WO2018025318A1 - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
WO2018025318A1
WO2018025318A1 PCT/JP2016/072587 JP2016072587W WO2018025318A1 WO 2018025318 A1 WO2018025318 A1 WO 2018025318A1 JP 2016072587 W JP2016072587 W JP 2016072587W WO 2018025318 A1 WO2018025318 A1 WO 2018025318A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
circuit
heat exchanger
refrigerant
heat storage
Prior art date
Application number
PCT/JP2016/072587
Other languages
French (fr)
Japanese (ja)
Inventor
悟 梁池
大林 誠善
仁隆 門脇
七種 哲二
大坪 祐介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1819892.9A priority Critical patent/GB2567333B/en
Priority to JP2018531006A priority patent/JP6537733B2/en
Priority to CN201680087915.8A priority patent/CN109511272B/en
Priority to PCT/JP2016/072587 priority patent/WO2018025318A1/en
Priority to DE112016007113.2T priority patent/DE112016007113B4/en
Publication of WO2018025318A1 publication Critical patent/WO2018025318A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Definitions

  • the present invention relates to a heat pump device including a dual heat pump circuit.
  • Patent Document 1 describes a hot water supply device.
  • This hot water supply apparatus includes a hot water supply refrigerant circuit in which a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger are sequentially connected and filled with carbon dioxide refrigerant.
  • the first heat exchanger is a heat exchanger for generating hot water
  • the second heat exchanger is a cascade heat exchanger in which heat is exchanged between the refrigerant in the low-stage refrigerant circuit such as an air conditioner and the carbon dioxide refrigerant. .
  • a dual heat pump cycle operation is performed in the hot water supply device.
  • FIGS. 13 and 14 are ph diagrams showing the operation of the CO 2 refrigerant in the conventional hot water supply apparatus.
  • FIGS. 13 and 14 in the case of the CO 2 refrigerant operating above the critical pressure, since there is no condensation temperature, the enthalpy difference in the heat release stroke changes approximately in proportion to the temperature difference in the heat release stroke. Therefore, as shown in FIG. 13, when the incoming water temperature is low (for example, 20 ° C.), the enthalpy difference in the heat dissipation process can be increased, so that a high COP is obtained.
  • FIG. 13 when the incoming water temperature is low (for example, 20 ° C.), the enthalpy difference in the heat dissipation process can be increased, so that a high COP is obtained.
  • the conventional hot water supply apparatus has a problem that it is difficult to increase the operation efficiency in both the hot water supply operation with a low incoming water temperature and the heat insulation operation with a high incoming water temperature.
  • the conventional hot water supply apparatus has a problem that it is necessary to increase the unit size in order to improve the maximum capacity.
  • the present invention has been made in order to solve at least one of the above-described problems, and is a heat pump that can improve operating efficiency and improve maximum capacity while suppressing increase in unit size.
  • An object is to provide an apparatus.
  • the heat pump device includes a first refrigerant circuit for circulating the first refrigerant, a second refrigerant circuit for circulating the second refrigerant, a heat storage circuit for circulating the first fluid, a water circuit for circulating water,
  • the first refrigerant circuit performs heat exchange between the first compressor, a first heat exchanger that exchanges heat between the first refrigerant and water, and the first refrigerant and the second refrigerant.
  • heat exchangers are connected in this order via pipes, and the second refrigerant circuit performs fifth heat exchange between the second compressor and the second refrigerant and water.
  • a heat exchanger, a second expansion valve, and the second heat exchanger have a configuration connected in this order via piping, and the heat storage circuit
  • a second circulation circuit for circulating the first fluid between the heat exchanger, the water circuit, a pump for pumping water, the first heat exchanger, and the fifth heat exchange.
  • Branching from the first circuit between the first circuit to which the heat exchanger is connected, the pump and the first heat exchanger, and between the first heat exchanger and the fifth heat exchanger A second circuit connected to the first circuit; a branch from the first circuit on the downstream side of the fifth heat exchanger; the first circuit on the upstream side of the pump via the sixth heat exchanger; And a third circuit connected to.
  • the operating efficiency can be increased and the maximum capacity can be improved while suppressing an increase in unit size.
  • FIG. 1 is a circuit diagram showing a schematic circuit configuration of the heat pump device according to the present embodiment.
  • the heat pump apparatus includes a binary circuit including a low-side first refrigerant circuit 101 that circulates a first refrigerant and a high-side second refrigerant circuit 102 that circulates a second refrigerant.
  • a heat pump circuit 103 is included.
  • the heat pump apparatus has a heat storage circuit 110 that circulates the first fluid and a water circuit 120 that circulates water.
  • First refrigerant circuit 101 In the first refrigerant circuit 101, the first compressor 1, the first heat exchanger 2, the second heat exchanger 3, the first expansion valve 4, the third heat exchanger 5, and the fourth heat exchanger 6 are connected to the refrigerant pipe. Through the ring in this order.
  • a refrigerant that operates in a supercritical region when operating at least the first refrigerant circuit 101 alone for example, a refrigerant containing at least one component of CO 2 ). Is used. That is, at least when the first refrigerant circuit 101 is operated alone, the high-pressure side pressure of the first refrigerant circuit 101 is equal to or higher than the critical pressure of the first refrigerant.
  • the first compressor 1 is a fluid machine that sucks and compresses a low-pressure first refrigerant and discharges it as a high-pressure refrigerant.
  • Each of the first heat exchanger 2 and the second heat exchanger 3 is a high-pressure side heat exchanger in the first refrigerant circuit 101, and functions as a radiator that radiates heat from the first refrigerant.
  • the first heat exchanger 2 is a water-refrigerant heat exchanger that performs heat exchange between water and the first refrigerant. In the first heat exchanger 2, heat is radiated from the first refrigerant to the water, the water is heated and the first refrigerant is cooled.
  • the second heat exchanger 3 is a cascade heat exchanger that performs heat exchange between the first refrigerant on the lower side and the second refrigerant on the higher side. In the second heat exchanger 3, heat is radiated from the first refrigerant to the second refrigerant, the second refrigerant is heated, and the first refrigerant is further cooled.
  • the first expansion valve 4 decompresses the high-pressure first refrigerant in an enthalpy manner and causes it to flow out as a low-pressure refrigerant.
  • an electronic expansion valve or the like whose opening degree can be adjusted by the control of the control device is used.
  • Each of the third heat exchanger 5 and the fourth heat exchanger 6 is a low-pressure heat exchanger in the first refrigerant circuit 101, and is an evaporator that absorbs heat to the first refrigerant and evaporates the first refrigerant.
  • the third heat exchanger 5 is a heat exchanger that performs heat exchange between the first refrigerant and the second fluid. In this example, outdoor air supplied by a blower fan (not shown) is used as the second fluid. Therefore, the third heat exchanger 5 is an air-refrigerant heat exchanger that performs heat exchange between the outdoor air and the first refrigerant. In the third heat exchanger 5, heat is radiated from the second fluid to the first refrigerant, and the first refrigerant is heated.
  • the fourth heat exchanger 6 is a heat exchanger that performs heat exchange between the first refrigerant and the first fluid. In the fourth heat exchanger 6, heat is radiated from the first fluid to the first refrigerant, and the first refrigerant is heated and the first fluid is cooled.
  • the second refrigerant circuit 102 has a configuration in which the second compressor 7, the fifth heat exchanger 8, the second expansion valve 9, and the second heat exchanger 3 are annularly connected in this order via a refrigerant pipe. is doing.
  • a refrigerant that operates in a supercritical region or less is used as the second refrigerant circulating in the second refrigerant circuit 102. That is, the high-pressure side pressure of the second refrigerant circuit 102 is equal to or lower than the critical pressure of the second refrigerant.
  • the second compressor 7 is a fluid machine that sucks in and compresses the low-pressure second refrigerant and discharges it as a high-pressure refrigerant.
  • the fifth heat exchanger 8 is a high-pressure heat exchanger in the second refrigerant circuit 102, and functions as a radiator (condenser) that dissipates heat from the second refrigerant and condenses the second refrigerant.
  • the fifth heat exchanger 8 is a water-refrigerant heat exchanger that performs heat exchange between water and the second refrigerant. In the fifth heat exchanger 8, heat is radiated from the second refrigerant to the water, the water is heated and the second refrigerant is cooled.
  • the second expansion valve 9 decompresses the high-pressure second refrigerant in an enthalpy manner and causes it to flow out as a low-pressure refrigerant.
  • an electronic expansion valve whose opening degree can be adjusted by the control of a control device is used.
  • the second heat exchanger 3 is a low-pressure heat exchanger in the second refrigerant circuit 102, and functions as an evaporator that absorbs heat by the second refrigerant and evaporates the second refrigerant. As described above, the second heat exchanger 3 is a cascade heat exchanger that performs heat exchange between the first refrigerant and the second refrigerant.
  • the heat storage circuit 110 includes the heat storage tank 10 and a first circulation circuit 111 and a second circulation circuit 112 that circulate the first fluid, respectively.
  • a gel-like heat storage material is enclosed in the heat storage tank 10 of this example.
  • As the heat storage material a material having a heat capacity larger than that of water is used.
  • heat exchange between the first fluid and the heat storage material is performed.
  • As the first fluid in this example a liquid heat medium such as water or brine is used.
  • the first circulation circuit 111 circulates the first fluid between the heat storage tank 10 and the fourth heat exchanger 6.
  • the first circulation circuit 111 is provided with a pump 11 that pumps the first fluid.
  • the fourth heat exchanger 6 is a heat exchanger that performs heat exchange between the first refrigerant and the first fluid. In the fourth heat exchanger 6, heat is radiated from the first fluid to the first refrigerant, and the first refrigerant is heated and the first fluid is cooled.
  • the second circulation circuit 112 circulates the first fluid between the heat storage tank 10 and the sixth heat exchanger 17.
  • the second circulation circuit 112 shares the pump 11 with the first circulation circuit 111 and is provided to be branched from the first circulation circuit 111.
  • a flow path switching device 16 is provided at a branch portion between the first circulation circuit 111 and the second circulation circuit 112.
  • the flow path switching device 16 is configured by, for example, a three-way valve or a plurality of two-way valves. In the flow path switching device 16, it is switched whether the first fluid pumped by the pump 11 circulates in the first circulation circuit 111 or the second circulation circuit 112. That is, in the flow path switching device 16, it is switched whether the first fluid flows into the fourth heat exchanger 6 or the sixth heat exchanger 17.
  • the sixth heat exchanger 17 is a heat exchanger that performs heat exchange between the first fluid and water. In the sixth heat exchanger 17, heat is radiated from water to the first fluid, and the first fluid is heated.
  • the water circuit 120 includes a first circuit 121, a second circuit 122, and a third circuit 123 through which water flows.
  • liquid heat media such as not only water but brine, can be used.
  • the first circuit 121 has a configuration in which the pump 12 that pumps water, the first heat exchanger 2, and the fifth heat exchanger 8 are connected in this order via a water pipe. Yes.
  • An upstream portion of the first circuit 121 is provided with an inflow portion 120a (water intake portion) through which water or low-temperature hot water flows from the outside of the heat pump device.
  • an outflow part 120b (outflow part) for allowing hot water to flow out of the heat pump device is provided.
  • the second circuit 122 branches from the first circuit 121 between the pump 12 and the first heat exchanger 2, and the first circuit 121 is between the first heat exchanger 2 and the fifth heat exchanger 8. It is connected to the. That is, the second circuit 122 is a circuit that connects the pump 12 and the fifth heat exchanger 8 in the first circuit 121 without passing through the first heat exchanger 2.
  • a flow path switching device 14 is provided at a branch portion between the first circuit 121 and the second circuit 122.
  • the flow path switching device 14 is configured by, for example, a three-way valve or a plurality of two-way valves. In the flow path switching device 14, it is switched whether the water pumped by the pump 12 passes through the first heat exchanger 2 or the second circuit 122.
  • the third circuit 123 branches from the first circuit 121 on the downstream side of the fifth heat exchanger 8, passes through the sixth heat exchanger 17, and is connected to the first circuit 121 on the upstream side of the pump 12. Has been.
  • a flow path switching device 15 is provided at a branch portion between the first circuit 121 and the third circuit 123.
  • the flow path switching device 15 is configured by, for example, a three-way valve or a plurality of two-way valves. In the flow path switching device 15, whether the water that has passed through the fifth heat exchanger 8 flows out to the outside via the outflow portion 120b or returns to the upstream side of the pump 12 through the sixth heat exchanger 17 Is switched. In addition, the flow path switching device 15 does not simply switch the flow path, but returns to the upstream side of the pump 12 via the flow rate of water flowing out to the outside via the outflow portion 120 b and the sixth heat exchanger 17. The flow rate of water and the flow rate ratio can be adjusted.
  • the flow path switching device 15 may have a configuration in which a switching valve that switches the flow path and a flow rate adjustment valve that adjusts the flow rate are combined.
  • the flow path switching device 13 is provided at the connection between the first circuit 121 and the third circuit 123.
  • the flow path switching device 13 is configured by, for example, a three-way valve or a plurality of two-way valves.
  • the flow path switching device 13 which of water that flows in from the outside through the inflow portion 120 a and water that returns to the upstream side of the pump 12 through the sixth heat exchanger 17 is sucked into the pump 12. Is switched.
  • the flow path switching device 13 not only simply switches the flow path, but also returns to the upstream side of the pump 12 via the flow rate of water flowing from the outside via the inflow portion 120 a and the sixth heat exchanger 17.
  • the flow rate of water and the flow rate ratio can be adjusted.
  • the flow path switching device 13 may have a configuration in which, for example, a switching valve that switches the flow path and a flow rate adjustment valve that adjusts the flow rate are combined.
  • the heat pump device has a control device 200 that controls the entire heat pump device including the first refrigerant circuit 101, the second refrigerant circuit 102, the heat storage circuit 110, and the water circuit 120.
  • the control device 200 has a microcomputer provided with a CPU, ROM, RAM, I / O port, timer, and the like.
  • the first compressor 1, the second compressor 7, the first expansion valve 4, the second expansion valve 9, and the pump 11 are set based on operation mode settings or detection signals from sensors (not shown).
  • the operations of various actuators such as the flow path switching device 16, the pump 12, the flow path switching devices 13, 14, 15 and a blower fan (not shown) are controlled.
  • the control device 200 has, as operation modes of the heat pump device, a hot water supply mode (an example of the first operation mode), a heat retention mode (an example of the second operation mode), a heat storage mode (an example of the third operation mode), and a capacity enhancement mode (the first 4 example of operation mode), hot water supply and heat storage mode (example of fifth operation mode), heat retention and heat storage mode (example of sixth operation mode), and quick start mode (example of seventh operation mode) can be executed.
  • Each operation mode is switched based on a user operation, an external command, a detection signal from a sensor, or the like.
  • each operation mode will be described. Note that the operations of the various actuators described below are examples for executing each operation mode.
  • FIG. 2 is a diagram showing a state in the hot water supply mode in the heat pump device according to the present embodiment.
  • the first compressor 1 is controlled so that the hot water temperature approaches the target value.
  • the first expansion valve 4 is controlled such that the degree of superheat, the discharge temperature, or the discharge pressure of the first refrigerant circuit 101 approaches the target value.
  • the third heat exchanger 5 heat exchange between the outdoor air blown by the blower fan and the first refrigerant is performed.
  • the second compressor 7 and the pump 11 are stopped.
  • the pump 12 is operating.
  • the water flowing in from the outside through the inflow portion 120a passes through the first heat exchanger 2 and the fifth heat exchanger 8 in series in this order, and passes through the outflow portion 120b. Is set to flow outside.
  • the 2nd compressor 7 since the 2nd compressor 7 has stopped, in the 5th heat exchanger 8, heat exchange with a 2nd refrigerant
  • the hot water supply mode water flowing from the outside is heated by heat exchange in the first heat exchanger 2 and flows out to the outside as hot water. Thereby, in the hot water supply mode, hot water can be supplied by collecting heat from outdoor air. Since the first refrigerant circuit 101 operates at a critical pressure or higher, it can be operated at a high COP.
  • FIG. 3 is a diagram showing a state in the heat retention mode in the heat pump apparatus according to the present embodiment.
  • the heat retention mode is an operation mode that is executed when the temperature difference between the incoming water temperature and the outgoing hot water temperature becomes smaller due to an increase in incoming water temperature.
  • the heat retention mode is executed, for example, when the incoming water temperature is equal to or higher than a predetermined temperature or the temperature difference between the incoming water temperature and the target hot water temperature is lower than a predetermined value during execution of the hot water supply mode.
  • the first compressor 1 is controlled so that the discharge pressure of the first refrigerant circuit 101 approaches the target value.
  • the first expansion valve 4 is controlled such that the degree of superheat or the discharge temperature of the first refrigerant circuit 101 approaches the target value.
  • the third heat exchanger 5 heat exchange between the outdoor air blown by the blower fan and the first refrigerant is performed.
  • the second compressor 7 is controlled so that the tapping temperature approaches the target value.
  • the control target of the first compressor 1 and the control target of the second compressor 7 may be reversed. That is, the first compressor 1 is controlled such that the tapping temperature approaches the target value, and the second compressor 7 is controlled so that the discharge pressure of the first refrigerant circuit 101 approaches the target value. Good.
  • the second expansion valve 9 is controlled so that the degree of superheat, the discharge temperature, or the discharge pressure of the second refrigerant circuit 102 approaches the target value.
  • the pump 11 is stopped.
  • the pump 12 is operating.
  • the flow path switching devices 13, 14, and 15 are configured such that water flowing in from the outside through the inflow portion 120 a passes through the fifth heat exchanger 8 through the second circuit 122, and passes through the outflow portion 120 b to the outside. Set to spill.
  • the first refrigerant circuit 101 and the second refrigerant circuit 102 constitute a dual cycle. Therefore, both the first refrigerant circuit 101 and the second refrigerant circuit 102 can be operated at a critical pressure or less, and the refrigerant can be condensed in both the first refrigerant circuit 101 and the second refrigerant circuit 102. Therefore, even if the incoming water temperature rises and the temperature difference between the incoming water temperature and the outgoing hot water temperature becomes smaller, the difference in enthalpy can be increased, so that operation with a high COP can be performed.
  • FIG. 4 is a diagram showing a state in the heat storage mode in the heat pump device according to the present embodiment.
  • the heat storage mode is, for example, when there is no necessary heat amount on the load side and the operation in the hot water supply mode and the heat insulation mode is not performed, when the residual heat storage amount of the heat storage tank 10 is insufficient, or the residual heat storage amount of the heat storage tank 10 is insufficient It is executed when is predicted.
  • the first compressor 1 is controlled so that the discharge pressure of the first refrigerant circuit 101 approaches the target value.
  • the first expansion valve 4 is controlled such that the degree of superheat or the discharge temperature of the first refrigerant circuit 101 approaches the target value.
  • the third heat exchanger 5 heat exchange between the outdoor air blown by the blower fan and the first refrigerant is performed.
  • the second compressor 7 is controlled so that the tapping temperature approaches the target value.
  • the control target of the first compressor 1 and the control target of the second compressor 7 may be reversed.
  • the second expansion valve 9 is controlled so that the degree of superheat, the discharge temperature, or the discharge pressure of the second refrigerant circuit 102 approaches the target value.
  • the pump 11 is operating.
  • the flow path switching device 16 is set so that the first fluid circulates through the second circulation circuit 112.
  • the pump 12 is operating.
  • the flow path switching devices 13, 14, 15 are formed so as to form a closed circuit in which water circulates through the pump 12, the second circuit 122, the fifth heat exchanger 8, the third circuit 123, and the sixth heat exchanger 17. Is set. Thereby, in the 6th heat exchanger 17, the 1st fluid is heated by heat absorption from water. In the heat storage tank 10, the heat radiated from the first fluid is stored in the heat storage material.
  • the first refrigerant circuit 101 and the second refrigerant circuit 102 constitute a dual cycle. Therefore, both the first refrigerant circuit 101 and the second refrigerant circuit 102 can be operated at a critical pressure or less, and the refrigerant can be condensed in both the first refrigerant circuit 101 and the second refrigerant circuit 102. Therefore, since the enthalpy difference can be increased even in the heat storage operation in which the incoming water temperature rises, the operation can be performed with a high COP.
  • FIG. 5 is a diagram showing a state in the capacity enhancement mode in the heat pump device according to the present embodiment.
  • the capacity enhancement mode for example, when the frequency of the first compressor 1 has reached the upper limit, the hot water temperature does not reach the target hot water temperature even when the high pressure side pressure of the first refrigerant circuit 101 reaches a predetermined value, or It is executed when the amount of hot water does not reach the target amount of hot water.
  • the first compressor 1 is controlled so that the discharge pressure of the first refrigerant circuit 101 approaches the target value.
  • the first expansion valve 4 is controlled such that the degree of superheat or the discharge temperature of the first refrigerant circuit 101 approaches the target value.
