JP2017155944A - Refrigeration cycle device and hot water heating device including the same - Google Patents

Refrigeration cycle device and hot water heating device including the same Download PDF

Info

Publication number
JP2017155944A
JP2017155944A JP2016036755A JP2016036755A JP2017155944A JP 2017155944 A JP2017155944 A JP 2017155944A JP 2016036755 A JP2016036755 A JP 2016036755A JP 2016036755 A JP2016036755 A JP 2016036755A JP 2017155944 A JP2017155944 A JP 2017155944A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
bypass
compressor
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016036755A
Other languages
Japanese (ja)
Inventor
俊二 森脇
Shunji Moriwaki
俊二 森脇
繁男 青山
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016036755A priority Critical patent/JP2017155944A/en
Priority to EP17155270.6A priority patent/EP3211350B1/en
Priority to DK17155270.6T priority patent/DK3211350T3/en
Publication of JP2017155944A publication Critical patent/JP2017155944A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle device capable of improving heating capacity and efficiency by controlling into a proper refrigeration cycle state quickly, even in a low outside air temperature.SOLUTION: A refrigeration cycle device includes: a first temperature sensor 61 for detecting a refrigerant temperature at a bypass passage 3 outlet; a first pressure sensor 51 for detecting an intake refrigerant pressure of a compressor 21; a second temperature sensor 62 for detecting a discharge temperature of the compressor 21; and a control device 4. By controlling in such a manner that, when a refrigerant overheating degree at the bypass passage 3 outlet is large and a temperature rise value in predetermined time of a discharge refrigerant temperature of the compressor 21 becomes equal to or greater than a predetermined value, the opening of a main expansion valve 24 and a bypass expansion valve 31 is operated in a closing direction by a predetermined opening degree, an abnormal rise of the discharge temperature at the time when the refrigerant is started to circulate in the bypass passage 3 can be suppressed. Thus, even when the outside temperature is low, high operation efficiency and sufficient heating capacity can be acquired.SELECTED DRAWING: Figure 1

Description

本発明は、放熱器から流出した冷媒の一部をバイパスし、主流冷媒とバイパス流冷媒との間で熱交換を行って主流冷媒を過冷却する冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus that bypasses a part of refrigerant flowing out of a radiator and performs heat exchange between the mainstream refrigerant and the bypass refrigerant to supercool the mainstream refrigerant.

従来、この種の冷凍サイクル装置および温水暖房装置は冷媒回路の放熱器の下流側に過冷却熱交換器が設けられ、この過冷却熱交換器に膨張させた冷媒を流入させることにより放熱器から流出した冷媒を過冷却している(例えば、特許文献1参照)。   Conventionally, this type of refrigeration cycle apparatus and hot water heating apparatus is provided with a supercooling heat exchanger on the downstream side of the radiator of the refrigerant circuit, and from the radiator by allowing the expanded refrigerant to flow into the supercooling heat exchanger. The refrigerant that has flowed out is supercooled (see, for example, Patent Document 1).

図5は、特許文献1に記載された従来の冷凍サイクル装置を示すものである。   FIG. 5 shows a conventional refrigeration cycle apparatus described in Patent Document 1. As shown in FIG.

図5に示すように、冷凍サイクル装置100は、冷媒を循環させる冷媒回路110と、バイパス路120とを備えている。冷媒回路110は、圧縮機111、放熱器112、過冷却熱交換器113、主膨張弁114および蒸発器115が配管により環状に接続されて構成されている。   As shown in FIG. 5, the refrigeration cycle apparatus 100 includes a refrigerant circuit 110 that circulates a refrigerant and a bypass 120. The refrigerant circuit 110 is configured by connecting a compressor 111, a radiator 112, a supercooling heat exchanger 113, a main expansion valve 114, and an evaporator 115 in an annular shape by piping.

バイパス路120は、過冷却熱交換器113と主膨張弁114の間で冷媒回路110から分岐し、過冷却熱交換器113を経由して蒸発器115と圧縮機111の間で冷媒回路110につながっている。また、バイパス路120には、過冷却熱交換器113よりも上流側にバイパス膨張弁121が設けられている。   The bypass 120 branches from the refrigerant circuit 110 between the supercooling heat exchanger 113 and the main expansion valve 114, and enters the refrigerant circuit 110 between the evaporator 115 and the compressor 111 via the supercooling heat exchanger 113. linked. The bypass passage 120 is provided with a bypass expansion valve 121 upstream of the supercooling heat exchanger 113.

さらに、冷凍サイクル装置100には、圧縮機111から吐出される冷媒の温度(圧縮機吐出管温度)Tdを検出する温度センサ141と、蒸発器115に流入する冷媒の温度(蒸発器入口温度)Teを検出する温度センサ142と、バイパス路120において過冷却熱交換器113に流入する冷媒の温度(バイパス側入口温度)Tbiを検出する温度センサ143と、バイパス路120において過冷却熱交換器113から流出する冷媒の温度(バイパス側出口温度)Tboを検出する温度センサ144とを備えている。   Further, the refrigeration cycle apparatus 100 includes a temperature sensor 141 that detects the temperature of the refrigerant discharged from the compressor 111 (compressor discharge pipe temperature) Td, and the temperature of the refrigerant that flows into the evaporator 115 (evaporator inlet temperature). A temperature sensor 142 for detecting Te, a temperature sensor 143 for detecting the temperature (bypass side inlet temperature) Tbi of the refrigerant flowing into the supercooling heat exchanger 113 in the bypass passage 120, and the supercooling heat exchanger 113 in the bypass passage 120 And a temperature sensor 144 for detecting the temperature (bypass side outlet temperature) Tbo of the refrigerant flowing out of the refrigerant.

そして、温度センサ142で検出される蒸発器入口温度Teから圧縮機の吐出管の目標温度Td(target)が設定され、温度センサ141で検出された吐出管温度Tdが、その目標温度Td(target)となるように、主膨張弁114を制御する主膨張弁制御部と、過冷却熱交換器113でのバイパス側出口温度Tboとバイパス側入口温度Tbiとの差(Tbo−Tbi)が所定の目標値となるようにバイパス膨張弁121を制御するバイパス膨張弁制御部から構成されている。   The target temperature Td (target) of the discharge pipe of the compressor is set from the evaporator inlet temperature Te detected by the temperature sensor 142, and the discharge pipe temperature Td detected by the temperature sensor 141 is set to the target temperature Td (target). ), The difference (Tbo−Tbi) between the main expansion valve controller that controls the main expansion valve 114 and the bypass side outlet temperature Tbo and the bypass side inlet temperature Tbi in the supercooling heat exchanger 113 is a predetermined value. It is comprised from the bypass expansion valve control part which controls the bypass expansion valve 121 so that it may become a target value.

