as “hot water supply device”) as this kind of simultaneous cooling / temperature adjusting device is disclosed in the following patent documents. This hot water supply device includes a first refrigerant in the low-stage side refrigerant circuit (hereinafter, also referred to as a "low-stage side refrigerant" in the "low-stage side circuit") and a second refrigerant in the high-stage side refrigerant circuit. It is equipped with a dual refrigeration cycle configured so that the refrigerant (hereinafter, also referred to as “high-stage side refrigerant” in the “high-stage side circuit”) can exchange heat with each other in the first heat exchanger. In addition, this hot water supply device includes hot water supply operation (operation for the purpose of hot water supply and does not perform heating and cooling), hot water supply and heating operation (hereinafter, also referred to as "hot water supply and heating operation"), hot water supply and cooling operation (hereinafter, "hot water supply and cooling operation"). It is configured to be capable of five types of operations: heating operation (operation for heating and not supplying hot water), and cooling operation (operation for cooling and not supplying hot water).

この給湯装置では、給湯運転時に、第1圧縮機から吐出される低段側冷媒のすべてが第1熱交換器および第2熱交換器をこの順で通過した後に室外熱交換器を通過して第1圧縮機に吸入されるように低段側回路の冷媒流路が切り替えられる。この際には、低段側回路の第2熱交換器によって予熱された後に高段側回路の凝縮器によって加熱されることで給湯水が温度上昇させられる。また、給湯暖房運転時には、給湯運転時における低段側冷媒の上記の流路に加え、第1圧縮機から吐出される低段側冷媒の一部が室内熱交換器を通過した後に室外熱交換器を通過して第1圧縮機に吸入されるように冷媒流路が形成される。この際には、給湯運転時と同様に給湯水が温度上昇させられると共に、室内熱交換器において室内の空気が温度上昇させられて室内が暖房される。 In this hot water supply device, during the hot water supply operation, all of the low-stage refrigerant discharged from the first compressor passes through the first heat exchanger and the second heat exchanger in this order, and then passes through the outdoor heat exchanger. The refrigerant flow path of the lower stage circuit is switched so as to be sucked into the first compressor. In this case, the temperature of the hot water is raised by being preheated by the second heat exchanger of the low-stage circuit and then heated by the condenser of the high-stage circuit. Further, during the hot water supply and heating operation, in addition to the above-mentioned flow path of the low-stage side refrigerant during the hot water supply operation, outdoor heat exchange occurs after a part of the low-stage side refrigerant discharged from the first compressor passes through the indoor heat exchanger. A refrigerant flow path is formed so as to pass through the vessel and be sucked into the first compressor. At this time, the temperature of the hot water is raised as in the hot water supply operation, and the temperature of the indoor air is raised in the indoor heat exchanger to heat the room.

さらに、給湯冷房運転時には、第1圧縮機から吐出される低段側冷媒の一部が第1熱交換器および第2熱交換器をこの順で通過した後に室内熱交換器を通過して第1圧縮機に吸入され、第1圧縮機から吐出される低段側冷媒の他の一部が室外熱交換器を通過した後に室内熱交換器を通過して第1圧縮機に吸入されるように冷媒流路が切り替えられる。この際には、低段側回路の第2熱交換器によって予熱された後に高段側回路の凝縮器によって加熱されることで給湯水が十分に温度上昇させられると共に、室内熱交換器において室内の空気が温度低下させられて室内が冷房される。 Further, during the hot water supply / cooling operation, a part of the low-stage refrigerant discharged from the first compressor passes through the first heat exchanger and the second heat exchanger in this order, and then passes through the indoor heat exchanger. 1 The other part of the low-stage refrigerant that is sucked into the compressor and discharged from the first compressor passes through the outdoor heat exchanger and then passes through the indoor heat exchanger and is sucked into the first compressor. The refrigerant flow path is switched to. In this case, the temperature of the hot water is sufficiently raised by being preheated by the second heat exchanger of the low-stage circuit and then heated by the condenser of the high-stage circuit, and at the same time, the indoor heat exchanger is used indoors. The temperature of the air is lowered and the room is cooled.

また、暖房運転時には、第1圧縮機から吐出される低段側冷媒のすべてが室内熱交換器を通過した後に室外熱交換器を通過して第1圧縮機に吸入されるように冷媒流路が切り替えられることで、室内熱交換器において室内の空気が温度上昇させられて室内が暖房される。さらに、冷房運転時には、第1圧縮機から吐出される低段側冷媒のすべてが室外熱交換器を通過した後に室内熱交換器を通過して第1圧縮機に吸入されるように冷媒流路が切り替えられることで、室内熱交換器において室内の空気が温度低下させられて室内が冷房される。このように、この給湯装置では、低段側冷媒の流路の切り替えによって用途に応じた加熱処理および/または冷却処理を行うことが可能となっている。 Further, during the heating operation, the refrigerant flow path is such that all the low-stage refrigerant discharged from the first compressor passes through the indoor heat exchanger and then passes through the outdoor heat exchanger and is sucked into the first compressor. By switching, the temperature of the air in the room is raised in the indoor heat exchanger to heat the room. Further, during the cooling operation, the refrigerant flow path is such that all the low-stage refrigerant discharged from the first compressor passes through the outdoor heat exchanger and then passes through the indoor heat exchanger and is sucked into the first compressor. By switching, the temperature of the air in the room is lowered in the indoor heat exchanger to cool the room. As described above, in this water heater, it is possible to perform heat treatment and / or cooling treatment according to the application by switching the flow path of the low-stage side refrigerant.

特開平4-263758号公報(第2-4頁、第1図)Japanese Unexamined Patent Publication No. 4-263758 (Pages 2-4, Fig. 1)

ところが、上記特許文献に開示の給湯装置には、以下のような課題が存在する。具体的には、上記の給湯装置では、給湯のみを目的とした給湯運転、および空調のみを目的とした暖房運転や冷房運転に加え、給湯および空調の並行処理を目的とした給湯暖房運転や給湯冷房運転を行うことが可能な構成が採用されている。この場合、給湯冷房運転時に室内を規定時間内に冷房設定温度まで冷房するには、低段側回路の室内熱交換器における空気の冷却に必要な量の低段側冷媒を第1熱交換器において凝縮させる必要があり、そのためには、十分な量の高段側冷媒が第1熱交換器に供給されるように、十分な量の高段側冷媒を凝縮器において凝縮させる必要がある。 However, the hot water supply device disclosed in the above patent document has the following problems. Specifically, in the above-mentioned hot water supply device, in addition to hot water supply operation for the purpose of hot water supply only, heating operation and cooling operation for the purpose of air conditioning only, hot water supply heating operation and hot water supply operation for the purpose of parallel processing of hot water supply and air conditioning. A configuration that enables cooling operation is adopted. In this case, in order to cool the room to the cooling set temperature within the specified time during the hot water supply cooling operation, the first heat exchanger uses the amount of low-stage side refrigerant required for cooling the air in the indoor heat exchanger of the low-stage side circuit. For that purpose, it is necessary to condense a sufficient amount of the high-stage refrigerant in the condenser so that a sufficient amount of the high-stage refrigerant is supplied to the first heat exchanger.

このため、給湯冷房運転に際して、冷房設定温度が低いとき、室内の空気が高温のとき、および短時間で室内を冷房設定温度まで冷房するとき(冷房設定温度まで室内を冷房するための冷房処理負荷が大きいときの一例)や、給湯(加熱)設定温度が低いとき、給湯水の温度が高いとき、および単位時間当りに加熱すべき給湯水の量が少ないとき(給湯設定温度まで給湯水を加熱するための加熱処理負荷が小さいときの一例)に、室内熱交換器において必要とされる多量の低段側冷媒を第1熱交換器において凝縮させたときには、高段側回路の凝縮器において大量の高段側冷媒を凝縮させることに起因して、給湯水が給湯設定温度よりも高温まで加熱されることがある。また、給湯冷房運転時に給湯設定温度よりも高温まで給湯水を加熱しない場合には、第1熱交換器における高段側冷媒の蒸発量が少量となることで必要量の低段側冷媒を第1熱交換器において凝縮させることができなくなり、室内熱交換器における低段側冷媒の蒸発量が少量となって、室内を冷房設定温度まで冷房するのが困難となったり、冷房設定温度まで冷房するのに長い時間を要したりすることがある。 Therefore, during hot water supply cooling operation, when the cooling set temperature is low, when the indoor air is high, and when the room is cooled to the cooling set temperature in a short time (cooling processing load for cooling the room to the cooling set temperature). When the hot water supply (heating) set temperature is low, when the hot water supply water temperature is high, and when the amount of hot water supply water to be heated per unit time is small (heating the hot water supply water to the hot water supply set temperature) When a large amount of low-stage side refrigerant required in the indoor heat exchanger is condensed in the first heat exchanger in an example when the heat treatment load is small), a large amount in the condenser of the high-stage side circuit Due to the condensation of the high-stage side refrigerant, the hot water supply water may be heated to a temperature higher than the hot water supply set temperature. Further, when the hot water supply water is not heated to a temperature higher than the hot water supply set temperature during the hot water supply cooling operation, the required amount of the low stage side refrigerant is used because the amount of evaporation of the high stage side refrigerant in the first heat exchanger is small. 1 It becomes impossible to condense in the heat exchanger, the amount of evaporation of the lower stage refrigerant in the indoor heat exchanger becomes small, it becomes difficult to cool the room to the cooling set temperature, or it is cooled to the cooling set temperature. It may take a long time to do so.

これとは逆に、給湯冷房運転に際して、冷房設定温度が高いとき、室内の空気が低温のとき、およびある程度長い時間をかけて室内を冷房設定温度まで冷房するとき(冷房処理負荷が小さいときの一例)や、給湯(加熱)設定温度が高いとき、給湯水の温度が低いとき、および単位時間当りに加熱すべき給湯水の量が多いとき(加熱処理負荷が大きいときの一例)に、室内熱交換器において必要とされる低段側冷媒のすべてを第1熱交換器において凝縮させたとしても、第1熱交換器における高段側冷媒の蒸発量が少量となって凝縮器に対して供給可能な高段側冷媒の量が少量となり、給湯水を給湯設定温度まで十分に加熱するのが困難となったり、給湯設定温度まで加熱するのに長い時間を要したりすることがある。また、給湯冷房運転時に給湯設定温度よりも高温まで給湯水を加熱した場合には、第1熱交換器における高段側冷媒の蒸発量が多量となることで多量の低段側冷媒が第1熱交換器において蒸発させられることとなり、室内熱交換器における低段側冷媒の蒸発量が多量となって、室内が冷房設定温度よりも低い温度まで冷房されることがある。 On the contrary, when the hot water supply cooling operation is performed, when the cooling set temperature is high, when the indoor air is low, and when the room is cooled to the cooling set temperature over a long period of time (when the cooling processing load is small). Indoors), when the hot water supply (heating) set temperature is high, when the temperature of the hot water supply water is low, and when the amount of hot water supply water to be heated per unit time is large (an example when the heat treatment load is large). Even if all of the low-stage refrigerant required in the heat exchanger is condensed in the first heat exchanger, the amount of evaporation of the high-stage refrigerant in the first heat exchanger becomes small and the amount of evaporation is small with respect to the condenser. The amount of high-stage refrigerant that can be supplied becomes small, and it may be difficult to sufficiently heat the hot water supply water to the hot water supply set temperature, or it may take a long time to heat the hot water supply water to the hot water supply set temperature. Further, when the hot water supply water is heated to a temperature higher than the set temperature of the hot water supply during the hot water supply cooling operation, the amount of evaporation of the high-stage side refrigerant in the first heat exchanger becomes large, so that a large amount of the low-stage side refrigerant becomes the first. It will be evaporated in the heat exchanger, and the amount of evaporation of the low-stage refrigerant in the indoor heat exchanger will be large, and the room may be cooled to a temperature lower than the cooling set temperature.

このように、上記特許文献に開示の給湯装置では、低段側回路(低温側冷凍回路)における室内の空気(第1熱交換流体)の冷却と、高段側回路(高温側冷凍回路)における給湯水(第2熱交換流体)の加熱とを並行して行う給湯冷房運転において、使用環境によっては、冷房設定温度に冷房するのが困難となったり、冷房設定温度に冷房するのに長い時間を要したり、規定量の給湯水を規定時間内に給湯設定温度に加熱するのが困難となったりすることがある。 As described above, in the hot water supply device disclosed in the above patent document, the cooling of the indoor air (first heat exchange fluid) in the low-stage side circuit (low-temperature side refrigeration circuit) and the cooling in the high-stage side circuit (high-temperature side refrigeration circuit). In the hot water supply cooling operation in which the hot water supply water (second heat exchange fluid) is heated in parallel, it may be difficult to cool to the cooling set temperature or it may take a long time to cool to the cooling set temperature depending on the usage environment. It may be difficult to heat the specified amount of hot water to the set temperature for hot water supply within the specified time.

本発明は、かかる解決すべき課題に鑑みてなされたものであり、第1熱交換流体の冷却処理負荷が大きい使用環境下、および第1熱交換流体の冷却処理負荷が小さい使用環境下のいずれにおいても第1熱交換流体の冷却および第2熱交換流体の加熱を正常に実行し得る冷温同時温度調整装置を提供することを主目的とする。 The present invention has been made in view of the problem to be solved, and either under a usage environment where the cooling treatment load of the first heat exchange fluid is large or under a usage environment where the cooling treatment load of the first heat exchange fluid is small. The main object of the present invention is to provide a cold / temperature simultaneous temperature control device capable of normally cooling the first heat exchange fluid and heating the second heat exchange fluid.