  • the third heat exchanger 5 heat exchange between the outdoor air and the first refrigerant is not performed. That is, the blower fan is stopped.
  • the second compressor 7 is controlled so that the tapping temperature approaches the target value.
  • the control target of the first compressor 1 and the control target of the second compressor 7 may be reversed.
  • the second expansion valve 9 is controlled so that the degree of superheat, the discharge temperature, or the discharge pressure of the second refrigerant circuit 102 approaches the target value.
  • the pump 11 is operating.
  • the flow path switching device 16 is set so that the first fluid circulates through the first circulation circuit 111. Thereby, in the 4th heat exchanger 6, a 1st refrigerant
  • coolant evaporates by the heat absorption from a 1st fluid.
  • the pump 12 is operating.
  • the water flowing in from the outside through the inflow portion 120a passes through the first heat exchanger 2 and the fifth heat exchanger 8 in series in this order, and passes through the outflow portion 120b. Is set to flow outside.
  • the suction pressure of the first compressor 1 can be increased by supplying heat from the heat storage material to the first refrigerant circuit 101, so that a high capacity can be exhibited regardless of the outside air temperature. it can. Further, by cooling the low refrigerant side first refrigerant circuit 101 with the high refrigerant side second refrigerant circuit 102, an increase in discharge pressure can be suppressed even if the suction pressure of the first refrigerant circuit 101 increases.
  • the design pressure of the 1st refrigerant circuit 101 can be made low, and thickness, such as piping and a container, can be made thin.
  • the heat stored in the high COP is used as a heat source, so that the operation can be performed with the high COP.
  • the number of units and the installation area of the heat pump device can be reduced.
  • FIG. 6 is a diagram illustrating a state in the hot water supply and heat storage modes in the heat pump device according to the present embodiment.
  • the hot water supply and heat storage mode for example, when the remaining heat storage amount of the heat storage tank 10 is insufficient during execution of the hot water supply mode, or when the shortage of the remaining heat storage amount of the heat storage tank 10 is predicted during execution of the hot water supply mode. Executed.
  • the first compressor 1 In the hot water supply and heat storage mode, the first compressor 1 is controlled so that the tapping temperature approaches the target value.
  • the first expansion valve 4 is controlled such that the degree of superheat or the discharge temperature of the first refrigerant circuit 101 approaches the target value.
  • the third heat exchanger 5 heat exchange between the outdoor air blown by the blower fan and the first refrigerant is performed.
  • the second compressor 7 is stopped.
  • the pump 11 is operating.
  • the flow path switching device 16 is set so that the first fluid circulates through the second circulation circuit 112.
  • the pump 12 is operating.
  • the water flowing in from the outside through the inflow portion 120a passes through the first heat exchanger 2 and the fifth heat exchanger 8 in series in this order, and passes through the outflow portion 120b.
  • the first refrigerant circuit 101 operates at a critical pressure or higher, it can be operated at a high COP.
  • FIG. 7 is a diagram showing a state in the heat retention and heat storage mode in the heat pump apparatus according to the present embodiment.
  • the heat retention and heat storage mode for example, when the remaining heat storage amount of the heat storage tank 10 is insufficient during execution of the heat retention mode, or when the shortage of the remaining heat storage amount of the heat storage tank 10 is predicted during execution of the heat retention mode. Executed.
  • the heat retention and heat storage mode is executed, for example, when the incoming water temperature is equal to or higher than a predetermined temperature or the temperature difference between the incoming water temperature and the target hot water temperature is equal to or lower than a predetermined value during execution of the hot water supply and heat storage modes.
  • the first compressor 1 is controlled such that the discharge pressure of the first refrigerant circuit 101 approaches the target value.
  • the first expansion valve 4 is controlled such that the degree of superheat or the discharge temperature of the first refrigerant circuit 101 approaches the target value.
  • the third heat exchanger 5 heat exchange between the outdoor air blown by the blower fan and the first refrigerant is performed.
  • the second compressor 7 is controlled so that the tapping temperature approaches the target value.
  • the control target of the first compressor 1 and the control target of the second compressor 7 may be reversed. That is, the first compressor 1 is controlled such that the tapping temperature approaches the target value, and the second compressor 7 is controlled so that the discharge pressure of the first refrigerant circuit 101 approaches the target value. Good.
  • the second expansion valve 9 is controlled so that the degree of superheat, the discharge temperature, or the discharge pressure of the second refrigerant circuit 102 approaches the target value.
  • the pump 11 is operating.
  • the flow path switching device 16 is controlled so that the first fluid circulates through the second circulation circuit 112.
  • the pump 12 is operating.
  • the flow path switching devices 13, 14, and 15 are configured such that water flowing in from the outside through the inflow portion 120 a passes through the fifth heat exchanger 8 through the second circuit 122, and passes through the outflow portion 120 b to the outside. While flowing out, a part of the water that has passed through the fifth heat exchanger 8 is set to be diverted to the third circuit 123.
  • the flow rate of water flowing out through the outflow portion 120b is adjusted according to the required heat amount from the load side.
  • both the first refrigerant circuit 101 and the second refrigerant circuit 102 can be operated at a critical pressure or lower, even if the incoming water temperature rises and the temperature difference between the incoming water temperature and the outgoing hot water temperature becomes smaller, it is high. Can operate with COP.
  • FIG. 8 is a diagram showing a state in the quick start mode in the heat pump apparatus according to the present embodiment.
  • the quick start mode is executed when starting at least one of the first compressor 1 and the second compressor 7, for example. After the quick start mode is executed, it is possible to shift to any one of a hot water supply mode, a heat retention mode, a heat storage mode, a capacity enhancement mode, a hot water supply and a heat storage mode, or a heat retention and a heat storage mode.
  • the pump 11 of the heat storage circuit 110 is operated, and the flow path switching device 16 is set so that the first fluid circulates through the first circulation circuit 111.
  • the first refrigerant circuit 101, the second refrigerant circuit 102, and the water circuit 120 are in any one of the hot water supply mode, the heat retention mode, the heat storage mode, the capacity enhancement mode, the hot water supply and the heat storage mode, or the heat retention and the heat storage mode. It is controlled in the same way. In the example shown in FIG. 8, the first refrigerant circuit 101, the second refrigerant circuit 102, and the water circuit 120 are controlled in the same manner as in the hot water supply mode.
  • the heat storage material is used as the heat source, so the start-up time can be shortened.
  • the necessary hot water temperature can be obtained immediately by executing the quick start mode. Therefore, since it is not necessary to provide a large hot water storage tank in the heat pump device, the installation area of the heat pump device can be reduced and the cost can be reduced. Further, if a circuit is configured in the same manner as the quick start mode when a liquid back occurs, the liquid back can be eliminated immediately. Therefore, the reliability of the heat pump device can be improved.
  • the heat pump device includes the first refrigerant circuit 101 that circulates the first refrigerant, the second refrigerant circuit 102 that circulates the second refrigerant, and the heat storage circuit that circulates the first fluid. 110, a water circuit 120 for circulating water, and a control device 200 for controlling the first refrigerant circuit 101, the second refrigerant circuit 102, the heat storage circuit 110, and the water circuit 120.
  • the first refrigerant circuit 101 is a first heat exchanger 2 that performs heat exchange between the first compressor 1, the first refrigerant and water, and a second heat exchange that performs heat exchange between the first refrigerant and the second refrigerant.
  • the second refrigerant circuit 102 includes a second compressor 7, a fifth heat exchanger 8 that performs heat exchange between the second refrigerant and water, a second expansion valve 9, and a second heat exchanger 3. Are connected in this order via the.
  • the heat storage circuit 110 includes heat storage tank 10, first circulation circuit 111 that circulates the first fluid between heat storage tank 10 and fourth heat exchanger 6, heat storage tank 10, heat of the first fluid and water.
  • the water circuit 120 includes a first circuit 121 in which a pump 12 for pumping water, a first heat exchanger 2 and a fifth heat exchanger 8 are connected in this order via a pipe, and the pump 12 and the first heat exchanger. 2, the second circuit 122 branched from the first circuit 121 and connected to the first circuit 121 between the first heat exchanger 2 and the fifth heat exchanger 8, and the fifth heat exchanger 8. And a third circuit 123 branched from the first circuit 121 on the downstream side of the first circuit 121 and connected to the first circuit 121 on the upstream side of the pump 12 via the sixth heat exchanger 17.
  • both the first refrigerant circuit 101 and the second refrigerant circuit 102 can be operated at a critical pressure or lower. Therefore, according to the present embodiment, a high COP can be obtained not only in the hot water supply mode but also in the heat retention mode. Further, according to this configuration, in the capacity enhancement mode, water can be heated in two stages by the first heat exchanger 2 and the fifth heat exchanger 8. Therefore, according to the present embodiment, the maximum capacity can be improved while suppressing an increase in the unit size of the heat pump apparatus. In other words, it is possible to reduce the number of units and the installation area while maintaining the maximum capacity of the heat pump device.
  • the heat exchange between the heat storage material in the heat storage tank 10 and water is performed via the first fluid. Therefore, since heat exchange with a heat storage material and water is not performed by a heat exchanger, it can prevent that a heat storage material flows out to the load side.
  • control device 200 can execute a first operation mode (for example, a hot water supply mode).
  • first operation mode first compressor 1 is operated and second operation is performed.
  • the compressor 7 is stopped, and the water circuit 120 is controlled so that the water pumped by the pump 12 flows out through the first heat exchanger 2 and the fifth heat exchanger 8.
  • control device 200 can execute the second operation mode (for example, the heat retention mode), and in the second operation mode, the first compressor 1 and the second compressor 7.
  • the water circuit 120 is controlled so that the water pumped by the pump 12 flows out through the second circuit 122 and the fifth heat exchanger 8.
  • control device 200 has a case where the water temperature of the inflowing water is equal to or higher than a predetermined temperature, or the difference between the water temperature of the inflowing water and the target hot water temperature is equal to or lower than the predetermined value. Then, the second operation mode is executed.
  • the control device 200 can execute the third operation mode (for example, the heat storage mode), and in the third operation mode, the first compressor 1 and the second compressor 7.
  • the heat storage circuit 110 is controlled so that the first fluid circulates in the second circulation circuit 112, and the water pumped by the pump 12 passes through the second circuit 122, the fifth heat exchanger 8, and the third circuit 123.
  • the water circuit 120 is controlled to circulate.
  • control device 200 is configured to operate in the third operation mode when the remaining heat storage amount of the heat storage tank 10 is insufficient or when the remaining heat storage amount of the heat storage tank 10 is predicted to be insufficient. Execute.
  • the control device 200 can execute the fourth operation mode (for example, the capacity enhancement mode).
  • the fourth operation mode the first compressor 1 and the second compressor 7 is operated, the heat storage circuit 110 is controlled so that the first fluid circulates through the first circulation circuit 111, and the water pumped by the pump 12 passes through the first heat exchanger 2 and the fifth heat exchanger 8.
  • the water circuit 120 is controlled to flow out.
  • the control device 200 sets the target hot water temperature even when the frequency of the first compressor 1 reaches the upper limit or the high-pressure side pressure of the first refrigerant circuit 101 reaches a predetermined value.
  • the fourth operation mode is executed.
  • control device 200 can execute the fifth operation mode (for example, hot water supply and heat storage mode), and in the fifth operation mode, first compressor 1 operates.
  • the heat storage circuit 110 is controlled so that the second compressor 7 is stopped and the first fluid circulates through the second circulation circuit 112, and water pumped by the pump 12 is used for the first heat exchanger 2 and the fifth heat exchanger.
  • the water circuit 120 is controlled so that a part of the water that has flowed out through the water 8 and passed through the fifth heat exchanger 8 is diverted to the third circuit 123.
  • control device 200 is the fifth operation mode when the remaining heat storage amount of the heat storage tank 10 is insufficient or when the remaining heat storage amount of the heat storage tank 10 is predicted to be insufficient. Execute.
  • the control device 200 can execute the sixth operation mode (for example, the heat retention and heat storage mode), and in the sixth operation mode, the first compressor 1 and the second compression are performed.
  • the heat storage circuit 110 is controlled so that the first fluid circulates through the second circulation circuit 112, and the water pumped by the pump 12 passes through the second circuit 122 and the fifth heat exchanger 8. While flowing out, the water circuit 120 is controlled so that a part of the water that has passed through the fifth heat exchanger 8 is diverted to the third circuit 123.
  • control device 200 switches the sixth operation mode when the incoming water temperature is equal to or higher than a predetermined temperature or when the difference between the incoming water temperature and the target hot water temperature is equal to or lower than a predetermined value.
  • control device 200 is configured to operate in the sixth operation mode when the residual heat storage amount of the heat storage tank 10 is insufficient or when the residual heat storage amount of the heat storage tank 10 is predicted to be insufficient. Execute.
  • the control device 200 can execute the seventh operation mode (for example, the quick start mode) when starting at least one of the first compressor 1 and the second compressor 7.
  • the seventh operation mode the heat storage circuit 110 is controlled so that the first fluid circulates through the first circulation circuit 111.
  • the first fluid is a heat medium that exchanges heat with the heat storage material in the heat storage tank 10.
  • the first refrigerant operates at a critical pressure or higher in an operating state where at least the first compressor 1 is operating and the second compressor 7 is stopped.
  • the first refrigerant includes CO 2 in at least one component.
  • the second refrigerant operates at a critical pressure or lower.
  • the operating pressure of the second refrigerant is lower than the operating pressure of the first refrigerant.
  • FIG. A heat pump device according to Embodiment 2 of the present invention will be described.
  • a latent heat storage material having a melting point higher than 0 ° C. is used as the heat storage material sealed in the heat storage tank 10.
  • the solidification temperature is kept constant until the entire heat storage material becomes solid. Therefore, the evaporation temperature in the first refrigerant circuit 101 does not decrease, and the capacity can be kept constant.
  • FIG. 3 A heat pump device according to Embodiment 3 of the present invention will be described.
  • a fluid heat storage material is used as the heat storage material.
  • a heat storage material having fluidity is used as the first fluid circulating through the heat storage circuit 110.
  • the heat storage material can be flowed by the pump 11.
  • FIG. 9 is a diagram showing a schematic configuration of a capsule-type heat storage material used in the heat pump device according to the present embodiment.
  • the capsule-type heat storage material includes a capsule 131 (for example, a microcapsule) that encloses a heat storage material 130 (for example, a latent heat storage material).
  • a liquid in which a plurality of capsules 131 containing the heat storage material 130 are dispersed is used as the first fluid circulating in the heat storage circuit 110.
  • the capsule-type heat storage material is not handled as a dangerous material, according to the present embodiment, the safety of the heat pump device can be improved. Further, since the heat storage material is covered with the capsule, the heat storage material is not laminated on the cooling surface even if the heat storage material is solidified. For this reason, the thermal resistance is unlikely to increase and the heat transfer performance can be kept high.
  • FIG. 5 A heat pump apparatus according to Embodiment 5 of the present invention will be described.
  • the first circuit 121 in the present embodiment is connected to a hot water storage tank (not shown) on the downstream side of the branch portion (flow path switching device 15) with the third circuit 123.
  • the hot water storage tank may be provided as a part of the heat pump device, or may be provided separately from the heat pump device.
  • the hot water storage tank has such a size that a predetermined amount of heat can be supplied to the load side during the time from the start of the heat pump device to the arrival of a predetermined hot water temperature.
  • the heat storage capacity of the hot water storage tank is smaller than the heat storage capacity of the heat storage tank 10.
  • the hot water is discharged from the hot water storage tank during the time from when the heat pump device is activated until the predetermined hot water temperature or the predetermined discharge pressure is reached. According to the present embodiment, it is possible to obtain a predetermined hot water temperature earlier than in the quick start mode.
  • FIG. 10 is a circuit diagram showing a schematic circuit configuration of the heat pump device according to the present embodiment.
  • the first refrigerant circuit 101 is provided with a bypass circuit 20 as a defrost circuit for defrosting the third heat exchanger 5.
  • the bypass circuit 20 branches from the first refrigerant circuit 101 between the first compressor 1 and the first heat exchanger 2, and the first refrigerant circuit between the first expansion valve 4 and the third heat exchanger 5. 101.
  • the bypass circuit 20 is provided with a bypass valve 21 that is opened during the defrosting operation.
  • the first compressor 1 and the pump 11 are operated, and the second compressor 7 and the pump 12 are stopped.
  • the first expansion valve 4 is set to the minimum opening.
  • the bypass valve 21 is opened.
  • the flow path switching device 16 is set so that the first fluid circulates through the first circulation circuit 111.
  • the flow path switching device 13 is set so that the inflow portion 120a side is closed. Thereby, hot gas flows into the 3rd heat exchanger 5, and the frost adhering to the 3rd heat exchanger 5 melts.
  • the refrigerant condensed in the third heat exchanger 5 evaporates in the fourth heat exchanger 6 using the heat storage material as a heat source.
  • FIG. 11 is a circuit diagram showing a schematic circuit configuration of the heat pump device according to the present embodiment. As shown in FIG. 11, a third expansion valve 22 is provided between the third heat exchanger 5 and the fourth heat exchanger 6 of the first refrigerant circuit 101. Other configurations are the same as those in the sixth embodiment.
  • the third expansion valve 22 is controlled such that the suction superheat degree, the discharge temperature, or the discharge superheat degree of the first compressor 1 approaches the target value. Or a predetermined opening. Thereby, the discharge pressure of the 1st compressor 1 rises and the temperature of the refrigerant
  • Embodiment 8 FIG. A heat pump apparatus according to Embodiment 8 of the present invention will be described.
  • the control device 200 estimates the remaining heat storage amount in the heat storage tank 10 based on the heat amount discharged from the heat pump device or the heat amount stored in the heat storage tank 10. For example, the control device 200 estimates the remaining heat storage amount in the heat storage tank 10 based on the flow rate of the first fluid in the heat storage circuit 110 and the inlet temperature and outlet temperature of the heat storage tank 10. Alternatively, the control device 200 may calculate the remaining heat storage amount in the heat storage tank 10 based on the temperature distribution in the heat storage tank 10.
  • the control device 200 performs a heat storage operation (for example, an operation in the heat storage mode, the hot water supply and heat storage mode, or the heat retention and heat storage mode) based on the estimated or calculated remaining heat storage amount. Thereby, since the shortage of the heat storage amount can be prevented, it is possible to always cope with the capacity enhancement mode or the quick start mode.
  • a heat storage operation for example, an operation in the heat storage mode, the hot water supply and heat storage mode, or the heat retention and heat storage mode
  • Embodiment 9 FIG. A heat pump device according to Embodiment 9 of the present invention will be described.
  • the control apparatus 200 learns required heat storage amount from the daily operation
  • FIG. 12 is a schematic diagram showing a physical configuration of the heat pump device according to the present embodiment.
  • the heat pump apparatus includes a first housing 105 that houses at least the first refrigerant circuit 101 and a second housing 106 that houses at least the second refrigerant circuit 102.
  • the first housing 105 and the second housing 106 are arranged in a stacked manner, and the first housing 105 is stacked on top of the second housing 106.
  • the first refrigerant circuit 101 is provided with a third heat exchanger 5 that is an air-refrigerant heat exchanger and a blower fan 107 that blows air to the third heat exchanger 5.
  • the third heat exchanger 5 is disposed on the side portion of the first housing 105
  • the blower fan 107 is disposed on the top portion of the first housing 105.
  • the air blown by the blower fan 107 flows from the side portion of the first housing 105 toward the top portion.
  • the air flow in the first housing 105 can be prevented from being obstructed by the second housing 106, and the installation area of the heat pump device can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

This heat pump device is provided with a first refrigerant circuit, second refrigerant circuit, heat storage circuit, and water circuit, the first refrigerant circuit has a configuration wherein a first heat exchanger, second heat exchanger, third heat exchanger, and fourth heat exchanger are connected, and the second refrigerant circuit has a configuration wherein a fifth heat exchanger and the second heat exchanger are connected. The water circuit has: a first water circuit, in which a pump, the first heat exchanger, and the fifth heat exchanger are connected; a second water circuit, which is branched from, between the pump and the first heat exchanger, the first water circuit, and connected to, between the first heat exchanger and the fifth heat exchanger, the first water circuit; and a third water circuit, which is branched from the first water circuit in the downstream of the fifth heat exchanger, and connected to the first water circuit in the upstream of the pump via the sixth heat exchanger.