特開平10−68553号公報Japanese Patent Laid-Open No. 10-68553

しかしながら、前記従来の構成では、バイパス膨張弁121はバイパス路120の入口側と出口側の温度差、即ち、バイパス路120出口の過熱度を制御するように動作するので、バイパス路120出口の冷媒状態を湿り状態に制御することができない。   However, in the conventional configuration, the bypass expansion valve 121 operates so as to control the temperature difference between the inlet side and the outlet side of the bypass passage 120, that is, the degree of superheat of the bypass passage 120 outlet. The state cannot be controlled to a wet state.

その為に、外気温度が−20℃のような極低温時の暖房運転時にバイパス膨張弁121を開けた場合、バイパス路120の冷媒流量が適正量まで増加するまでの間に、バイパス
路120を流れる冷媒が、過冷却熱交換器113にて極端に加熱されて、圧縮機111の吸入冷媒状態が過度の過熱状態となり、圧縮機111の吐出温度が異常上昇してしまう可能性がある。
Therefore, when the bypass expansion valve 121 is opened at the time of heating operation at an extremely low temperature such as an outside air temperature of −20 ° C., the bypass passage 120 is changed until the refrigerant flow rate in the bypass passage 120 increases to an appropriate amount. The flowing refrigerant is heated extremely in the supercooling heat exchanger 113, the suction refrigerant state of the compressor 111 becomes excessively overheated, and the discharge temperature of the compressor 111 may rise abnormally.

従って、極低温外気温度時はバイパス路120を使用することができず、バイパス路120使用による運転効率向上効果を得ることができないために、効率が悪く、十分な加熱能力を確保できないという課題を有していた。   Therefore, since the bypass path 120 cannot be used at a cryogenic outside air temperature and the effect of improving the operation efficiency due to the use of the bypass path 120 cannot be obtained, the efficiency is low and sufficient heating capacity cannot be secured. Had.

本発明は、前記従来の課題を解決するもので、適正な冷凍サイクル状態に迅速に制御することで、低外気温度においても、加熱能力と効率を向上させることができる冷凍サイクル装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and provides a refrigeration cycle apparatus capable of improving heating capacity and efficiency even at a low outside air temperature by quickly controlling to an appropriate refrigeration cycle state. With the goal.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮機、放熱器、過冷却熱交換器、主膨張手段、蒸発器が環状に接続された冷媒回路と、前記放熱器と前記主膨張手段の間で前記冷媒回路から分岐され、前記過冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続されたバイパス路と、前記バイパス路の前記過冷却熱交換器の上流側に設けられたバイパス膨張手段と、前記過冷却熱交換器から流出する冷媒の温度を検出する第1温度センサと、前記圧縮機に吸入される冷媒の飽和温度を検出する第1飽和温度検出手段と、前記圧縮機から吐出される冷媒の温度を検出する第2温度センサと、制御装置と、を備え、前記第1温度センサで検出される温度が、前記第1飽和温度検出手段で検出される飽和温度より高く、かつ、前記第2温度センサで検出される温度の所定時間における温度上昇値が所定値以上となったときに、前記主膨張手段と前記バイパス膨張手段の開度を閉方向に動作させることを特徴とするものである。   In order to solve the conventional problems, a refrigeration cycle apparatus of the present invention includes a compressor, a radiator, a supercooling heat exchanger, a main expansion means, a refrigerant circuit in which an evaporator is connected in an annular shape, and the radiator. Branched from the refrigerant circuit between the main expansion means, and connected to the compressor circuit of the compressor or the refrigerant circuit between the evaporator and the compressor via the supercooling heat exchanger The bypass passage, bypass expansion means provided on the upstream side of the supercooling heat exchanger in the bypass passage, a first temperature sensor for detecting the temperature of the refrigerant flowing out of the supercooling heat exchanger, A first saturation temperature detecting means for detecting a saturation temperature of the refrigerant sucked into the compressor; a second temperature sensor for detecting a temperature of the refrigerant discharged from the compressor; and a controller. The temperature detected by the temperature sensor is the first saturation. The main expansion means and the bypass expansion means when the temperature rise value in a predetermined time of the temperature detected by the second temperature sensor is higher than a predetermined value that is higher than the saturation temperature detected by the temperature detection means. The opening is operated in the closing direction.

これにより、バイパス路の冷媒質量流量が過度に少ないことを検出でき、その場合に主膨張手段とバイパス膨張手段での減圧量を増加させることで、低圧側の蒸発器における冷媒の蒸発が促進され、低圧側に滞留していた液冷媒が高圧側に移動する。   As a result, it is possible to detect that the refrigerant mass flow rate in the bypass passage is excessively small. In this case, by increasing the pressure reduction amount in the main expansion means and the bypass expansion means, the evaporation of the refrigerant in the low pressure side evaporator is promoted. The liquid refrigerant staying on the low pressure side moves to the high pressure side.

したがって、バイパス膨張手段入口の冷媒が液状態となり、バイパス路への冷媒質量流量が迅速に増加することで、バイパス路出口の冷媒が短時間で飽和状態になるため、圧縮機の吐出温度の異常上昇を抑制できる。   Therefore, the refrigerant at the inlet of the bypass expansion means is in a liquid state, and the refrigerant mass flow rate to the bypass passage rapidly increases, so that the refrigerant at the outlet of the bypass passage is saturated in a short time. The rise can be suppressed.

本発明によれば、適正な冷凍サイクル状態に迅速に制御することで、低外気温度においても、加熱能力と効率を向上させることができる冷凍サイクル装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerating-cycle apparatus which can improve a heating capability and efficiency also at low outdoor temperature can be provided by controlling to a suitable refrigerating-cycle state rapidly.