上記目的を達成すべく、請求項1記載の冷温同時温度調整装置は、低温側冷凍回路および高温側冷凍回路を有して当該低温側冷凍回路内の低温側冷媒と当該高温側冷凍回路内の高温側冷媒とが第1熱交換器において熱交換可能に構成されると共に、冷却対象に供給される第1熱交換流体を前記低温側冷凍回路の第2熱交換器において冷却可能に構成され、かつ加熱対象に供給される第2熱交換流体を前記高温側冷凍回路の第3熱交換器において加熱可能に構成された多元冷凍サイクルと、前記第1熱交換流体を冷却すべき冷却設定温度、および前記第2熱交換流体を加熱すべき加熱設定温度に応じて前記多元冷凍サイクルの動作を制御する制御部とを備えた冷温同時温度調整装置であって、第3熱交換流体の循環が可能に構成された流体循環路と、前記第3熱交換流体および外部熱源の熱交換が可能に配設された第4熱交換器と、前記冷却対象を冷却した前記第1熱交換流体、および前記第4熱交換器において前記外部熱源と熱交換した前記第3熱交換流体の両流体の熱交換が可能に配設された第5熱交換器と、前記第1熱交換器において前記高温側冷媒と熱交換した前記低温側冷媒、および前記第4熱交換器において前記外部熱源と熱交換する前記第3熱交換流体の両流体の熱交換が可能に配設された第6熱交換器と、前記第1熱交換器において前記低温側冷媒と熱交換する前記高温側冷媒、および前記第4熱交換器において前記外部熱源と熱交換する前記第3熱交換流体の熱交換が可能に配設された第7熱交換器と、前記第1熱交換器において前記高温側冷媒と熱交換した前記低温側冷媒の前記第2熱交換器の通過量、および当該低温側冷媒の前記第6熱交換器の通過量を調整する第1調整部と、前記第4熱交換器において前記外部熱源と熱交換した前記第3熱交換流体の前記第5熱交換器の通過量、当該第3熱交換流体の前記第6熱交換器の通過量、および当該第3熱交換流体の前記第7熱交換器の通過量を調整する第2調整部とを備え、前記流体循環路は、前記第4熱交換器において前記外部熱源と熱交換した前記第3熱交換流体が前記第5熱交換器を通過した後に前記第6熱交換器を通過すると共に前記第7熱交換器を通過しない第1流路と、当該第3熱交換流体が当該第5熱交換器を通過せずに当該第6熱交換器を通過すると共に前記第7熱交換器を通過しない第2流路と、当該第3熱交換流体が当該第5熱交換器および当該第6熱交換器を通過せずに当該第7熱交換器を通過する第3流路とを備え、前記第2調整部は、前記第3熱交換流体の前記第1流路の流量、当該第3熱交換流体の前記第2流路の流量、および当該第3熱交換流体の前記第3流路の流量を調整することによって当該第3熱交換流体の前記第5熱交換器の通過量、当該第3熱交換流体の前記第6熱交換器の通過量、および当該第3熱交換流体の前記第7熱交換器の通過量を調整可能に構成され、前記制御部は、前記第1熱交換流体を前記冷却設定温度まで冷却するための当該冷温同時温度調整装置の冷却処理負荷が、前記第2熱交換流体を前記加熱設定温度まで加熱するための当該冷温同時温度調整装置の加熱処理負荷よりも小さいとの第1条件が満たされ、かつ前記外部熱源の温度が、前記冷却設定温度以下の予め規定された第1温度以下との第2条件が満たされたときに、前記第2調整部に前記第3流路を閉鎖させ、かつ前記冷却設定温度に応じて前記第3熱交換流体の前記第1流路の流量、および当該第3熱交換流体の前記第2流路の流量を当該第2調整部に調整させつつ、前記低温側冷媒が前記第2熱交換器を通過する通過量よりも当該低温側冷媒が前記第6熱交換器を通過する通過量の方が多くなるように前記第1調整部に調整させる第1制御態様と、前記第1条件が満たされ、かつ前記外部熱源の温度が、前記冷却設定温度よりも高い予め規定された第2温度以上との第3条件が満たされたときに、前記第2調整部に前記第3流路を閉鎖させ、かつ前記冷却設定温度に応じて前記第3熱交換流体の前記第1流路の流量、および当該第3熱交換流体の前記第2流路の流量を前記第2調整部に調整させつつ、前記低温側冷媒が前記第6熱交換器を通過する通過量よりも当該低温側冷媒が前記第2熱交換器を通過する通過量の方が多くなるように前記第1調整部に調整させる第2制御態様と、前記冷却処理負荷が前記加熱処理負荷よりも大きいとの第4条件が満たされたときに、前記第2調整部に前記第1流路および前記第2流路を閉鎖させ、かつ前記第3熱交換流体の前記第7熱交換器への流入を許容させる第3制御態様とで当該冷温同時温度調整装置を制御可能に構成されている。 In order to achieve the above object, the cold / hot simultaneous temperature regulator according to claim 1 has a low temperature side refrigeration circuit and a high temperature side refrigeration circuit, and has a low temperature side refrigerant in the low temperature side refrigeration circuit and a high temperature side refrigeration circuit. The high temperature side refrigerant is configured to be heat exchangeable in the first heat exchanger, and the first heat exchange fluid supplied to the cooling target is configured to be coolable in the second heat exchanger of the low temperature side refrigeration circuit. A multiple refrigeration cycle configured so that the second heat exchange fluid supplied to the heating target can be heated in the third heat exchanger of the high temperature side refrigeration circuit, and a cooling set temperature for cooling the first heat exchange fluid. And a cold / hot simultaneous temperature control device equipped with a control unit that controls the operation of the multiple refrigeration cycle according to the heating set temperature at which the second heat exchange fluid should be heated, and the third heat exchange fluid can be circulated. The fluid circulation path configured in the above, the fourth heat exchanger arranged to enable heat exchange between the third heat exchange fluid and the external heat source, the first heat exchange fluid that has cooled the cooling target, and the said. The fifth heat exchanger, which is arranged so that both fluids of the third heat exchange fluid that have exchanged heat with the external heat source in the fourth heat exchanger can exchange heat, and the high temperature side refrigerant in the first heat exchanger. A sixth heat exchanger arranged to enable heat exchange between the low temperature side refrigerant that has exchanged heat with the heat exchanger and the third heat exchange fluid that exchanges heat with the external heat source in the fourth heat exchanger . Heat exchange is possible between the high temperature side refrigerant that exchanges heat with the low temperature side refrigerant in the first heat exchanger and the third heat exchange fluid that exchanges heat with the external heat source in the fourth heat exchanger. The amount of passage of the 7th heat exchanger, the low temperature side refrigerant that exchanged heat with the high temperature side refrigerant in the 1st heat exchanger, and the 6th heat exchanger of the low temperature side refrigerant. The passing amount of the third heat exchange fluid that has exchanged heat with the external heat source in the fourth heat exchanger, the passing amount of the third heat exchanger, and the third heat exchange fluid. The fluid circulation path is provided with a second adjusting unit for adjusting the passing amount of the sixth heat exchanger and the passing amount of the third heat exchange fluid through the seventh heat exchanger, and the fluid circulation path is the fourth heat exchanger. A first flow path in which the third heat exchange fluid that has exchanged heat with the external heat source passes through the fifth heat exchanger, then passes through the sixth heat exchanger, and does not pass through the seventh heat exchanger. The second flow path in which the third heat exchange fluid passes through the sixth heat exchanger without passing through the fifth heat exchanger and does not pass through the seventh heat exchanger, and the third heat exchange fluid The fifth heat exchange It includes a converter and a third flow path that passes through the seventh heat exchanger without passing through the sixth heat exchanger, and the second adjusting unit is the first flow path of the third heat exchange fluid. By adjusting the flow rate of the third heat exchange fluid, the flow rate of the second flow path of the third heat exchange fluid, and the flow rate of the third flow path of the third heat exchange fluid, the fifth heat exchange of the third heat exchange fluid is performed. The passage amount of the device, the passage amount of the third heat exchange fluid through the sixth heat exchanger, and the passage amount of the third heat exchange fluid through the seventh heat exchanger can be adjusted, and the control unit is configured. , The cooling processing load of the cold temperature simultaneous temperature adjusting device for cooling the first heat exchange fluid to the cooling set temperature, and the cold temperature simultaneous temperature adjustment for heating the second heat exchange fluid to the heating set temperature. When the first condition that it is smaller than the heat treatment load of the apparatus is satisfied, and the second condition that the temperature of the external heat source is equal to or less than the predetermined cooling set temperature and is equal to or less than the predetermined first temperature is satisfied. , The third flow path is closed by the second adjusting unit, and the flow rate of the first flow path of the third heat exchange fluid according to the cooling set temperature, and the second of the third heat exchange fluid. While adjusting the flow rate of the flow path to the second adjusting unit, the amount of passage of the low temperature side refrigerant through the sixth heat exchanger is larger than the amount of passage of the low temperature side refrigerant through the second heat exchanger. A first control mode in which the first adjusting unit is adjusted so that the number of heat is larger, and a predetermined second temperature in which the first condition is satisfied and the temperature of the external heat source is higher than the cooling set temperature. When the above third conditions are satisfied, the third flow path is closed by the second adjusting unit, and the flow rate of the first flow path of the third heat exchange fluid according to the cooling set temperature. And, while adjusting the flow rate of the second flow path of the third heat exchange fluid to the second adjusting unit, the low temperature side refrigerant exceeds the amount of passage of the low temperature side refrigerant through the sixth heat exchanger. The second control mode in which the first adjusting unit adjusts so that the amount of passage through the second heat exchanger is larger, and the fourth condition that the cooling treatment load is larger than the heat treatment load. A third control that causes the second adjusting unit to close the first flow path and the second flow path and allow the third heat exchange fluid to flow into the seventh heat exchanger when the condition is filled. The cold and hot simultaneous temperature control device can be controlled according to the embodiment.

請求項2記載の冷温同時温度調整装置は、請求項1記載の冷温同時温度調整装置において、前記第4熱交換器に対して前記外部熱源としての周囲の空気を送風する送風ファンを備え、前記制御部は、前記送風ファンを制御して送風量を変更することで前記第4熱交換器における前記第3熱交換流体と前記空気との熱交換量を調整する。 The cold / hot simultaneous temperature adjusting device according to claim 2 comprises a blower fan for blowing ambient air as an external heat source to the fourth heat exchanger in the cold / hot simultaneous temperature adjusting device according to claim 1. The control unit adjusts the amount of heat exchange between the third heat exchange fluid and the air in the fourth heat exchanger by controlling the blower fan to change the amount of blown air.

請求項1記載の冷温同時温度調整装置では、制御部が、冷却処理負荷が加熱処理負荷よりも小さいとの第1条件が満たされ、かつ外部熱源の温度が、冷却設定温度以下の予め規定された第1温度以下との第2条件が満たされたときに、第2調整部に第3流路を閉鎖させ、かつ冷却設定温度に応じて第3熱交換流体の第1流路の流量、および第3熱交換流体の第2流路の流量を第2調整部に調整させつつ、低温側冷媒が第2熱交換器を通過する通過量よりも低温側冷媒が第6熱交換器を通過する通過量の方が多くなるように第1調整部に調整させる第1制御態様と、第1条件が満たされ、かつ外部熱源の温度が、冷却設定温度よりも高い予め規定された第2温度以上との第3条件が満たされたときに、第2調整部に第3流路を閉鎖させ、かつ冷却設定温度に応じて第3熱交換流体の第1流路の流量、および第3熱交換流体の第2流路の流量を第2調整部に調整させつつ、低温側冷媒が第6熱交換器を通過する通過量よりも低温側冷媒が第2熱交換器を通過する通過量の方が多くなるように第1調整部に調整させる第2制御態様と、冷却処理負荷が加熱処理負荷よりも大きいとの第4条件が満たされたときに、第2調整部に第1流路および第2流路を閉鎖させ、かつ第3熱交換流体の第7熱交換器への流入を許容させる第3制御態様とで冷温同時温度調整装置を制御する。 In the cooling / temperature simultaneous temperature adjusting device according to claim 1, the control unit satisfies the first condition that the cooling treatment load is smaller than the heat treatment load, and the temperature of the external heat source is predetermined to be equal to or lower than the cooling set temperature. When the second condition of the first temperature or lower is satisfied, the third flow path is closed in the second adjusting unit, and the flow rate of the first flow path of the third heat exchange fluid according to the cooling set temperature, And while adjusting the flow rate of the second flow path of the third heat exchange fluid to the second adjusting unit, the low temperature side refrigerant passes through the sixth heat exchanger than the amount of passage through which the low temperature side refrigerant passes through the second heat exchanger. A first control mode in which the first adjusting unit is adjusted so that the amount of passage through the heat is larger, and a predetermined second temperature in which the first condition is satisfied and the temperature of the external heat source is higher than the cooling set temperature. When the above third conditions are satisfied, the third flow path is closed in the second adjustment unit, and the flow rate of the first flow path of the third heat exchange fluid and the third heat according to the cooling set temperature. While adjusting the flow rate of the second flow path of the exchange fluid to the second adjusting unit, the amount of passage of the low temperature side refrigerant through the second heat exchanger is larger than the amount of passage of the low temperature side refrigerant through the sixth heat exchanger. When the second control mode in which the first adjusting unit is adjusted so that the number of heat treatment is larger and the fourth condition that the cooling treatment load is larger than the heat treatment load are satisfied, the first flow path is connected to the second adjustment unit. The cold / hot simultaneous temperature control device is controlled by the third control mode in which the second flow path is closed and the third heat exchange fluid is allowed to flow into the seventh heat exchanger.

したがって、請求項1記載の冷温同時温度調整装置によれば、冷却処理負荷が加熱処理負荷よりも小さく、第1熱交換対象流体の過冷却や第2熱交換対象流体の加熱不足を招くおそれのある使用環境下において、外部熱源の温度が冷却設定温度以下のとき(第2条件が満たされる状態のとき)には、第1制御態様で冷温同時温度調整装置が制御されて、外部熱源との熱交換によって温度低下した第3熱交換対象流体によって第1熱交換対象流体を冷却設定温度まで冷却しつつ、第1熱交換対象流体の冷却によって温度上昇した第3熱交換対象流体熱を第6熱交換器において低温側冷媒に吸熱させて、この熱と、圧縮機における圧縮によって生じた熱とを第1熱交換器において高温側冷媒に吸熱させることで第3熱交換器において第2熱交換対象流体を加熱設定温度まで十分に加熱することができる。また、冷却処理負荷が加熱処理負荷よりも小さく、第1熱交換対象流体の過冷却や第2熱交換対象流体の加熱不足を招くおそれのある使用環境下において、外部熱源の温度が冷却設定温度よりも高いとき(第3条件が満たされる状態のとき)には、第2制御態様で冷温同時温度調整装置が制御されて、第2熱交換器による冷却に先立ち、第4熱交換器において外部熱源から第3熱交換対象流体に吸熱した熱を第5熱交換器において第3熱交換対象流体から第1熱交換対象流体に吸熱させることにより、第2熱交換器において第1熱交換対象流体の熱を低温側冷媒に十分に吸熱させても第1熱交換対象流体の過冷却を招くことなく第1熱交換対象流体を冷却設定温度まで冷却することができ、第2熱交換器において低温側冷媒に吸熱した熱と、圧縮機における圧縮によって生じた熱とを第1熱交換器において高温側冷媒に吸熱させることで第3熱交換器において第2熱交換対象流体を加熱設定温度まで十分に加熱することができる。さらに、冷却処理負荷が加熱処理負荷よりも大きく、第2熱交換対象流体の過加熱や第1熱交換対象流体の冷却不足を招くおそれのある使用環境下においては、第3制御態様で冷温同時温度調整装置が制御されて、高温側冷凍回路において第3熱交換器を介して第2熱交換対象流体に放熱することのできない熱が、第7熱交換器を介して第3熱交換対象流体に放熱されて第4熱交換器において第3熱交換対象流体から外部熱源に放熱されるため、高温側冷凍回路における第2熱交換対象流体の過加熱を招くことなく、第1熱交換対象流体を冷却設定温度まで冷却するのに必要な十分な量の低温側冷媒を第2熱交換器に供給させて第1熱交換対象流体を冷却設定温度まで十分に冷却することができる。 Therefore, according to the cooling / temperature simultaneous temperature adjusting device according to claim 1, the cooling treatment load is smaller than the heat treatment load, which may lead to overcooling of the first heat exchange target fluid or insufficient heating of the second heat exchange target fluid. Under a certain usage environment, when the temperature of the external heat source is equal to or lower than the cooling set temperature (when the second condition is satisfied), the cold / hot simultaneous temperature control device is controlled in the first control mode to connect with the external heat source. The sixth heat exchange target fluid heat whose temperature has risen due to the cooling of the first heat exchange target fluid while cooling the first heat exchange target fluid to the cooling set temperature by the third heat exchange target fluid whose temperature has dropped due to heat exchange. The heat is absorbed by the low temperature side refrigerant in the heat exchanger, and this heat and the heat generated by the compression in the compressor are absorbed by the high temperature side refrigerant in the first heat exchanger to exchange the second heat in the third heat exchanger. The target fluid can be sufficiently heated to the set heating temperature. Further, in a usage environment where the cooling treatment load is smaller than the heat treatment load and may cause overcooling of the first heat exchange target fluid or insufficient heating of the second heat exchange target fluid, the temperature of the external heat source is the set cooling temperature. When it is higher than (when the third condition is satisfied), the cold / hot simultaneous temperature control device is controlled in the second control mode, and the external heat exchanger is used prior to cooling by the second heat exchanger. By absorbing the heat absorbed from the heat source to the third heat exchange target fluid from the third heat exchange target fluid to the first heat exchange target fluid in the fifth heat exchanger, the first heat exchange target fluid in the second heat exchanger Even if the heat of the low temperature side is sufficiently absorbed by the low temperature side refrigerant, the first heat exchange target fluid can be cooled to the cooling set temperature without causing overcooling of the first heat exchange target fluid, and the temperature is low in the second heat exchanger. By absorbing the heat absorbed by the side refrigerant and the heat generated by the compression in the compressor to the high temperature side refrigerant in the first heat exchanger, the second heat exchange target fluid in the third heat exchanger is sufficiently heated to the set temperature. Can be heated to. Further, in a usage environment where the cooling treatment load is larger than the heat treatment load and may cause overheating of the second heat exchange target fluid or insufficient cooling of the first heat exchange target fluid, simultaneous cooling and heating are performed in the third control mode. The heat that cannot be dissipated to the second heat exchange target fluid via the third heat exchanger in the high temperature side refrigeration circuit under the control of the temperature controller is transferred to the third heat exchange target fluid via the seventh heat exchanger. Since the heat is dissipated from the third heat exchange target fluid to the external heat source in the fourth heat exchanger, the first heat exchange target fluid does not cause overheating of the second heat exchange target fluid in the high temperature side refrigeration circuit. The second heat exchanger can be supplied with a sufficient amount of low-temperature side refrigerant necessary for cooling to the cooling set temperature, and the first heat exchange target fluid can be sufficiently cooled to the cooling set temperature.

請求項2記載の冷温同時温度調整装置によれば、制御部が、第4熱交換器に対して外部熱源としての周囲の空気を送風する送風ファンを制御して送風量を変更することで第4熱交換器における第3熱交換流体と空気との熱交換量を調整することにより、例えば、ポンプによる第3熱交換対象流体の圧送量を変化させることで第5熱交換器や第6熱交換器における熱交換量を変化させる構成と比較して、低温側冷媒や第1熱交換対象流体と熱交換させる第3熱交換対象流体の温度を比較的容易に所望の温度に調整することができるため、第5熱交換器や第6熱交換器における熱交換量を確実かつ容易に所望の熱交換量に制御することができる。 According to the cold / temperature simultaneous temperature adjusting device according to claim 2, the control unit controls a blower fan that blows ambient air as an external heat source to the fourth heat exchanger to change the amount of blown air. 4 By adjusting the amount of heat exchange between the 3rd heat exchange fluid and air in the heat exchanger, for example, by changing the pumping amount of the 3rd heat exchange target fluid by the pump, the 5th heat exchanger and the 6th heat Compared with a configuration in which the amount of heat exchange in the exchanger is changed, it is relatively easy to adjust the temperature of the third heat exchange target fluid to exchange heat with the low temperature side refrigerant or the first heat exchange target fluid to a desired temperature. Therefore, the amount of heat exchange in the fifth heat exchanger and the sixth heat exchanger can be reliably and easily controlled to a desired heat exchange amount.

冷温同時温度調整装置1の構成を示す構成図である。It is a block diagram which shows the structure of the cold temperature simultaneous temperature adjustment apparatus 1. 冷温同時温度調整装置1の始動時の動作、および冷却処理負荷と加熱処理負荷とがバランスしている状態の動作について説明するための説明図である。It is explanatory drawing for demonstrating the operation at the time of starting of the cold temperature simultaneous temperature adjustment apparatus 1, and the operation in the state which the cooling process load and the heat process load are balanced. 第1吸熱モードでの動作について説明するための説明図である。It is explanatory drawing for demonstrating operation in the 1st endothermic mode. 第2吸熱モードでの動作について説明するための説明図である。It is explanatory drawing for demonstrating operation in a 2nd endothermic mode. 放熱モードでの動作について説明するための説明図である。It is explanatory drawing for demonstrating operation in a heat dissipation mode.

以下、添付図面を参照して、冷温同時温度調整装置の実施の形態について説明する。 Hereinafter, embodiments of the simultaneous cooling / temperature adjusting device will be described with reference to the accompanying drawings.

最初に、冷温同時温度調整装置1の構成について、添付図面を参照して説明する。 First, the configuration of the cold / hot simultaneous temperature adjusting device 1 will be described with reference to the attached drawings.