Description

ヒートポンプ装置Heat pump equipment
 本発明は、二元ヒートポンプ回路を備えたヒートポンプ装置に関するものである。 The present invention relates to a heat pump device including a dual heat pump circuit.
 特許文献1には、給湯装置が記載されている。この給湯装置は、圧縮機と第1熱交換器と膨張機構と第2熱交換器とが順に接続されるとともに二酸化炭素冷媒が充填された給湯用冷媒回路を備えている。第1熱交換器は温水生成用の熱交換器であり、第2熱交換器は、空調装置などの低段側冷媒回路の冷媒と二酸化炭素冷媒とが熱交換を行うカスケード熱交換器である。これにより、給湯装置では二元のヒートポンプサイクル動作が行われる。 Patent Document 1 describes a hot water supply device. This hot water supply apparatus includes a hot water supply refrigerant circuit in which a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger are sequentially connected and filled with carbon dioxide refrigerant. The first heat exchanger is a heat exchanger for generating hot water, and the second heat exchanger is a cascade heat exchanger in which heat is exchanged between the refrigerant in the low-stage refrigerant circuit such as an air conditioner and the carbon dioxide refrigerant. . Thereby, in the hot water supply device, a dual heat pump cycle operation is performed.
特許第3925383号公報Japanese Patent No. 3925383
 図13及び図14は、従来の給湯装置におけるCO冷媒の動作を示すp-h線図である。図13及び図14に示すように、臨界圧を超えて動作するCO冷媒の場合、凝縮温度が存在しないため、放熱行程のエンタルピ差は、放熱行程の温度差に概ね比例して変化する。したがって、図13に示すように入水温度が低い場合(例えば、20℃)には、放熱行程のエンタルピ差を大きくできるため、高いCOPが得られる。一方、図14に示すように入水温度が上昇すると(例えば、40℃)、放熱行程のエンタルピ差が小さくなるため、COPが低下してしまう。したがって、従来の給湯装置では、入水温度が低い給湯運転と入水温度が高い保温運転との両方で運転効率を高めるのが困難であるという課題があった。 13 and 14 are ph diagrams showing the operation of the CO 2 refrigerant in the conventional hot water supply apparatus. As shown in FIGS. 13 and 14, in the case of the CO 2 refrigerant operating above the critical pressure, since there is no condensation temperature, the enthalpy difference in the heat release stroke changes approximately in proportion to the temperature difference in the heat release stroke. Therefore, as shown in FIG. 13, when the incoming water temperature is low (for example, 20 ° C.), the enthalpy difference in the heat dissipation process can be increased, so that a high COP is obtained. On the other hand, as shown in FIG. 14, when the incoming water temperature rises (for example, 40 ° C.), the enthalpy difference in the heat release process is reduced, and the COP is lowered. Therefore, the conventional hot water supply apparatus has a problem that it is difficult to increase the operation efficiency in both the hot water supply operation with a low incoming water temperature and the heat insulation operation with a high incoming water temperature.
 また、従来の給湯装置では、最大能力を向上させるためにはユニットサイズを大型化する必要があるという課題があった。 Also, the conventional hot water supply apparatus has a problem that it is necessary to increase the unit size in order to improve the maximum capacity.
 本発明は、上述のような課題の少なくとも1つを解決するためになされたものであり、運転効率を高めることができるとともに、ユニットサイズの大型化を抑えつつ最大能力を向上させることができるヒートポンプ装置を提供することを目的とする。 The present invention has been made in order to solve at least one of the above-described problems, and is a heat pump that can improve operating efficiency and improve maximum capacity while suppressing increase in unit size. An object is to provide an apparatus.
 本発明に係るヒートポンプ装置は、第1冷媒を循環させる第1冷媒回路と、第2冷媒を循環させる第2冷媒回路と、第1流体を循環させる蓄熱回路と、水を流通させる水回路と、を備え、前記第1冷媒回路は、第1圧縮機と、前記第1冷媒と水との熱交換を行う第1熱交換器と、前記第1冷媒と前記第2冷媒との熱交換を行う第2熱交換器と、第1膨張弁と、前記第1冷媒と第2流体との熱交換を行う第3熱交換器と、前記第1冷媒と前記第1流体との熱交換を行う第4熱交換器と、が配管を介してこの順に接続された構成を有しており、前記第2冷媒回路は、第2圧縮機と、前記第2冷媒と水との熱交換を行う第5熱交換器と、第2膨張弁と、前記第2熱交換器と、が配管を介してこの順に接続された構成を有しており、前記蓄熱回路は、蓄熱タンクと、前記蓄熱タンクと前記第4熱交換器との間で前記第1流体を循環させる第1循環回路と、前記蓄熱タンクと、前記第1流体と水との熱交換を行う第6熱交換器と、の間で前記第1流体を循環させる第2循環回路と、を有しており、前記水回路は、水を圧送するポンプと前記第1熱交換器と前記第5熱交換器とが接続された第1回路と、前記ポンプと前記第1熱交換器との間で前記第1回路から分岐し、前記第1熱交換器と前記第5熱交換器との間で前記第1回路に接続された第2回路と、前記第5熱交換器の下流側で前記第1回路から分岐し、前記第6熱交換器を経由し、前記ポンプの上流側で前記第1回路に接続された第3回路と、を有しているものである。 The heat pump device according to the present invention includes a first refrigerant circuit for circulating the first refrigerant, a second refrigerant circuit for circulating the second refrigerant, a heat storage circuit for circulating the first fluid, a water circuit for circulating water, The first refrigerant circuit performs heat exchange between the first compressor, a first heat exchanger that exchanges heat between the first refrigerant and water, and the first refrigerant and the second refrigerant. A second heat exchanger, a first expansion valve, a third heat exchanger for exchanging heat between the first refrigerant and the second fluid, and a first for exchanging heat between the first refrigerant and the first fluid. 4 heat exchangers are connected in this order via pipes, and the second refrigerant circuit performs fifth heat exchange between the second compressor and the second refrigerant and water. A heat exchanger, a second expansion valve, and the second heat exchanger have a configuration connected in this order via piping, and the heat storage circuit A heat storage tank, a first circulation circuit that circulates the first fluid between the heat storage tank and the fourth heat exchanger, a sixth heat exchanger that performs heat exchange between the heat storage tank, the first fluid, and water. And a second circulation circuit for circulating the first fluid between the heat exchanger, the water circuit, a pump for pumping water, the first heat exchanger, and the fifth heat exchange. Branching from the first circuit between the first circuit to which the heat exchanger is connected, the pump and the first heat exchanger, and between the first heat exchanger and the fifth heat exchanger A second circuit connected to the first circuit; a branch from the first circuit on the downstream side of the fifth heat exchanger; the first circuit on the upstream side of the pump via the sixth heat exchanger; And a third circuit connected to.
 本発明によれば、運転効率を高めることができるとともに、ユニットサイズの大型化を抑えつつ最大能力を向上させることができる。 According to the present invention, the operating efficiency can be increased and the maximum capacity can be improved while suppressing an increase in unit size.
本発明の実施の形態1に係るヒートポンプ装置の概略の回路構成を示す回路図である。It is a circuit diagram which shows the schematic circuit structure of the heat pump apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ装置における給湯モードでの状態を示す図である。It is a figure which shows the state in the hot water supply mode in the heat pump apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ装置における保温モードでの状態を示す図である。It is a figure which shows the state in the heat retention mode in the heat pump apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ装置における蓄熱モードでの状態を示す図である。It is a figure which shows the state in the heat storage mode in the heat pump apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ装置における能力増強モードでの状態を示す図である。It is a figure which shows the state in the capability enhancement mode in the heat pump apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ装置における給湯及び蓄熱モードでの状態を示す図である。It is a figure which shows the state in the hot water supply and heat storage mode in the heat pump apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ装置における保温及び蓄熱モードでの状態を示す図である。It is a figure which shows the state in the heat retention and heat storage mode in the heat pump apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ装置における急速起動モードでの状態を示す図である。It is a figure which shows the state in the quick start mode in the heat pump apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態4に係るヒートポンプ装置で用いられるカプセルタイプの蓄熱材の概略構成を示す図である。It is a figure which shows schematic structure of the capsule-type heat storage material used with the heat pump apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態6に係るヒートポンプ装置の概略の回路構成を示す回路図である。It is a circuit diagram which shows the schematic circuit structure of the heat pump apparatus which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係るヒートポンプ装置の概略の回路構成を示す回路図である。It is a circuit diagram which shows the schematic circuit structure of the heat pump apparatus which concerns on Embodiment 7 of this invention. 本発明の実施の形態10に係るヒートポンプ装置の物理的な構成を示す模式図である。It is a schematic diagram which shows the physical structure of the heat pump apparatus which concerns on Embodiment 10 of this invention. 従来の給湯装置におけるCO冷媒の動作を示すp-h線図である。It is a ph diagram showing the operation of CO 2 refrigerant in a conventional hot water supply apparatus. 従来の給湯装置におけるCO冷媒の動作を示すp-h線図である。It is a ph diagram showing the operation of CO 2 refrigerant in a conventional hot water supply apparatus.
実施の形態1.
 本発明の実施の形態1に係るヒートポンプ装置について説明する。図1は、本実施の形態に係るヒートポンプ装置の概略の回路構成を示す回路図である。図1に示すように、ヒートポンプ装置は、第1冷媒を循環させる低元側の第1冷媒回路101と、第2冷媒を循環させる高元側の第2冷媒回路102と、を備えた二元ヒートポンプ回路103を有している。また、ヒートポンプ装置は、第1流体を循環させる蓄熱回路110と、水を流通させる水回路120と、を有している。
Embodiment 1 FIG.
A heat pump device according to Embodiment 1 of the present invention will be described. FIG. 1 is a circuit diagram showing a schematic circuit configuration of the heat pump device according to the present embodiment. As shown in FIG. 1, the heat pump apparatus includes a binary circuit including a low-side first refrigerant circuit 101 that circulates a first refrigerant and a high-side second refrigerant circuit 102 that circulates a second refrigerant. A heat pump circuit 103 is included. Moreover, the heat pump apparatus has a heat storage circuit 110 that circulates the first fluid and a water circuit 120 that circulates water.
(第1冷媒回路101)
 第1冷媒回路101は、第1圧縮機1、第1熱交換器2、第2熱交換器3、第1膨張弁4、第3熱交換器5及び第4熱交換器6が冷媒配管を介してこの順に環状に接続された構成を有している。第1冷媒回路101内を循環する第1冷媒としては、例えば、少なくとも第1冷媒回路101を単独で運転する際に超臨界領域で動作する冷媒(例えば、COを少なくとも一成分に含む冷媒)が用いられる。すなわち、少なくとも第1冷媒回路101を単独で運転する際における第1冷媒回路101の高圧側圧力は、第1冷媒の臨界圧力以上となる。
(First refrigerant circuit 101)
In the first refrigerant circuit 101, the first compressor 1, the first heat exchanger 2, the second heat exchanger 3, the first expansion valve 4, the third heat exchanger 5, and the fourth heat exchanger 6 are connected to the refrigerant pipe. Through the ring in this order. As the first refrigerant circulating in the first refrigerant circuit 101, for example, a refrigerant that operates in a supercritical region when operating at least the first refrigerant circuit 101 alone (for example, a refrigerant containing at least one component of CO 2 ). Is used. That is, at least when the first refrigerant circuit 101 is operated alone, the high-pressure side pressure of the first refrigerant circuit 101 is equal to or higher than the critical pressure of the first refrigerant.
 第1圧縮機1は、低圧の第1冷媒を吸入して圧縮し、高圧冷媒として吐出する流体機械である。 The first compressor 1 is a fluid machine that sucks and compresses a low-pressure first refrigerant and discharges it as a high-pressure refrigerant.
 第1熱交換器2及び第2熱交換器3のそれぞれは、第1冷媒回路101における高圧側の熱交換器であり、第1冷媒から熱を放熱させる放熱器として機能する。第1熱交換器2は、水と第1冷媒との熱交換を行う水-冷媒熱交換器である。第1熱交換器2では、第1冷媒から水に熱が放熱され、水が加熱されるとともに第1冷媒が冷却される。第2熱交換器3は、低元側の第1冷媒と高元側の第2冷媒との熱交換を行うカスケード熱交換器である。第2熱交換器3では、第1冷媒から第2冷媒に熱が放熱され、第2冷媒が加熱されるとともに第1冷媒がさらに冷却される。 Each of the first heat exchanger 2 and the second heat exchanger 3 is a high-pressure side heat exchanger in the first refrigerant circuit 101, and functions as a radiator that radiates heat from the first refrigerant. The first heat exchanger 2 is a water-refrigerant heat exchanger that performs heat exchange between water and the first refrigerant. In the first heat exchanger 2, heat is radiated from the first refrigerant to the water, the water is heated and the first refrigerant is cooled. The second heat exchanger 3 is a cascade heat exchanger that performs heat exchange between the first refrigerant on the lower side and the second refrigerant on the higher side. In the second heat exchanger 3, heat is radiated from the first refrigerant to the second refrigerant, the second refrigerant is heated, and the first refrigerant is further cooled.
 第1膨張弁4は、高圧の第1冷媒を等エンタルピ的に減圧し、低圧冷媒として流出させるものである。第1膨張弁4としては、制御装置の制御により開度を調節可能な電子式膨張弁などが用いられる。 The first expansion valve 4 decompresses the high-pressure first refrigerant in an enthalpy manner and causes it to flow out as a low-pressure refrigerant. As the first expansion valve 4, an electronic expansion valve or the like whose opening degree can be adjusted by the control of the control device is used.
 第3熱交換器5及び第4熱交換器6のそれぞれは、第1冷媒回路101における低圧側の熱交換器であり、第1冷媒に熱を吸熱させて第1冷媒を蒸発させる蒸発器として機能する。第3熱交換器5は、第1冷媒と第2流体との熱交換を行う熱交換器である。本例では、第2流体として、不図示の送風ファンにより供給される室外空気が用いられる。このため、第3熱交換器5は、室外空気と第1冷媒との熱交換を行う空気-冷媒熱交換器となる。第3熱交換器5では、第2流体から第1冷媒に熱が放熱され、第1冷媒が加熱される。第4熱交換器6は、第1冷媒と第1流体との熱交換が行う熱交換器である。第4熱交換器6では、第1流体から第1冷媒に熱が放熱され、第1冷媒が加熱されるとともに第1流体が冷却される。 Each of the third heat exchanger 5 and the fourth heat exchanger 6 is a low-pressure heat exchanger in the first refrigerant circuit 101, and is an evaporator that absorbs heat to the first refrigerant and evaporates the first refrigerant. Function. The third heat exchanger 5 is a heat exchanger that performs heat exchange between the first refrigerant and the second fluid. In this example, outdoor air supplied by a blower fan (not shown) is used as the second fluid. Therefore, the third heat exchanger 5 is an air-refrigerant heat exchanger that performs heat exchange between the outdoor air and the first refrigerant. In the third heat exchanger 5, heat is radiated from the second fluid to the first refrigerant, and the first refrigerant is heated. The fourth heat exchanger 6 is a heat exchanger that performs heat exchange between the first refrigerant and the first fluid. In the fourth heat exchanger 6, heat is radiated from the first fluid to the first refrigerant, and the first refrigerant is heated and the first fluid is cooled.
(第2冷媒回路102)
 第2冷媒回路102は、第2圧縮機7、第5熱交換器8、第2膨張弁9及び上記の第2熱交換器3が冷媒配管を介してこの順に環状に接続された構成を有している。第2冷媒回路102内を循環する第2冷媒としては、例えば、超臨界領域以下で動作する冷媒が用いられる。すなわち、第2冷媒回路102の高圧側圧力は、第2冷媒の臨界圧力以下となる。
(Second refrigerant circuit 102)
The second refrigerant circuit 102 has a configuration in which the second compressor 7, the fifth heat exchanger 8, the second expansion valve 9, and the second heat exchanger 3 are annularly connected in this order via a refrigerant pipe. is doing. As the second refrigerant circulating in the second refrigerant circuit 102, for example, a refrigerant that operates in a supercritical region or less is used. That is, the high-pressure side pressure of the second refrigerant circuit 102 is equal to or lower than the critical pressure of the second refrigerant.
 第2圧縮機7は、低圧の第2冷媒を吸入して圧縮し、高圧冷媒として吐出する流体機械である。 The second compressor 7 is a fluid machine that sucks in and compresses the low-pressure second refrigerant and discharges it as a high-pressure refrigerant.
 第5熱交換器8は、第2冷媒回路102における高圧側の熱交換器であり、第2冷媒から熱を放熱させて第2冷媒を凝縮させる放熱器(凝縮器)として機能する。第5熱交換器8は、水と第2冷媒との熱交換を行う水-冷媒熱交換器である。第5熱交換器8では、第2冷媒から水に熱が放熱され、水が加熱されるとともに第2冷媒が冷却される。 The fifth heat exchanger 8 is a high-pressure heat exchanger in the second refrigerant circuit 102, and functions as a radiator (condenser) that dissipates heat from the second refrigerant and condenses the second refrigerant. The fifth heat exchanger 8 is a water-refrigerant heat exchanger that performs heat exchange between water and the second refrigerant. In the fifth heat exchanger 8, heat is radiated from the second refrigerant to the water, the water is heated and the second refrigerant is cooled.
 第2膨張弁9は、高圧の第2冷媒を等エンタルピ的に減圧し、低圧冷媒として流出させるものである。第2膨張弁9としては、制御装置の制御により開度を調節可能な電子式膨張弁などが用いられる。 The second expansion valve 9 decompresses the high-pressure second refrigerant in an enthalpy manner and causes it to flow out as a low-pressure refrigerant. As the second expansion valve 9, an electronic expansion valve whose opening degree can be adjusted by the control of a control device is used.
 第2熱交換器3は、第2冷媒回路102における低圧側の熱交換器であり、第2冷媒に熱を吸熱させて第2冷媒を蒸発させる蒸発器として機能する。上述のように、第2熱交換器3は、第1冷媒と第2冷媒との熱交換を行うカスケード熱交換器である。 The second heat exchanger 3 is a low-pressure heat exchanger in the second refrigerant circuit 102, and functions as an evaporator that absorbs heat by the second refrigerant and evaporates the second refrigerant. As described above, the second heat exchanger 3 is a cascade heat exchanger that performs heat exchange between the first refrigerant and the second refrigerant.
(蓄熱回路110)
 蓄熱回路110は、蓄熱タンク10と、それぞれ第1流体を循環させる第1循環回路111及び第2循環回路112と、を有している。本例の蓄熱タンク10には、ゲル状の蓄熱材が封入されている。蓄熱材としては、水よりも大きい熱容量を有する材料が用いられる。蓄熱タンク10内では、第1流体と蓄熱材との熱交換が行われる。本例の第1流体としては、水又はブライン等の液状熱媒体が用いられる。
(Heat storage circuit 110)
The heat storage circuit 110 includes the heat storage tank 10 and a first circulation circuit 111 and a second circulation circuit 112 that circulate the first fluid, respectively. A gel-like heat storage material is enclosed in the heat storage tank 10 of this example. As the heat storage material, a material having a heat capacity larger than that of water is used. In the heat storage tank 10, heat exchange between the first fluid and the heat storage material is performed. As the first fluid in this example, a liquid heat medium such as water or brine is used.
 第1循環回路111は、蓄熱タンク10と第4熱交換器6との間で第1流体を循環させるものである。第1循環回路111には、第1流体を圧送するポンプ11が設けられている。上述のように、第4熱交換器6は、第1冷媒と第1流体との熱交換が行う熱交換器である。第4熱交換器6では、第1流体から第1冷媒に熱が放熱され、第1冷媒が加熱されるとともに第1流体が冷却される。 The first circulation circuit 111 circulates the first fluid between the heat storage tank 10 and the fourth heat exchanger 6. The first circulation circuit 111 is provided with a pump 11 that pumps the first fluid. As described above, the fourth heat exchanger 6 is a heat exchanger that performs heat exchange between the first refrigerant and the first fluid. In the fourth heat exchanger 6, heat is radiated from the first fluid to the first refrigerant, and the first refrigerant is heated and the first fluid is cooled.
 第2循環回路112は、蓄熱タンク10と第6熱交換器17との間で第1流体を循環させるものである。本例では、第2循環回路112は、第1循環回路111とポンプ11を共有しており、第1循環回路111から分岐して設けられている。第1循環回路111と第2循環回路112との分岐部には、流路切替装置16が設けられている。流路切替装置16は、例えば、三方弁又は複数の二方弁などで構成されている。流路切替装置16では、ポンプ11で圧送される第1流体が第1循環回路111又は第2循環回路112のいずれを循環するかが切り替えられる。すなわち、流路切替装置16では、第1流体が第4熱交換器6又は第6熱交換器17のいずれに流入するかが切り替えられる。 The second circulation circuit 112 circulates the first fluid between the heat storage tank 10 and the sixth heat exchanger 17. In this example, the second circulation circuit 112 shares the pump 11 with the first circulation circuit 111 and is provided to be branched from the first circulation circuit 111. A flow path switching device 16 is provided at a branch portion between the first circulation circuit 111 and the second circulation circuit 112. The flow path switching device 16 is configured by, for example, a three-way valve or a plurality of two-way valves. In the flow path switching device 16, it is switched whether the first fluid pumped by the pump 11 circulates in the first circulation circuit 111 or the second circulation circuit 112. That is, in the flow path switching device 16, it is switched whether the first fluid flows into the fourth heat exchanger 6 or the sixth heat exchanger 17.
 第6熱交換器17は、第1流体と水との熱交換を行う熱交換器である。第6熱交換器17では、水から第1流体に熱が放熱され、第1流体が加熱される。 The sixth heat exchanger 17 is a heat exchanger that performs heat exchange between the first fluid and water. In the sixth heat exchanger 17, heat is radiated from water to the first fluid, and the first fluid is heated.
(水回路120)
 水回路120は、それぞれ水を流通させる第1回路121、第2回路122及び第3回路123を有している。なお、水回路120を流通する流体としては、水だけでなくブライン等の液状熱媒体を用いることができる。
(Water circuit 120)
The water circuit 120 includes a first circuit 121, a second circuit 122, and a third circuit 123 through which water flows. In addition, as a fluid which distribute | circulates the water circuit 120, liquid heat media, such as not only water but brine, can be used.