本発明の実施の形態1における冷凍サイクル装置の概略構成図Schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. (a)同冷凍サイクル装置の主膨張手段の開度と吐出温度との関係を示す図(b)同冷凍サイクル装置のバイパス膨張手段の開度と吐出温度との関係を示す図(A) The figure which shows the relationship between the opening degree of the main expansion means of the same refrigeration cycle apparatus, and discharge temperature (b) The figure which shows the relationship between the opening degree of the bypass expansion means of the same refrigeration cycle apparatus, and discharge temperature 同冷凍サイクル装置の運転制御のフローチャートを示す図The figure which shows the flowchart of the operation control of the same refrigeration cycle apparatus 同冷凍サイクル装置の通常運転時における運転時間とその状態変化との関係を示す図The figure which shows the relationship between the operation time at the time of normal operation of the refrigeration cycle apparatus, and its state change 従来の冷凍サイクル装置の概略構成図Schematic configuration diagram of a conventional refrigeration cycle apparatus

第1の発明は、圧縮機、放熱器、過冷却熱交換器、主膨張手段、蒸発器が環状に接続された冷媒回路と、前記放熱器と前記主膨張手段の間で前記冷媒回路から分岐され、前記過
冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続されたバイパス路と、前記バイパス路の前記過冷却熱交換器の上流側に設けられたバイパス膨張手段と、前記過冷却熱交換器から流出する冷媒の温度を検出する第1温度センサと、前記圧縮機に吸入される冷媒の飽和温度を検出する第1飽和温度検出手段と、前記圧縮機から吐出される冷媒の温度を検出する第2温度センサと、制御装置と、を備え、前記第1温度センサで検出される温度が、前記第1飽和温度検出手段で検出される飽和温度より高く、かつ、前記第2温度センサで検出される温度の所定時間における温度上昇値が所定値以上となったときに、前記主膨張手段と前記バイパス膨張手段の開度を閉方向に動作させることを特徴とする冷凍サイクル装置である。
A first invention includes a compressor, a radiator, a supercooling heat exchanger, a main expansion unit, a refrigerant circuit in which an evaporator is annularly connected, and a branch from the refrigerant circuit between the radiator and the main expansion unit A bypass path connected to the compressor chamber of the compressor or the refrigerant circuit between the evaporator and the compressor via the supercooling heat exchanger, and the excess of the bypass path. Bypass expansion means provided on the upstream side of the cooling heat exchanger, a first temperature sensor for detecting the temperature of the refrigerant flowing out of the supercooling heat exchanger, and detecting the saturation temperature of the refrigerant sucked into the compressor A first saturation temperature detecting means, a second temperature sensor for detecting a temperature of the refrigerant discharged from the compressor, and a control device, wherein the temperature detected by the first temperature sensor is the first temperature sensor. Higher than the saturation temperature detected by the saturation temperature detection means, The opening degree of the main expansion means and the bypass expansion means is operated in the closing direction when the temperature rise value at a predetermined time of the temperature detected by the second temperature sensor becomes a predetermined value or more. The refrigeration cycle apparatus.

これにより、バイパス路の冷媒質量流量が過度に少ないことを判断でき、その場合に主膨張手段とバイパス膨張手段での減圧量を増加させることで、低圧側の蒸発器における冷媒の蒸発が促進され、低圧側に滞留していた液冷媒が高圧側に移動する。   Thus, it can be determined that the refrigerant mass flow rate in the bypass passage is excessively small, and in this case, by increasing the pressure reduction amount in the main expansion means and the bypass expansion means, evaporation of the refrigerant in the low pressure side evaporator is promoted. The liquid refrigerant staying on the low pressure side moves to the high pressure side.

したがって、バイパス膨張手段入口の冷媒が液状態となり、バイパス路への冷媒質量流量が迅速に増加することで、バイパス路出口の冷媒が短時間で飽和状態になるため、圧縮機の吐出温度の異常上昇を抑制できる。   Therefore, the refrigerant at the inlet of the bypass expansion means is in a liquid state, and the refrigerant mass flow rate to the bypass passage rapidly increases, so that the refrigerant at the outlet of the bypass passage is saturated in a short time. The rise can be suppressed.

したがって、外気温度が−20℃のような極低温時においても、過冷却熱交換器での主流冷媒とバイパス路を流がれる冷媒との熱交換による蒸発器におけるエンタルピー差増大効果、および、高圧側から低圧側への冷媒のバイパスによる低圧側冷媒経路の圧力損失低減効果を活用することができ、より高い運転効率と十分な加熱能力を得ることができる。   Therefore, even when the outside air temperature is extremely low such as −20 ° C., the effect of increasing the enthalpy difference in the evaporator by heat exchange between the mainstream refrigerant in the supercooling heat exchanger and the refrigerant flowing through the bypass, and high pressure The pressure loss reduction effect of the low-pressure side refrigerant path by bypassing the refrigerant from the side to the low-pressure side can be utilized, and higher operating efficiency and sufficient heating capacity can be obtained.

第2の発明は、第1の発明において、前記温度上昇値が小さいときより大きいときの方が、前記主膨張手段と前記バイパス膨張手段の閉方向への動作量が大きいことを特徴とする。   The second invention is characterized in that, in the first invention, when the temperature increase value is larger than when the temperature rise value is small, the operation amount in the closing direction of the main expansion means and the bypass expansion means is large.

これにより、減圧量の不足度合いに応じた主膨張手段とバイパス膨張手段の操作量となるので、幅広い負荷条件においても、バイパス膨張手段入口の冷媒状態が速やかに液化され、より短時間でバイパス路の出口の冷媒が飽和状態に制御することができる。   As a result, the amount of operation of the main expansion means and the bypass expansion means according to the degree of shortage of the decompression amount is obtained, so that the refrigerant state at the inlet of the bypass expansion means is quickly liquefied even in a wide range of load conditions, and the bypass path can be shortened in a shorter time The refrigerant at the outlet can be controlled to be saturated.

したがって、圧縮機の吐出温度が、目標に対して過度の上昇することを軽減でき、冷凍サイクルの制御性と、圧縮機の信頼性とをさらに向上することができる。   Therefore, excessive increase of the discharge temperature of the compressor with respect to the target can be reduced, and the controllability of the refrigeration cycle and the reliability of the compressor can be further improved.

第3の発明は、第1または第2の発明において、前記放熱器から流出する冷媒の温度を検出する第3温度センサと、前記放熱器を流れる冷媒の飽和温度を検出する第2飽和温度検出手段と、前記放熱器に流入する利用側熱媒体の温度を検出する第4温度センサと、前記放熱器から流出する前記利用側熱媒体の温度を検出する第5温度センサとを備え、前記第3温度センサで検出される温度と前記第2飽和温度検出手段で検出される飽和温度との温度差である過冷却度が、前記第4温度センサで検出される温度と前記第5温度センサで検出される温度との温度差よりも所定温度大きくなったときに、前記主膨張手段と前記バイパス膨張手段の開度の閉方向への動作を終了させることを特徴とするものである。   According to a third invention, in the first or second invention, a third temperature sensor that detects a temperature of the refrigerant flowing out of the radiator, and a second saturation temperature detection that detects a saturation temperature of the refrigerant flowing through the radiator. Means, a fourth temperature sensor for detecting the temperature of the utilization side heat medium flowing into the radiator, and a fifth temperature sensor for detecting the temperature of the utilization side heat medium flowing out of the radiator. The degree of supercooling, which is the temperature difference between the temperature detected by the third temperature sensor and the saturation temperature detected by the second saturation temperature detection means, is determined by the temperature detected by the fourth temperature sensor and the fifth temperature sensor. When the temperature difference between the detected temperature and the detected temperature becomes a predetermined temperature, the operation of the main expansion means and the bypass expansion means in the closing direction is terminated.