図1に示す冷温同時温度調整装置1は、「冷温同時温度調整装置」に相当し、一例として、高温の洗浄液によって対象物を洗浄する洗浄装置(図示せず)において洗浄液を加熱する加熱器(「加熱対象」の一例:以下、「加熱対象XH」ともいう)に熱媒液循環路LHを介して高温の熱媒液Wh(「第2熱交換流体」の一例)を供給すると共に、加熱対象XH(加熱器)における加熱によって気化した洗浄液を冷却して液化させる冷却器(「冷却対象」の一例:以下、「冷却対象XC」ともいう)に対して熱媒液循環路LCを介して低温の熱媒液Wc(「第1熱交換流体」の一例)を供給することができるように構成されている。 The cold / hot simultaneous temperature adjusting device 1 shown in FIG. 1 corresponds to a “cold / hot simultaneous temperature adjusting device”, and as an example, a heater (not shown) that heats the cleaning liquid in a cleaning device (not shown) that cleans an object with a high temperature cleaning liquid (not shown). An example of a "heating target": hereinafter, also referred to as a "heating target XH") is supplied with a high-temperature heat medium liquid Wh (an example of a "second heat exchange fluid") via a heat medium liquid circulation path LH and heated. An example of a "cooling target" (hereinafter, also referred to as "cooling target XC") that cools and liquefies the cleaning liquid vaporized by heating in the target XH (heater) via a heat medium liquid circulation path LC. It is configured to be able to supply a low-temperature heat medium liquid Wc (an example of a "first heat exchange fluid").

この冷温同時温度調整装置1は、二元冷凍サイクル2、熱媒液循環路3、操作部4、表示部5、制御部6および記憶部7を備えている。なお、本例では、洗浄装置の付帯設備である熱媒液循環路LH,LCを利用して加熱対象XHに対する熱媒液Whの供給や冷却対象XCに対する熱媒液Wcの供給を行う例について説明するが、「第1熱交換流体」を供給する供給用配管(上記の熱媒液循環路LC)や、「第2熱交換流体」を供給する供給用配管(上記の熱媒液循環路LH)を「冷温同時温度調整装置」の構成要素として備えることもできる。 The cold / temperature simultaneous temperature adjusting device 1 includes a dual refrigeration cycle 2, a heat medium liquid circulation path 3, an operation unit 4, a display unit 5, a control unit 6, and a storage unit 7. In this example, the heat medium liquid Wh is supplied to the heating target XH and the heat medium liquid Wc is supplied to the cooling target XC by using the heat medium liquid circulation paths LH and LC which are ancillary equipment of the cleaning device. As will be described, a supply pipe for supplying the "first heat exchange fluid" (the above heat medium liquid circulation path LC) and a supply pipe for supplying the "second heat exchange fluid" (the above heat medium liquid circulation path). LH) can also be provided as a component of the "cooling / temperature simultaneous temperature adjusting device".

一方、二元冷凍サイクル2は、「多元冷凍サイクル」の一例であって、「低温側冷凍回路」の一例である低温側冷凍回路(低段側冷凍回路)2Cと、「高温側冷凍回路」の一例である高温側冷凍回路(高段側冷凍回路)2Hとを備えている。この二元冷凍サイクル2は、低温側冷凍回路2C内を循環させられる低温側冷媒Rc(「低温側冷媒」の一例)と、高温側冷凍回路2H内を循環させられる高温側冷媒Rh(「高温側冷媒」の一例)とが「第1熱交換器」の一例であるカスケードコンデンサ12において相互に熱交換可能に構成されている。 On the other hand, the dual refrigeration cycle 2 is an example of the "multi-element refrigeration cycle" and is an example of the "low temperature side refrigeration circuit", that is, the low temperature side refrigeration circuit (low stage side refrigeration circuit) 2C and the "high temperature side refrigeration circuit". It is provided with a high temperature side refrigeration circuit (high stage side refrigeration circuit) 2H, which is an example. In this dual refrigeration cycle 2, the low temperature side refrigerant Rc (an example of "low temperature side refrigerant") circulated in the low temperature side refrigeration circuit 2C and the high temperature side refrigerant Rh ("high temperature side refrigerant") circulated in the high temperature side refrigeration circuit 2H. An example of the "side refrigerant") is configured to be mutually heat exchangeable in the cascade condenser 12 which is an example of the "first heat exchanger".

低温側冷凍回路2Cは、高温側冷凍回路2Hと共用の上記のカスケードコンデンサ12に加え、圧縮機11、流量調整弁13、蒸発器14、流量調整弁15、熱交換器16および開閉弁17a,17bを備えて構成されている。圧縮機11は、制御部6の制御に従って低温側冷媒Rcを圧縮(圧送)する。カスケードコンデンサ12は、前述したように、低温側冷凍回路2C内の低温側冷媒Rcと高温側冷凍回路2H内の高温側冷媒Rhとの熱交換が可能に配設されると共に、高温側冷媒Rhとの熱交換によって低温側冷媒Rcを凝縮させる「凝縮器」として機能する。 In the low temperature side refrigeration circuit 2C, in addition to the above-mentioned cascade condenser 12 shared with the high temperature side refrigeration circuit 2H, the compressor 11, the flow rate adjusting valve 13, the evaporator 14, the flow rate adjusting valve 15, the heat exchanger 16 and the on-off valve 17a, It is configured to include 17b. The compressor 11 compresses (presses) the low temperature side refrigerant Rc according to the control of the control unit 6. As described above, the cascade condenser 12 is arranged so as to enable heat exchange between the low temperature side refrigerant Rc in the low temperature side refrigerating circuit 2C and the high temperature side refrigerant Rh in the high temperature side refrigerating circuit 2H, and the high temperature side refrigerant Rh. It functions as a "condenser" that condenses the low-temperature side refrigerant Rc by heat exchange with.

流量調整弁13は、低温側冷媒Rcの流路における蒸発器14の上流側に配設されており、「膨張弁」の1つとして機能すると共に、蒸発器14を通過させる(蒸発器14において蒸発させる)低温側冷媒Rcの流量を制御部6の制御に従って調整する。蒸発器14は、「第2熱交換器」の一例であって、後述するように流量調整弁13を通過させられた低温側冷媒Rcと熱媒液循環路LC内の熱媒液Wc(冷却対象XCに対して供給される熱媒液Wc)との熱交換によって熱媒液Wcを冷却すると共に低温側冷媒Rcを蒸発させる。 The flow rate adjusting valve 13 is arranged on the upstream side of the evaporator 14 in the flow path of the low temperature side refrigerant Rc, functions as one of the "expansion valves", and passes through the evaporator 14 (in the evaporator 14). The flow rate of the low temperature side refrigerant Rc (to be evaporated) is adjusted according to the control of the control unit 6. The evaporator 14 is an example of a “second heat exchanger”, and as will be described later, the low temperature side refrigerant Rc passed through the flow rate adjusting valve 13 and the heat medium liquid Wc (cooling) in the heat medium liquid circulation path LC. The heat medium liquid Wc is cooled and the low temperature side refrigerant Rc is evaporated by heat exchange with the heat medium liquid Wc) supplied to the target XC.

流量調整弁15は、低温側冷媒Rcの流路における熱交換器16の上流側に配設されており、「膨張弁」の他の1つとして機能すると共に、熱交換器16を通過させる(熱交換器16において蒸発または凝縮させる)低温側冷媒Rcの流量を制御部6の制御に従って調整する。熱交換器16は、「第6熱交換器」の一例であって、カスケードコンデンサ12において高温側冷媒Rhと熱交換した低温側冷媒Rc、および後述の熱媒液循環路3内の熱媒液W3(「第3熱交換流体」の一例)の両流体の熱交換が可能に配設されている。 The flow control valve 15 is arranged on the upstream side of the heat exchanger 16 in the flow path of the low temperature side refrigerant Rc, functions as another one of the "expansion valves", and allows the heat exchanger 16 to pass through (the flow control valve 15). The flow rate of the low temperature side refrigerant Rc (which evaporates or condenses in the heat exchanger 16) is adjusted according to the control of the control unit 6. The heat exchanger 16 is an example of the “sixth heat exchanger”, the low temperature side refrigerant Rc that has exchanged heat with the high temperature side refrigerant Rh in the cascade condenser 12, and the heat medium liquid in the heat medium liquid circulation path 3 described later. Both fluids of W3 (an example of "third heat exchange fluid") are arranged so as to be capable of heat exchange.

開閉弁17a,17bは、制御部6の制御に従い、圧縮機11によって圧送されてカスケードコンデンサ12において高温側冷媒Rhと熱交換した低温側冷媒Rcの蒸発器14の通過量、および熱交換器16の通過量を調整する。この場合、本例の冷温同時温度調整装置1(低温側冷凍回路2C)では、流量調整弁13,15および開閉弁17a,17bが相俟って「第1調整部」が構成されている。 The on-off valves 17a and 17b are pressure-fed by the compressor 11 and exchanged heat with the high-temperature side refrigerant Rh in the cascade condenser 12 under the control of the control unit 6, and the amount of passage of the low-temperature side refrigerant Rc through the evaporator 14 and the heat exchanger 16. Adjust the amount of passage. In this case, in the cold / temperature simultaneous temperature adjusting device 1 (low temperature side refrigerating circuit 2C) of this example, the flow rate adjusting valves 13 and 15 and the on-off valves 17a and 17b are combined to form a "first adjusting unit".

高温側冷凍回路2Hは、低温側冷凍回路2Cと共用の前述のカスケードコンデンサ12に加え、圧縮機21、凝縮器22、流量調整弁23および熱交換器24を備えて構成されている。圧縮機21は、制御部6の制御に従って高温側冷媒Rhを圧縮(圧送)する。凝縮器22は、「第3熱交換器」の一例であって、圧縮機21によって圧送された(圧縮機21から吐出された)高温側冷媒Rhと熱媒液循環路LH内の熱媒液Wh(加熱対象XHに対して供給される熱媒液Wh)との熱交換によって熱媒液Whを加熱すると共に高温側冷媒Rhを凝縮させる。 The high temperature side refrigeration circuit 2H includes a compressor 21, a condenser 22, a flow rate adjusting valve 23, and a heat exchanger 24 in addition to the above-mentioned cascade condenser 12 shared with the low temperature side refrigeration circuit 2C. The compressor 21 compresses (presses) the high temperature side refrigerant Rh according to the control of the control unit 6. The condenser 22 is an example of a “third heat exchanger”, and is a high-temperature side refrigerant Rh pumped by the compressor 21 (discharged from the compressor 21) and a heat medium liquid in the heat medium liquid circulation path LH. The heat medium liquid Wh is heated by heat exchange with Wh (heat medium liquid Wh supplied to the heating target XH), and the high temperature side refrigerant Rh is condensed.

流量調整弁23は、高温側冷媒Rhの流路におけるカスケードコンデンサ12の上流側に配設されており、制御部6の制御に従ってカスケードコンデンサ12を通過させる高温側冷媒Rhの流量を調整する。熱交換器24は、「第7熱交換器」の一例であって、カスケードコンデンサ12において低温側冷媒Rcと熱交換する高温側冷媒Rhと、熱媒液循環路3内の熱媒液W3(後述の熱交換器32において外気と熱交換する熱媒液W3)との熱交換によって高温側冷媒Rhを凝縮させる。なお、高温側冷凍回路2Hにおいては、流量調整弁23が「膨張弁」として機能すると共に、カスケードコンデンサ12が低温側冷媒Rcとの熱交換によって高温側冷媒Rhを蒸発させる「蒸発器」として機能し、かつ熱交換器24が「補助凝縮器」として機能する。 The flow rate adjusting valve 23 is arranged on the upstream side of the cascade condenser 12 in the flow path of the high temperature side refrigerant Rh, and adjusts the flow rate of the high temperature side refrigerant Rh passing through the cascade condenser 12 according to the control of the control unit 6. The heat exchanger 24 is an example of the “seventh heat exchanger”, in which the high temperature side refrigerant Rh that exchanges heat with the low temperature side refrigerant Rc in the cascade condenser 12 and the heat medium liquid W3 in the heat medium liquid circulation path 3 ( In the heat exchanger 32 described later, the high temperature side refrigerant Rh is condensed by heat exchange with the heat medium liquid W3) that exchanges heat with the outside air. In the high temperature side refrigeration circuit 2H, the flow rate adjusting valve 23 functions as an "expansion valve", and the cascade condenser 12 functions as an "evaporator" that evaporates the high temperature side refrigerant Rh by heat exchange with the low temperature side refrigerant Rc. And the heat exchanger 24 functions as an "auxiliary condenser".

熱媒液循環路3は、「流体循環路」の一例であって、熱媒液W3を循環可能に構成されている。具体的には、熱媒液循環路3は、低温側冷凍回路2Cと共用の前述の熱交換器16、および高温側冷凍回路2Hと共用の前述の熱交換器24に加え、ポンプ31、熱交換器32,33および三方弁34a,34bを備えて構成されている。ポンプ31は、制御部6の制御下で熱媒液W3を循環させる。なお、本例の冷温同時温度調整装置1(熱媒液循環路3)では、一例として、圧送量固定型の液送ポンプでポンプ31が構成されている。 The heat medium liquid circulation path 3 is an example of a “fluid circulation path”, and is configured to be able to circulate the heat medium liquid W3. Specifically, the heat medium liquid circulation path 3 includes a pump 31, heat, in addition to the above-mentioned heat exchanger 16 shared with the low-temperature side refrigeration circuit 2C and the above-mentioned heat exchanger 24 shared with the high-temperature side refrigeration circuit 2H. It is configured to include exchangers 32 and 33 and three-way valves 34a and 34b. The pump 31 circulates the heat medium liquid W3 under the control of the control unit 6. In the cold / hot simultaneous temperature control device 1 (heat medium liquid circulation path 3) of this example, as an example, the pump 31 is configured by a liquid feed pump with a fixed pressure feed amount.

熱交換器32は、「第4熱交換器」の一例であって、熱媒液W3と、「外部熱源」の一例である「外気(熱交換器32の周囲の空気)」との熱交換(外気が有する熱の熱媒液W3への吸熱、または、熱媒液W3が有する熱の外気への放熱)が可能に配設されている。この熱交換器32には、制御部6の制御下で熱交換器32に対して外気を送風する回転数可変型の送風機32a(「送風ファン」の一例)が配設されている。これにより、本例の冷温同時温度調整装置1(熱媒液循環路3)では、熱交換器32に対する送風量を変更することで熱交換器32における熱媒液W3と外気との熱交換量を調整することができるように構成されている。熱交換器33は、「第5熱交換器」の一例であって、冷却対象XCの冷却によって温度上昇した熱媒液Wc、および熱交換器32において外気と熱交換した熱媒液W3の両流体の熱交換が可能に配設されている。 The heat exchanger 32 is an example of the “fourth heat exchanger” and heat exchange between the heat medium liquid W3 and the “outside air (air around the heat exchanger 32)” which is an example of the “external heat source”. (The heat of the outside air is absorbed by the heat medium liquid W3 or the heat of the heat medium liquid W3 is dissipated to the outside air). The heat exchanger 32 is provided with a variable rotation speed blower 32a (an example of a “blower fan”) that blows outside air to the heat exchanger 32 under the control of the control unit 6. As a result, in the cold / temperature simultaneous temperature control device 1 (heat medium liquid circulation path 3) of this example, the heat exchange amount between the heat medium liquid W3 and the outside air in the heat exchanger 32 is changed by changing the amount of air blown to the heat exchanger 32. Is configured to be adjustable. The heat exchanger 33 is an example of the “fifth heat exchanger”, and both the heat medium liquid Wc whose temperature has risen due to the cooling of the cooling target XC and the heat medium liquid W3 which has exchanged heat with the outside air in the heat exchanger 32. It is arranged so that heat exchange of the fluid is possible.

三方弁34a,34bは、「第2調整部」の一例であって、制御部6の制御下で、熱交換器32において外気と熱交換した熱媒液W3の熱交換器33の通過量、熱媒液W3の熱交換器16の通過量、および熱媒液W3の熱交換器24の通過量を調整可能に配設されている。この場合、本例の熱媒液循環路3では、熱交換器32において外気と熱交換した熱媒液W3が熱交換器33を通過した後に熱交換器16を通過すると共に熱交換器24を通過しない「第1流路」と、熱媒液W3が熱交換器33を通過せずに熱交換器16を通過すると共に熱交換器24を通過しない「第2流路」と、熱媒液W3が熱交換器33,16を通過せずに熱交換器24を通過する「第3流路」とを備えている。 The three-way valves 34a and 34b are examples of the "second adjusting unit", and the amount of heat passed through the heat exchanger 33 of the heat medium liquid W3 that has exchanged heat with the outside air in the heat exchanger 32 under the control of the control unit 6. The amount of passage of the heat medium liquid W3 through the heat exchanger 16 and the amount of passage of the heat medium liquid W3 through the heat exchanger 24 are arranged so as to be adjustable. In this case, in the heat medium liquid circulation path 3 of this example, the heat medium liquid W3 that has exchanged heat with the outside air in the heat exchanger 32 passes through the heat exchanger 33 and then through the heat exchanger 16 and the heat exchanger 24. A "first flow path" that does not pass, a "second flow path" in which the heat medium liquid W3 passes through the heat exchanger 16 without passing through the heat exchanger 33 and does not pass through the heat exchanger 24, and a heat medium liquid. W3 is provided with a "third flow path" that passes through the heat exchanger 24 without passing through the heat exchangers 33 and 16.

また、本例の熱媒液循環路3では、三方弁34a,34bが、制御部6の制御に従い、熱媒液W3の「第1流路」の流量、熱媒液W3の「第2流路」の流量、および熱媒液W3の「第3流路」の流量を調整することによって、「第3熱交換流体の第5熱交換器の通過量(熱媒液W3の熱交換器33の通過量)」)、「第3熱交換流体の第6熱交換器の通過量(熱媒液W3の熱交換器16の通過量)」、および「第3熱交換流体の第7熱交換器の通過量(熱媒液W3の熱交換器24の通過量)」を調整する構成が採用されている。 Further, in the heat medium liquid circulation path 3 of this example, the three-way valves 34a and 34b follow the control of the control unit 6 and the flow rate of the “first flow path” of the heat medium liquid W3 and the “second flow” of the heat medium liquid W3. By adjusting the flow rate of the "passage" and the flow rate of the "third flow path" of the heat medium solution W3, "the amount of passage of the third heat exchange fluid through the fifth heat exchanger (heat exchanger 33 of the heat medium solution W3)". (Passing amount) ”),“ Passing amount of the third heat exchange fluid through the sixth heat exchanger (passing amount of the heat exchanger 16 of the heat medium liquid W3) ”, and“ Seventh heat exchange of the third heat exchange fluid. A configuration is adopted in which the passage amount of the vessel (passage amount of the heat exchanger 24 of the heat medium liquid W3) is adjusted.