 第1回路121は、水を圧送するポンプ12と、上記の第1熱交換器2と、上記の第5熱交換器8と、が水配管を介してこの順に接続された構成を有している。第1回路121の上流端には、ヒートポンプ装置の外部から水又は低温の湯を流入させる流入部120a(入水部)が設けられている。第1回路121の下流端には、ヒートポンプ装置の外部に湯を流出させる流出部120b(出湯部)が設けられている。 The first circuit 121 has a configuration in which the pump 12 that pumps water, the first heat exchanger 2, and the fifth heat exchanger 8 are connected in this order via a water pipe. Yes. An upstream portion of the first circuit 121 is provided with an inflow portion 120a (water intake portion) through which water or low-temperature hot water flows from the outside of the heat pump device. At the downstream end of the first circuit 121, an outflow part 120b (outflow part) for allowing hot water to flow out of the heat pump device is provided.
 第2回路122は、ポンプ12と第1熱交換器2との間で第1回路121から分岐しており、第1熱交換器2と第5熱交換器8との間で第1回路121に接続されている。すなわち、第2回路122は、第1回路121におけるポンプ12と第5熱交換器8との間を、第1熱交換器2を経由せずに接続する回路である。第1回路121と第2回路122との分岐部には、流路切替装置14が設けられている。流路切替装置14は、例えば、三方弁又は複数の二方弁などで構成されている。流路切替装置14では、ポンプ12で圧送される水が第1熱交換器2を通るか、又は第2回路122を通るかが切り替えられる。 The second circuit 122 branches from the first circuit 121 between the pump 12 and the first heat exchanger 2, and the first circuit 121 is between the first heat exchanger 2 and the fifth heat exchanger 8. It is connected to the. That is, the second circuit 122 is a circuit that connects the pump 12 and the fifth heat exchanger 8 in the first circuit 121 without passing through the first heat exchanger 2. A flow path switching device 14 is provided at a branch portion between the first circuit 121 and the second circuit 122. The flow path switching device 14 is configured by, for example, a three-way valve or a plurality of two-way valves. In the flow path switching device 14, it is switched whether the water pumped by the pump 12 passes through the first heat exchanger 2 or the second circuit 122.
 第3回路123は、第5熱交換器8の下流側で第1回路121から分岐しており、第6熱交換器17を経由しており、ポンプ12の上流側で第1回路121に接続されている。 The third circuit 123 branches from the first circuit 121 on the downstream side of the fifth heat exchanger 8, passes through the sixth heat exchanger 17, and is connected to the first circuit 121 on the upstream side of the pump 12. Has been.
 第1回路121と第3回路123との分岐部には、流路切替装置15が設けられている。流路切替装置15は、例えば、三方弁又は複数の二方弁などで構成されている。流路切替装置15では、第5熱交換器8を通過した水が、流出部120bを介して外部に流出するか、又は第6熱交換器17を経由してポンプ12の上流側に戻るかが切り替えられる。また、流路切替装置15は、単に流路を切り替えるだけでなく、流出部120bを介して外部に流出する水の流量と、第6熱交換器17を経由してポンプ12の上流側に戻る水の流量と、の流量比を調節できるようになっている。流路切替装置15は、例えば、流路を切り替える切替弁と、流量を調整する流量調整弁と、が組み合わされた構成であってもよい。 A flow path switching device 15 is provided at a branch portion between the first circuit 121 and the third circuit 123. The flow path switching device 15 is configured by, for example, a three-way valve or a plurality of two-way valves. In the flow path switching device 15, whether the water that has passed through the fifth heat exchanger 8 flows out to the outside via the outflow portion 120b or returns to the upstream side of the pump 12 through the sixth heat exchanger 17 Is switched. In addition, the flow path switching device 15 does not simply switch the flow path, but returns to the upstream side of the pump 12 via the flow rate of water flowing out to the outside via the outflow portion 120 b and the sixth heat exchanger 17. The flow rate of water and the flow rate ratio can be adjusted. For example, the flow path switching device 15 may have a configuration in which a switching valve that switches the flow path and a flow rate adjustment valve that adjusts the flow rate are combined.
 第1回路121と第3回路123との接続部には、流路切替装置13が設けられている。流路切替装置13は、例えば、三方弁又は複数の二方弁などで構成されている。流路切替装置13では、流入部120aを介して外部から流入する水と、第6熱交換器17を経由してポンプ12の上流側に戻る水と、のいずれがポンプ12に吸入されるかが切り替えられる。また、流路切替装置13は、単に流路を切り替えるだけでなく、流入部120aを介して外部から流入する水の流量と、第6熱交換器17を経由してポンプ12の上流側に戻る水の流量と、の流量比を調節できるようになっている。流路切替装置13は、例えば、流路を切り替える切替弁と、流量を調整する流量調整弁と、が組み合わされた構成であってもよい。 The flow path switching device 13 is provided at the connection between the first circuit 121 and the third circuit 123. The flow path switching device 13 is configured by, for example, a three-way valve or a plurality of two-way valves. In the flow path switching device 13, which of water that flows in from the outside through the inflow portion 120 a and water that returns to the upstream side of the pump 12 through the sixth heat exchanger 17 is sucked into the pump 12. Is switched. In addition, the flow path switching device 13 not only simply switches the flow path, but also returns to the upstream side of the pump 12 via the flow rate of water flowing from the outside via the inflow portion 120 a and the sixth heat exchanger 17. The flow rate of water and the flow rate ratio can be adjusted. The flow path switching device 13 may have a configuration in which, for example, a switching valve that switches the flow path and a flow rate adjustment valve that adjusts the flow rate are combined.
(制御装置200)
 また、ヒートポンプ装置は、第1冷媒回路101、第2冷媒回路102、蓄熱回路110及び水回路120を含むヒートポンプ装置全体を制御する制御装置200を有している。制御装置200は、CPU、ROM、RAM、I/Oポート、タイマ等を備えたマイクロコンピュータを有している。制御装置200では、運転モードの設定、又は不図示のセンサ類からの検出信号等に基づき、第1圧縮機1、第2圧縮機7、第1膨張弁4、第2膨張弁9、ポンプ11、流路切替装置16、ポンプ12、流路切替装置13、14、15、不図示の送風ファン等の各種アクチュエータの動作が制御される。
(Control device 200)
Further, the heat pump device has a control device 200 that controls the entire heat pump device including the first refrigerant circuit 101, the second refrigerant circuit 102, the heat storage circuit 110, and the water circuit 120. The control device 200 has a microcomputer provided with a CPU, ROM, RAM, I / O port, timer, and the like. In the control device 200, the first compressor 1, the second compressor 7, the first expansion valve 4, the second expansion valve 9, and the pump 11 are set based on operation mode settings or detection signals from sensors (not shown). The operations of various actuators such as the flow path switching device 16, the pump 12, the flow path switching devices 13, 14, 15 and a blower fan (not shown) are controlled.
 制御装置200は、ヒートポンプ装置の運転モードとして、給湯モード(第1運転モードの一例)、保温モード(第2運転モードの一例)、蓄熱モード(第3運転モードの一例)、能力増強モード(第4運転モードの一例)、給湯及び蓄熱モード(第5運転モードの一例)、保温及び蓄熱モード(第6運転モードの一例)、及び急速起動モード(第7運転モードの一例)を実行可能である。各運転モードは、ユーザの操作、外部からの指令、又はセンサ類からの検出信号等に基づいて切り替えられる。以下、各運転モードについて説明する。なお、以下に説明する各種アクチュエータの動作は、各運転モードを実行するための一例である。 The control device 200 has, as operation modes of the heat pump device, a hot water supply mode (an example of the first operation mode), a heat retention mode (an example of the second operation mode), a heat storage mode (an example of the third operation mode), and a capacity enhancement mode (the first 4 example of operation mode), hot water supply and heat storage mode (example of fifth operation mode), heat retention and heat storage mode (example of sixth operation mode), and quick start mode (example of seventh operation mode) can be executed. . Each operation mode is switched based on a user operation, an external command, a detection signal from a sensor, or the like. Hereinafter, each operation mode will be described. Note that the operations of the various actuators described below are examples for executing each operation mode.
(給湯モード)
 図2は、本実施の形態に係るヒートポンプ装置における給湯モードでの状態を示す図である。給湯モードでは、第1圧縮機1は、出湯温度が目標値に近づくように制御される。第1膨張弁4は、第1冷媒回路101の過熱度、吐出温度又は吐出圧力が目標値に近づくように制御される。第3熱交換器5では、送風ファンにより送風される室外空気と第1冷媒との熱交換が行われる。第2圧縮機7及びポンプ11は停止している。ポンプ12は運転している。流路切替装置13、14、15は、流入部120aを介して外部から流入する水が、第1熱交換器2及び第5熱交換器8をこの順に直列に通過し、流出部120bを介して外部に流出するように設定される。なお、第2圧縮機7は停止しているため、第5熱交換器8では第2冷媒と水との熱交換は行われない。
(Hot water supply mode)
FIG. 2 is a diagram showing a state in the hot water supply mode in the heat pump device according to the present embodiment. In the hot water supply mode, the first compressor 1 is controlled so that the hot water temperature approaches the target value. The first expansion valve 4 is controlled such that the degree of superheat, the discharge temperature, or the discharge pressure of the first refrigerant circuit 101 approaches the target value. In the third heat exchanger 5, heat exchange between the outdoor air blown by the blower fan and the first refrigerant is performed. The second compressor 7 and the pump 11 are stopped. The pump 12 is operating. In the flow path switching devices 13, 14, and 15, the water flowing in from the outside through the inflow portion 120a passes through the first heat exchanger 2 and the fifth heat exchanger 8 in series in this order, and passes through the outflow portion 120b. Is set to flow outside. In addition, since the 2nd compressor 7 has stopped, in the 5th heat exchanger 8, heat exchange with a 2nd refrigerant | coolant and water is not performed.
 給湯モードでは、外部から流入する水は、第1熱交換器2での熱交換によって加熱され、高温の湯として外部に流出する。これにより、給湯モードでは、室外空気からの採熱によって給湯が可能となる。第1冷媒回路101は臨界圧以上で動作しているため、高いCOPで運転することができる。 In the hot water supply mode, water flowing from the outside is heated by heat exchange in the first heat exchanger 2 and flows out to the outside as hot water. Thereby, in the hot water supply mode, hot water can be supplied by collecting heat from outdoor air. Since the first refrigerant circuit 101 operates at a critical pressure or higher, it can be operated at a high COP.
(保温モード)
 図3は、本実施の形態に係るヒートポンプ装置における保温モードでの状態を示す図である。保温モードは、入水温度の上昇によって入水温度と出湯温度との温度差が小さくなった場合に実行される運転モードである。保温モードは、例えば、給湯モードの実行中において、入水温度が所定温度以上であるか、又は入水温度と目標出湯温度との温度差が所定値以下である場合に実行される。
(Insulation mode)
FIG. 3 is a diagram showing a state in the heat retention mode in the heat pump apparatus according to the present embodiment. The heat retention mode is an operation mode that is executed when the temperature difference between the incoming water temperature and the outgoing hot water temperature becomes smaller due to an increase in incoming water temperature. The heat retention mode is executed, for example, when the incoming water temperature is equal to or higher than a predetermined temperature or the temperature difference between the incoming water temperature and the target hot water temperature is lower than a predetermined value during execution of the hot water supply mode.
 保温モードでは、第1圧縮機1は、第1冷媒回路101の吐出圧力が目標値に近づくように制御される。第1膨張弁4は、第1冷媒回路101の過熱度又は吐出温度が目標値に近づくように制御される。第3熱交換器5では、送風ファンにより送風される室外空気と第1冷媒との熱交換が行われる。第2圧縮機7は、出湯温度が目標値に近づくように制御される。なお、第1圧縮機1の制御目標と第2圧縮機7の制御目標とは逆であってもよい。すなわち、第1圧縮機1は、出湯温度が目標値に近づくように制御され、第2圧縮機7は、第1冷媒回路101の吐出圧力が目標値に近づくように制御されるようにしてもよい。第2膨張弁9は、第2冷媒回路102の過熱度、吐出温度又は吐出圧力が目標値に近づくように制御される。ポンプ11は停止している。ポンプ12は運転している。流路切替装置13、14、15は、流入部120aを介して外部から流入する水が、第2回路122を経由して第5熱交換器8を通過し、流出部120bを介して外部に流出するように設定される。 In the heat retention mode, the first compressor 1 is controlled so that the discharge pressure of the first refrigerant circuit 101 approaches the target value. The first expansion valve 4 is controlled such that the degree of superheat or the discharge temperature of the first refrigerant circuit 101 approaches the target value. In the third heat exchanger 5, heat exchange between the outdoor air blown by the blower fan and the first refrigerant is performed. The second compressor 7 is controlled so that the tapping temperature approaches the target value. The control target of the first compressor 1 and the control target of the second compressor 7 may be reversed. That is, the first compressor 1 is controlled such that the tapping temperature approaches the target value, and the second compressor 7 is controlled so that the discharge pressure of the first refrigerant circuit 101 approaches the target value. Good. The second expansion valve 9 is controlled so that the degree of superheat, the discharge temperature, or the discharge pressure of the second refrigerant circuit 102 approaches the target value. The pump 11 is stopped. The pump 12 is operating. The flow path switching devices 13, 14, and 15 are configured such that water flowing in from the outside through the inflow portion 120 a passes through the fifth heat exchanger 8 through the second circuit 122, and passes through the outflow portion 120 b to the outside. Set to spill.
 保温モードでは、第1冷媒回路101と第2冷媒回路102とによって二元サイクルが構成される。このため、第1冷媒回路101及び第2冷媒回路102の双方を臨界圧以下で運転することができ、第1冷媒回路101及び第2冷媒回路102の双方で冷媒を凝縮させることができる。したがって、入水温度が上昇して入水温度と出湯温度との温度差が小さくなったとしても、エンタルピ差を大きくできるため、高いCOPで運転することができる。 In the heat retention mode, the first refrigerant circuit 101 and the second refrigerant circuit 102 constitute a dual cycle. Therefore, both the first refrigerant circuit 101 and the second refrigerant circuit 102 can be operated at a critical pressure or less, and the refrigerant can be condensed in both the first refrigerant circuit 101 and the second refrigerant circuit 102. Therefore, even if the incoming water temperature rises and the temperature difference between the incoming water temperature and the outgoing hot water temperature becomes smaller, the difference in enthalpy can be increased, so that operation with a high COP can be performed.
(蓄熱モード)
 図4は、本実施の形態に係るヒートポンプ装置における蓄熱モードでの状態を示す図である。蓄熱モードは、例えば、負荷側で必要熱量がなく給湯モード及び保温モードでの運転を行わない場合、蓄熱タンク10の残存蓄熱量が不足している場合、又は蓄熱タンク10の残存蓄熱量の不足が予測される場合に実行される。
(Heat storage mode)
FIG. 4 is a diagram showing a state in the heat storage mode in the heat pump device according to the present embodiment. The heat storage mode is, for example, when there is no necessary heat amount on the load side and the operation in the hot water supply mode and the heat insulation mode is not performed, when the residual heat storage amount of the heat storage tank 10 is insufficient, or the residual heat storage amount of the heat storage tank 10 is insufficient It is executed when is predicted.
 蓄熱モードでは、第1圧縮機1は、第1冷媒回路101の吐出圧力が目標値に近づくように制御される。第1膨張弁4は、第1冷媒回路101の過熱度又は吐出温度が目標値に近づくように制御される。第3熱交換器5では、送風ファンにより送風される室外空気と第1冷媒との熱交換が行われる。第2圧縮機7は、出湯温度が目標値に近づくように制御される。なお、第1圧縮機1の制御目標と第2圧縮機7の制御目標とは逆であってもよい。第2膨張弁9は、第2冷媒回路102の過熱度、吐出温度又は吐出圧力が目標値に近づくように制御される。ポンプ11は運転している。流路切替装置16は、第1流体が第2循環回路112を循環するように設定される。ポンプ12は運転している。流路切替装置13、14、15は、ポンプ12、第2回路122、第5熱交換器8、第3回路123及び第6熱交換器17を水が循環する閉回路が形成されるように設定される。これにより、第6熱交換器17では、水からの吸熱によって第1流体が加熱される。蓄熱タンク10では、第1流体から放熱される熱が蓄熱材に蓄熱される。 In the heat storage mode, the first compressor 1 is controlled so that the discharge pressure of the first refrigerant circuit 101 approaches the target value. The first expansion valve 4 is controlled such that the degree of superheat or the discharge temperature of the first refrigerant circuit 101 approaches the target value. In the third heat exchanger 5, heat exchange between the outdoor air blown by the blower fan and the first refrigerant is performed. The second compressor 7 is controlled so that the tapping temperature approaches the target value. The control target of the first compressor 1 and the control target of the second compressor 7 may be reversed. The second expansion valve 9 is controlled so that the degree of superheat, the discharge temperature, or the discharge pressure of the second refrigerant circuit 102 approaches the target value. The pump 11 is operating. The flow path switching device 16 is set so that the first fluid circulates through the second circulation circuit 112. The pump 12 is operating. The flow path switching devices 13, 14, 15 are formed so as to form a closed circuit in which water circulates through the pump 12, the second circuit 122, the fifth heat exchanger 8, the third circuit 123, and the sixth heat exchanger 17. Is set. Thereby, in the 6th heat exchanger 17, the 1st fluid is heated by heat absorption from water. In the heat storage tank 10, the heat radiated from the first fluid is stored in the heat storage material.
 蓄熱モードでは、第1冷媒回路101と第2冷媒回路102とによって二元サイクルが構成される。このため、第1冷媒回路101及び第2冷媒回路102の双方を臨界圧以下で運転することができ、第1冷媒回路101及び第2冷媒回路102の双方で冷媒を凝縮させることができる。したがって、入水温度が上昇する蓄熱運転においてもエンタルピ差を大きくできるため、高いCOPで運転することができる。 In the heat storage mode, the first refrigerant circuit 101 and the second refrigerant circuit 102 constitute a dual cycle. Therefore, both the first refrigerant circuit 101 and the second refrigerant circuit 102 can be operated at a critical pressure or less, and the refrigerant can be condensed in both the first refrigerant circuit 101 and the second refrigerant circuit 102. Therefore, since the enthalpy difference can be increased even in the heat storage operation in which the incoming water temperature rises, the operation can be performed with a high COP.
(能力増強モード)
 図5は、本実施の形態に係るヒートポンプ装置における能力増強モードでの状態を示す図である。能力増強モードは、例えば、第1圧縮機1の周波数が上限に達した場合、第1冷媒回路101の高圧側圧力が所定値に達しても出湯温度が目標出湯温度に達しない場合、又は、出湯水量が目標出湯水量に達しない場合に実行される。
(Capacity enhancement mode)
FIG. 5 is a diagram showing a state in the capacity enhancement mode in the heat pump device according to the present embodiment. In the capacity enhancement mode, for example, when the frequency of the first compressor 1 has reached the upper limit, the hot water temperature does not reach the target hot water temperature even when the high pressure side pressure of the first refrigerant circuit 101 reaches a predetermined value, or It is executed when the amount of hot water does not reach the target amount of hot water.
 能力増強モードでは、第1圧縮機1は、第1冷媒回路101の吐出圧力が目標値に近づくように制御される。第1膨張弁4は、第1冷媒回路101の過熱度又は吐出温度が目標値に近づくように制御される。第3熱交換器5では、室外空気と第1冷媒との熱交換が行われない。すなわち、送風ファンは停止される。第2圧縮機7は、出湯温度が目標値に近づくように制御される。なお、第1圧縮機1の制御目標と第2圧縮機7の制御目標とは逆であってもよい。第2膨張弁9は、第2冷媒回路102の過熱度、吐出温度又は吐出圧力が目標値に近づくように制御される。ポンプ11は運転している。流路切替装置16は、第1流体が第1循環回路111を循環するように設定される。これにより、第4熱交換器6では、第1流体からの吸熱によって第1冷媒が蒸発する。ポンプ12は運転している。流路切替装置13、14、15は、流入部120aを介して外部から流入する水が、第1熱交換器2及び第5熱交換器8をこの順に直列に通過し、流出部120bを介して外部に流出するように設定される。 In the capacity enhancement mode, the first compressor 1 is controlled so that the discharge pressure of the first refrigerant circuit 101 approaches the target value. The first expansion valve 4 is controlled such that the degree of superheat or the discharge temperature of the first refrigerant circuit 101 approaches the target value. In the third heat exchanger 5, heat exchange between the outdoor air and the first refrigerant is not performed. That is, the blower fan is stopped. The second compressor 7 is controlled so that the tapping temperature approaches the target value. The control target of the first compressor 1 and the control target of the second compressor 7 may be reversed. The second expansion valve 9 is controlled so that the degree of superheat, the discharge temperature, or the discharge pressure of the second refrigerant circuit 102 approaches the target value. The pump 11 is operating. The flow path switching device 16 is set so that the first fluid circulates through the first circulation circuit 111. Thereby, in the 4th heat exchanger 6, a 1st refrigerant | coolant evaporates by the heat absorption from a 1st fluid. The pump 12 is operating. In the flow path switching devices 13, 14, and 15, the water flowing in from the outside through the inflow portion 120a passes through the first heat exchanger 2 and the fifth heat exchanger 8 in series in this order, and passes through the outflow portion 120b. Is set to flow outside.