これにより、放熱器出口冷媒の過冷却度が適正値を越えた場合には、主膨張手段とバイパス膨張手段の閉動作を終了するので、膨張手段の絞り過ぎによる高圧の異常上昇や低圧の異常低下を抑制できる。   As a result, when the degree of supercooling of the refrigerant at the outlet of the radiator exceeds an appropriate value, the closing operation of the main expansion means and the bypass expansion means is terminated. Reduction can be suppressed.

したがって、主膨張手段とバイパス膨張手段の絞り過ぎによる効率の悪い冷凍サイクルでの運転を防止することができるので、さらにエネルギー効率を向上させることができる。   Therefore, it is possible to prevent the operation in the refrigeration cycle having a low efficiency due to excessive throttling of the main expansion means and the bypass expansion means, so that energy efficiency can be further improved.

第4の発明は、第1〜第3の発明のいずれかの発明の冷凍サイクル装置を備えた温水暖房装置で、放熱器が冷媒対空気熱交換器の場合だけでなく、冷媒対水熱交換器の場合にも適用できる。   A fourth invention is a hot water heating apparatus including the refrigeration cycle apparatus according to any one of the first to third inventions, and not only when the radiator is a refrigerant-to-air heat exchanger, but also to the refrigerant-to-water heat exchange. It can also be applied to the case of a vessel.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における冷凍サイクル装置および温水暖房装置の概略構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a schematic configuration diagram of a refrigeration cycle apparatus and a hot water heating apparatus according to a first embodiment of the present invention.

図1において、冷凍サイクル装置1Aは、冷媒を循環させる冷媒回路2と、バイパス路3と、制御装置4とを備えている。   In FIG. 1, the refrigeration cycle apparatus 1 </ b> A includes a refrigerant circuit 2 that circulates refrigerant, a bypass 3, and a control device 4.

冷媒としては、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、またはR32等の単一冷媒等を用いることができる。   As the refrigerant, for example, a non-azeotropic refrigerant mixture such as R407C, a pseudo-azeotropic refrigerant mixture such as R410A, or a single refrigerant such as R32 can be used.

冷媒回路2は、圧縮機21、放熱器22、過冷却熱交換器23、主膨張弁(主膨張手段)24および蒸発器25が配管により環状に接続されて構成されている。   The refrigerant circuit 2 includes a compressor 21, a radiator 22, a supercooling heat exchanger 23, a main expansion valve (main expansion means) 24, and an evaporator 25 that are annularly connected by piping.

本実施の形態では、蒸発器25と圧縮機21の間に、気液分離を行うサブアキュムレータ26および主アキュムレータ27が設けられている。また、冷媒回路2には、通常運転と除霜運転とを切り換えるための四方弁28が設けられている。   In the present embodiment, a sub-accumulator 26 and a main accumulator 27 that perform gas-liquid separation are provided between the evaporator 25 and the compressor 21. The refrigerant circuit 2 is provided with a four-way valve 28 for switching between normal operation and defrosting operation.

本実施の形態では、冷凍サイクル装置1Aが、加熱手段により生成した温水を暖房に利用する温水暖房装置の加熱手段を構成しており、放熱器22が、冷媒と水との間で熱交換を行わせて水を加熱する熱交換器となっている。   In the present embodiment, the refrigeration cycle apparatus 1A constitutes heating means of a hot water heating apparatus that uses hot water generated by the heating means for heating, and the radiator 22 exchanges heat between the refrigerant and water. It is a heat exchanger that heats water.

具体的には、放熱器22に供給管71と回収管72が接続されており、供給管71を通じて放熱器22に水が供給され、放熱器22で加熱された水(温水)が回収管72を通じて回収されるようになっている。   Specifically, a supply pipe 71 and a recovery pipe 72 are connected to the radiator 22, water is supplied to the radiator 22 through the supply pipe 71, and water (hot water) heated by the radiator 22 is the recovery pipe 72. It has come to be collected through.

回収管72により回収された温水は、例えばラジエータ等の暖房機に直接的または貯湯タンクを介して送られ、これにより暖房が行われる。   The hot water collected by the collection pipe 72 is sent to a heater such as a radiator directly or via a hot water storage tank, and thereby heating is performed.

本実施の形態では、バイパス路3は、過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐し、過冷却熱交換器23を経由して蒸発器25と圧縮機21の間における、サブアキュムレータ26と主アキュムレータ27の間の冷媒回路2に接続されている。   In the present embodiment, the bypass passage 3 branches from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and the evaporator 25 and the compressor 21 are connected via the supercooling heat exchanger 23. In between, it is connected to the refrigerant circuit 2 between the sub-accumulator 26 and the main accumulator 27.

また、バイパス路3には、過冷却熱交換器23よりも上流側にバイパス膨張弁(バイパス膨張手段)31が設けられている。   The bypass passage 3 is provided with a bypass expansion valve (bypass expansion means) 31 on the upstream side of the supercooling heat exchanger 23.

また、冷媒回路2には、圧縮機21に吸入される冷媒の圧力(吸入圧力)Psを検出する第1圧力センサ51と、圧縮機21から吐出される冷媒の温度(吐出温度)Tdを検出する第2温度センサ62と、放熱器22から流出する冷媒の圧力(凝縮圧力)Pcを検出する第2圧力センサ52と、放熱器22から流出する冷媒の温度(放熱器出口温度)Tcoを検出する第3温度センサ63と、が設けられている。   In the refrigerant circuit 2, a first pressure sensor 51 that detects the pressure (intake pressure) Ps of the refrigerant sucked into the compressor 21 and a temperature (discharge temperature) Td of the refrigerant discharged from the compressor 21 are detected. The second temperature sensor 62 that detects the pressure (condensation pressure) Pc of the refrigerant flowing out of the radiator 22, and the temperature of the refrigerant (radiator outlet temperature) Tco that flows out of the radiator 22. And a third temperature sensor 63 is provided.

また、バイパス路3には、過冷却熱交換器23から流出する冷媒の温度(バイパス路出
口温度)Tboを検出する第1温度センサ61が設けられている。
The bypass passage 3 is provided with a first temperature sensor 61 that detects the temperature (bypass passage outlet temperature) Tbo of the refrigerant flowing out of the supercooling heat exchanger 23.

一方、供給管71には、放熱器22に流入する水の温度(入水温度)Twiを検出する第4温度センサ64と、回収管72には、放熱器22から流出する水の温度(出水温度)Twoを検出する第5温度センサ65が設けられている。   On the other hand, the supply pipe 71 has a fourth temperature sensor 64 that detects the temperature (incoming temperature) Twi of water flowing into the radiator 22, and the recovery pipe 72 has a temperature of water flowing out of the radiator 22 (outflow temperature). ) A fifth temperature sensor 65 for detecting Two is provided.