操作部4は、熱媒液循環路LCを介して冷却対象XCに供給する熱媒液Wcの温度(冷温同時温度調整装置1による熱媒液Wcの冷却設定温度)や、熱媒液循環路LHを介して加熱対象XHに供給する熱媒液Whの温度(冷温同時温度調整装置1による熱媒液Whの加熱設定温度)などの各種の動作条件を設定するための操作スイッチを備え、スイッチ操作に応じた操作信号を制御部6に出力する。表示部5は、制御部6の制御下で、冷温同時温度調整装置1の動作条件を設定するための動作条件設定画面や、冷温同時温度調整装置1の動作状態を示す動作状態表示画面(いずれも図示せず)などを表示する。 The operation unit 4 includes the temperature of the heat medium liquid Wc supplied to the cooling target XC via the heat medium liquid circulation path LC (cooling set temperature of the heat medium liquid Wc by the cold / hot simultaneous temperature adjusting device 1) and the heat medium liquid circulation path. A switch equipped with an operation switch for setting various operating conditions such as the temperature of the heat medium liquid Wh supplied to the heating target XH via the LH (heating set temperature of the heat medium liquid Wh by the simultaneous cooling / temperature adjusting device 1). The operation signal corresponding to the operation is output to the control unit 6. Under the control of the control unit 6, the display unit 5 has an operating condition setting screen for setting the operating conditions of the cold / hot simultaneous temperature adjusting device 1 and an operating state display screen showing the operating state of the cold / hot simultaneous temperature adjusting device 1 (whichever). (Not shown) etc. are displayed.

制御部6は、「制御部」の一例であって、冷温同時温度調整装置1を総括的に制御する。具体的には、制御部6は、熱媒液Wcを冷却すべき冷却設定温度(利用者によって指定される冷却目標温度)、および熱媒液Whを加熱すべき加熱設定温度(利用者によって指定される加熱目標温度)に応じて二元冷凍サイクル2や熱媒液循環路3の動作を制御する。この場合、制御部6は、主として、熱媒液Wcを冷却設定温度まで冷却するための冷温同時温度調整装置1の冷却処理負荷と、熱媒液Whを加熱設定温度まで加熱するための冷温同時温度調整装置1の加熱処理負荷との大小関係に応じて各部を制御する。 The control unit 6 is an example of the “control unit” and comprehensively controls the cold / temperature simultaneous temperature adjusting device 1. Specifically, the control unit 6 has a cooling set temperature (designated by the user) for cooling the heat medium solution Wc and a heating set temperature (designated by the user) for heating the heat medium solution Wh. The operation of the dual refrigeration cycle 2 and the heat medium liquid circulation path 3 is controlled according to the heating target temperature). In this case, the control unit 6 mainly has a cooling processing load of the cold temperature simultaneous temperature adjusting device 1 for cooling the heat medium liquid Wc to the cooling set temperature and a cooling temperature simultaneous for heating the heat medium liquid Wh to the heating set temperature. Each part is controlled according to the magnitude relationship with the heat treatment load of the temperature adjusting device 1.

この冷却処理負荷や加熱処理負荷は、冷却設定温度、加熱設定温度、熱媒液Wcの冷却処理前の温度、熱媒液Whの加熱処理前の温度、熱媒液Wcの流量、熱媒液Whの流量および外気温など(以下、これらのパラメータを総称して「使用環境」ともいう)に応じて変化する。したがって、本例の冷温同時温度調整装置1では、一例として、低温側冷凍回路2Cにおける低温側冷媒Rcの凝縮温度に基づいて冷却処理負荷を逐次特定すると共に、高温側冷凍回路2Hにおける高温側冷媒Rhの凝縮温度に基づいて加熱処理負荷を逐次特定する構成が採用されている。なお、制御部6による二元冷凍サイクル2(低温側冷凍回路2Cおよび高温側冷凍回路2H)や熱媒液循環路3の各構成要素の制御については、後に具体的な例を挙げて詳細に説明する。記憶部7は、制御部6の動作プログラムや、制御部6の演算結果などを記憶する。 The cooling treatment load and the heat treatment load include the cooling set temperature, the heating set temperature, the temperature before the cooling treatment of the heat medium liquid Wc, the temperature before the heat treatment of the heat medium liquid Wh, the flow rate of the heat medium liquid Wc, and the heat medium liquid. It changes according to the flow rate of Wh and the outside temperature (hereinafter, these parameters are collectively referred to as "use environment"). Therefore, in the cold / temperature simultaneous temperature control device 1 of this example, as an example, the cooling treatment load is sequentially specified based on the condensation temperature of the low temperature side refrigerant Rc in the low temperature side refrigeration circuit 2C, and the high temperature side refrigerant in the high temperature side refrigeration circuit 2H is specified. A configuration is adopted in which the heat treatment load is sequentially specified based on the condensation temperature of Rh. The control of each component of the dual refrigeration cycle 2 (low temperature side refrigeration circuit 2C and high temperature side refrigeration circuit 2H) and the heat medium liquid circulation path 3 by the control unit 6 will be described in detail later with specific examples. explain. The storage unit 7 stores the operation program of the control unit 6, the calculation result of the control unit 6, and the like.

なお、冷温同時温度調整装置1は、実際には、低温側冷凍回路2C内の低温側冷媒Rcの圧力や温度、高温側冷凍回路2H内の高温側冷媒Rhの圧力や温度、熱媒液循環路3内の熱媒液W3の温度、外気温、熱媒液Wcの温度、および熱媒液Whの温度などを検出する各種センサが配設されているが、冷温同時温度調整装置1の構成に関する理解を容易とするために、これらのセンサについての図示や詳細な説明を省略する。 The cold / temperature simultaneous temperature adjusting device 1 actually includes the pressure and temperature of the low temperature side refrigerant Rc in the low temperature side refrigeration circuit 2C, the pressure and temperature of the high temperature side refrigerant Rh in the high temperature side refrigeration circuit 2H, and heat medium liquid circulation. Various sensors for detecting the temperature of the heat medium liquid W3 in the passage 3, the outside temperature, the temperature of the heat medium liquid Wc, the temperature of the heat medium liquid Wh, etc. are arranged, and the configuration of the cold temperature simultaneous temperature adjusting device 1 is provided. Illustrations and detailed description of these sensors are omitted for ease of understanding.

この冷温同時温度調整装置1による熱媒液Wcの冷却処理および熱媒液Whの加熱処理に際して、制御部6は、図2に示すように、まず、熱媒液循環路3のポンプ31を制御して熱媒液W3の圧送を開始させ、かつ送風機32aを制御して送風を開始させると共に、低温側冷凍回路2Cおよび高温側冷凍回路2Hの動作を開始させる。なお、同図および後に参照する図3~5では、低温側冷凍回路2Cにおいて低温側冷媒Rcの通過が許容されている流路を実線で図示し、かつ低温側冷媒Rcの通過が規制されている流路を破線で図示すると共に、熱媒液循環路3において熱媒液W3の通過が許容されている流路を実線で図示し、かつ熱媒液W3の通過が規制されている流路を破線で図示している。 During the cooling treatment of the heat medium liquid Wc and the heat treatment of the heat medium liquid Wh by the cold / temperature simultaneous temperature adjusting device 1, the control unit 6 first controls the pump 31 of the heat medium liquid circulation path 3 as shown in FIG. Then, the pressure feeding of the heat medium liquid W3 is started, and the blower 32a is controlled to start blowing, and the operation of the low temperature side refrigerating circuit 2C and the high temperature side refrigerating circuit 2H is started. In the same figure and FIGS. 3 to 5 referred to later, the flow path in which the low temperature side refrigerant Rc is allowed to pass through is shown by a solid line in the low temperature side refrigerating circuit 2C, and the passage of the low temperature side refrigerant Rc is restricted. The flow path is shown by a broken line, and the flow path in which the heat medium liquid W3 is allowed to pass through the heat medium liquid circulation path 3 is shown by a solid line, and the passage of the heat medium liquid W3 is restricted. Is illustrated by a broken line.

具体的には、制御部6は、ポンプ31による熱媒液W3の圧送、および送風機32aによる送風を開始させると共に、熱媒液W3が前述の「第2流路」を通過し、かつ「第1流路」および「第3流路」を通過しないように三方弁34a,34bを制御する。また、制御部6は、開閉弁17aを開口状態に制御し、かつ開閉弁17bを閉塞状態に制御すると共に、流量調整弁15を最小の開度(閉塞状態)に制御し、かつ流量調整弁13を「膨張弁」として機能させるのに必要な開度に制御することにより、圧縮機11によって圧縮(圧送)される低温側冷媒Rcが、カスケードコンデンサ12、開閉弁17a、流量調整弁13および蒸発器14を経て圧縮機11に吸引される冷媒流路を形成する。 Specifically, the control unit 6 starts pressure feeding of the heat medium liquid W3 by the pump 31 and blowing by the blower 32a, and at the same time, the heat medium liquid W3 passes through the above-mentioned "second flow path" and is "second. The three-way valves 34a and 34b are controlled so as not to pass through the "1st flow path" and the "third flow path". Further, the control unit 6 controls the on-off valve 17a to the open state, controls the on-off valve 17b to the closed state, controls the flow rate adjusting valve 15 to the minimum opening state (closed state), and controls the flow rate adjusting valve. By controlling the opening degree required for the 13 to function as the "expansion valve", the low temperature side refrigerant Rc compressed (pushed) by the compressor 11 is the cascade condenser 12, the on-off valve 17a, the flow rate adjusting valve 13, and the flow rate adjusting valve 13. A refrigerant flow path that is sucked into the compressor 11 via the evaporator 14 is formed.

この際には、圧縮機11から吐出された高温の低温側冷媒Rcがカスケードコンデンサ12において高温側冷媒Rhに放熱して温度低下させられることで凝縮させられると共に高温側冷媒Rhを蒸発(温度上昇)させる。また、凝縮させられた低温側冷媒Rcが流量調整弁13を通過後に蒸発器14内において熱媒液Wcから吸熱して温度上昇させられることで蒸発すると共に熱媒液Wcを冷却する。 At this time, the high-temperature low-temperature side refrigerant Rc discharged from the compressor 11 is condensed by radiating heat to the high-temperature side refrigerant Rh in the cascade condenser 12 to lower the temperature, and the high-temperature side refrigerant Rh evaporates (temperature rises). ). Further, the condensed low-temperature side refrigerant Rc absorbs heat from the heat medium liquid Wc in the evaporator 14 after passing through the flow rate adjusting valve 13 to raise the temperature, thereby evaporating and cooling the heat medium liquid Wc.

また、カスケードコンデンサ12における吸熱によって温度上昇して蒸発させられ、圧縮機21における圧縮によってさらに温度上昇させられた高温の高温側冷媒Rhが凝縮器22において熱媒液Whに放熱して凝縮させられると共に熱媒液Whを加熱する。さらに、凝縮させられた高温側冷媒Rhは、流量調整弁23の通過後に、上記のようにカスケードコンデンサ12において低温側冷媒Rcから吸熱して蒸発させられる。これにより、低温側冷凍回路2Cによって冷却された低温の熱媒液Wcが冷却対象XCに供給されると共に、高温側冷凍回路2Hによって加熱された高温の熱媒液Whが加熱対象XHに供給される。 Further, the high-temperature side refrigerant Rh whose temperature is raised and evaporated by the heat absorption in the cascade condenser 12 and whose temperature is further raised by the compression in the compressor 21 is radiated and condensed in the heat medium liquid Wh in the condenser 22. The heat medium solution Wh is heated together with the heat medium solution Wh. Further, the condensed high temperature side refrigerant Rh is endothermic and evaporated from the low temperature side refrigerant Rc in the cascade capacitor 12 as described above after passing through the flow rate adjusting valve 23. As a result, the low-temperature heat medium liquid Wc cooled by the low-temperature side refrigeration circuit 2C is supplied to the cooling target XC, and the high-temperature heat medium liquid Wh heated by the high-temperature side refrigeration circuit 2H is supplied to the heating target XH. To.

なお、圧縮機11の回転数(低温側冷媒Rcの圧送量)や「膨張弁(この時点では、流量調整弁13)」の開度などを冷却設定温度および熱媒液Wcの温度に応じて変化させる制御、並びに圧縮機21の回転数(高温側冷媒Rhの圧送量)や流量調整弁23の開度などを加熱設定温度および熱媒液Whの温度に応じて変化させる制御については、多元冷凍サイクルを有する冷温同時温度調整装置において一般的に行われる制御と同様のため、これらの制御に関する詳細な説明を省略する。 The number of revolutions of the compressor 11 (pressure feed amount of the low temperature side refrigerant Rc), the opening degree of the "expansion valve (at this point, the flow rate adjusting valve 13)", etc. are set according to the cooling set temperature and the temperature of the heat medium liquid Wc. Regarding the control to change, and the control to change the rotation speed of the compressor 21 (pressure feed amount of the high temperature side refrigerant Rh), the opening degree of the flow rate adjusting valve 23, etc. according to the heating set temperature and the temperature of the heat medium liquid Wh, there are multiple elements. Since it is the same as the control generally performed in the cold / temperature simultaneous temperature control device having a refrigeration cycle, detailed description of these controls will be omitted.

この場合、本例の冷温同時温度調整装置1では、前述したように、制御部6が、主として冷却処理負荷および加熱処理負荷の大小関係に基づいて二元冷凍サイクル2や熱媒液循環路3の各部の動作を制御する。具体的には、制御部6は、冷温同時温度調整装置1の動作を開始したときから、低温側冷媒Rcや高温側冷媒Rhの凝縮温度を特定し、特定した温度に基づいて冷却処理負荷および加熱処理負荷をそれぞれ特定する。この際に、特定される冷却処理負荷および加熱処理負荷の両負荷が、予め規定された許容相違範囲内でバランスするような使用環境であるときに、制御部6は、熱媒液W3や低温側冷媒Rcの流路を始動時の状態(図2に示す状態)のまま維持する(通常モードでの動作)。なお、このような使用環境で長時間に亘って動作を継続したとき(後述の吸熱モードや放熱モードでの動作に直ちに移行しない可能性が高いとき)には、熱媒液循環路3のポンプ31や送風機32aを停止させてもよい。 In this case, in the cold / temperature simultaneous temperature adjusting device 1 of this example, as described above, the control unit 6 mainly bases the magnitude relationship between the cooling treatment load and the heat treatment load on the dual refrigeration cycle 2 and the heat medium liquid circulation path 3. Control the operation of each part of. Specifically, the control unit 6 specifies the condensation temperature of the low-temperature side refrigerant Rc and the high-temperature side refrigerant Rh from the time when the operation of the cold / hot simultaneous temperature adjusting device 1 is started, and the cooling processing load and the cooling processing load are based on the specified temperature. Specify each heat treatment load. At this time, when the usage environment is such that both the specified cooling treatment load and the heat treatment load are balanced within a predetermined allowable difference range, the control unit 6 may use the heat medium liquid W3 or the low temperature. The flow path of the side refrigerant Rc is maintained in the state at the time of starting (the state shown in FIG. 2) (operation in the normal mode). When the operation is continued for a long time in such a usage environment (when there is a high possibility that the operation does not immediately shift to the endothermic mode or the heat dissipation mode described later), the pump of the heat medium liquid circulation path 3 31 and the blower 32a may be stopped.

一方、冷却設定温度と冷却処理前の熱媒液Wcの温度差が小さい使用環境下や、加熱設定温度と加熱処理前の熱媒液Whとの温度差が大きいような使用環境下では、特定される冷却処理負荷が加熱処理負荷よりも小さくなる(「第1条件」が満たされたときの一例)。このような使用環境下において、制御部6は、外気の温度と冷却設定温度との関係に応じて、第1吸熱モードおよび第2吸熱モードのいずれかで冷温同時温度調整装置1を動作させる。 On the other hand, it is specified in a usage environment where the temperature difference between the set cooling temperature and the heat medium solution Wc before the cooling treatment is small, or when the temperature difference between the set heating temperature and the heat medium solution Wh before the heat treatment is large. The cooling treatment load to be applied is smaller than the heat treatment load (an example when the "first condition" is satisfied). Under such a usage environment, the control unit 6 operates the cold / temperature simultaneous temperature adjusting device 1 in either the first endothermic mode or the second endothermic mode according to the relationship between the temperature of the outside air and the set cooling temperature.

具体的には、冷却処理負荷が加熱処理負荷よりも小さいときに、制御部6は、図3,4に示すように、まず、ポンプ31および送風機32aが停止しているときには、これらの動作を開始させると共に、熱媒液W3が前述の「第1流路」および「第2流路」の双方を通過し、かつ「第3流路」を通過しないように三方弁34a,34bを制御する(「第2調整部に第3流路を閉鎖させ」との制御の一例)。また、制御部6は、一例として、熱交換器32を通過した直後の熱媒液W3の温度が外気の温度と同程度となるように送風機32aを制御して熱交換器32に対する外気の送風量を調整させる。これにより、外気温と同程度の温度の熱媒液W3がポンプ31によって圧送された状態となる。 Specifically, when the cooling treatment load is smaller than the heat treatment load, the control unit 6 first performs these operations when the pump 31 and the blower 32a are stopped, as shown in FIGS. 3 and 4. At the same time as starting, the three-way valves 34a and 34b are controlled so that the heat medium liquid W3 passes through both the above-mentioned "first flow path" and the "second flow path" and does not pass through the "third flow path". (An example of control that "closes the third flow path to the second adjusting unit"). Further, as an example, the control unit 6 controls the blower 32a so that the temperature of the heat medium liquid W3 immediately after passing through the heat exchanger 32 becomes the same as the temperature of the outside air, and sends the outside air to the heat exchanger 32. Adjust the air volume. As a result, the heat medium liquid W3 having a temperature similar to that of the outside air temperature is pumped by the pump 31.