 能力増強モードでは、水が第1熱交換器2及び第5熱交換器8で二段階に加熱される。これにより、給湯能力を高めることができるため、出湯温度を上昇させること又は出湯水量を増加させることが可能となる。また、能力増強モードでは、第1冷媒回路101に蓄熱材から熱を供給することにより第1圧縮機1の吸入圧力を上昇させることができるため、外気温度に関わらず高い能力を発揮することができる。さらに、高元側の第2冷媒回路102で低元側の第1冷媒回路101を冷却することにより、第1冷媒回路101の吸入圧力が上昇しても吐出圧力の上昇を抑制できる。このため、第1冷媒回路101の設計圧力を低くすることができ、配管や容器などの肉厚を薄くすることができる。また、能力増強モードでは、高いCOPで蓄熱された熱が熱源として用いられるため、高いCOPで運転することができる。以上のように、能力増強モードでは高い能力を得ることができるため、ヒートポンプ装置のユニット数の削減や設置面積の削減が可能となる。 In the capacity enhancement mode, water is heated in two stages by the first heat exchanger 2 and the fifth heat exchanger 8. Thereby, since hot water supply capability can be improved, it becomes possible to raise the hot water temperature or to increase the amount of hot water. Further, in the capacity enhancement mode, the suction pressure of the first compressor 1 can be increased by supplying heat from the heat storage material to the first refrigerant circuit 101, so that a high capacity can be exhibited regardless of the outside air temperature. it can. Further, by cooling the low refrigerant side first refrigerant circuit 101 with the high refrigerant side second refrigerant circuit 102, an increase in discharge pressure can be suppressed even if the suction pressure of the first refrigerant circuit 101 increases. For this reason, the design pressure of the 1st refrigerant circuit 101 can be made low, and thickness, such as piping and a container, can be made thin. Further, in the capacity enhancement mode, the heat stored in the high COP is used as a heat source, so that the operation can be performed with the high COP. As described above, since a high capability can be obtained in the capability enhancement mode, the number of units and the installation area of the heat pump device can be reduced.
(給湯及び蓄熱モード)
 図6は、本実施の形態に係るヒートポンプ装置における給湯及び蓄熱モードでの状態を示す図である。給湯及び蓄熱モードは、例えば、給湯モードの実行中において蓄熱タンク10の残存蓄熱量が不足している場合、又は給湯モードの実行中において蓄熱タンク10の残存蓄熱量の不足が予測される場合に実行される。
(Hot water supply and heat storage mode)
FIG. 6 is a diagram illustrating a state in the hot water supply and heat storage modes in the heat pump device according to the present embodiment. In the hot water supply and heat storage mode, for example, when the remaining heat storage amount of the heat storage tank 10 is insufficient during execution of the hot water supply mode, or when the shortage of the remaining heat storage amount of the heat storage tank 10 is predicted during execution of the hot water supply mode. Executed.
 給湯及び蓄熱モードでは、第1圧縮機1は、出湯温度が目標値に近づくように制御される。第1膨張弁4は、第1冷媒回路101の過熱度又は吐出温度が目標値に近づくように制御される。第3熱交換器5では、送風ファンにより送風される室外空気と第1冷媒との熱交換が行われる。第2圧縮機7は停止している。ポンプ11は運転している。流路切替装置16は、第1流体が第2循環回路112を循環するように設定される。ポンプ12は運転している。流路切替装置13、14、15は、流入部120aを介して外部から流入する水が、第1熱交換器2及び第5熱交換器8をこの順に直列に通過し、流出部120bを介して外部に流出するとともに、第5熱交換器8を通過した水の一部が第3回路123に分流するように設定される。流出部120bを介して外部に流出する水の流量は、負荷側からの要求熱量に応じて調節される。なお、第2圧縮機7は停止しているため、第5熱交換器8では第2冷媒と水との熱交換は行われない。 In the hot water supply and heat storage mode, the first compressor 1 is controlled so that the tapping temperature approaches the target value. The first expansion valve 4 is controlled such that the degree of superheat or the discharge temperature of the first refrigerant circuit 101 approaches the target value. In the third heat exchanger 5, heat exchange between the outdoor air blown by the blower fan and the first refrigerant is performed. The second compressor 7 is stopped. The pump 11 is operating. The flow path switching device 16 is set so that the first fluid circulates through the second circulation circuit 112. The pump 12 is operating. In the flow path switching devices 13, 14, and 15, the water flowing in from the outside through the inflow portion 120a passes through the first heat exchanger 2 and the fifth heat exchanger 8 in series in this order, and passes through the outflow portion 120b. And a part of the water that has passed through the fifth heat exchanger 8 is diverted to the third circuit 123. The flow rate of water flowing out through the outflow portion 120b is adjusted according to the required heat amount from the load side. In addition, since the 2nd compressor 7 has stopped, in the 5th heat exchanger 8, heat exchange with a 2nd refrigerant | coolant and water is not performed.
 給湯及び蓄熱モードでは、必要な熱量の湯を負荷側に供給しつつ、余剰の熱量を蓄熱することができる。したがって、蓄熱モードでの運転を別途行う必要がないため、エネルギーの無駄を削減することができる。また、第1冷媒回路101は臨界圧以上で動作しているため、高いCOPで運転することができる。 In the hot water supply and heat storage mode, a surplus amount of heat can be stored while supplying a required amount of hot water to the load side. Therefore, it is not necessary to separately perform the operation in the heat storage mode, so that waste of energy can be reduced. Further, since the first refrigerant circuit 101 operates at a critical pressure or higher, it can be operated at a high COP.
(保温及び蓄熱モード)
 図7は、本実施の形態に係るヒートポンプ装置における保温及び蓄熱モードでの状態を示す図である。保温及び蓄熱モードは、例えば、保温モードの実行中において蓄熱タンク10の残存蓄熱量が不足している場合、又は保温モードの実行中において蓄熱タンク10の残存蓄熱量の不足が予測される場合に実行される。また、保温及び蓄熱モードは、例えば、給湯及び蓄熱モードの実行中において、入水温度が所定温度以上であるか、又は入水温度と目標出湯温度との温度差が所定値以下である場合に実行される。
(Heat retention and heat storage mode)
FIG. 7 is a diagram showing a state in the heat retention and heat storage mode in the heat pump apparatus according to the present embodiment. In the heat retention and heat storage mode, for example, when the remaining heat storage amount of the heat storage tank 10 is insufficient during execution of the heat retention mode, or when the shortage of the remaining heat storage amount of the heat storage tank 10 is predicted during execution of the heat retention mode. Executed. The heat retention and heat storage mode is executed, for example, when the incoming water temperature is equal to or higher than a predetermined temperature or the temperature difference between the incoming water temperature and the target hot water temperature is equal to or lower than a predetermined value during execution of the hot water supply and heat storage modes. The
 保温及び蓄熱モードでは、第1圧縮機1は、第1冷媒回路101の吐出圧力が目標値に近づくように制御される。第1膨張弁4は、第1冷媒回路101の過熱度又は吐出温度が目標値に近づくように制御される。第3熱交換器5では、送風ファンにより送風される室外空気と第1冷媒との熱交換が行われる。第2圧縮機7は、出湯温度が目標値に近づくように制御される。なお、第1圧縮機1の制御目標と第2圧縮機7の制御目標とは逆であってもよい。すなわち、第1圧縮機1は、出湯温度が目標値に近づくように制御され、第2圧縮機7は、第1冷媒回路101の吐出圧力が目標値に近づくように制御されるようにしてもよい。第2膨張弁9は、第2冷媒回路102の過熱度、吐出温度又は吐出圧力が目標値に近づくように制御される。ポンプ11は運転している。流路切替装置16は、第1流体が第2循環回路112を循環するように制御される。ポンプ12は運転している。流路切替装置13、14、15は、流入部120aを介して外部から流入する水が、第2回路122を経由して第5熱交換器8を通過し、流出部120bを介して外部に流出するとともに、第5熱交換器8を通過した水の一部が第3回路123に分流するように設定される。流出部120bを介して外部に流出する水の流量は、負荷側からの要求熱量に応じて調節される。 In the heat retention and heat storage mode, the first compressor 1 is controlled such that the discharge pressure of the first refrigerant circuit 101 approaches the target value. The first expansion valve 4 is controlled such that the degree of superheat or the discharge temperature of the first refrigerant circuit 101 approaches the target value. In the third heat exchanger 5, heat exchange between the outdoor air blown by the blower fan and the first refrigerant is performed. The second compressor 7 is controlled so that the tapping temperature approaches the target value. The control target of the first compressor 1 and the control target of the second compressor 7 may be reversed. That is, the first compressor 1 is controlled such that the tapping temperature approaches the target value, and the second compressor 7 is controlled so that the discharge pressure of the first refrigerant circuit 101 approaches the target value. Good. The second expansion valve 9 is controlled so that the degree of superheat, the discharge temperature, or the discharge pressure of the second refrigerant circuit 102 approaches the target value. The pump 11 is operating. The flow path switching device 16 is controlled so that the first fluid circulates through the second circulation circuit 112. The pump 12 is operating. The flow path switching devices 13, 14, and 15 are configured such that water flowing in from the outside through the inflow portion 120 a passes through the fifth heat exchanger 8 through the second circuit 122, and passes through the outflow portion 120 b to the outside. While flowing out, a part of the water that has passed through the fifth heat exchanger 8 is set to be diverted to the third circuit 123. The flow rate of water flowing out through the outflow portion 120b is adjusted according to the required heat amount from the load side.
 保温及び蓄熱モードでは、必要な熱量の湯を負荷側に供給しつつ、余剰の熱量を蓄熱することができる。したがって、蓄熱モードでの運転を別途行う必要がないため、エネルギーの無駄を削減することができる。また、第1冷媒回路101及び第2冷媒回路102の双方を臨界圧以下で運転することができるため、入水温度が上昇して入水温度と出湯温度との温度差が小さくなったとしても、高いCOPで運転することができる。 In the heat retention and heat storage mode, it is possible to store a surplus amount of heat while supplying hot water of a necessary amount of heat to the load side. Therefore, it is not necessary to separately perform the operation in the heat storage mode, so that waste of energy can be reduced. In addition, since both the first refrigerant circuit 101 and the second refrigerant circuit 102 can be operated at a critical pressure or lower, even if the incoming water temperature rises and the temperature difference between the incoming water temperature and the outgoing hot water temperature becomes smaller, it is high. Can operate with COP.
(急速起動モード)
 図8は、本実施の形態に係るヒートポンプ装置における急速起動モードでの状態を示す図である。急速起動モードは、例えば、第1圧縮機1及び第2圧縮機7の少なくとも一方を起動するときに実行される。急速起動モードが実行された後には、給湯モード、保温モード、蓄熱モード、能力増強モード、給湯及び蓄熱モード、又は、保温及び蓄熱モードのいずれかに移行することができる。
(Quick start mode)
FIG. 8 is a diagram showing a state in the quick start mode in the heat pump apparatus according to the present embodiment. The quick start mode is executed when starting at least one of the first compressor 1 and the second compressor 7, for example. After the quick start mode is executed, it is possible to shift to any one of a hot water supply mode, a heat retention mode, a heat storage mode, a capacity enhancement mode, a hot water supply and a heat storage mode, or a heat retention and a heat storage mode.
 急速起動モードでは、蓄熱回路110のポンプ11が運転し、流路切替装置16は第1流体が第1循環回路111を循環するように設定される。また、急速起動モードでは、第1冷媒回路101、第2冷媒回路102及び水回路120が、給湯モード、保温モード、蓄熱モード、能力増強モード、給湯及び蓄熱モード、又は、保温及び蓄熱モードのいずれかと同様に制御される。図8に示す例では、第1冷媒回路101、第2冷媒回路102及び水回路120が給湯モードと同様に制御されている。 In the quick start mode, the pump 11 of the heat storage circuit 110 is operated, and the flow path switching device 16 is set so that the first fluid circulates through the first circulation circuit 111. Further, in the quick start mode, the first refrigerant circuit 101, the second refrigerant circuit 102, and the water circuit 120 are in any one of the hot water supply mode, the heat retention mode, the heat storage mode, the capacity enhancement mode, the hot water supply and the heat storage mode, or the heat retention and the heat storage mode. It is controlled in the same way. In the example shown in FIG. 8, the first refrigerant circuit 101, the second refrigerant circuit 102, and the water circuit 120 are controlled in the same manner as in the hot water supply mode.
 急速起動モードでは、蓄熱材を熱源とするため、起動時間を短縮することが可能である。また、急速起動モードを実行することにより、必要な出湯温度が即座に得られる。したがって、ヒートポンプ装置には大型の貯湯タンクが設けられる必要がないため、ヒートポンプ装置の設置面積を削減できるとともにコストを削減できる。また、液バックが生じたときに急速起動モードと同様に回路を構成すれば、液バックを即座に解消できる。したがって、ヒートポンプ装置の信頼性を向上できる。 In the quick start mode, the heat storage material is used as the heat source, so the start-up time can be shortened. In addition, the necessary hot water temperature can be obtained immediately by executing the quick start mode. Therefore, since it is not necessary to provide a large hot water storage tank in the heat pump device, the installation area of the heat pump device can be reduced and the cost can be reduced. Further, if a circuit is configured in the same manner as the quick start mode when a liquid back occurs, the liquid back can be eliminated immediately. Therefore, the reliability of the heat pump device can be improved.
 以上説明したように、本実施の形態に係るヒートポンプ装置は、第1冷媒を循環させる第1冷媒回路101と、第2冷媒を循環させる第2冷媒回路102と、第1流体を循環させる蓄熱回路110と、水を流通させる水回路120と、第1冷媒回路101、第2冷媒回路102、蓄熱回路110及び水回路120を制御する制御装置200と、を備えている。第1冷媒回路101は、第1圧縮機1と、第1冷媒と水との熱交換を行う第1熱交換器2と、第1冷媒と第2冷媒との熱交換を行う第2熱交換器3と、第1膨張弁4と、第1冷媒と第2流体との熱交換を行う第3熱交換器5と、第1冷媒と第1流体との熱交換を行う第4熱交換器6と、が配管を介してこの順に接続された構成を有している。第2冷媒回路102は、第2圧縮機7と、第2冷媒と水との熱交換を行う第5熱交換器8と、第2膨張弁9と、第2熱交換器3と、が配管を介してこの順に接続された構成を有している。蓄熱回路110は、蓄熱タンク10と、蓄熱タンク10と第4熱交換器6との間で第1流体を循環させる第1循環回路111と、蓄熱タンク10と、第1流体と水との熱交換を行う第6熱交換器17と、の間で第1流体を循環させる第2循環回路112と、を有している。水回路120は、水を圧送するポンプ12と第1熱交換器2と第5熱交換器8とが配管を介してこの順に接続された第1回路121と、ポンプ12と第1熱交換器2との間で第1回路121から分岐し、第1熱交換器2と第5熱交換器8との間で第1回路121に接続された第2回路122と、第5熱交換器8の下流側で第1回路121から分岐し、第6熱交換器17を経由し、ポンプ12の上流側で第1回路121に接続された第3回路123と、を有している。 As described above, the heat pump device according to the present embodiment includes the first refrigerant circuit 101 that circulates the first refrigerant, the second refrigerant circuit 102 that circulates the second refrigerant, and the heat storage circuit that circulates the first fluid. 110, a water circuit 120 for circulating water, and a control device 200 for controlling the first refrigerant circuit 101, the second refrigerant circuit 102, the heat storage circuit 110, and the water circuit 120. The first refrigerant circuit 101 is a first heat exchanger 2 that performs heat exchange between the first compressor 1, the first refrigerant and water, and a second heat exchange that performs heat exchange between the first refrigerant and the second refrigerant. 3, first expansion valve 4, third heat exchanger 5 that performs heat exchange between the first refrigerant and the second fluid, and a fourth heat exchanger that performs heat exchange between the first refrigerant and the first fluid. 6 are connected in this order via piping. The second refrigerant circuit 102 includes a second compressor 7, a fifth heat exchanger 8 that performs heat exchange between the second refrigerant and water, a second expansion valve 9, and a second heat exchanger 3. Are connected in this order via the. The heat storage circuit 110 includes heat storage tank 10, first circulation circuit 111 that circulates the first fluid between heat storage tank 10 and fourth heat exchanger 6, heat storage tank 10, heat of the first fluid and water. A sixth heat exchanger 17 that performs the exchange, and a second circulation circuit 112 that circulates the first fluid therebetween. The water circuit 120 includes a first circuit 121 in which a pump 12 for pumping water, a first heat exchanger 2 and a fifth heat exchanger 8 are connected in this order via a pipe, and the pump 12 and the first heat exchanger. 2, the second circuit 122 branched from the first circuit 121 and connected to the first circuit 121 between the first heat exchanger 2 and the fifth heat exchanger 8, and the fifth heat exchanger 8. And a third circuit 123 branched from the first circuit 121 on the downstream side of the first circuit 121 and connected to the first circuit 121 on the upstream side of the pump 12 via the sixth heat exchanger 17.
 この構成によれば、保温モードでは、第1冷媒回路101及び第2冷媒回路102の双方を臨界圧以下で運転することができる。したがって、本実施の形態によれば、給湯モードだけでなく保温モードにおいても、高いCOPを得ることができる。また、この構成によれば、能力増強モードでは、第1熱交換器2及び第5熱交換器8で水を二段階に加熱することができる。したがって、本実施の形態によれば、ヒートポンプ装置のユニットサイズの大型化を抑えつつ最大能力を向上させることができる。言い換えれば、ヒートポンプ装置の最大能力を維持しつつ、ユニット数の削減や設置面積の削減が可能となる。また、この構成によれば、給湯及び蓄熱モード、並びに保温及び蓄熱モードでは、余剰の熱量を蓄熱することができる。したがって、本実施の形態によれば、エネルギーの無駄を削減することができる。また、この構成によれば、蓄熱タンク10内の蓄熱材と水との間での熱のやり取りが第1流体を介して行われる。これにより、熱交換器で蓄熱材と水との熱交換が行われないため、負荷側に蓄熱材が流出するのを防ぐことができる。 According to this configuration, in the heat retention mode, both the first refrigerant circuit 101 and the second refrigerant circuit 102 can be operated at a critical pressure or lower. Therefore, according to the present embodiment, a high COP can be obtained not only in the hot water supply mode but also in the heat retention mode. Further, according to this configuration, in the capacity enhancement mode, water can be heated in two stages by the first heat exchanger 2 and the fifth heat exchanger 8. Therefore, according to the present embodiment, the maximum capacity can be improved while suppressing an increase in the unit size of the heat pump apparatus. In other words, it is possible to reduce the number of units and the installation area while maintaining the maximum capacity of the heat pump device. Further, according to this configuration, it is possible to store an excessive amount of heat in the hot water supply and heat storage mode and the heat retention and heat storage mode. Therefore, according to the present embodiment, waste of energy can be reduced. Moreover, according to this structure, the heat exchange between the heat storage material in the heat storage tank 10 and water is performed via the first fluid. Thereby, since heat exchange with a heat storage material and water is not performed by a heat exchanger, it can prevent that a heat storage material flows out to the load side.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、第1運転モード(例えば、給湯モード)を実行可能であり、第1運転モードでは、第1圧縮機1が運転して第2圧縮機7が停止し、ポンプ12により圧送される水が第1熱交換器2及び第5熱交換器8を通過して流出するように水回路120が制御される。 Further, in the heat pump device according to the present embodiment, control device 200 can execute a first operation mode (for example, a hot water supply mode). In first operation mode, first compressor 1 is operated and second operation is performed. The compressor 7 is stopped, and the water circuit 120 is controlled so that the water pumped by the pump 12 flows out through the first heat exchanger 2 and the fifth heat exchanger 8.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、第2運転モード(例えば、保温モード)を実行可能であり、第2運転モードでは、第1圧縮機1及び第2圧縮機7が運転し、ポンプ12により圧送される水が第2回路122及び第5熱交換器8を通過して流出するように水回路120が制御される。 In the heat pump device according to the present embodiment, the control device 200 can execute the second operation mode (for example, the heat retention mode), and in the second operation mode, the first compressor 1 and the second compressor 7. The water circuit 120 is controlled so that the water pumped by the pump 12 flows out through the second circuit 122 and the fifth heat exchanger 8.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、流入する水の水温が所定温度以上であるか、又は流入する水の水温と目標出湯温度との差が所定値以下である場合、第2運転モードを実行する。 Moreover, in the heat pump device according to the present embodiment, control device 200 has a case where the water temperature of the inflowing water is equal to or higher than a predetermined temperature, or the difference between the water temperature of the inflowing water and the target hot water temperature is equal to or lower than the predetermined value. Then, the second operation mode is executed.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、第3運転モード(例えば、蓄熱モード)を実行可能であり、第3運転モードでは、第1圧縮機1及び第2圧縮機7が運転し、第1流体が第2循環回路112を循環するように蓄熱回路110が制御され、ポンプ12により圧送される水が第2回路122、第5熱交換器8及び第3回路123を循環するように水回路120が制御される。 In the heat pump device according to the present embodiment, the control device 200 can execute the third operation mode (for example, the heat storage mode), and in the third operation mode, the first compressor 1 and the second compressor 7. The heat storage circuit 110 is controlled so that the first fluid circulates in the second circulation circuit 112, and the water pumped by the pump 12 passes through the second circuit 122, the fifth heat exchanger 8, and the third circuit 123. The water circuit 120 is controlled to circulate.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、蓄熱タンク10の残存蓄熱量が不足しているか、又は蓄熱タンク10の残存蓄熱量の不足が予測される場合、第3運転モードを実行する。 In the heat pump device according to the present embodiment, the control device 200 is configured to operate in the third operation mode when the remaining heat storage amount of the heat storage tank 10 is insufficient or when the remaining heat storage amount of the heat storage tank 10 is predicted to be insufficient. Execute.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、第4運転モード(例えば、能力増強モード)を実行可能であり、第4運転モードでは、第1圧縮機1及び第2圧縮機7が運転し、第1流体が第1循環回路111を循環するように蓄熱回路110が制御され、ポンプ12により圧送される水が第1熱交換器2及び第5熱交換器8を通過して流出するように水回路120が制御される。 In the heat pump device according to the present embodiment, the control device 200 can execute the fourth operation mode (for example, the capacity enhancement mode). In the fourth operation mode, the first compressor 1 and the second compressor 7 is operated, the heat storage circuit 110 is controlled so that the first fluid circulates through the first circulation circuit 111, and the water pumped by the pump 12 passes through the first heat exchanger 2 and the fifth heat exchanger 8. The water circuit 120 is controlled to flow out.