なお、制御装置4は、第1圧力センサ51、第2圧力センサ52、第1温度センサ61、第2温度センサ62、第3温度センサ63、第4温度センサ64、第5温度センサ65で検出される検出値等に基づいて、圧縮機21の回転数、四方弁28の切り換え、ならびに主膨張弁24およびバイパス膨張弁31の開度を動作させる。   The control device 4 is detected by the first pressure sensor 51, the second pressure sensor 52, the first temperature sensor 61, the second temperature sensor 62, the third temperature sensor 63, the fourth temperature sensor 64, and the fifth temperature sensor 65. Based on the detected value or the like, the rotational speed of the compressor 21, the switching of the four-way valve 28, and the opening degrees of the main expansion valve 24 and the bypass expansion valve 31 are operated.

通常運転では、圧縮機21から吐出された冷媒が、四方弁28を介して、放熱器22に送られ、除霜運転では、圧縮機21から吐出された冷媒が、四方弁28を介して、蒸発器25に送られる。図1では、通常運転時の冷媒の流れ方向を矢印で示している。   In the normal operation, the refrigerant discharged from the compressor 21 is sent to the radiator 22 through the four-way valve 28, and in the defrosting operation, the refrigerant discharged from the compressor 21 is sent through the four-way valve 28. It is sent to the evaporator 25. In FIG. 1, the direction of refrigerant flow during normal operation is indicated by arrows.

まず、本実施の形態の冷凍サイクル装置1Aの通常運転における冷媒の状態変化について、図1に基づいて説明する。   First, the state change of the refrigerant in the normal operation of the refrigeration cycle apparatus 1A of the present embodiment will be described based on FIG.

圧縮機21から吐出された高圧冷媒は、放熱器22に流入し、放熱器22を通過する水に放熱する。放熱器22から流出した高圧冷媒は、過冷却熱交換器23に流入し、バイパス膨張弁31で減圧された低圧冷媒によって過冷却される。過冷却熱交換器23から流出した高圧冷媒は、主膨張弁24側とバイパス膨張弁31側とに分配される。   The high-pressure refrigerant discharged from the compressor 21 flows into the radiator 22 and radiates heat to the water passing through the radiator 22. The high-pressure refrigerant flowing out of the radiator 22 flows into the supercooling heat exchanger 23 and is supercooled by the low-pressure refrigerant decompressed by the bypass expansion valve 31. The high-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 is distributed to the main expansion valve 24 side and the bypass expansion valve 31 side.

主膨張弁24側に分配された高圧冷媒は、主膨張弁24によって減圧されて膨張した後に、蒸発器25に流入する。蒸発器25に流入した低圧冷媒は、ここで空気から吸熱する。   The high-pressure refrigerant distributed to the main expansion valve 24 is decompressed and expanded by the main expansion valve 24 and then flows into the evaporator 25. Here, the low-pressure refrigerant flowing into the evaporator 25 absorbs heat from the air.

一方、バイパス膨張弁31側に分配された高圧冷媒は、バイパス膨張弁31によって減圧されて膨張した後に、過冷却熱交換器23に流入する。過冷却熱交換器23に流入した低圧冷媒は、放熱器22から流出した高圧冷媒によって加熱される。その後、過冷却熱交換器23から流出した低圧冷媒は、蒸発器25から流出した低圧冷媒と合流し、再度圧縮機21に吸入される。   On the other hand, the high-pressure refrigerant distributed to the bypass expansion valve 31 side is decompressed by the bypass expansion valve 31 and expanded, and then flows into the supercooling heat exchanger 23. The low-pressure refrigerant that has flowed into the supercooling heat exchanger 23 is heated by the high-pressure refrigerant that has flowed out of the radiator 22. Thereafter, the low-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 merges with the low-pressure refrigerant that has flowed out of the evaporator 25, and is sucked into the compressor 21 again.

本実施の形態の冷凍サイクル装置1Aの構成は、低外気温度時に圧縮機21に吸入される冷媒の圧力が低下して冷媒循環量が減少し、これにより放熱器22の加熱能力が低下することを防止するためのものである。   In the configuration of the refrigeration cycle apparatus 1A according to the present embodiment, the pressure of the refrigerant sucked into the compressor 21 at the low outside air temperature decreases and the refrigerant circulation amount decreases, thereby reducing the heating capacity of the radiator 22. It is for preventing.

これを実現するには、過冷却により蒸発器25でのエンタルピー差を増大させるとともに、バイパス路3によって冷媒をバイパス路3に流通させることにより冷媒回路2の低圧側部分を流れる吸熱効果の小さい気相冷媒の量を抑え、これにより冷媒回路2の低圧側部分での圧力損失を低減させることが重要である。   In order to realize this, the enthalpy difference in the evaporator 25 is increased by supercooling, and the refrigerant having a small endothermic effect that flows through the low-pressure side portion of the refrigerant circuit 2 by flowing the refrigerant through the bypass passage 3 by the bypass passage 3. It is important to reduce the amount of phase refrigerant and thereby reduce the pressure loss at the low pressure side portion of the refrigerant circuit 2.

冷媒回路2の低圧側部分での圧力損失が低減すれば、その分圧縮機21に吸入される冷媒の圧力が上昇して比体積が減少するため、冷媒循環量が増加する。   If the pressure loss in the low pressure side portion of the refrigerant circuit 2 is reduced, the pressure of the refrigerant sucked into the compressor 21 is increased by that amount, and the specific volume is reduced, so that the refrigerant circulation amount is increased.

また、蒸発器25でのエンタルピー差を増大させれば、バイパス路3に冷媒を流通することにより蒸発器25を通過する冷媒の質量流量が低下したとしても、蒸発器25での吸熱量を確保することができる。   Further, if the enthalpy difference in the evaporator 25 is increased, even if the mass flow rate of the refrigerant passing through the evaporator 25 is reduced by circulating the refrigerant through the bypass passage 3, the heat absorption amount in the evaporator 25 is secured. can do.

すなわち、冷媒の過冷却度とバイパス路3の冷媒の質量流量を最大にすれば、最大限の
放熱器22の加熱能力向上効果と冷凍サイクル装置1Aの成績係数向上効果が得られる。
That is, if the degree of supercooling of the refrigerant and the mass flow rate of the refrigerant in the bypass passage 3 are maximized, the maximum heating capacity improvement effect of the radiator 22 and the coefficient of performance improvement effect of the refrigeration cycle apparatus 1A can be obtained.