また、外気の温度が冷却設定温度以下の予め規定された第1温度以下(一例として、「第1温度」=「冷却設定温度」)のときに(「第2条件」が満たされたときの一例)、制御部6は、二元冷凍サイクル2および熱媒液循環路3を制御して第1吸熱モードで動作させる(「第1制御態様」の一例)。具体的には、制御部6は、図3に示すように、開閉弁17aを閉塞状態に制御し、かつ開閉弁17bを開口状態に制御すると共に、流量調整弁13を最小の開度(閉塞状態)に制御し、かつ流量調整弁15を低温側冷凍回路2Cの「膨張弁」として機能させるのに必要な開度に制御する。 Further, when the temperature of the outside air is equal to or less than the predetermined cooling set temperature or less than the predetermined first temperature (for example, "first temperature" = "cooling set temperature") (when the "second condition" is satisfied). (1 example), the control unit 6 controls the dual refrigeration cycle 2 and the heat medium liquid circulation path 3 to operate in the first endothermic mode (an example of the "first control mode"). Specifically, as shown in FIG. 3, the control unit 6 controls the on-off valve 17a to the closed state, controls the on-off valve 17b to the open state, and closes the flow rate adjusting valve 13 to the minimum opening (closed). The state) is controlled, and the opening degree required for the flow rate adjusting valve 15 to function as the "expansion valve" of the low temperature side refrigeration circuit 2C is controlled.

これにより、低温側冷凍回路2Cにおいて、圧縮機11によって圧縮(圧送)される低温側冷媒Rcが、カスケードコンデンサ12、流量調整弁15、熱交換器16および開閉弁17bを経て圧縮機11に吸引される(蒸発器14を通過することなく熱交換器16を通過する)冷媒流路が形成される(「低温側冷媒が第2熱交換器を通過する通過量よりも低温側冷媒が第6熱交換器を通過する通過量の方が多くなるように第1調整部に調整させる」との制御の一例)。また、制御部6は、熱交換器33の通過後の熱媒液W3の温度に応じて三方弁34a,34bを制御して熱媒液W3の「第1流路」の流量および「第2流路」の流量を調整させる。これにより、冷温同時温度調整装置1が第1吸熱モードで動作した状態となる。 As a result, in the low temperature side refrigeration circuit 2C, the low temperature side refrigerant Rc compressed (pushed) by the compressor 11 is sucked into the compressor 11 via the cascade condenser 12, the flow rate adjusting valve 15, the heat exchanger 16 and the on-off valve 17b. A refrigerant flow path (passing through the heat exchanger 16 without passing through the evaporator 14) is formed (“the low temperature side refrigerant passes through the second heat exchanger 16). An example of control that "the first adjusting unit is adjusted so that the amount of passage through the heat exchanger is larger"). Further, the control unit 6 controls the three-way valves 34a and 34b according to the temperature of the heat medium liquid W3 after passing through the heat exchanger 33, and controls the flow rate of the “first flow path” of the heat medium liquid W3 and the “second flow path”. Adjust the flow rate of the "flow path". As a result, the cold / hot simultaneous temperature adjusting device 1 is in a state of operating in the first endothermic mode.

この第1吸熱モードにおいて、熱媒液循環路3では、熱交換器32における外気との熱交換によって外気の温度と同程度の温度となった熱媒液W3がポンプ31によって圧送され、その一部が熱交換器33を通過させられる際に、冷却対象XCの冷却によって温度上昇させられた熱媒液Wcと熱交換させられる。これにより、熱媒液Wcが冷却設定温度まで冷却されると共に、熱媒液W3が外気の温度よりも高い温度(冷却対象XCの冷却処理後の熱媒液Wcの温度と同程度の温度)まで上昇させられる。 In this first heat absorption mode, in the heat medium liquid circulation path 3, the heat medium liquid W3 having a temperature similar to the temperature of the outside air due to heat exchange with the outside air in the heat exchanger 32 is pressure-fed by the pump 31, one of them. When the unit is passed through the heat exchanger 33, it is heat-exchanged with the heat medium liquid Wc whose temperature has been raised by the cooling of the cooling target XC. As a result, the heat medium liquid Wc is cooled to the cooling set temperature, and the temperature of the heat medium liquid W3 is higher than the temperature of the outside air (the temperature of the heat medium liquid Wc after the cooling treatment of the cooling target XC). Can be raised to.

また、低温側冷凍回路2Cでは、圧縮機11から吐出された高温の低温側冷媒Rcがカスケードコンデンサ12において高温側冷媒Rhに放熱して凝縮させられると共に高温側冷媒Rhを蒸発(温度上昇)させ、凝縮させられた低温側冷媒Rcが流量調整弁15を通過後に熱交換器16内において熱媒液W3から吸熱して温度上昇させられる。また、高温側冷凍回路2Hでは、カスケードコンデンサ12において蒸発させられて圧縮機21における圧縮によってさらに温度上昇させられた高温の高温側冷媒Rhが凝縮器22において熱媒液Whに放熱して凝縮させられると共に熱媒液Whを加熱する。 Further, in the low temperature side refrigeration circuit 2C, the high temperature low temperature side refrigerant Rc discharged from the compressor 11 is radiated and condensed in the high temperature side refrigerant Rh in the cascade condenser 12, and the high temperature side refrigerant Rh is evaporated (temperature rise). After passing through the flow rate adjusting valve 15, the condensed low-temperature side refrigerant Rc absorbs heat from the heat medium liquid W3 in the heat exchanger 16 to raise the temperature. Further, in the high temperature side refrigeration circuit 2H, the high temperature side refrigerant Rh that has been evaporated in the cascade condenser 12 and further raised in temperature by the compression in the compressor 21 dissipates heat to the heat medium liquid Wh in the condenser 22 and condenses it. At the same time, the heat medium solution Wh is heated.

つまり、冷却処理負荷が小さく、かつ外気の温度がある程度低い使用環境下において移行させられる第1吸熱モードでは、冷却対象XCの冷却によって温度上昇した熱媒液Wcの熱が熱媒液W3を介して低温側冷媒Rcに吸熱され、この熱がカスケードコンデンサ12において高温側冷媒Rhに吸熱される。これにより、低温側冷凍回路2Cを過冷却が生じる動作状態で動作させることなく、カスケードコンデンサ12において十分な量の高温側冷媒Rhを蒸発させることができるため、熱媒液Wcを冷却設定温度に冷却しつつ(過冷却することなく)、熱媒液Whを加熱設定温度まで十分に加熱することが可能となっている。 That is, in the first heat absorption mode in which the cooling treatment load is small and the temperature of the outside air is low to some extent, the heat of the heat medium liquid Wc whose temperature has risen due to the cooling of the cooling target XC passes through the heat medium liquid W3. The heat is absorbed by the low temperature side refrigerant Rc, and this heat is absorbed by the high temperature side refrigerant Rh in the cascade condenser 12. As a result, a sufficient amount of the high temperature side refrigerant Rh can be evaporated in the cascade condenser 12 without operating the low temperature side refrigeration circuit 2C in an operating state where supercooling occurs, so that the heat medium liquid Wc is set to the cooling set temperature. While cooling (without supercooling), the heat medium solution Who can be sufficiently heated to the set heating temperature.

この場合、本例の冷温同時温度調整装置1では、熱媒液Whと熱媒液W3との間の熱交換が可能な熱交換器24が高温側冷凍回路2Hに配設されており、高温側冷凍回路2Hの動作中には、圧縮機21によって圧縮(圧送)される高温側冷媒Rhが、凝縮器22を通過させられた後に熱交換器24を通過させられて、流量調整弁23およびカスケードコンデンサ12を経て圧縮機21に吸引される状態が維持される。しかしながら、第1吸熱モードや第2吸熱モードに移行させられている状態においては、前述したように熱媒液W3が「第3流路」を通過しないように三方弁34a,34bが制御されており、熱交換器24に熱媒液W3が供給されない状態となるため、熱交換器24において熱媒液Whが熱媒液W3との熱交換によって大きく温度変化することはない。 In this case, in the cold / temperature simultaneous temperature adjusting device 1 of this example, a heat exchanger 24 capable of heat exchange between the heat medium liquid Wh and the heat medium liquid W3 is arranged in the high temperature side refrigeration circuit 2H, and the high temperature is high. During the operation of the side refrigeration circuit 2H, the high temperature side refrigerant Rh compressed (pushed) by the compressor 21 is passed through the heat exchanger 24 after being passed through the condenser 22, and the flow control valve 23 and The state of being sucked into the compressor 21 via the cascade condenser 12 is maintained. However, in the state of being shifted to the first heat absorption mode or the second heat absorption mode, the three-way valves 34a and 34b are controlled so that the heat medium liquid W3 does not pass through the "third flow path" as described above. Therefore, since the heat medium liquid W3 is not supplied to the heat exchanger 24, the temperature of the heat medium liquid Wh does not change significantly due to heat exchange with the heat medium liquid W3 in the heat exchanger 24.

なお、上記の第1吸熱モードでの動作時に外気の温度が冷却設定温度よりも十分に低いときには、三方弁34a,34bによって熱交換器33を通過させる熱媒液W3の通過量を減少させることで熱媒液Wcの過冷却を阻止する。また、外気の温度が冷却設定温度に近い温度のときには、三方弁34a,34bによって熱交換器33を通過させる熱媒液W3の通過量を増加させることで、熱媒液Wcを外気の温度(冷却設定温度)まで十分に冷却させる。これにより、冷却設定温度まで冷却された低温の熱媒液Wcが冷却対象XCに供給されると共に、加熱設定温度まで加熱された高温の熱媒液Whが加熱対象XHに供給される。この場合、この第1吸熱モードで動作させる際の判別条件の1つである前述の「第1温度」については、冷却設定温度と同じ温度から、冷却設定温度よりも10℃程度低い温度までの範囲内の温度(一例として、冷却設定温度よりも5℃程度低い温度)に規定することで、熱媒液Wcの過冷却や、熱媒液Whの加熱不足を好適に回避することができる。 When the temperature of the outside air is sufficiently lower than the cooling set temperature during the operation in the first heat absorption mode, the amount of the heat medium liquid W3 passing through the heat exchanger 33 is reduced by the three-way valves 34a and 34b. Prevents overcooling of the heat medium solution Wc. Further, when the temperature of the outside air is close to the cooling set temperature, the heat medium liquid Wc is changed to the temperature of the outside air by increasing the amount of the heat medium liquid W3 passing through the heat exchanger 33 by the three-way valves 34a and 34b. Cool sufficiently to the cooling set temperature). As a result, the low-temperature heat medium solution Wc cooled to the cooling set temperature is supplied to the cooling target XC, and the high-temperature heat medium solution Wh heated to the heating set temperature is supplied to the heating target XH. In this case, the above-mentioned "first temperature", which is one of the discrimination conditions when operating in the first heat absorption mode, is from the same temperature as the set cooling temperature to a temperature about 10 ° C lower than the set cooling temperature. By defining the temperature within the range (for example, a temperature about 5 ° C. lower than the cooling set temperature), it is possible to suitably avoid overcooling of the heat medium solution Wc and insufficient heating of the heat medium solution Wh.

また、特定される冷却処理負荷が加熱処理負荷よりも小さく、かつ外気の温度が、冷却設定温度よりも高い予め規定された第2温度以上のときに(「第3条件」が満たされたときの一例)、制御部6は、二元冷凍サイクル2および熱媒液循環路3を制御して第2吸熱モードで動作させる(「第2制御態様」の一例)。具体的には、制御部6は、図4に示すように、開閉弁17aを開口状態に制御し、かつ開閉弁17bを閉塞状態に制御すると共に、流量調整弁15を最小の開度(閉塞状態)に制御し、かつ流量調整弁13を低温側冷凍回路2Cの「膨張弁」として機能させるのに必要な開度に制御する。 Further, when the specified cooling treatment load is smaller than the heat treatment load and the temperature of the outside air is higher than the cooling set temperature and is equal to or higher than the predetermined second temperature (when the "third condition" is satisfied). (Example), the control unit 6 controls the dual refrigeration cycle 2 and the heat medium liquid circulation path 3 to operate in the second endothermic mode (an example of the "second control mode"). Specifically, as shown in FIG. 4, the control unit 6 controls the on-off valve 17a to the open state, controls the on-off valve 17b to the closed state, and closes the flow rate adjusting valve 15 to the minimum opening (closed). The state) is controlled, and the opening degree required for the flow rate adjusting valve 13 to function as the "expansion valve" of the low temperature side refrigeration circuit 2C is controlled.

これにより、低温側冷凍回路2Cにおいて、圧縮機11によって圧縮(圧送)される低温側冷媒Rcが、カスケードコンデンサ12、開閉弁17a、流量調整弁13および蒸発器14を経て圧縮機11に吸引される(熱交換器16を通過することなく蒸発器14を通過する)冷媒流路が形成される(「低温側冷媒が第6熱交換器を通過する通過量よりも低温側冷媒が第2熱交換器を通過する通過量の方が多くなるように第1調整部に調整させる」との制御の一例)。また、制御部6は、熱交換器33の通過後の熱媒液W3の温度に応じて三方弁34a,34bを制御して熱媒液W3の「第1流路」の流量および「第2流路」の流量を調整させる。これにより、冷温同時温度調整装置1が第2吸熱モードで動作した状態となる。 As a result, in the low temperature side refrigeration circuit 2C, the low temperature side refrigerant Rc compressed (pushed) by the compressor 11 is sucked into the compressor 11 via the cascade condenser 12, the on-off valve 17a, the flow rate adjusting valve 13, and the evaporator 14. A refrigerant flow path (passing through the evaporator 14 without passing through the heat exchanger 16) is formed (“the lower temperature side refrigerant has a second heat than the amount of passage through which the low temperature side refrigerant passes through the sixth heat exchanger). An example of control that "the first adjusting unit is adjusted so that the amount of passage through the exchanger is larger"). Further, the control unit 6 controls the three-way valves 34a and 34b according to the temperature of the heat medium liquid W3 after passing through the heat exchanger 33, and controls the flow rate of the “first flow path” of the heat medium liquid W3 and the “second flow path”. Adjust the flow rate of the "flow path". As a result, the cold / hot simultaneous temperature adjusting device 1 is in a state of operating in the second endothermic mode.

この第2吸熱モードにおいて、熱媒液循環路3では、熱交換器32における外気との熱交換によって外気の温度と同程度の温度(冷却設定温度よりも高い温度)となった熱媒液W3がポンプ31によって圧送され、その一部が熱交換器33を通過させられる際に、冷却対象XCの冷却によって温度上昇させられた熱媒液Wcと熱交換させられる。これにより、冷却対象XCの冷却、および熱媒液W3との熱交換によって熱媒液Wcが十分に温度上昇させられると共に、熱媒液W3がある程度温度低下させられる。この熱媒液W3は、熱交換器32を通過させられる際に外気と熱交換させられることで外気の温度と同程度の温度まで再び加熱される。 In this second heat absorption mode, in the heat medium liquid circulation path 3, the heat medium liquid W3 has a temperature similar to the temperature of the outside air (a temperature higher than the cooling set temperature) due to heat exchange with the outside air in the heat exchanger 32. Is pumped by the pump 31, and when a part of it is passed through the heat exchanger 33, it is heat-exchanged with the heat medium liquid Wc whose temperature has been raised by the cooling of the cooling target XC. As a result, the temperature of the heat medium liquid Wc is sufficiently raised by cooling the cooling target XC and heat exchange with the heat medium liquid W3, and the temperature of the heat medium liquid W3 is lowered to some extent. The heat medium liquid W3 is heated again to a temperature similar to the temperature of the outside air by exchanging heat with the outside air when it is passed through the heat exchanger 32.

また、低温側冷凍回路2Cでは、圧縮機11から吐出された高温の低温側冷媒Rcがカスケードコンデンサ12において高温側冷媒Rhに放熱して凝縮させられると共に高温側冷媒Rhを蒸発(温度上昇)させ、凝縮させられた低温側冷媒Rcが流量調整弁13を通過後に蒸発器14内において熱媒液Wcから吸熱して温度上昇させられる。この際に、熱交換器33において熱媒液W3の熱を吸熱した熱媒液Wcが、蒸発器14内における低温側冷媒Rcとの熱交換によって冷却設定温度まで冷却される。また、高温側冷凍回路2Hでは、カスケードコンデンサ12において蒸発させられて圧縮機21における圧縮によってさらに温度上昇させられた高温の高温側冷媒Rhが凝縮器22において熱媒液Whに放熱して凝縮させられると共に熱媒液Whを加熱する。 Further, in the low temperature side refrigeration circuit 2C, the high temperature low temperature side refrigerant Rc discharged from the compressor 11 is radiated and condensed in the high temperature side refrigerant Rh in the cascade condenser 12, and the high temperature side refrigerant Rh is evaporated (temperature rise). After passing through the flow rate adjusting valve 13, the condensed low-temperature side refrigerant Rc absorbs heat from the heat medium liquid Wc in the evaporator 14 to raise the temperature. At this time, the heat medium liquid Wc that has absorbed the heat of the heat medium liquid W3 in the heat exchanger 33 is cooled to the cooling set temperature by heat exchange with the low temperature side refrigerant Rc in the evaporator 14. Further, in the high temperature side refrigeration circuit 2H, the high temperature side refrigerant Rh that has been evaporated in the cascade condenser 12 and further raised in temperature by the compression in the compressor 21 dissipates heat to the heat medium liquid Wh in the condenser 22 and condenses it. At the same time, the heat medium solution Wh is heated.