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、第1圧縮機1の周波数が上限に達するか、第1冷媒回路101の高圧側圧力が所定値に達しても出湯温度が目標出湯温度に達しないか、又は、出湯水量が目標出湯水量に達しない場合、前記第4運転モードを実行する。 Moreover, in the heat pump device according to the present embodiment, the control device 200 sets the target hot water temperature even when the frequency of the first compressor 1 reaches the upper limit or the high-pressure side pressure of the first refrigerant circuit 101 reaches a predetermined value. When the tapping temperature is not reached or the tapping water amount does not reach the target tapping water amount, the fourth operation mode is executed.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、第5運転モード(例えば、給湯及び蓄熱モード)を実行可能であり、第5運転モードでは、第1圧縮機1が運転して第2圧縮機7が停止し、第1流体が第2循環回路112を循環するように蓄熱回路110が制御され、ポンプ12により圧送される水が第1熱交換器2及び第5熱交換器8を通過して流出するとともに、第5熱交換器8を通過した水の一部が第3回路123に分流するように水回路120が制御される。 Further, in the heat pump device according to the present embodiment, control device 200 can execute the fifth operation mode (for example, hot water supply and heat storage mode), and in the fifth operation mode, first compressor 1 operates. The heat storage circuit 110 is controlled so that the second compressor 7 is stopped and the first fluid circulates through the second circulation circuit 112, and water pumped by the pump 12 is used for the first heat exchanger 2 and the fifth heat exchanger. The water circuit 120 is controlled so that a part of the water that has flowed out through the water 8 and passed through the fifth heat exchanger 8 is diverted to the third circuit 123.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、蓄熱タンク10の残存蓄熱量が不足しているか、又は蓄熱タンク10の残存蓄熱量の不足が予測される場合、第5運転モードを実行する。 Further, in the heat pump device according to the present embodiment, the control device 200 is the fifth operation mode when the remaining heat storage amount of the heat storage tank 10 is insufficient or when the remaining heat storage amount of the heat storage tank 10 is predicted to be insufficient. Execute.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、第6運転モード(例えば、保温及び蓄熱モード)を実行可能であり、第6運転モードでは、第1圧縮機1及び第2圧縮機7が運転し、第1流体が第2循環回路112を循環するように蓄熱回路110が制御され、ポンプ12により圧送される水が第2回路122及び第5熱交換器8を通過して流出するとともに、第5熱交換器8を通過した水の一部が第3回路123に分流するように水回路120が制御される。 In the heat pump device according to the present embodiment, the control device 200 can execute the sixth operation mode (for example, the heat retention and heat storage mode), and in the sixth operation mode, the first compressor 1 and the second compression are performed. The heat storage circuit 110 is controlled so that the first fluid circulates through the second circulation circuit 112, and the water pumped by the pump 12 passes through the second circuit 122 and the fifth heat exchanger 8. While flowing out, the water circuit 120 is controlled so that a part of the water that has passed through the fifth heat exchanger 8 is diverted to the third circuit 123.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、入水温度が所定温度以上であるか、又は入水温度と目標出湯温度との差が所定値以下である場合、第6運転モードを実行する。 Moreover, in the heat pump device according to the present embodiment, the control device 200 switches the sixth operation mode when the incoming water temperature is equal to or higher than a predetermined temperature or when the difference between the incoming water temperature and the target hot water temperature is equal to or lower than a predetermined value. Execute.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、蓄熱タンク10の残存蓄熱量が不足しているか、又は蓄熱タンク10の残存蓄熱量の不足が予測される場合、第6運転モードを実行する。 Further, in the heat pump device according to the present embodiment, the control device 200 is configured to operate in the sixth operation mode when the residual heat storage amount of the heat storage tank 10 is insufficient or when the residual heat storage amount of the heat storage tank 10 is predicted to be insufficient. Execute.
 また、本実施の形態に係るヒートポンプ装置では、制御装置200は、第1圧縮機1及び第2圧縮機7の少なくとも一方を起動するときに第7運転モード(例えば、急速起動モード)を実行可能であり、第7運転モードでは、第1流体が第1循環回路111を循環するように蓄熱回路110が制御される。 In the heat pump device according to the present embodiment, the control device 200 can execute the seventh operation mode (for example, the quick start mode) when starting at least one of the first compressor 1 and the second compressor 7. In the seventh operation mode, the heat storage circuit 110 is controlled so that the first fluid circulates through the first circulation circuit 111.
 また、本実施の形態に係るヒートポンプ装置では、第1流体は、蓄熱タンク10内の蓄熱材と熱交換が行われる熱媒体である。 Further, in the heat pump device according to the present embodiment, the first fluid is a heat medium that exchanges heat with the heat storage material in the heat storage tank 10.
 また、本実施の形態に係るヒートポンプ装置では、第1冷媒は、少なくとも第1圧縮機1が運転し第2圧縮機7が停止している運転状態では、臨界圧力以上で動作する。 Further, in the heat pump device according to the present embodiment, the first refrigerant operates at a critical pressure or higher in an operating state where at least the first compressor 1 is operating and the second compressor 7 is stopped.
 また、本実施の形態に係るヒートポンプ装置では、第1冷媒は、COを少なくとも一成分に含む。 In the heat pump device according to the present embodiment, the first refrigerant includes CO 2 in at least one component.
 また、本実施の形態に係るヒートポンプ装置では、第2冷媒は、臨界圧力以下で動作する。 Further, in the heat pump device according to the present embodiment, the second refrigerant operates at a critical pressure or lower.
 また、本実施の形態に係るヒートポンプ装置では、第2冷媒の動作圧力は、第1冷媒の動作圧力よりも低い。 In the heat pump device according to the present embodiment, the operating pressure of the second refrigerant is lower than the operating pressure of the first refrigerant.
実施の形態2.
 本発明の実施の形態2に係るヒートポンプ装置について説明する。本実施の形態では、蓄熱タンク10に封入される蓄熱材として、0℃よりも高い融点を有する潜熱蓄熱材が用いられる。例えば能力増強モードにおいて蓄熱材を熱源として用いる場合、蓄熱材の全体が固体となるまでは凝固温度が一定に保たれる。したがって、第1冷媒回路101での蒸発温度が低下せず、能力を一定に保つことができる。
Embodiment 2. FIG.
A heat pump device according to Embodiment 2 of the present invention will be described. In the present embodiment, a latent heat storage material having a melting point higher than 0 ° C. is used as the heat storage material sealed in the heat storage tank 10. For example, when the heat storage material is used as a heat source in the capacity enhancement mode, the solidification temperature is kept constant until the entire heat storage material becomes solid. Therefore, the evaporation temperature in the first refrigerant circuit 101 does not decrease, and the capacity can be kept constant.
実施の形態3.
 本発明の実施の形態3に係るヒートポンプ装置について説明する。本実施の形態では、蓄熱材として、流動性を有する蓄熱材が用いられる。蓄熱回路110を循環する第1流体としては、流動性を有する蓄熱材そのものが用いられる。これにより、蓄熱材をポンプ11で流動させることが可能である。
Embodiment 3 FIG.
A heat pump device according to Embodiment 3 of the present invention will be described. In the present embodiment, a fluid heat storage material is used as the heat storage material. As the first fluid circulating through the heat storage circuit 110, a heat storage material having fluidity is used. As a result, the heat storage material can be flowed by the pump 11.
実施の形態4.
 本発明の実施の形態4に係るヒートポンプ装置について説明する。本実施の形態では、蓄熱材として、カプセルタイプの蓄熱材が用いられる。図9は、本実施の形態に係るヒートポンプ装置で用いられるカプセルタイプの蓄熱材の概略構成を示す図である。図9に示すように、カプセルタイプの蓄熱材は、蓄熱材130(例えば、潜熱蓄熱材)を内包するカプセル131(例えば、マイクロカプセル)を有している。本実施の形態では、蓄熱回路110を循環する第1流体として、蓄熱材130を内包する複数のカプセル131が分散された液体が用いられる。
Embodiment 4 FIG.
A heat pump device according to Embodiment 4 of the present invention will be described. In the present embodiment, a capsule-type heat storage material is used as the heat storage material. FIG. 9 is a diagram showing a schematic configuration of a capsule-type heat storage material used in the heat pump device according to the present embodiment. As illustrated in FIG. 9, the capsule-type heat storage material includes a capsule 131 (for example, a microcapsule) that encloses a heat storage material 130 (for example, a latent heat storage material). In the present embodiment, a liquid in which a plurality of capsules 131 containing the heat storage material 130 are dispersed is used as the first fluid circulating in the heat storage circuit 110.
 カプセルタイプの蓄熱材は危険物として扱われないことから、本実施の形態によれば、ヒートポンプ装置の安全性を高めることができる。また、蓄熱材がカプセルで覆われていることにより、蓄熱材が凝固しても冷却面に積層されないようになっている。このため、熱抵抗が増加しにくく、伝熱性能を高く保つことができる。 Since the capsule-type heat storage material is not handled as a dangerous material, according to the present embodiment, the safety of the heat pump device can be improved. Further, since the heat storage material is covered with the capsule, the heat storage material is not laminated on the cooling surface even if the heat storage material is solidified. For this reason, the thermal resistance is unlikely to increase and the heat transfer performance can be kept high.
実施の形態5.
 本発明の実施の形態5に係るヒートポンプ装置について説明する。本実施の形態における第1回路121は、第3回路123との分岐部(流路切替装置15)の下流側で貯湯タンク(図示せず)に接続されている。貯湯タンクは、ヒートポンプ装置の一部として設けられていてもよいし、ヒートポンプ装置とは別に設けられていてもよい。貯湯タンクは、ヒートポンプ装置が起動してから所定の出湯温度に達するまでの時間において所定の熱量を負荷側に供給できる程度のサイズを有している。貯湯タンクの蓄熱容量は、蓄熱タンク10の蓄熱容量よりも小さくなっている。本実施の形態では、ヒートポンプ装置が起動してから所定の出湯温度又は所定の吐出圧力に達するまでの時間には、貯湯タンクから出湯する。本実施の形態によれば、急速起動モードよりもさらに早く所定の出湯温度を得ることができる。
Embodiment 5 FIG.
A heat pump apparatus according to Embodiment 5 of the present invention will be described. The first circuit 121 in the present embodiment is connected to a hot water storage tank (not shown) on the downstream side of the branch portion (flow path switching device 15) with the third circuit 123. The hot water storage tank may be provided as a part of the heat pump device, or may be provided separately from the heat pump device. The hot water storage tank has such a size that a predetermined amount of heat can be supplied to the load side during the time from the start of the heat pump device to the arrival of a predetermined hot water temperature. The heat storage capacity of the hot water storage tank is smaller than the heat storage capacity of the heat storage tank 10. In the present embodiment, the hot water is discharged from the hot water storage tank during the time from when the heat pump device is activated until the predetermined hot water temperature or the predetermined discharge pressure is reached. According to the present embodiment, it is possible to obtain a predetermined hot water temperature earlier than in the quick start mode.
実施の形態6.
 本発明の実施の形態6に係るヒートポンプ装置について説明する。図10は、本実施の形態に係るヒートポンプ装置の概略の回路構成を示す回路図である。図10に示すように、第1冷媒回路101には、第3熱交換器5を除霜する除霜回路として、バイパス回路20が設けられている。バイパス回路20は、第1圧縮機1と第1熱交換器2との間で第1冷媒回路101から分岐し、第1膨張弁4と第3熱交換器5との間で第1冷媒回路101に接続されている。バイパス回路20には、除霜運転時に開となるバイパス弁21が設けられている。
Embodiment 6 FIG.
A heat pump device according to Embodiment 6 of the present invention will be described. FIG. 10 is a circuit diagram showing a schematic circuit configuration of the heat pump device according to the present embodiment. As shown in FIG. 10, the first refrigerant circuit 101 is provided with a bypass circuit 20 as a defrost circuit for defrosting the third heat exchanger 5. The bypass circuit 20 branches from the first refrigerant circuit 101 between the first compressor 1 and the first heat exchanger 2, and the first refrigerant circuit between the first expansion valve 4 and the third heat exchanger 5. 101. The bypass circuit 20 is provided with a bypass valve 21 that is opened during the defrosting operation.
 除霜運転時には、第1圧縮機1及びポンプ11を運転させ、第2圧縮機7及びポンプ12を停止させる。第1膨張弁4は、最小開度に設定される。バイパス弁21は開放される。流路切替装置16は、第1流体が第1循環回路111を循環するように設定される。流路切替装置13は、流入部120a側が閉となるように設定される。これにより、第3熱交換器5にはホットガスが流れ、第3熱交換器5に付着した霜が融解する。第3熱交換器5で凝縮した冷媒は、第4熱交換器6において蓄熱材を熱源として蒸発する。したがって、第1圧縮機1への液バックを抑制できるため、ヒートポンプ装置の信頼性を向上させることができる。また、蓄熱材を熱源とすることにより、除霜時間を短縮させることができる。さらに、高いCOPで蓄熱された熱量を用いて除霜が行われるため、高い運転効率を得ることができる。 During the defrosting operation, the first compressor 1 and the pump 11 are operated, and the second compressor 7 and the pump 12 are stopped. The first expansion valve 4 is set to the minimum opening. The bypass valve 21 is opened. The flow path switching device 16 is set so that the first fluid circulates through the first circulation circuit 111. The flow path switching device 13 is set so that the inflow portion 120a side is closed. Thereby, hot gas flows into the 3rd heat exchanger 5, and the frost adhering to the 3rd heat exchanger 5 melts. The refrigerant condensed in the third heat exchanger 5 evaporates in the fourth heat exchanger 6 using the heat storage material as a heat source. Therefore, since the liquid back | bag to the 1st compressor 1 can be suppressed, the reliability of a heat pump apparatus can be improved. Moreover, defrosting time can be shortened by using a heat storage material as a heat source. Furthermore, since defrosting is performed using the amount of heat stored in a high COP, high operating efficiency can be obtained.
実施の形態7.
 本発明の実施の形態7に係るヒートポンプ装置について説明する。図11は、本実施の形態に係るヒートポンプ装置の概略の回路構成を示す回路図である。図11に示すように、第1冷媒回路101の第3熱交換器5と第4熱交換器6との間には、第3膨張弁22が設けられている。それ以外の構成は、実施の形態6と同様である。
Embodiment 7 FIG.
A heat pump apparatus according to Embodiment 7 of the present invention will be described. FIG. 11 is a circuit diagram showing a schematic circuit configuration of the heat pump device according to the present embodiment. As shown in FIG. 11, a third expansion valve 22 is provided between the third heat exchanger 5 and the fourth heat exchanger 6 of the first refrigerant circuit 101. Other configurations are the same as those in the sixth embodiment.
 除霜運転時には、実施の形態6と同様の動作に加えて、第3膨張弁22が、第1圧縮機1の吸入過熱度、吐出温度又は吐出過熱度が目標値に近づくように制御されるか、又は所定開度に設定される。これにより、第1圧縮機1の吐出圧力が上昇し、第3熱交換器5に流入する冷媒の温度が上昇する。したがって、第3熱交換器5の除霜を効率的に行うことができる。 In the defrosting operation, in addition to the same operation as in the sixth embodiment, the third expansion valve 22 is controlled such that the suction superheat degree, the discharge temperature, or the discharge superheat degree of the first compressor 1 approaches the target value. Or a predetermined opening. Thereby, the discharge pressure of the 1st compressor 1 rises and the temperature of the refrigerant | coolant which flows in into the 3rd heat exchanger 5 rises. Therefore, defrosting of the 3rd heat exchanger 5 can be performed efficiently.
実施の形態8.
 本発明の実施の形態8に係るヒートポンプ装置について説明する。本実施の形態では、制御装置200は、ヒートポンプ装置から出湯された熱量、又は蓄熱タンク10に蓄熱した熱量に基づいて、蓄熱タンク10内の残存蓄熱量を推定する。例えば、制御装置200は、蓄熱回路110における第1流体の流量と、蓄熱タンク10の入口温度及び出口温度とに基づいて、蓄熱タンク10内の残存蓄熱量を推定する。あるいは、制御装置200は、蓄熱タンク10内の温度分布に基づいて蓄熱タンク10内の残存蓄熱量を演算するようにしてもよい。制御装置200は、推定又は演算した残存蓄熱量に基づき、蓄熱量が不足しないように蓄熱運転(例えば、蓄熱モード、給湯及び蓄熱モード、又は、保温及び蓄熱モードでの運転)を実行する。これにより、蓄熱量の不足を防ぐことができるため、能力増強モード又は急速起動モードに常に対応することができる。
Embodiment 8 FIG.
A heat pump apparatus according to Embodiment 8 of the present invention will be described. In the present embodiment, the control device 200 estimates the remaining heat storage amount in the heat storage tank 10 based on the heat amount discharged from the heat pump device or the heat amount stored in the heat storage tank 10. For example, the control device 200 estimates the remaining heat storage amount in the heat storage tank 10 based on the flow rate of the first fluid in the heat storage circuit 110 and the inlet temperature and outlet temperature of the heat storage tank 10. Alternatively, the control device 200 may calculate the remaining heat storage amount in the heat storage tank 10 based on the temperature distribution in the heat storage tank 10. The control device 200 performs a heat storage operation (for example, an operation in the heat storage mode, the hot water supply and heat storage mode, or the heat retention and heat storage mode) based on the estimated or calculated remaining heat storage amount. Thereby, since the shortage of the heat storage amount can be prevented, it is possible to always cope with the capacity enhancement mode or the quick start mode.
実施の形態9.
 本発明の実施の形態9に係るヒートポンプ装置について説明する。本実施の形態では、制御装置200は、ヒートポンプ装置の日々の動作状況から必要蓄熱量を学習し、蓄熱量が不足しないように蓄熱運転を実行する。これにより、蓄熱量の不足を防ぐことができるため、能力増強モード又は急速起動モードに常に対応することができる。
Embodiment 9 FIG.
A heat pump device according to Embodiment 9 of the present invention will be described. In this Embodiment, the control apparatus 200 learns required heat storage amount from the daily operation | movement condition of a heat pump apparatus, and performs heat storage operation so that heat storage amount may not run short. Thereby, since the shortage of the heat storage amount can be prevented, it is possible to always cope with the capacity enhancement mode or the quick start mode.
実施の形態10.
 本発明の実施の形態10に係るヒートポンプ装置について説明する。図12は、本実施の形態に係るヒートポンプ装置の物理的な構成を示す模式図である。図12に示すように、ヒートポンプ装置は、少なくとも第1冷媒回路101を収容する第1筐体105と、少なくとも第2冷媒回路102を収容する第2筐体106と、を有している。第1筐体105及び第2筐体106は段積み配置されており、第1筐体105は第2筐体106の上部に積み重ねられている。
Embodiment 10 FIG.
A heat pump apparatus according to Embodiment 10 of the present invention will be described. FIG. 12 is a schematic diagram showing a physical configuration of the heat pump device according to the present embodiment. As shown in FIG. 12, the heat pump apparatus includes a first housing 105 that houses at least the first refrigerant circuit 101 and a second housing 106 that houses at least the second refrigerant circuit 102. The first housing 105 and the second housing 106 are arranged in a stacked manner, and the first housing 105 is stacked on top of the second housing 106.
 第1冷媒回路101には、空気-冷媒熱交換器である第3熱交換器5と、第3熱交換器5に空気を送風する送風ファン107とが設けられている。第3熱交換器5は、第1筐体105のサイド部に配置されており、送風ファン107は、第1筐体105のトップ部に配置されている。図12中の矢印で示すように、送風ファン107により送風される空気は、第1筐体105のサイド部からトップ部に向かって流れる。本実施の形態によれば、第1筐体105での空気の流れが第2筐体106によって妨げられるのを防ぐことができるとともに、ヒートポンプ装置の設置面積を削減できる。 The first refrigerant circuit 101 is provided with a third heat exchanger 5 that is an air-refrigerant heat exchanger and a blower fan 107 that blows air to the third heat exchanger 5. The third heat exchanger 5 is disposed on the side portion of the first housing 105, and the blower fan 107 is disposed on the top portion of the first housing 105. As shown by the arrows in FIG. 12, the air blown by the blower fan 107 flows from the side portion of the first housing 105 toward the top portion. According to the present embodiment, the air flow in the first housing 105 can be prevented from being obstructed by the second housing 106, and the installation area of the heat pump device can be reduced.
 上記の各実施の形態は、互いに組み合わせて実施することが可能である。 The above embodiments can be implemented in combination with each other.
 1 第1圧縮機、2 第1熱交換器、3 第2熱交換器、4 第1膨張弁、5 第3熱交換器、6 第4熱交換器、7 第2圧縮機、8 第5熱交換器、9 第2膨張弁、10 蓄熱タンク、11、12 ポンプ、13、14、15、16 流路切替装置、17 第6熱交換器、20 バイパス回路、21 バイパス弁、22 第3膨張弁、101 第1冷媒回路、102 第2冷媒回路、103 二元ヒートポンプ回路、105 第1筐体、106 第2筐体、107 送風ファン、110 蓄熱回路、111 第1循環回路、112 第2循環回路、120 水回路、120a 流入部、120b 流出部、121 第1回路、122 第2回路、123 第3回路、130 蓄熱材、131 カプセル、200 制御装置。 1 1st compressor, 2nd 1st heat exchanger, 3rd 2nd heat exchanger, 4th 1st expansion valve, 5th 3rd heat exchanger, 6th 4th heat exchanger, 7th 2nd compressor, 8th 5th heat Exchanger, 9 Second expansion valve, 10 Heat storage tank, 11, 12, Pump, 13, 14, 15, 16 Channel switching device, 17 Sixth heat exchanger, 20 Bypass circuit, 21 Bypass valve, 22 Third expansion valve 101 First refrigerant circuit, 102 Second refrigerant circuit, 103 Dual heat pump circuit, 105 First housing, 106 Second housing, 107 Blower fan, 110 Heat storage circuit, 111 First circulation circuit, 112 Second circulation circuit , 120 water circuit, 120a inflow part, 120b outflow part, 121 first circuit, 122 second circuit, 123 third circuit, 130 heat storage material, 131 capsule, 200 control device.