しかしながら、外気温度が−20℃のような極低温時や利用側負荷の小さい場合に、バイパス路3に冷媒を流す効果を活用する場合は、バイパス路3に流れる冷媒の流量が適正になるまでの間に、圧縮機の吐出温度が異常上昇するといった問題がある。   However, when the effect of flowing the refrigerant through the bypass passage 3 is utilized at an extremely low temperature such as -20 ° C. or when the load on the use side is small, until the flow rate of the refrigerant flowing through the bypass passage 3 becomes appropriate During this period, there is a problem that the discharge temperature of the compressor rises abnormally.

従って、バイパス路3に冷媒を流通させることによる性能向上効果を幅広い条件で活用し、機器の効率を向上するためには、この吐出温度の異常上昇を抑制することが重要なのである。   Therefore, it is important to suppress the abnormal increase in the discharge temperature in order to utilize the performance improvement effect by circulating the refrigerant through the bypass passage 3 under a wide range of conditions and improve the efficiency of the device.

そのために、本実施の形態では、制御装置4は、通常運転時(特にバイパス開始時)に、バイパス路出口温度Tboが、吸入圧力Psに基づいて算出される吸入飽和温度Tsより所定温度Tm以上高く、かつ、所定時間における吐出温度Tdの変化量Atdが所定の変化量Am以上となった場合に、主膨張弁24とバイパス膨張弁31を、変化量Atdに基づいて算出された主膨張弁操作開度Otmおよびバイパス膨張弁操作開度Otb分開度を閉方向に動作させている。   Therefore, in the present embodiment, the control device 4 determines that the bypass passage outlet temperature Tbo is equal to or higher than a predetermined temperature Tm from the suction saturation temperature Ts calculated based on the suction pressure Ps during normal operation (particularly at the start of bypass). When the change amount Atd of the discharge temperature Td at a predetermined time is higher than the predetermined change amount Am, the main expansion valve 24 and the bypass expansion valve 31 are calculated based on the change amount Atd. The operation opening degree Otm and the opening degree corresponding to the bypass expansion valve operation opening degree Otb are operated in the closing direction.

また、制御装置4は、凝縮圧力Pcに基づいて算出される凝縮飽和温度Tcと放熱器出口温度Tcoの差分により算出される過冷却度Scが、出水温度Twoと入水温度Twiの差分により算出される水の温度差Dwより所定の温度差Dm以上となった場合に、主膨張弁24とバイパス膨張弁31の開度閉方向への動作を終了させている。   Further, the control device 4 calculates the degree of supercooling Sc calculated from the difference between the condensation saturation temperature Tc calculated based on the condensation pressure Pc and the radiator outlet temperature Tco, based on the difference between the outlet water temperature Two and the incoming water temperature Twi. The operation of the main expansion valve 24 and the bypass expansion valve 31 in the opening closing direction is terminated when the temperature difference Dw of the water becomes equal to or greater than the predetermined temperature difference Dm.

また、制御装置4は、主膨張弁24とバイパス膨張弁31の開度を閉方向に動作させる所定開度は、例えば、図2のように設定され、吐出温度上昇速度が早いほど、減圧量が大きくなるようにしているので、吐出温度の過度の上昇を抑制できるようにしている。   Further, the control device 4 sets the predetermined opening for operating the opening of the main expansion valve 24 and the bypass expansion valve 31 in the closing direction, for example, as shown in FIG. Therefore, an excessive increase in the discharge temperature can be suppressed.

次に、本実施の形態の冷凍サイクル装置1Aの通常運転時の制御仕様を、図3に示すフローチャートに基づいて、具体的に説明する。   Next, the control specifications during normal operation of the refrigeration cycle apparatus 1A of the present embodiment will be specifically described based on the flowchart shown in FIG.

なお、図4は、本実施の形態の冷凍サイクル装置1Aの通常運転時における運転時間とその状態変化との関係を示す図である。   FIG. 4 is a diagram showing the relationship between the operation time and the state change during normal operation of the refrigeration cycle apparatus 1A of the present embodiment.

まず、制御装置4は、第1圧力センサ51、第2圧力センサ52、第1温度センサ61、第2温度センサ62、第3温度センサ63、第4温度センサ64、第5温度センサ65で、吐出温度Tdと、バイパス出口温度Tboと、放熱器出口温度Tcoと、入水温度Twiと、出水温度Twoと、吸入圧力Psと、凝縮圧力Pcとを検出する(ステップS1)。   First, the control device 4 includes a first pressure sensor 51, a second pressure sensor 52, a first temperature sensor 61, a second temperature sensor 62, a third temperature sensor 63, a fourth temperature sensor 64, and a fifth temperature sensor 65. The discharge temperature Td, the bypass outlet temperature Tbo, the radiator outlet temperature Tco, the incoming water temperature Twi, the outgoing water temperature Two, the suction pressure Ps, and the condensation pressure Pc are detected (step S1).

次に、圧力センサ51で検出した吸入圧力Psから、圧縮機21に吸入される冷媒の圧力での吸入飽和温度Tsを算出する(ステップS2)。この吸入飽和温度Tsの算出は、冷媒物性式を用いて行われる。   Next, the suction saturation temperature Ts at the pressure of the refrigerant sucked into the compressor 21 is calculated from the suction pressure Ps detected by the pressure sensor 51 (step S2). The calculation of the suction saturation temperature Ts is performed using a refrigerant physical property formula.

そして、バイパス路出口温度Tboと吸入飽和温度Tsを比較し、TboがTsより、予め設定された所定温度Tm以上高いか否かを判断する(ステップS3)。   Then, the bypass passage outlet temperature Tbo and the suction saturation temperature Ts are compared, and it is determined whether Tbo is higher than Ts by a predetermined temperature Tm that is set in advance (step S3).

バイパス路出口温度Tboが、吸入飽和温度Tsより、所定温度Tm以上高くない場合には(ステップS3でNO)、バイパス路3の冷媒流量が適正であると判断し、通常の制御に移行する。   If the bypass passage outlet temperature Tbo is not higher than the suction saturation temperature Ts by a predetermined temperature Tm or more (NO in step S3), it is determined that the refrigerant flow rate in the bypass passage 3 is appropriate, and the routine proceeds to normal control.

一方、バイパス路出口温度Tboが、吸入飽和温度Tsより、所定温度Tm以上高い場
合には(ステップS3でYES)、バイパス路3の冷媒流量が不足していると判断し、その後、第2温度センサ62で検出した吐出温度Tdから、吐出温度変化量Atdを算出する(ステップS4)。
On the other hand, if the bypass passage outlet temperature Tbo is higher than the suction saturation temperature Ts by a predetermined temperature Tm or more (YES in step S3), it is determined that the refrigerant flow rate in the bypass passage 3 is insufficient, and then the second temperature. A discharge temperature change amount Atd is calculated from the discharge temperature Td detected by the sensor 62 (step S4).