つまり、冷却処理負荷が小さく、かつ外気の温度がある程度高い使用環境下において移行させられる第2吸熱モードでは、低温側冷凍回路2C(蒸発器14)による冷却に先立ち、熱交換器32において外気から熱媒液W3に吸熱した熱を熱交換器33において熱媒液W3から熱媒液Wcに吸熱させることにより、蒸発器14において熱媒液Wcの熱を低温側冷媒Rcに十分に吸熱させても熱媒液Wcの過冷却を招くことなく冷却設定温度に冷却することが可能となっている。また、蒸発器14において吸熱した熱の分だけ、カスケードコンデンサ12において高温側冷媒Rhを十分に蒸発させることができる結果、凝縮器22において熱媒液Whを加熱設定温度まで十分に加熱することが可能となっている。 That is, in the second heat absorption mode in which the cooling treatment load is small and the temperature of the outside air is high to some extent, the heat exchanger 32 receives heat from the outside air prior to cooling by the low temperature side refrigeration circuit 2C (evaporator 14). By absorbing the heat absorbed by the heat medium liquid W3 from the heat medium liquid W3 to the heat medium liquid Wc in the heat exchanger 33, the heat of the heat medium liquid Wc is sufficiently absorbed by the low temperature side refrigerant Rc in the evaporator 14. However, it is possible to cool the heat medium liquid Wc to a set cooling temperature without causing overcooling. Further, as a result of being able to sufficiently evaporate the high temperature side refrigerant Rh in the cascade condenser 12 by the amount of heat absorbed in the evaporator 14, the heat medium liquid Wh can be sufficiently heated to the heating set temperature in the condenser 22. It is possible.

なお、上記の第2吸熱モードでの動作時に外気の温度が冷却設定温度よりも十分に高いときには、三方弁34a,34bによって熱交換器33を通過させる熱媒液W3の通過量を減少させることで低温側冷凍回路2Cに対する放熱量(熱媒液W3から低温側冷媒Rcへの吸熱量)が過剰に多くなる(低温側冷媒Rcが過剰に温度上昇する)のを回避する。また、外気の温度が冷却設定温度に近い温度のときには、三方弁34a,34bによって熱交換器33を通過させる熱媒液W3の通過量を増加させることで、蒸発器14において低温側冷媒Rcを十分に蒸発させ得る高温の熱媒液Wcを蒸発器14に供給させる。これにより、冷却設定温度まで冷却された低温の熱媒液Wcが冷却対象XCに供給されると共に、加熱設定温度まで加熱された高温の熱媒液Whが加熱対象XHに供給される。この場合、この第2吸熱モードで動作させる際の判別条件の1つである前述の「第2温度」については、一例として、冷却設定温度を超える温度であって、冷却設定温度よりも10℃程度高い温度を上限とする範囲内の温度(一例として、冷却設定温度よりも5℃程度高い温度)に規定することで、熱媒液Wcの過冷却や、熱媒液Whの加熱不足を好適に回避することができる。 When the temperature of the outside air is sufficiently higher than the cooling set temperature during the operation in the second heat absorption mode, the amount of heat medium liquid W3 passing through the heat exchanger 33 is reduced by the three-way valves 34a and 34b. It is possible to prevent the heat dissipation amount (heat absorption amount from the heat medium liquid W3 to the low temperature side refrigerant Rc) excessively large (the temperature of the low temperature side refrigerant Rc rises excessively) with respect to the low temperature side refrigeration circuit 2C. Further, when the temperature of the outside air is close to the cooling set temperature, the low temperature side refrigerant Rc is increased in the evaporator 14 by increasing the amount of the heat medium liquid W3 passing through the heat exchanger 33 by the three-way valves 34a and 34b. The evaporator 14 is supplied with a high-temperature heat medium solution Wc that can be sufficiently evaporated. As a result, the low-temperature heat medium solution Wc cooled to the cooling set temperature is supplied to the cooling target XC, and the high-temperature heat medium solution Wh heated to the heating set temperature is supplied to the heating target XH. In this case, the above-mentioned "second temperature", which is one of the discrimination conditions when operating in the second heat absorption mode, is, for example, a temperature exceeding the cooling set temperature and 10 ° C. higher than the cooling set temperature. By defining the temperature within the range up to a slightly higher temperature (for example, a temperature about 5 ° C higher than the cooling set temperature), it is preferable to overcool the heat medium solution Wc or insufficiently heat the heat medium solution Wh. Can be avoided.

一方、冷却設定温度と冷却処理前の熱媒液Wcの温度差が大きい使用環境や、加熱設定温度と加熱処理前の熱媒液Whとの温度差が小さいような使用環境下では、特定される冷却処理負荷が加熱処理負荷よりも大きくなる(「第4条件」が満たされたときの一例)。このような使用環境下で、かつ外気の温度がある程度低いときに、制御部6は、放熱モードで冷温同時温度調整装置1を動作させる。 On the other hand, it is specified in a usage environment where the temperature difference between the set cooling temperature and the heat medium solution Wc before the cooling treatment is large, or the temperature difference between the set heating temperature and the heat medium solution Wh before the heat treatment is small. The cooling treatment load becomes larger than the heat treatment load (an example when the "fourth condition" is satisfied). Under such a usage environment and when the temperature of the outside air is low to some extent, the control unit 6 operates the cold / temperature simultaneous temperature adjusting device 1 in the heat dissipation mode.

具体的には、冷却処理負荷が加熱処理負荷よりも大きいときに、制御部6は、図5に示すように、まず、ポンプ31および送風機32aが停止しているときには、これらの動作を開始させると共に、熱媒液W3が前述の「第1流路」および「第2流路」の双方を通過せずに「第3流路」を通過するように(熱媒液W3が「第3流路」だけを通過するように)三方弁34a,34bを制御する(「第2調整部に第1流路および第2流路を閉鎖させ、かつ第3熱交換流体の第7熱交換器への流入を許容させる」との制御の一例)。これにより、熱媒液W3が高温側冷凍回路2Hの熱交換器24を通過させられる状態となる。また、制御部6は、一例として、熱交換器32を通過した直後の熱媒液W3の温度が外気の温度と同程度となるように送風機32aを制御して熱交換器32に対する外気の送風量を調整させる。これにより、外気温と同程度の温度の熱媒液W3がポンプ31によって圧送される状態となる。 Specifically, when the cooling treatment load is larger than the heat treatment load, the control unit 6 first starts these operations when the pump 31 and the blower 32a are stopped, as shown in FIG. At the same time, the heat medium liquid W3 passes through the "third flow path" without passing through both the above-mentioned "first flow path" and the "second flow path" (the heat medium liquid W3 is the "third flow". Control the three-way valves 34a and 34b (so that they pass only through the "passage") ("close the first and second flow paths in the second adjustment section, and go to the seventh heat exchanger of the third heat exchange fluid." An example of control that "allows the inflow of heat"). As a result, the heat medium liquid W3 is in a state of being able to pass through the heat exchanger 24 of the high temperature side refrigeration circuit 2H. Further, as an example, the control unit 6 controls the blower 32a so that the temperature of the heat medium liquid W3 immediately after passing through the heat exchanger 32 becomes the same as the temperature of the outside air, and sends the outside air to the heat exchanger 32. Adjust the air volume. As a result, the heat medium liquid W3 having a temperature similar to that of the outside air temperature is pumped by the pump 31.

また、冷却処理負荷が大きく、かつ外気の温度が、外気と熱交換する熱媒液W3の温度(熱交換器32の入口における熱媒液W3の温度)よりも低い予め規定された温度(以下、「第3温度」ともいう)以下のときに、制御部6は、開閉弁17aを開口状態に制御し、かつ開閉弁17bを閉塞状態に制御すると共に、流量調整弁15を最小の開度(閉塞状態)に制御し、かつ流量調整弁13を低温側冷凍回路2Cの「膨張弁」として機能させるのに必要な開度に制御する。これにより、低温側冷凍回路2Cにおいて、圧縮機11によって圧縮(圧送)される低温側冷媒Rcが、カスケードコンデンサ12、開閉弁17a、流量調整弁13および蒸発器14を経て圧縮機11に吸引される冷媒流路が形成される。また、高温側冷凍回路2Hでは、前述したように、圧縮機21によって圧縮(圧送)される高温側冷媒Rhが、凝縮器22、熱交換器24、流量調整弁23およびカスケードコンデンサ12を経て圧縮機21に吸引される状態となっている。これにより、冷温同時温度調整装置1が放熱モードで動作した状態となる(「第3制御態様」の一例)。 Further, a predetermined temperature (hereinafter referred to as a predetermined temperature) in which the cooling treatment load is large and the temperature of the outside air is lower than the temperature of the heat medium liquid W3 that exchanges heat with the outside air (the temperature of the heat medium liquid W3 at the inlet of the heat exchanger 32). , Also referred to as "third temperature"), the control unit 6 controls the on-off valve 17a to the open state, controls the on-off valve 17b to the closed state, and sets the flow control valve 15 to the minimum opening state. It is controlled to (closed state), and the opening degree required for the flow control valve 13 to function as the "expansion valve" of the low temperature side refrigeration circuit 2C is controlled. As a result, in the low temperature side refrigeration circuit 2C, the low temperature side refrigerant Rc compressed (pressed) by the compressor 11 is sucked into the compressor 11 via the cascade condenser 12, the on-off valve 17a, the flow rate adjusting valve 13, and the evaporator 14. A refrigerant flow path is formed. Further, in the high temperature side refrigeration circuit 2H, as described above, the high temperature side refrigerant Rh compressed (pushed) by the compressor 21 is compressed via the condenser 22, the heat exchanger 24, the flow rate adjusting valve 23, and the cascade condenser 12. It is in a state of being sucked by the machine 21. As a result, the cold / hot simultaneous temperature adjusting device 1 is in a state of operating in the heat dissipation mode (an example of the "third control mode").

この放熱モードにおいて、熱媒液循環路3では、熱交換器32における外気との熱交換によって外気の温度と同程度の温度となった熱媒液W3がポンプ31によって圧送されて熱交換器33や熱交換器16を通過させられることなく、熱交換器24だけを通過させられる。また、高温側冷凍回路2Hでは、圧縮機21から吐出された高温の高温側冷媒Rhが凝縮器22において熱媒液Whに放熱して凝縮させられると共に熱媒液Whを加熱する。これにより、高温側冷媒Rhとの熱交換によって加熱設定温度まで加熱された熱媒液Whが加熱対象XHに供給される。 In this heat dissipation mode, in the heat medium liquid circulation path 3, the heat medium liquid W3 having a temperature similar to the temperature of the outside air due to heat exchange with the outside air in the heat exchanger 32 is pressure-fed by the pump 31 to the heat exchanger 33. And heat exchanger 16 are not allowed to pass through, but only the heat exchanger 24 is allowed to pass through. Further, in the high temperature side refrigeration circuit 2H, the high temperature side refrigerant Rh discharged from the compressor 21 dissipates heat to the heat medium liquid Wh in the condenser 22 and is condensed, and at the same time, the heat medium liquid Wh is heated. As a result, the heat medium liquid Wh heated to the heating set temperature by heat exchange with the high temperature side refrigerant Rh is supplied to the heating target XH.

さらに、凝縮器22において凝縮させられた高温側冷媒Rh、および凝縮器22において凝縮し切れなかった気化状態の高温側冷媒Rhが熱交換器24を通過させられる際に、外気の温度と同程度の温度の熱媒液W3に放熱して十分に凝縮させられる。これにより、カスケードコンデンサ12に対して十分な量の高温側冷媒Rhが供給される状態となる。また、高温側冷媒Rhとの熱交換によって温度上昇した熱媒液W3は、熱交換器32において外気と熱交換(外気に放熱)して外気と同程度の温度まで冷却された後にポンプ31によって再び圧送される。さらに、カスケードコンデンサ12に供給された高温側冷媒Rhは、低温側冷媒Rcとの熱交換によって温度上昇させられて蒸発させられ、圧縮機21に吸引される。 Further, when the high temperature side refrigerant Rh condensed in the condenser 22 and the vaporized high temperature side refrigerant Rh not completely condensed in the condenser 22 are passed through the heat exchanger 24, the temperature is about the same as the outside air temperature. The heat is dissipated to the heat medium liquid W3 at the temperature of the above and is sufficiently condensed. As a result, a sufficient amount of the high temperature side refrigerant Rh is supplied to the cascade capacitor 12. Further, the heat medium liquid W3 whose temperature has risen due to heat exchange with the high temperature side refrigerant Rh exchanges heat with the outside air (heat is radiated from the outside air) in the heat exchanger 32, is cooled to the same temperature as the outside air, and then is cooled by the pump 31. It is pumped again. Further, the high temperature side refrigerant Rh supplied to the cascade condenser 12 is raised in temperature by heat exchange with the low temperature side refrigerant Rc, evaporated, and sucked into the compressor 21.

また、低温側冷凍回路2Cでは、圧縮機11から吐出された高温の低温側冷媒Rcがカスケードコンデンサ12において高温側冷媒Rhに放熱して凝縮させられると共に高温側冷媒Rhを蒸発(温度上昇)させられる。この際には、上記のように高温側冷凍回路2Hにおいて十分な量の高温側冷媒Rhがカスケードコンデンサ12に供給された状態となっている。したがって、冷却処理負荷が大きいことで蒸発器14に対して大量の低温側冷媒Rcを供給する必要がある本例の使用環境下において、必要とされる低温側冷媒Rcをカスケードコンデンサ12において十分に凝縮させることが可能となっている。 Further, in the low temperature side refrigeration circuit 2C, the high temperature low temperature side refrigerant Rc discharged from the compressor 11 is radiated and condensed in the high temperature side refrigerant Rh in the cascade condenser 12, and the high temperature side refrigerant Rh is evaporated (temperature rise). Be done. At this time, as described above, a sufficient amount of the high temperature side refrigerant Rh is supplied to the cascade condenser 12 in the high temperature side refrigeration circuit 2H. Therefore, in the usage environment of this example in which it is necessary to supply a large amount of the low temperature side refrigerant Rc to the evaporator 14 due to the large cooling processing load, the required low temperature side refrigerant Rc is sufficiently provided in the cascade condenser 12. It is possible to condense.

また、カスケードコンデンサ12において凝縮させられた低温側冷媒Rcは、流量調整弁13を経て蒸発器14を通過させられる際に、熱媒液Wcとの熱交換によって温度上昇させられて蒸発させられ、再び圧縮機11によって圧縮される。これにより、低温側冷媒Rcとの熱交換によって冷却設定温度まで冷却された熱媒液Wcが冷却対象XCに供給される。 Further, when the low temperature side refrigerant Rc condensed in the cascade condenser 12 is passed through the evaporator 14 through the flow rate adjusting valve 13, the temperature is raised by heat exchange with the heat medium liquid Wc and the refrigerant is vaporized. It is compressed again by the compressor 11. As a result, the heat medium liquid Wc cooled to the cooling set temperature by heat exchange with the low temperature side refrigerant Rc is supplied to the cooling target XC.

つまり、冷却処理負荷が大きく、かつ外気の温度がある程度低い使用環境下において移行させられる放熱モードでは、高温側冷凍回路2Hにおいて凝縮器22を介して熱媒液Whに放熱することのできない熱(熱媒液Whの過加熱を招くおそれのある放熱)が、熱交換器24において熱媒液W3に放熱され、この熱が熱交換器32を介して外気に放熱される。これにより、高温側冷凍回路2Hにおける熱媒液Whの過加熱を招くことなく、低温側冷凍回路2Cにおいて熱媒液Wcを冷却設定温度まで冷却するのに必要な十分な量の低温側冷媒Rcを蒸発器14に供給させることが可能となっている。 That is, in the heat dissipation mode in which the cooling treatment load is large and the temperature of the outside air is low to some extent, the heat that cannot be dissipated to the heat medium liquid Wh via the condenser 22 in the high temperature side refrigeration circuit 2H ( The heat radiation that may cause overheating of the heat medium liquid Wh) is radiated to the heat medium liquid W3 in the heat exchanger 24, and this heat is radiated to the outside air via the heat exchanger 32. As a result, a sufficient amount of the low temperature side refrigerant Rc required to cool the heat medium liquid Wc to the cooling set temperature in the low temperature side refrigeration circuit 2C without causing overheating of the heat medium liquid Wh in the high temperature side refrigeration circuit 2H. Can be supplied to the evaporator 14.

なお、この放熱モードで動作させる際の判別条件の1つである前述の「第3温度」については、外気と熱交換させられる熱媒液W3の温度を下回る温度であって、熱媒液W3の温度よりも10℃程度低い温度を下限とする範囲内の温度(一例として、熱交換器32の入口における熱媒液W3の温度よりも5℃程度低い温度)に規定することで、熱交換器24において高温側冷媒Rhの熱を十分に放熱することができる。 The above-mentioned "third temperature", which is one of the discrimination conditions when operating in this heat dissipation mode, is a temperature lower than the temperature of the heat medium liquid W3 that exchanges heat with the outside air, and is the heat medium liquid W3. Heat exchange is performed by specifying a temperature within the range of the lower limit of a temperature about 10 ° C. lower than the temperature of the above (for example, a temperature about 5 ° C. lower than the temperature of the heat medium liquid W3 at the inlet of the heat exchanger 32). The heat of the high temperature side refrigerant Rh can be sufficiently dissipated in the vessel 24.