Claims (30)

  1.  第1冷媒を循環させる第1冷媒回路と、
     第2冷媒を循環させる第2冷媒回路と、
     第1流体を循環させる蓄熱回路と、
     水を流通させる水回路と、を備え、
     前記第1冷媒回路は、
     第1圧縮機と、
     前記第1冷媒と水との熱交換を行う第1熱交換器と、
     前記第1冷媒と前記第2冷媒との熱交換を行う第2熱交換器と、
     第1膨張弁と、
     前記第1冷媒と第2流体との熱交換を行う第3熱交換器と、
     前記第1冷媒と前記第1流体との熱交換を行う第4熱交換器と、が配管を介してこの順に接続された構成を有しており、
     前記第2冷媒回路は、
     第2圧縮機と、
     前記第2冷媒と水との熱交換を行う第5熱交換器と、
     第2膨張弁と、
     前記第2熱交換器と、が配管を介してこの順に接続された構成を有しており、
     前記蓄熱回路は、
     蓄熱タンクと、
     前記蓄熱タンクと前記第4熱交換器との間で前記第1流体を循環させる第1循環回路と、
     前記蓄熱タンクと、前記第1流体と水との熱交換を行う第6熱交換器と、の間で前記第1流体を循環させる第2循環回路と、を有しており、
     前記水回路は、
     水を圧送するポンプと前記第1熱交換器と前記第5熱交換器とが接続された第1回路と、
     前記ポンプと前記第1熱交換器との間で前記第1回路から分岐し、前記第1熱交換器と前記第5熱交換器との間で前記第1回路に接続された第2回路と、
     前記第5熱交換器の下流側で前記第1回路から分岐し、前記第6熱交換器を経由し、前記ポンプの上流側で前記第1回路に接続された第3回路と、を有しているヒートポンプ装置。
    A first refrigerant circuit for circulating the first refrigerant;
    A second refrigerant circuit for circulating the second refrigerant;
    A heat storage circuit for circulating the first fluid;
    A water circuit for circulating water,
    The first refrigerant circuit includes
    A first compressor;
    A first heat exchanger for exchanging heat between the first refrigerant and water;
    A second heat exchanger for exchanging heat between the first refrigerant and the second refrigerant;
    A first expansion valve;
    A third heat exchanger for exchanging heat between the first refrigerant and the second fluid;
    A fourth heat exchanger for exchanging heat between the first refrigerant and the first fluid, and having a configuration connected in this order via a pipe;
    The second refrigerant circuit includes
    A second compressor;
    A fifth heat exchanger for exchanging heat between the second refrigerant and water;
    A second expansion valve;
    The second heat exchanger and the second heat exchanger are connected in this order through a pipe,
    The heat storage circuit is
    A heat storage tank,
    A first circulation circuit for circulating the first fluid between the heat storage tank and the fourth heat exchanger;
    A second circulation circuit that circulates the first fluid between the heat storage tank and a sixth heat exchanger that exchanges heat between the first fluid and water;
    The water circuit is
    A first circuit in which a pump for pumping water, the first heat exchanger, and the fifth heat exchanger are connected;
    A second circuit branched from the first circuit between the pump and the first heat exchanger and connected to the first circuit between the first heat exchanger and the fifth heat exchanger; ,
    A third circuit branched from the first circuit on the downstream side of the fifth heat exchanger, connected to the first circuit on the upstream side of the pump via the sixth heat exchanger, and Heat pump device.
  2.  前記第1冷媒回路、前記第2冷媒回路、前記蓄熱回路及び前記水回路を制御する制御装置をさらに備える請求項1に記載のヒートポンプ装置。 The heat pump device according to claim 1, further comprising a control device that controls the first refrigerant circuit, the second refrigerant circuit, the heat storage circuit, and the water circuit.
  3.  前記制御装置は、第1運転モードを実行可能であり、
     前記第1運転モードでは、
     前記第1圧縮機が運転して前記第2圧縮機が停止し、
     前記ポンプにより圧送される水が前記第1熱交換器及び前記第5熱交換器を通過して流出するように前記水回路が制御される請求項2に記載のヒートポンプ装置。
    The control device is capable of executing a first operation mode,
    In the first operation mode,
    The first compressor is operated and the second compressor is stopped;
    The heat pump device according to claim 2, wherein the water circuit is controlled such that water pumped by the pump flows out through the first heat exchanger and the fifth heat exchanger.
  4.  前記制御装置は、第2運転モードを実行可能であり、
     前記第2運転モードでは、
     前記第1圧縮機及び前記第2圧縮機が運転し、
     前記ポンプにより圧送される水が前記第2回路及び前記第5熱交換器を通過して流出するように前記水回路が制御される請求項2又は請求項3に記載のヒートポンプ装置。
    The control device is capable of executing a second operation mode;
    In the second operation mode,
    The first compressor and the second compressor are operated,
    The heat pump device according to claim 2 or 3, wherein the water circuit is controlled so that water pumped by the pump flows out through the second circuit and the fifth heat exchanger.
  5.  前記制御装置は、流入する水の水温が所定温度以上であるか、又は流入する水の水温と目標出湯温度との差が所定値以下である場合、前記第2運転モードを実行する請求項4に記載のヒートポンプ装置。 The said control apparatus performs said 2nd operation mode, when the water temperature of inflowing water is more than predetermined temperature, or the difference of the water temperature of inflowing water and target hot-water temperature is below a predetermined value. The heat pump device described in 1.
  6.  前記制御装置は、第3運転モードを実行可能であり、
     前記第3運転モードでは、
     前記第1圧縮機及び前記第2圧縮機が運転し、
     前記第1流体が前記第2循環回路を循環するように前記蓄熱回路が制御され、
     前記ポンプにより圧送される水が前記第2回路、前記第5熱交換器及び前記第3回路を循環するように前記水回路が制御される請求項2~請求項5のいずれか一項に記載のヒートポンプ装置。
    The control device is capable of executing a third operation mode;
    In the third operation mode,
    The first compressor and the second compressor are operated,
    The heat storage circuit is controlled so that the first fluid circulates through the second circulation circuit;
    6. The water circuit according to claim 2, wherein the water circuit is controlled such that water pumped by the pump circulates through the second circuit, the fifth heat exchanger, and the third circuit. Heat pump device.
  7.  前記制御装置は、前記蓄熱タンクの残存蓄熱量が不足しているか、又は前記蓄熱タンクの残存蓄熱量の不足が予測される場合、前記第3運転モードを実行する請求項6に記載のヒートポンプ装置。 The heat pump device according to claim 6, wherein the control device executes the third operation mode when the remaining heat storage amount of the heat storage tank is insufficient or when the remaining heat storage amount of the heat storage tank is predicted to be insufficient. .
  8.  前記制御装置は、第4運転モードを実行可能であり、
     前記第4運転モードでは、
     前記第1圧縮機及び前記第2圧縮機が運転し、
     前記第1流体が前記第1循環回路を循環するように前記蓄熱回路が制御され、
     前記ポンプにより圧送される水が前記第1熱交換器及び前記第5熱交換器を通過して流出するように前記水回路が制御される請求項2~請求項7のいずれか一項に記載のヒートポンプ装置。
    The control device is capable of executing a fourth operation mode;
    In the fourth operation mode,
    The first compressor and the second compressor are operated,
    The heat storage circuit is controlled so that the first fluid circulates in the first circulation circuit;
    The water circuit is controlled according to any one of claims 2 to 7, wherein the water circuit is controlled so that water pumped by the pump flows out through the first heat exchanger and the fifth heat exchanger. Heat pump device.
  9.  前記制御装置は、前記第1圧縮機の周波数が上限に達するか、前記第1冷媒回路の高圧側圧力が所定値に達しても出湯温度が目標出湯温度に達しないか、又は、出湯水量が目標出湯水量に達しない場合、前記第4運転モードを実行する請求項8に記載のヒートポンプ装置。 In the control device, the tapping temperature does not reach the target tapping temperature even if the frequency of the first compressor reaches the upper limit, the high pressure side pressure of the first refrigerant circuit reaches a predetermined value, or the tapping water amount is The heat pump device according to claim 8, wherein the fourth operation mode is executed when the target amount of hot water is not reached.
  10.  前記制御装置は、第5運転モードを実行可能であり、
     前記第5運転モードでは、
     前記第1圧縮機が運転して前記第2圧縮機が停止し、
     前記第1流体が前記第2循環回路を循環するように前記蓄熱回路が制御され、
     前記ポンプにより圧送される水が前記第1熱交換器及び前記第5熱交換器を通過して流出するとともに、前記第5熱交換器を通過した水の一部が前記第3回路に分流するように前記水回路が制御される請求項2~請求項9のいずれか一項に記載のヒートポンプ装置。
    The control device is capable of executing a fifth operation mode;
    In the fifth operation mode,
    The first compressor is operated and the second compressor is stopped;
    The heat storage circuit is controlled so that the first fluid circulates through the second circulation circuit;
    Water pumped by the pump flows out through the first heat exchanger and the fifth heat exchanger, and part of the water that has passed through the fifth heat exchanger is diverted to the third circuit. The heat pump device according to any one of claims 2 to 9, wherein the water circuit is controlled as described above.
  11.  前記制御装置は、前記蓄熱タンクの残存蓄熱量が不足しているか、又は前記蓄熱タンクの残存蓄熱量の不足が予測される場合、前記第5運転モードを実行する請求項10に記載のヒートポンプ装置。 11. The heat pump device according to claim 10, wherein the control device executes the fifth operation mode when a residual heat storage amount of the heat storage tank is insufficient or a shortage of a residual heat storage amount of the heat storage tank is predicted. .
  12.  前記制御装置は、第6運転モードを実行可能であり、
     前記第6運転モードでは、
     前記第1圧縮機及び前記第2圧縮機が運転し、
     前記第1流体が前記第2循環回路を循環するように前記蓄熱回路が制御され、
     前記ポンプにより圧送される水が前記第2回路及び前記第5熱交換器を通過して流出するとともに、前記第5熱交換器を通過した水の一部が前記第3回路に分流するように前記水回路が制御される請求項2~請求項11のいずれか一項に記載のヒートポンプ装置。
    The control device is capable of executing a sixth operation mode;
    In the sixth operation mode,
    The first compressor and the second compressor are operated,
    The heat storage circuit is controlled so that the first fluid circulates through the second circulation circuit;
    The water pumped by the pump flows out through the second circuit and the fifth heat exchanger, and part of the water that has passed through the fifth heat exchanger is diverted to the third circuit. The heat pump device according to any one of claims 2 to 11, wherein the water circuit is controlled.
  13.  前記制御装置は、入水温度が所定温度以上であるか、又は入水温度と目標出湯温度との差が所定値以下である場合、前記第6運転モードを実行する請求項12に記載のヒートポンプ装置。 The heat pump device according to claim 12, wherein the control device executes the sixth operation mode when the incoming water temperature is equal to or higher than a predetermined temperature, or when the difference between the incoming water temperature and the target hot water temperature is equal to or lower than a predetermined value.
  14.  前記制御装置は、前記蓄熱タンクの残存蓄熱量が不足しているか、又は前記蓄熱タンクの残存蓄熱量の不足が予測される場合、前記第6運転モードを実行する請求項12に記載のヒートポンプ装置。 The heat pump device according to claim 12, wherein the control device executes the sixth operation mode when the remaining heat storage amount of the heat storage tank is insufficient or when the remaining heat storage amount of the heat storage tank is predicted to be insufficient. .
  15.  前記制御装置は、前記第1圧縮機及び前記第2圧縮機の少なくとも一方を起動するときに第7運転モードを実行可能であり、
     前記第7運転モードでは、
     前記第1流体が前記第1循環回路を循環するように前記蓄熱回路が制御される請求項2~請求項14のいずれか一項に記載のヒートポンプ装置。
    The control device is capable of executing a seventh operation mode when starting at least one of the first compressor and the second compressor;
    In the seventh operation mode,
    The heat pump device according to any one of claims 2 to 14, wherein the heat storage circuit is controlled so that the first fluid circulates in the first circulation circuit.
  16.  前記制御装置は、出湯熱量、又は前記蓄熱タンクに蓄熱した熱量に基づいて前記蓄熱タンクの残存蓄熱量を演算する請求項2~請求項15のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 2 to 15, wherein the control device calculates a remaining heat storage amount of the heat storage tank based on a heat output amount or a heat amount stored in the heat storage tank.
  17.  前記制御装置は、前記蓄熱タンク内の温度分布に基づいて前記蓄熱タンクの残存蓄熱量を演算する請求項2~請求項15のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 2 to 15, wherein the control device calculates a remaining heat storage amount of the heat storage tank based on a temperature distribution in the heat storage tank.
  18.  前記第1圧縮機と前記第1熱交換器との間で前記第1冷媒回路から分岐し、前記第1膨張弁と前記第3熱交換器との間で前記第1冷媒回路に接続されたバイパス回路をさらに備え、
     前記バイパス回路は、バイパス弁を有している請求項1~請求項17のいずれか一項に記載のヒートポンプ装置。
    Branched from the first refrigerant circuit between the first compressor and the first heat exchanger, and connected to the first refrigerant circuit between the first expansion valve and the third heat exchanger A further bypass circuit;
    The heat pump device according to any one of claims 1 to 17, wherein the bypass circuit includes a bypass valve.
  19.  前記第1冷媒回路は、前記第3熱交換器と前記第4熱交換器との間に設けられた第3膨張弁を有している請求項18に記載のヒートポンプ装置。 The heat pump device according to claim 18, wherein the first refrigerant circuit has a third expansion valve provided between the third heat exchanger and the fourth heat exchanger.
  20.  前記第1流体は、流動性を有する蓄熱材である請求項1~請求項19のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 19, wherein the first fluid is a heat storage material having fluidity.
  21.  前記第1流体は、蓄熱材を内包する複数のカプセルが分散された液体である請求項1~請求項20のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 20, wherein the first fluid is a liquid in which a plurality of capsules containing a heat storage material are dispersed.
  22.  前記第1流体は、前記蓄熱タンク内の蓄熱材と熱交換が行われる熱媒体である請求項1~請求項19のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 19, wherein the first fluid is a heat medium that exchanges heat with a heat storage material in the heat storage tank.
  23.  前記蓄熱材は潜熱蓄熱材である請求項20~請求項22のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 20 to 22, wherein the heat storage material is a latent heat storage material.
  24.  前記第1冷媒は、少なくとも前記第1圧縮機が運転し前記第2圧縮機が停止している運転状態では、臨界圧力以上で動作する請求項1~請求項23のいずれか一項に記載のヒートポンプ装置。 The first refrigerant operates at a critical pressure or higher in at least an operation state in which the first compressor is operated and the second compressor is stopped. Heat pump device.
  25.  前記第1冷媒は、COを少なくとも一成分に含む請求項1~請求項24のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 24, wherein the first refrigerant includes CO 2 as at least one component.
  26.  前記第2冷媒は、臨界圧力以下で動作する請求項1~請求項25のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 25, wherein the second refrigerant operates at a critical pressure or less.
  27.  前記第2冷媒の動作圧力は、前記第1冷媒の動作圧力よりも低い請求項1~請求項26のいずれ一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 26, wherein an operating pressure of the second refrigerant is lower than an operating pressure of the first refrigerant.
  28.  前記第1回路は、前記第3回路との分岐部の下流側で貯湯タンクに接続されている請求項1~請求項27のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 27, wherein the first circuit is connected to a hot water storage tank on a downstream side of a branch portion with the third circuit.
  29.  前記貯湯タンクの蓄熱容量は、前記蓄熱タンクの蓄熱容量よりも小さい請求項28に記載のヒートポンプ装置。 The heat pump device according to claim 28, wherein a heat storage capacity of the hot water storage tank is smaller than a heat storage capacity of the heat storage tank.
  30.  少なくとも前記第1冷媒回路を収容する第1筐体と、
     少なくとも前記第2冷媒回路を収容する第2筐体と、をさらに備え、
     前記第1筐体は、前記第2筐体の上部に積み重ねられている請求項1~請求項29のいずれか一項に記載のヒートポンプ装置。
    A first housing containing at least the first refrigerant circuit;
    A second housing that houses at least the second refrigerant circuit;
    The heat pump device according to any one of claims 1 to 29, wherein the first housing is stacked on top of the second housing.
PCT/JP2016/072587 2016-08-02 2016-08-02 Heat pump device WO2018025318A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB1819892.9A GB2567333B (en) 2016-08-02 2016-08-02 Heat pump apparatus
JP2018531006A JP6537733B2 (en) 2016-08-02 2016-08-02 Heat pump equipment
CN201680087915.8A CN109511272B (en) 2016-08-02 2016-08-02 Heat pump device
PCT/JP2016/072587 WO2018025318A1 (en) 2016-08-02 2016-08-02 Heat pump device
DE112016007113.2T DE112016007113B4 (en) 2016-08-02 2016-08-02 heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072587 WO2018025318A1 (en) 2016-08-02 2016-08-02 Heat pump device