この吐出温度変化量Atdの算出は、今回検出した吐出温度Td(n)と一定時間前に検出した吐出温度Td(n−1)の差分により求められる。   The calculation of the discharge temperature change amount Atd is obtained from the difference between the discharge temperature Td (n) detected this time and the discharge temperature Td (n−1) detected a predetermined time ago.

ついで、制御装置4は、算出された吐出温度変化量Atdが、予め設定された所定の変化量Am以上か否かを判断する(ステップS5)。   Next, the control device 4 determines whether or not the calculated discharge temperature change amount Atd is greater than or equal to a predetermined change amount Am set in advance (step S5).

吐出温度変化量Atdが所定の変化量Am未満の場合は(ステップS5でNO)、吐出温度の上昇速度が遅く、異常な温度上昇はしないと判断し、通常の制御に移行する。   If the discharge temperature change amount Atd is less than the predetermined change amount Am (NO in step S5), it is determined that the increase rate of the discharge temperature is slow and that there is no abnormal temperature increase, and the routine proceeds to normal control.

一方、吐出温度変化量Atdが所定の変化量Am以上の場合は(ステップS5でYES)、吐出温度の上昇速度が速く、吐出温度が上限値に達する可能性があると判断し、ステップS6に移行する。   On the other hand, if the discharge temperature change amount Atd is equal to or greater than the predetermined change amount Am (YES in step S5), it is determined that the discharge temperature rises rapidly and the discharge temperature may reach the upper limit value, and the process proceeds to step S6. Transition.

ステップS6では、出水温度Twoと入水温度Twiの差分から水の温度差Dwが算出される。   In step S6, the water temperature difference Dw is calculated from the difference between the water temperature Two and the water temperature Twi.

そして、第2圧力センサ52で検出した凝縮圧力Pcから放熱器22出口での冷媒の凝縮飽和温度Tcが算出されるとともに、凝縮飽和温度Tcと放熱器出口温度Tcoの差分から過冷却度Scが算出される(ステップS7)。   Then, the condensation saturation temperature Tc of the refrigerant at the radiator 22 outlet is calculated from the condensation pressure Pc detected by the second pressure sensor 52, and the supercooling degree Sc is calculated from the difference between the condensation saturation temperature Tc and the radiator outlet temperature Tco. Calculated (step S7).

その後、制御装置4は、過冷却度Scと水の温度差Dwを比較し、ScがDwより所定の温度差Dm以上大きいか否かを判断する(ステップS8)。   Thereafter, the control device 4 compares the degree of supercooling Sc with the water temperature difference Dw, and determines whether Sc is greater than Dw by a predetermined temperature difference Dm or more (step S8).

過冷却度Scが水の温度差Dwより所定の温度差Dw以上大きい場合(ステップS8でYES)、放熱器22出口の冷媒状態が液状態であり、低圧側に液冷媒が滞留していないと判断し、通常の制御に移行する。   When the degree of supercooling Sc is greater than the water temperature difference Dw by a predetermined temperature difference Dw or more (YES in step S8), the refrigerant state at the outlet of the radiator 22 is in the liquid state, and the liquid refrigerant does not stay on the low pressure side. Determine and shift to normal control.

一方、過冷却度Scが水の温度差Dwより所定の温度差Dw以上大きくない場合(ステップS8でNO)、放熱器22出口の冷媒の過冷却が不十分であり、低圧側に冷媒が滞留していると判断し、ステップS9に移行する。   On the other hand, if the degree of supercooling Sc is not greater than the water temperature difference Dw by a predetermined temperature difference Dw or more (NO in step S8), the refrigerant at the outlet of the radiator 22 is not sufficiently supercooled, and the refrigerant stays on the low pressure side. The process proceeds to step S9.

ステップS9では、算出した吐出温度変化量Atdから主膨張弁24の操作開度Otmとバイパス膨張弁31の操作開度Otbをそれぞれ算出する。各操作開度OtmとOtbの算出方法は、例えばOtm=fm(Atd)、Otb=fb(Atd)のように吐出温度変化量Atdの関数として設定しておけばよい。   In step S9, the operation opening degree Otm of the main expansion valve 24 and the operation opening degree Otb of the bypass expansion valve 31 are respectively calculated from the calculated discharge temperature change amount Atd. The calculation method of each operation opening degree Otm and Otb may be set as a function of the discharge temperature change amount Atd, for example, Otm = fm (Atd), Otb = fb (Atd).

そして、主膨張弁24を閉方向に開度Otm操作するとともに、バイパス膨張弁31を閉方向に開度Otb操作する。   Then, the opening degree Otm of the main expansion valve 24 is operated in the closing direction, and the opening degree Otb of the bypass expansion valve 31 is operated in the closing direction.

すなわち、本実施の形態においては、制御装置4は、図4に示すように、バイパス路3出口の冷媒過熱度が大きく、かつ、圧縮機21の吐出冷媒温度の所定時間における温度上昇値が所定値以上となったときに、主膨張弁24とバイパス膨張弁31の開度を、閉方向に所定開度動作させるように制御し、所定開度は、所定時間における温度上昇値が大きいほど大きくなるように設定している。   That is, in the present embodiment, as shown in FIG. 4, the control device 4 has a large refrigerant superheat degree at the outlet of the bypass passage 3 and has a predetermined temperature rise value for a predetermined time of the refrigerant discharge temperature of the compressor 21. When the value exceeds the value, the opening degree of the main expansion valve 24 and the bypass expansion valve 31 is controlled so as to operate at a predetermined opening degree in the closing direction, and the predetermined opening degree increases as the temperature rise value at a predetermined time increases. It is set to be.

この状態において、主膨張弁24とバイパス膨張弁31の開度を閉方向に動作させるの
で、これによって、蒸発器25における冷媒の蒸発が促進され、サブアキュムレータ26および主アキュムレータ27などの低圧部に、低乾き度の状態で滞留している冷媒を高圧側に移動する。
In this state, the opening degrees of the main expansion valve 24 and the bypass expansion valve 31 are operated in the closing direction, whereby the evaporation of the refrigerant in the evaporator 25 is promoted, and the low-pressure parts such as the sub-accumulator 26 and the main accumulator 27 The refrigerant staying in a low dryness state is moved to the high pressure side.

これにより、放熱器22出口の冷媒が液化することで、バイパス路3側への冷媒質量流量が迅速に増加し、バイパス路3の出口冷媒は飽和状態に制御されるので、図4に示すように、圧縮機21の吐出温度の異常上昇が抑制できる。   As a result, the refrigerant at the outlet of the radiator 22 is liquefied, so that the refrigerant mass flow rate to the bypass passage 3 side is rapidly increased and the outlet refrigerant of the bypass passage 3 is controlled to be saturated, as shown in FIG. In addition, an abnormal increase in the discharge temperature of the compressor 21 can be suppressed.