このように、この冷温同時温度調整装置1では、制御部6が、冷却処理負荷が加熱処理負荷よりも小さいとの「第1条件」が満たされ、かつ外気の温度が、冷却設定温度以下の予め規定された「第1温度」以下との「第2条件」が満たされたときに、「第2調整部」に「第3流路」を閉鎖させ、かつ冷却設定温度に応じて熱媒液W3の「第1流路」の流量、および熱媒液W3の「第2流路」の流量を「第2調整部」に調整させつつ、低温側冷媒Rcが蒸発器14を通過する通過量よりも低温側冷媒Rcが熱交換器16を通過する通過量の方が多くなるように「第1調整部」に調整させる「第1制御態様」と、「第1条件」が満たされ、かつ外気の温度が、冷却設定温度よりも高い予め規定された「第2温度」以上との「第3条件」が満たされたときに、「第2調整部」に「第3流路」を閉鎖させ、かつ冷却設定温度に応じて熱媒液W3の「第1流路」の流量、および熱媒液W3の「第2流路」の流量を「第2調整部」に調整させつつ、低温側冷媒Rcが熱交換器16を通過する通過量よりも低温側冷媒Rcが蒸発器14を通過する通過量の方が多くなるように「第1調整部」に調整させる「第2制御態様」と、冷却処理負荷が加熱処理負荷よりも大きいとの「第4条件」が満たされたときに、「第2調整部」に「第1流路」および「第2流路」を閉鎖させ、かつ熱媒液W3の熱交換器24への流入を許容させる「第3制御態様」とで冷温同時温度調整装置1を制御する。 As described above, in the cold / temperature simultaneous temperature adjusting device 1, the control unit 6 satisfies the "first condition" that the cooling treatment load is smaller than the heat treatment load, and the temperature of the outside air is equal to or lower than the cooling set temperature. When the "second condition" of "first temperature" or lower specified in advance is satisfied, the "third flow path" is closed in the "second adjusting unit", and the heat medium is set according to the cooling set temperature. The low temperature side refrigerant Rc passes through the evaporator 14 while adjusting the flow rate of the "first flow path" of the liquid W3 and the flow rate of the "second flow path" of the heat medium liquid W3 to the "second adjusting unit". The "first control mode" and the "first condition" for adjusting the low temperature side refrigerant Rc to the "first adjusting unit" so that the amount of passage through the heat exchanger 16 is larger than the amount are satisfied. Moreover, when the "third condition" that the temperature of the outside air is higher than the cooling set temperature and is equal to or higher than the predetermined "second temperature" is satisfied, the "third flow path" is added to the "second adjusting unit". While closing and adjusting the flow rate of the "first flow path" of the heat medium solution W3 and the flow rate of the "second flow path" of the heat medium solution W3 according to the cooling set temperature, the "second adjustment unit" A "second control mode" in which the "first adjusting unit" is adjusted so that the amount of passage of the low temperature side refrigerant Rc through the evaporator 14 is larger than the amount of passage of the low temperature side refrigerant Rc through the heat exchanger 16. When the "fourth condition" that the cooling treatment load is larger than the heat treatment load is satisfied, the "second adjustment unit" closes the "first flow path" and the "second flow path". In addition, the cooling / temperature simultaneous temperature adjusting device 1 is controlled by the "third control mode" that allows the heat medium liquid W3 to flow into the heat exchanger 24.

したがって、この冷温同時温度調整装置1によれば、冷却処理負荷が加熱処理負荷よりも小さく、熱媒液Wcの過冷却や熱媒液Whの加熱不足を招くおそれのある使用環境下において、外気の温度が冷却設定温度以下のとき(「第2条件」が満たされる状態のとき)には、「第1制御態様」で冷温同時温度調整装置1が制御されて、外気との熱交換によって温度低下した熱媒液W3によって熱媒液Wcを冷却設定温度まで冷却しつつ、熱媒液Wcの冷却によって温度上昇した熱媒液W3熱を熱交換器16において低温側冷媒Rcに吸熱させて、この熱と、圧縮機11における圧縮によって生じた熱とをカスケードコンデンサ12において高温側冷媒Rhに吸熱させることで凝縮器22において熱媒液Whを加熱設定温度まで十分に加熱することができる。また、冷却処理負荷が加熱処理負荷よりも小さく、熱媒液Wcの過冷却や熱媒液Whの加熱不足を招くおそれのある使用環境下において、外気の温度が冷却設定温度よりも高いとき(「第3条件」が満たされる状態のとき)には、「第2制御態様」で冷温同時温度調整装置1が制御されて、蒸発器14による冷却に先立ち、熱交換器32において外気から熱媒液W3に吸熱した熱を熱交換器33において熱媒液W3から熱媒液Wcに吸熱させることにより、蒸発器14において熱媒液Wcの熱を低温側冷媒Rcに十分に吸熱させても熱媒液Wcの過冷却を招くことなく熱媒液Wcを冷却設定温度まで冷却することができ、蒸発器14において低温側冷媒Rcに吸熱した熱と、圧縮機11における圧縮によって生じた熱とをカスケードコンデンサ12において高温側冷媒Rhに吸熱させることで凝縮器22において熱媒液Whを加熱設定温度まで十分に加熱することができる。さらに、冷却処理負荷が加熱処理負荷よりも大きく、熱媒液Whの過加熱や熱媒液Wcの冷却不足を招くおそれのある使用環境下においては、「第3制御態様」で冷温同時温度調整装置1が制御されて、高温側冷凍回路2Hにおいて凝縮器22を介して熱媒液Whに放熱することのできない熱が、熱交換器24を介して熱媒液W3に放熱されて熱交換器32において熱媒液W3から外気に放熱されるため、高温側冷凍回路2Hにおける熱媒液Whの過加熱を招くことなく、熱媒液Wcを冷却設定温度まで冷却するのに必要な十分な量の低温側冷媒Rcを蒸発器14に供給させて熱媒液Wcを冷却設定温度まで十分に冷却することができる。 Therefore, according to this cold / hot simultaneous temperature adjusting device 1, the cooling treatment load is smaller than the heat treatment load, and the outside air is used in a usage environment where overcooling of the heat medium solution Wc and insufficient heating of the heat medium solution Wh may occur. When the temperature of is equal to or lower than the cooling set temperature (when the "second condition" is satisfied), the cold / temperature simultaneous temperature adjusting device 1 is controlled in the "first control mode", and the temperature is exchanged with the outside air. While the heat medium liquid Wc is cooled to the cooling set temperature by the lowered heat medium liquid W3, the heat of the heat medium liquid W3 whose temperature has risen due to the cooling of the heat medium liquid Wc is absorbed by the low temperature side refrigerant Rc in the heat exchanger 16. By absorbing this heat and the heat generated by the compression in the compressor 11 into the high temperature side refrigerant Rh in the cascade condenser 12, the heat medium solution Wh can be sufficiently heated to the heating set temperature in the condenser 22. Further, when the cooling treatment load is smaller than the heat treatment load and the temperature of the outside air is higher than the set cooling temperature in a usage environment where overcooling of the heat medium liquid Wc or insufficient heating of the heat medium liquid Wh may occur ( When the "third condition" is satisfied), the cold / hot simultaneous temperature adjusting device 1 is controlled in the "second control mode", and the heat medium is transmitted from the outside air in the heat exchanger 32 prior to cooling by the evaporator 14. By absorbing the heat absorbed by the liquid W3 from the heat medium liquid W3 to the heat medium liquid Wc in the heat exchanger 33, even if the heat of the heat medium liquid Wc is sufficiently absorbed by the low temperature side refrigerant Rc in the evaporator 14, the heat is generated. The heat medium liquid Wc can be cooled to the cooling set temperature without causing overcooling of the medium liquid Wc, and the heat absorbed by the low temperature side refrigerant Rc in the evaporator 14 and the heat generated by the compression in the compressor 11 are combined. By absorbing heat in the high temperature side refrigerant Rh in the cascade condenser 12, the heat medium liquid Wh can be sufficiently heated to the heating set temperature in the condenser 22. Further, in a usage environment where the cooling treatment load is larger than the heat treatment load and there is a risk of overheating of the heat medium solution Wh or insufficient cooling of the heat medium solution Wc, simultaneous cooling / temperature temperature adjustment in the "third control mode". The device 1 is controlled, and the heat that cannot be dissipated to the heat medium liquid Wh via the condenser 22 in the high temperature side refrigeration circuit 2H is dissipated to the heat medium liquid W3 via the heat exchanger 24 and is a heat exchanger. Since the heat is radiated from the heat medium liquid W3 in 32, a sufficient amount required to cool the heat medium liquid Wc to the cooling set temperature without causing overheating of the heat medium liquid Wh in the high temperature side refrigeration circuit 2H. The low-temperature side refrigerant Rc can be sufficiently cooled to the cooling set temperature by supplying the evaporator 14 with the heat medium liquid Wc.

また、この冷温同時温度調整装置1によれば、制御部6が、熱交換器32に対して外気(周囲の空気)を送風する送風機32aを制御して送風量を変更することで熱交換器32における熱媒液W3と外気(空気)との熱交換量を調整することにより、例えば、ポンプ31による熱媒液W3の圧送量を変化させることで熱交換器16や熱交換器33における熱交換量を変化させる構成と比較して、低温側冷媒Rcや熱媒液Wcと熱交換させる熱媒液W3の温度を比較的容易に所望の温度に調整することができるため、熱交換器16や熱交換器33における熱交換量を確実かつ容易に所望の熱交換量に制御することができる。 Further, according to the cold / temperature simultaneous temperature adjusting device 1, the control unit 6 controls the blower 32a that blows the outside air (ambient air) to the heat exchanger 32 to change the amount of heat blown to the heat exchanger. By adjusting the amount of heat exchange between the heat medium liquid W3 and the outside air (air) in 32, for example, by changing the pumping amount of the heat medium liquid W3 by the pump 31, the heat in the heat exchanger 16 and the heat exchanger 33 is changed. Compared with the configuration in which the exchange amount is changed, the temperature of the heat medium liquid W3 for heat exchange with the low temperature side refrigerant Rc and the heat medium liquid Wc can be adjusted to a desired temperature relatively easily, so that the heat exchanger 16 can be used. And the heat exchange amount in the heat exchanger 33 can be reliably and easily controlled to a desired heat exchange amount.

なお、「冷温同時温度調整装置」の構成は、上記の冷温同時温度調整装置1の構成の例に限定されない。例えば、冷媒の凝縮温度に基づいて冷却処理負荷や加熱処理負荷を特定する構成を例に挙げて説明したが、このような構成に代えて、冷媒の凝縮圧力、冷凍回路内の任意の部位における冷媒温度、冷凍回路内の任意の部位における冷媒圧力、冷凍回路内の任意の2点における冷媒温度差、冷凍回路内の任意の2点における冷媒圧力差、冷媒圧縮機における電動機の単位時間当りの消費電力量、および冷媒圧縮機の任意の部位の温度などの各種のパラメータに基づいて特定する構成を採用することができる。また、蒸発器14の入口および出口における熱媒液Wcの温度差と蒸発器14を通過する熱媒液Wcの単位時間当りの流量とに基づいて冷却処理負荷を特定する構成や、凝縮器22の入口および出口における熱媒液Whの温度差と凝縮器22を通過する熱媒液Whの単位時間当りの流量とに基づいて加熱処理負荷を特定する構成を採用することもできる。 The configuration of the "cold / hot simultaneous temperature adjusting device" is not limited to the above-mentioned example of the configuration of the cold / hot simultaneous temperature adjusting device 1. For example, a configuration in which the cooling treatment load and the heat treatment load are specified based on the condensation temperature of the refrigerant has been described as an example. Refrigerant temperature, refrigerant pressure at any part in the refrigeration circuit, refrigerant temperature difference at any two points in the refrigeration circuit, refrigerant pressure difference at any two points in the refrigeration circuit, per unit time of the electric motor in the refrigerant compressor It is possible to adopt a configuration that specifies based on various parameters such as the amount of power consumption and the temperature of an arbitrary part of the refrigerant compressor. Further, a configuration for specifying the cooling treatment load based on the temperature difference of the heat medium liquid Wc at the inlet and the outlet of the evaporator 14 and the flow rate of the heat medium liquid Wc passing through the evaporator 14 per unit time, and the condenser 22. It is also possible to adopt a configuration in which the heat treatment load is specified based on the temperature difference of the heat medium liquid Wh at the inlet and the outlet of the heat medium and the flow rate of the heat medium liquid Wh passing through the condenser 22 per unit time.

また、「第1制御態様」において低温側冷媒Rcが蒸発器14(第2熱交換器)を通過することなく熱交換器16(第6熱交換器)を通過させられる構成を例に挙げて説明したが、「低温側冷媒が第2熱交換器を通過する通過量よりも第6熱交換器を通過する通過量の方が多い」との条件を満たす範囲内において「低温側冷媒」が「第2熱交換器」および「第6熱交換器」の双方を通過させられる構成を採用することもできる。同様にして、「第2制御態様」において低温側冷媒Rcが熱交換器16を通過することなく蒸発器14を通過させられる構成を例に挙げて説明したが、「低温側冷媒が第6熱交換器を通過する通過量よりも第2熱交換器を通過する通過量の方が多い」との条件を満たす範囲内において「低温側冷媒」が「第2熱交換器」および「第6熱交換器」の双方を通過させられる構成を採用することもできる。 Further, in the "first control mode", the configuration in which the low temperature side refrigerant Rc is allowed to pass through the heat exchanger 16 (sixth heat exchanger) without passing through the evaporator 14 (second heat exchanger) is taken as an example. As explained above, the "low temperature side refrigerant" is within the range that satisfies the condition that "the amount of passage through the sixth heat exchanger is larger than the amount of passage of the low temperature side refrigerant through the second heat exchanger". It is also possible to adopt a configuration that allows both the "second heat exchanger" and the "sixth heat exchanger" to pass through. Similarly, in the "second control mode", the configuration in which the low temperature side refrigerant Rc is allowed to pass through the evaporator 14 without passing through the heat exchanger 16 has been described as an example, but "the low temperature side refrigerant is the sixth heat". The "low temperature side refrigerant" is the "second heat exchanger" and the "sixth heat" within the range satisfying the condition that "the amount of passage through the second heat exchanger is larger than the amount of passage through the exchanger". It is also possible to adopt a configuration that allows both of the "exchangers" to pass through.

さらに、開閉弁17a,17bの開閉、および流量調整弁13,15の開度の変更によって低温側冷媒Rcが蒸発器14を通過する量、および低温側冷媒Rcが熱交換器16を通過する量を調整する構成を例に挙げて説明したが、「第1調整部」の構成はこれに限定されない。例えば、「第2熱交換器を通過させられる低温側冷媒の流路」、および「第6熱交換器を通過させられる低温側冷媒の流路」に「流量調整弁」をそれぞれ配設して「第1調整部」を構成し、各「流量調整弁」の開度の変更によって「低温側冷媒」の通過量を調整する構成を採用することもできる。また、三方弁34a,34bによって熱媒液W3の「第1流路」の流量、「第2流路」の流量、および「第3流路」の流量を変化させる構成を例に挙げて説明したが、「第2調整部」の構成はこれに限定されない。例えば、「第1流路」、「第2流路」および「第3流路」に「流量調整弁」をそれぞれ配設して「第2調整部」を構成し、各「流量調整弁」の開度の変更によって「第1流路」の流量、「第2流路」の流量、および「第3流路」の流量を調整する構成を採用することもできる。 Further, the amount of the low temperature side refrigerant Rc passing through the evaporator 14 and the amount of the low temperature side refrigerant Rc passing through the heat exchanger 16 due to the opening / closing of the on-off valves 17a and 17b and the change of the opening degree of the flow rate adjusting valves 13 and 15. Although the configuration for adjusting the above is described as an example, the configuration of the “first adjustment unit” is not limited to this. For example, "flow control valves" are arranged in the "flow path of the low temperature side refrigerant that can pass through the second heat exchanger" and the "flow path of the low temperature side refrigerant that can pass through the sixth heat exchanger", respectively. It is also possible to adopt a configuration in which the "first adjusting unit" is configured and the passing amount of the "low temperature side refrigerant" is adjusted by changing the opening degree of each "flow rate adjusting valve". Further, a configuration in which the flow rate of the "first flow path", the flow rate of the "second flow path", and the flow rate of the "third flow path" of the heat medium liquid W3 are changed by the three-way valves 34a and 34b will be described as an example. However, the configuration of the "second adjustment unit" is not limited to this. For example, a "flow rate adjusting valve" is arranged in each of the "first flow path", "second flow path", and "third flow path" to form a "second adjusting section", and each "flow rate adjusting valve". It is also possible to adopt a configuration in which the flow rate of the "first flow path", the flow rate of the "second flow path", and the flow rate of the "third flow path" are adjusted by changing the opening degree of.

また、圧送量固定型の液送ポンプで構成されたポンプ31を備えた例について説明したが、圧送量可変型の液送ポンプによって熱媒液W3を圧送させる構成を採用することもできる。さらに、「第1熱交換流体」、「第2熱交換流体」および「第3熱交換流体」として、熱媒液Wc,Wh,W3などの「液体」を使用する構成を例に挙げて説明したが、「第1熱交換流体」、「第2熱交換流体」および「第3熱交換流体」のいずれか、またはすべてについて、不活性ガスや空気などの「気体」を使用する構成を採用することもできる。 Further, although an example including a pump 31 composed of a liquid feed pump having a fixed pumping amount has been described, a configuration in which the heat medium liquid W3 is pumped by a liquid feeding pump having a variable pumping amount can also be adopted. Further, a configuration in which a "liquid" such as a heat medium liquid Wc, Wh, W3 is used as the "first heat exchange fluid", the "second heat exchange fluid", and the "third heat exchange fluid" will be described as an example. However, for any or all of the "first heat exchange fluid", "second heat exchange fluid" and "third heat exchange fluid", a configuration using "gas" such as inert gas or air is adopted. You can also do it.

また、「第3制御態様」での制御(放熱モードでの動作)だけでなく、「第1制御態様」での制御(第1吸熱モードでの動作)、および「第2制御態様」での制御(第2吸熱モードでの動作)が可能な冷温同時温度調整装置1の構成を例に挙げて説明したが、「第1制御態様」および/または「第2制御態様」での制御を行わない(第1吸熱モードや第2吸熱モードで動作させない)構成を採用することもできる。さらに、「外部熱源」として外気(冷温同時温度調整装置1の周囲の空気)を利用する構成の冷温同時温度調整装置1を例に挙げて説明したが、このような構成に代えて、水道水、河川の水、井戸水および貯水した水などの各種の液体(水)や、雪および氷などを「外部熱源」として利用する構成を採用することもできる。また、「冷温同時温度調整装置」の設置場所の床、壁および天井や、動作時に発熱する機械設備などを「外部熱源」として利用する構成を採用することもできる。 Further, not only the control in the "third control mode" (operation in the heat dissipation mode), but also the control in the "first control mode" (operation in the first endothermic mode) and the "second control mode". Although the configuration of the cold / temperature simultaneous temperature adjusting device 1 capable of control (operation in the second endothermic mode) has been described as an example, control is performed in the "first control mode" and / or the "second control mode". It is also possible to adopt a configuration that does not (do not operate in the first endothermic mode or the second endothermic mode). Further, the cold / hot simultaneous temperature adjusting device 1 having a configuration using outside air (air around the cold / hot simultaneous temperature adjusting device 1) as an “external heat source” has been described as an example. However, instead of such a configuration, tap water has been described. , Various liquids (water) such as river water, well water and stored water, and snow and ice can also be adopted as an "external heat source". Further, it is also possible to adopt a configuration in which the floor, wall and ceiling of the place where the "simultaneous cooling / temperature adjusting device" is installed, and the mechanical equipment that generates heat during operation are used as the "external heat source".