Publications (1)

Publication Number Publication Date
WO2018025318A1 true WO2018025318A1 (en) 2018-02-08

Family

ID=61072763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072587 WO2018025318A1 (en) 2016-08-02 2016-08-02 Heat pump device

Country Status (5)

Country Link
JP (1) JP6537733B2 (en)
CN (1) CN109511272B (en)
DE (1) DE112016007113B4 (en)
GB (1) GB2567333B (en)
WO (1) WO2018025318A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108413476A (en) * 2018-05-04 2018-08-17 浙江正理生能科技有限公司 A kind of heating installation of air-source and water source combination
WO2021192828A1 (en) * 2020-03-25 2021-09-30 ヤンマーパワーテクノロジー株式会社 Heat pump
JP7019214B1 (en) 2020-09-11 2022-02-15 オリオン機械株式会社 Simultaneous cold and hot temperature control device
JP7019212B1 (en) 2020-09-11 2022-02-15 オリオン機械株式会社 Simultaneous cold and hot temperature control device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210123608A1 (en) * 2019-10-25 2021-04-29 M.E.D. Energy Inc. Method for thermal energy transmission using water and carbon dioxide
WO2022049563A1 (en) * 2020-09-07 2022-03-10 Hiref S.P.A. Reversible heat pump
IL278561B (en) * 2020-11-08 2021-12-01 N A M Tech Ltd Multi cascade heating system
FI20217163A1 (en) * 2021-10-29 2023-04-30 Nocosys Oy Heat pump arrangement
SE545343C2 (en) * 2021-11-23 2023-07-11 Rototec Group Ab Method and system for heating
EP4311988A1 (en) * 2022-07-29 2024-01-31 Carrier Corporation A transport refrigeration system with a thermal management system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132647A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Hot-water supplier, air-conditioning hot-water supply system, and hot-water supply system
JP2008020125A (en) * 2006-07-13 2008-01-31 Matsushita Electric Ind Co Ltd Refrigerating cycle device and heat storage device using the same
WO2011040387A1 (en) * 2009-09-29 2011-04-07 三菱電機株式会社 Heat storage water-heating and air-conditioning machine
JP2011163617A (en) * 2010-02-08 2011-08-25 Tokyo Electric Power Co Inc:The Water heater and hot water supply system
JP2013036648A (en) * 2011-08-05 2013-02-21 Mitsubishi Electric Corp Device and method for heat storage and hot-water supply

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6161391A (en) * 1999-08-31 2000-12-19 Trieskey; Guy T. Environmental test chamber fast cool down system and method therefor
CN201028856Y (en) * 2007-05-18 2008-02-27 苏州昆拓冷机有限公司 Stacked refrigeration unit auxiliary device
CN101050894A (en) * 2007-05-18 2007-10-10 苏州昆拓冷机有限公司 Cascade refrigerating unit auxiliary device
KR101155496B1 (en) * 2010-04-23 2012-06-15 엘지전자 주식회사 Heat pump type speed heating apparatus
CN101825374B (en) * 2010-05-13 2011-08-03 中原工学院 Cascade high-temperature heat pump with liquid intermediate-temperature heat source and double low-temperature heat sources
WO2012114450A1 (en) * 2011-02-22 2012-08-30 株式会社日立製作所 Air conditioning and hot-water supplying system
CN102506502A (en) * 2011-10-19 2012-06-20 广东美的暖通设备限公司 Heat-accumulation-type cascade-cycle water heating machine and control method thereof
JP5575192B2 (en) * 2012-08-06 2014-08-20 三菱電機株式会社 Dual refrigeration equipment
KR20150035012A (en) * 2013-09-27 2015-04-06 오텍캐리어 주식회사 Heat Storaging Type Heat Pump Boiler System
CN203964365U (en) * 2014-07-07 2014-11-26 Tcl空调器(中山)有限公司 Superposition type water-heating machine system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132647A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Hot-water supplier, air-conditioning hot-water supply system, and hot-water supply system
JP2008020125A (en) * 2006-07-13 2008-01-31 Matsushita Electric Ind Co Ltd Refrigerating cycle device and heat storage device using the same
WO2011040387A1 (en) * 2009-09-29 2011-04-07 三菱電機株式会社 Heat storage water-heating and air-conditioning machine
JP2011163617A (en) * 2010-02-08 2011-08-25 Tokyo Electric Power Co Inc:The Water heater and hot water supply system
JP2013036648A (en) * 2011-08-05 2013-02-21 Mitsubishi Electric Corp Device and method for heat storage and hot-water supply

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108413476A (en) * 2018-05-04 2018-08-17 浙江正理生能科技有限公司 A kind of heating installation of air-source and water source combination
CN108413476B (en) * 2018-05-04 2023-12-29 浙江正理生能科技有限公司 Air source and water source combined heating device
WO2021192828A1 (en) * 2020-03-25 2021-09-30 ヤンマーパワーテクノロジー株式会社 Heat pump
JP2021156442A (en) * 2020-03-25 2021-10-07 ヤンマーパワーテクノロジー株式会社 heat pump
JP7454977B2 (en) 2020-03-25 2024-03-25 ヤンマーパワーテクノロジー株式会社 heat pump
JP7019214B1 (en) 2020-09-11 2022-02-15 オリオン機械株式会社 Simultaneous cold and hot temperature control device
JP7019212B1 (en) 2020-09-11 2022-02-15 オリオン機械株式会社 Simultaneous cold and hot temperature control device
JP2022046847A (en) * 2020-09-11 2022-03-24 オリオン機械株式会社 Cold and hot temperature simultaneous adjustment device
JP2022046849A (en) * 2020-09-11 2022-03-24 オリオン機械株式会社 Cold and hot temperature simultaneous adjustment device

Also Published As

Publication number Publication date
JPWO2018025318A1 (en) 2018-10-11
JP6537733B2 (en) 2019-07-03
GB201819892D0 (en) 2019-01-23
CN109511272A (en) 2019-03-22
GB2567333B (en) 2020-06-24
GB2567333A (en) 2019-04-10
DE112016007113T5 (en) 2019-04-25
DE112016007113B4 (en) 2023-02-23
CN109511272B (en) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2018025318A1 (en) Heat pump device
WO2011092802A1 (en) Heat pump device and refrigerant bypass method
WO2012032680A1 (en) Refrigeration cycle apparatus
JP2010181104A (en) Heat pump type hot water-supply/air-conditioning device
WO2010137401A1 (en) Heat pump device
JP5375919B2 (en) heat pump
WO2017175299A1 (en) Refrigeration cycle device
JP2012163219A (en) Heat pump system
JP2015064169A (en) Hot water generation device
WO2012121326A1 (en) Binary refrigeration cycle device
EP2918921B1 (en) Hot water generator
JP2017155944A (en) Refrigeration cycle device and hot water heating device including the same
JP5769684B2 (en) Heat pump equipment
JP2010084975A (en) Heating device
KR101923770B1 (en) Engine drive type air conditioner
JP6066072B2 (en) Water heating system
JP5150300B2 (en) Heat pump type water heater
JP2010281544A (en) Air conditioner
JP2011027358A (en) Heater
JP2013092369A (en) Heat pump
WO2019026234A1 (en) Refrigeration cycle device
JP2011214776A (en) Hot water supply/hot water heating device by binary refrigerating cycle
JP2015152270A (en) Refrigeration cycle device
JP2005147582A (en) Air conditioner
JP5247335B2 (en) Heating system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018531006

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201819892

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160802

122 Ep: pct application non-entry in european phase

Ref document number: 16911579

Country of ref document: EP

Kind code of ref document: A1