加えて、低温側冷凍回路2Cおよび高温側冷凍回路2Hを有する二元冷凍サイクル2を備えて構成した例について説明したが、「二元冷凍サイクル」に代えて「三元冷凍サイクル」や「四元冷凍サイクル」などの「多元冷凍サイクル」を備えて「冷温同時温度調整装置」を構成することもできる。この場合、例えば、「低温冷凍回路(低段冷凍回路)」、「中温冷凍回路(中段冷凍回路)」および「高温冷凍回路(高段冷凍回路)」の3つの冷凍回路を備えた「三元冷凍サイクル」では、「低温冷凍回路」を「低温側冷凍回路」としたときには「中温冷凍回路」が「高温側冷凍回路」に相当し、「中温冷凍回路」を「低温側冷凍回路」としたときには「高温冷凍回路」が「高温側冷凍回路」に相当する。 In addition, an example in which a dual refrigeration cycle 2 having a low temperature side refrigeration circuit 2C and a high temperature side refrigeration circuit 2H is provided has been described. It is also possible to configure a "cold temperature simultaneous temperature control device" by providing a "multiple refrigeration cycle" such as a "primary refrigeration cycle". In this case, for example, a "three elements" equipped with three refrigeration circuits, "low temperature refrigeration circuit (low stage refrigeration circuit)", "medium temperature refrigeration circuit (middle stage refrigeration circuit)" and "high temperature refrigeration circuit (high stage refrigeration circuit)". In the "refrigeration cycle", when the "low temperature refrigeration circuit" is set to the "low temperature side refrigeration circuit", the "medium temperature refrigeration circuit" corresponds to the "high temperature side refrigeration circuit" and the "medium temperature refrigeration circuit" is set to the "low temperature side refrigeration circuit". Sometimes the "high temperature refrigeration circuit" corresponds to the "high temperature side refrigeration circuit".

1 冷温同時温度調整装置
2 二元冷凍サイクル
2C 低温側冷凍回路
2H 高温側冷凍回路
3 熱媒液循環路
4 操作部
5 表示部
6 制御部
7 記憶部
11,21 圧縮機
12 カスケードコンデンサ
13,15,23 流量調整弁
14 蒸発器
16,32,33 熱交換器
17a,17b 開閉弁
22 凝縮器
24 熱交換器
31 ポンプ
32a 送風機
34a,34b 三方弁
LC,LH 熱媒液循環路
Rc 低温側冷媒
Rh 高温側冷媒
W3,Wc,Wh 熱媒液
XC 冷却対象
XH 加熱対象
1 Simultaneous cold / hot temperature control device 2 Dual refrigeration cycle 2C Low temperature side refrigeration circuit 2H High temperature side refrigeration circuit 3 Heat refrigerant liquid circulation path 4 Operation unit 5 Display unit 6 Control unit 7 Storage unit 11/21 Compressor 12 Cascade condenser 13, 15 , 23 Flow control valve 14 Evaporator 16, 32, 33 Heat exchanger 17a, 17b On-off valve 22 Condenser 24 Heat exchanger 31 Pump 32a Blower 34a, 34b Three-way valve LC, LH Heat medium liquid circulation path Rc Low temperature side refrigerant Rh High temperature side refrigerant W3, Wc, Wh Heat medium liquid XC Cooling target XH Heating target

Claims (2)

低温側冷凍回路および高温側冷凍回路を有して当該低温側冷凍回路内の低温側冷媒と当該高温側冷凍回路内の高温側冷媒とが第1熱交換器において熱交換可能に構成されると共に、冷却対象に供給される第1熱交換流体を前記低温側冷凍回路の第2熱交換器において冷却可能に構成され、かつ加熱対象に供給される第2熱交換流体を前記高温側冷凍回路の第3熱交換器において加熱可能に構成された多元冷凍サイクルと、
前記第1熱交換流体を冷却すべき冷却設定温度、および前記第2熱交換流体を加熱すべき加熱設定温度に応じて前記多元冷凍サイクルの動作を制御する制御部とを備えた冷温同時温度調整装置であって、
第3熱交換流体の循環が可能に構成された流体循環路と、
前記第3熱交換流体および外部熱源の熱交換が可能に配設された第4熱交換器と、
前記冷却対象を冷却した前記第1熱交換流体、および前記第4熱交換器において前記外部熱源と熱交換した前記第3熱交換流体の両流体の熱交換が可能に配設された第5熱交換器と、
前記第1熱交換器において前記高温側冷媒と熱交換した前記低温側冷媒、および前記第4熱交換器において前記外部熱源と熱交換する前記第3熱交換流体の両流体の熱交換が可能に配設された第6熱交換器と、
前記第1熱交換器において前記低温側冷媒と熱交換する前記高温側冷媒、および前記第4熱交換器において前記外部熱源と熱交換する前記第3熱交換流体の熱交換が可能に配設された第7熱交換器と、
前記第1熱交換器において前記高温側冷媒と熱交換した前記低温側冷媒の前記第2熱交換器の通過量、および当該低温側冷媒の前記第6熱交換器の通過量を調整する第1調整部と、
前記第4熱交換器において前記外部熱源と熱交換した前記第3熱交換流体の前記第5熱交換器の通過量、当該第3熱交換流体の前記第6熱交換器の通過量、および当該第3熱交換流体の前記第7熱交換器の通過量を調整する第2調整部とを備え、
前記流体循環路は、前記第4熱交換器において前記外部熱源と熱交換した前記第3熱交換流体が前記第5熱交換器を通過した後に前記第6熱交換器を通過すると共に前記第7熱交換器を通過しない第1流路と、当該第3熱交換流体が当該第5熱交換器を通過せずに当該第6熱交換器を通過すると共に前記第7熱交換器を通過しない第2流路と、当該第3熱交換流体が当該第5熱交換器および当該第6熱交換器を通過せずに当該第7熱交換器を通過する第3流路とを備え、
前記第2調整部は、前記第3熱交換流体の前記第1流路の流量、当該第3熱交換流体の前記第2流路の流量、および当該第3熱交換流体の前記第3流路の流量を調整することによって当該第3熱交換流体の前記第5熱交換器の通過量、当該第3熱交換流体の前記第6熱交換器の通過量、および当該第3熱交換流体の前記第7熱交換器の通過量を調整可能に構成され、
前記制御部は、前記第1熱交換流体を前記冷却設定温度まで冷却するための当該冷温同時温度調整装置の冷却処理負荷が、前記第2熱交換流体を前記加熱設定温度まで加熱するための当該冷温同時温度調整装置の加熱処理負荷よりも小さいとの第1条件が満たされ、かつ前記外部熱源の温度が、前記冷却設定温度以下の予め規定された第1温度以下との第2条件が満たされたときに、前記第2調整部に前記第3流路を閉鎖させ、かつ前記冷却設定温度に応じて前記第3熱交換流体の前記第1流路の流量、および当該第3熱交換流体の前記第2流路の流量を当該第2調整部に調整させつつ、前記低温側冷媒が前記第2熱交換器を通過する通過量よりも当該低温側冷媒が前記第6熱交換器を通過する通過量の方が多くなるように前記第1調整部に調整させる第1制御態様と、
前記第1条件が満たされ、かつ前記外部熱源の温度が、前記冷却設定温度よりも高い予め規定された第2温度以上との第3条件が満たされたときに、前記第2調整部に前記第3流路を閉鎖させ、かつ前記冷却設定温度に応じて前記第3熱交換流体の前記第1流路の流量、および当該第3熱交換流体の前記第2流路の流量を前記第2調整部に調整させつつ、前記低温側冷媒が前記第6熱交換器を通過する通過量よりも当該低温側冷媒が前記第2熱交換器を通過する通過量の方が多くなるように前記第1調整部に調整させる第2制御態様と、
前記冷却処理負荷が前記加熱処理負荷よりも大きいとの第4条件が満たされたときに、前記第2調整部に前記第1流路および前記第2流路を閉鎖させ、かつ前記第3熱交換流体の前記第7熱交換器への流入を許容させる第3制御態様とで当該冷温同時温度調整装置を制御可能に構成されている冷温同時温度調整装置。
It has a low temperature side refrigeration circuit and a high temperature side refrigeration circuit, and the low temperature side refrigerant in the low temperature side refrigeration circuit and the high temperature side refrigerant in the high temperature side refrigeration circuit are configured to be heat exchangeable in the first heat exchanger. The first heat exchange fluid supplied to the cooling target is configured to be coolable in the second heat exchanger of the low temperature side refrigeration circuit, and the second heat exchange fluid supplied to the heating target is of the high temperature side refrigeration circuit. A multi-dimensional refrigeration cycle configured to be heatable in the third heat exchanger,
Simultaneous cooling and temperature control provided with a control unit that controls the operation of the multiple refrigeration cycle according to the cooling set temperature for cooling the first heat exchange fluid and the heating set temperature for heating the second heat exchange fluid. It ’s a device,
A fluid circulation path configured to allow circulation of the third heat exchange fluid,
The fourth heat exchanger, which is arranged to enable heat exchange between the third heat exchange fluid and the external heat source,
The fifth heat is arranged so that heat can be exchanged between the first heat exchange fluid that has cooled the cooling target and the third heat exchange fluid that has exchanged heat with the external heat source in the fourth heat exchanger. With the exchanger,
It is possible to exchange heat between the low temperature side refrigerant that has exchanged heat with the high temperature side refrigerant in the first heat exchanger and the third heat exchange fluid that exchanges heat with the external heat source in the fourth heat exchanger. With the arranged sixth heat exchanger,
Heat exchange is possible between the high temperature side refrigerant that exchanges heat with the low temperature side refrigerant in the first heat exchanger and the third heat exchange fluid that exchanges heat with the external heat source in the fourth heat exchanger. With the 7th heat exchanger,
The first that adjusts the passing amount of the low temperature side refrigerant that has exchanged heat with the high temperature side refrigerant in the first heat exchanger through the second heat exchanger and the passing amount of the low temperature side refrigerant through the sixth heat exchanger. Adjustment part and
The amount of passage of the third heat exchange fluid that has exchanged heat with the external heat source in the fourth heat exchanger through the fifth heat exchanger, the amount of passage of the third heat exchange fluid through the sixth heat exchanger, and the said. A second adjusting unit for adjusting the passing amount of the third heat exchange fluid through the seventh heat exchanger is provided.
In the fluid circulation path, the third heat exchange fluid that has exchanged heat with the external heat source in the fourth heat exchanger passes through the fifth heat exchanger and then through the sixth heat exchanger and the seventh. The first flow path that does not pass through the heat exchanger and the third heat exchange fluid pass through the sixth heat exchanger without passing through the fifth heat exchanger and do not pass through the seventh heat exchanger. It is provided with two flow paths and a third flow path through which the third heat exchange fluid passes through the seventh heat exchanger without passing through the fifth heat exchanger and the sixth heat exchanger.
The second adjusting unit includes the flow rate of the first flow path of the third heat exchange fluid, the flow rate of the second flow path of the third heat exchange fluid, and the third flow path of the third heat exchange fluid. By adjusting the flow rate of the third heat exchange fluid, the amount of passage of the third heat exchange fluid through the fifth heat exchanger, the amount of passage of the third heat exchange fluid through the sixth heat exchanger, and the amount of the third heat exchange fluid of the third heat exchange fluid. The 7th heat exchanger is configured to allow the passage amount to be adjusted.
The control unit is for heating the second heat exchange fluid to the heating set temperature by the cooling processing load of the cooling temperature simultaneous temperature adjusting device for cooling the first heat exchange fluid to the cooling set temperature. The first condition that the temperature is smaller than the heat treatment load of the cold temperature simultaneous temperature regulator is satisfied, and the second condition that the temperature of the external heat source is equal to or less than the cooling set temperature and is equal to or less than the predetermined first temperature is satisfied. When this is done, the third flow path is closed by the second adjusting unit, and the flow rate of the first flow path of the third heat exchange fluid according to the cooling set temperature, and the third heat exchange fluid. While adjusting the flow rate of the second flow path to the second adjusting unit, the low temperature side refrigerant passes through the sixth heat exchanger rather than the amount of passage through which the low temperature side refrigerant passes through the second heat exchanger. The first control mode in which the first adjusting unit is adjusted so that the passing amount to be passed is larger, and the first control mode.
When the first condition is satisfied and the third condition that the temperature of the external heat source is higher than the cooling set temperature and is equal to or higher than the predetermined second temperature is satisfied, the second adjusting unit is subjected to the above. The second flow path is closed, and the flow rate of the first flow path of the third heat exchange fluid and the flow rate of the second flow path of the third heat exchange fluid are set according to the cooling set temperature. While adjusting to the adjusting unit, the amount of passage of the low temperature side fluid through the second heat exchanger is larger than the amount of passage of the low temperature side fluid through the sixth heat exchanger. 1 The second control mode to be adjusted by the adjustment unit, and
When the fourth condition that the cooling treatment load is larger than the heat treatment load is satisfied, the first flow path and the second flow path are closed by the second adjusting unit, and the third heat is generated. A cold / hot simultaneous temperature adjusting device configured to be able to control the cold / hot simultaneous temperature adjusting device according to a third control mode for allowing the exchange fluid to flow into the seventh heat exchanger.
前記第4熱交換器に対して前記外部熱源としての周囲の空気を送風する送風ファンを備え、
前記制御部は、前記送風ファンを制御して送風量を変更することで前記第4熱交換器における前記第3熱交換流体と前記空気との熱交換量を調整する請求項1記載の冷温同時温度調整装置。
A blower fan for blowing ambient air as the external heat source to the fourth heat exchanger is provided.
The cold and hot simultaneous according to claim 1, wherein the control unit controls the blower fan to change the blower amount to adjust the heat exchange amount between the third heat exchange fluid and the air in the fourth heat exchanger. Temperature regulator.
JP2020152449A 2020-09-11 2020-09-11 Simultaneous cold and hot temperature control device Active JP7019212B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020152449A JP7019212B1 (en) 2020-09-11 2020-09-11 Simultaneous cold and hot temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020152449A JP7019212B1 (en) 2020-09-11 2020-09-11 Simultaneous cold and hot temperature control device

Publications (2)

Publication Number Publication Date
JP7019212B1 true JP7019212B1 (en) 2022-02-15
JP2022046847A JP2022046847A (en) 2022-03-24

Family

ID=80780033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020152449A Active JP7019212B1 (en) 2020-09-11 2020-09-11 Simultaneous cold and hot temperature control device

Country Status (1)

Country Link
JP (1) JP7019212B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069456A1 (en) 2011-11-11 2013-05-16 ヤンマー株式会社 Hot water supply device and installation structure
WO2013128668A1 (en) 2012-03-02 2013-09-06 株式会社 日立製作所 Exhaust heat recovery system and operating method therefor
WO2014045612A1 (en) 2012-09-24 2014-03-27 三浦工業株式会社 Heat pump system and cooling system using same
JP2016048125A (en) 2014-08-27 2016-04-07 三浦工業株式会社 Supply water heating system
KR101823469B1 (en) 2017-04-18 2018-01-30 주식회사 부-스타 High temperature hot water supply and heating and air conditioning system with partial load using dual cycle
WO2018025318A1 (en) 2016-08-02 2018-02-08 三菱電機株式会社 Heat pump device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140123384A (en) * 2013-04-13 2014-10-22 이병길 Two stage heat pump cooling and heating apparatus using air heat source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069456A1 (en) 2011-11-11 2013-05-16 ヤンマー株式会社 Hot water supply device and installation structure
WO2013128668A1 (en) 2012-03-02 2013-09-06 株式会社 日立製作所 Exhaust heat recovery system and operating method therefor
WO2014045612A1 (en) 2012-09-24 2014-03-27 三浦工業株式会社 Heat pump system and cooling system using same
JP2016048125A (en) 2014-08-27 2016-04-07 三浦工業株式会社 Supply water heating system
WO2018025318A1 (en) 2016-08-02 2018-02-08 三菱電機株式会社 Heat pump device
KR101823469B1 (en) 2017-04-18 2018-01-30 주식회사 부-스타 High temperature hot water supply and heating and air conditioning system with partial load using dual cycle

Also Published As

Publication number Publication date
JP2022046847A (en) 2022-03-24

Similar Documents

Publication Publication Date Title
US11774154B2 (en) Systems and methods for controlling a refrigeration system
JP4411870B2 (en) Refrigeration equipment
US8800319B2 (en) Refrigerating cycle device used in an air conditioning apparatus, a refrigerating device and the like
JP2020172178A (en) On-vehicle temperature controller
WO2011108567A1 (en) Air conditioning apparatus for vehicle and method for switching operation thereof
JP2018124046A (en) Air conditioner
JP6486847B2 (en) Environmental test equipment
JP7019214B1 (en) Simultaneous cold and hot temperature control device
JP7019212B1 (en) Simultaneous cold and hot temperature control device
JP6978118B1 (en) Simultaneous cold and hot temperature control device
JP7019211B1 (en) Simultaneous cold and hot temperature control device
JP6326344B2 (en) Hot water heater
JP7019213B1 (en) Simultaneous cold and hot temperature control device
JP7019215B1 (en) Simultaneous cold and hot temperature control device
AU2020360865B2 (en) A heat pump
JP2007163085A (en) Air-conditioning system
JP6024241B2 (en) Heat pump system
JP2009008346A (en) Refrigerating device
KR100445445B1 (en) Refrigerator
JP2002228294A (en) Method and device for cooling engine and refrigerating device
JP6650062B2 (en) Environmental test equipment
JP2019188851A (en) Air conditioner
JP7241866B2 (en) refrigeration cycle equipment
JP7284381B2 (en) refrigeration equipment
KR20100025356A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126

R150 Certificate of patent or registration of utility model

Ref document number: 7019212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150