したがって、外気温度が−20℃のような極低温時においても、バイパスによる過冷却熱交換器23での主流冷媒とバイパス流冷媒との熱交換による蒸発器25におけるエンタルピー差増大効果、および、冷媒のバイパスによる低圧側冷媒経路の圧力損失低減効果を活用することができ、より高い運転効率と十分な加熱能力を得ることができる。   Therefore, even when the outside air temperature is extremely low such as −20 ° C., the effect of increasing the enthalpy difference in the evaporator 25 due to heat exchange between the mainstream refrigerant and the bypass refrigerant in the subcooling heat exchanger 23 by bypass, and the refrigerant The effect of reducing the pressure loss of the low-pressure side refrigerant path due to the bypass can be utilized, and higher operating efficiency and sufficient heating capacity can be obtained.

また、吐出温度の過度の上昇をより抑制することができるため、冷凍サイクルの制御性と、圧縮機21の信頼性をさらに向上できる。   Moreover, since the excessive raise of discharge temperature can be suppressed more, the controllability of a refrigerating cycle and the reliability of the compressor 21 can further be improved.

また、制御装置4は、図4に示すように、放熱器22出口の冷媒過冷却度が、放熱器22から流出する水と放熱器22に流入する水の温度差より所定値以上大きくなったときに、主膨張弁24とバイパス膨張弁31の開度を閉方向に所定開度動作する制御を終了するように設定している。   Further, as shown in FIG. 4, in the control device 4, the refrigerant supercooling degree at the outlet of the radiator 22 is larger than the temperature difference between the water flowing out from the radiator 22 and the water flowing into the radiator 22 by a predetermined value or more. Sometimes, the opening degree of the main expansion valve 24 and the bypass expansion valve 31 is set so as to end the control for the predetermined opening degree operation in the closing direction.

これにより、放熱器22出口冷媒の過冷却度が適正値を越えた場合には、主膨張弁24とバイパス膨張弁31の閉動作を終了するので、膨張手段の絞り過ぎによる高圧の異常上昇や低圧の異常低下を抑制できる。   As a result, when the degree of supercooling of the refrigerant at the outlet of the radiator 22 exceeds an appropriate value, the closing operation of the main expansion valve 24 and the bypass expansion valve 31 is terminated. An abnormal drop in low pressure can be suppressed.

したがって、主膨張手段とバイパス膨張手段の絞り過ぎによる効率の悪い冷凍サイクルでの運転を防止することができるので、さらにエネルギー効率を向上させることができる。   Therefore, it is possible to prevent the operation in the refrigeration cycle having a low efficiency due to excessive throttling of the main expansion means and the bypass expansion means, so that energy efficiency can be further improved.

すなわち、本実施の形態の図3に示すフローチャートに基づいて、冷凍サイクル装置1Aを通常運転することで、放熱器22出口の冷媒が短時間で液化され、バイパス路3側への冷媒質量流量が迅速に増加することで、バイパス路3出口の冷媒状態は、図4のa″点ように短時間で飽和状態に制御されるため、図4に示すように、圧縮機21の吐出温度の異常上昇を抑制できるのである。   That is, based on the flowchart shown in FIG. 3 of the present embodiment, the refrigerant at the outlet of the radiator 22 is liquefied in a short time by operating the refrigeration cycle apparatus 1A normally, and the refrigerant mass flow rate toward the bypass path 3 is increased. By rapidly increasing, the refrigerant state at the outlet of the bypass passage 3 is controlled to a saturated state in a short time as indicated by point a ″ in FIG. 4. Therefore, as shown in FIG. The rise can be suppressed.

さらに、放熱器22から流出する水と放熱器22に流入する水の温度差から、放熱器22出口の冷媒過冷却度の適正値が判断でき、膨張弁の減圧量が過度に大きくなる前に閉動作を終了するため、吐出圧力の異常上昇や吸入圧力の異常低下を抑制できる。   Furthermore, the appropriate value of the refrigerant supercooling degree at the outlet of the radiator 22 can be determined from the temperature difference between the water flowing out from the radiator 22 and the water flowing into the radiator 22, and before the decompression amount of the expansion valve becomes excessively large. Since the closing operation is completed, an abnormal increase in the discharge pressure and an abnormal decrease in the suction pressure can be suppressed.

なお、図1では、第1圧力センサ51が冷媒回路2におけるバイパス路3がつながる位置と主アキュムレータ27の間に設けられているが、第1圧力センサ51は、蒸発器25と圧縮機21の間であれば、冷媒回路2のどの位置に設けられていてもよい。あるいは、圧力センサ51は、バイパス路3の過冷却熱交換器23よりも下流側に設けられていてもよい。   In FIG. 1, the first pressure sensor 51 is provided between the position where the bypass path 3 in the refrigerant circuit 2 is connected and the main accumulator 27, but the first pressure sensor 51 is connected to the evaporator 25 and the compressor 21. As long as it is between, it may be provided at any position in the refrigerant circuit 2. Alternatively, the pressure sensor 51 may be provided on the downstream side of the subcooling heat exchanger 23 in the bypass passage 3.

また、本実施の形態では、第1圧力センサ51により吸入飽和温度を算出しているが、吸入飽和温度は、冷媒回路2およびバイパス路3における低圧の二相冷媒が流通する部分の温度を検出して代用してもよい。   Further, in the present embodiment, the suction saturation temperature is calculated by the first pressure sensor 51, but the suction saturation temperature detects the temperature of the portion where the low-pressure two-phase refrigerant flows in the refrigerant circuit 2 and the bypass passage 3. It may be substituted.

さらに、バイパス路3は、必ずしも過冷却熱交換器23と主膨張弁24の間で冷媒回路
2から分岐している必要はなく、放熱器22と過冷却熱交換器23の間で冷媒回路2から分岐していてもよい。
Further, the bypass passage 3 is not necessarily branched from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and the refrigerant circuit 2 is interposed between the radiator 22 and the supercooling heat exchanger 23. You may branch from.

また、バイパス路3の接続部は、必ずしも圧縮機21の吸入配管である必要はなく、インジェクション機構のある圧縮機の場合は、例えば、インジェクションポートに接続すればよい。   Moreover, the connection part of the bypass path 3 does not necessarily need to be the suction piping of the compressor 21, and in the case of a compressor having an injection mechanism, it may be connected to, for example, an injection port.

また、図1では、第2圧力センサ52が冷媒回路2における放熱器22と過冷却熱交換器23の間に設けられているが、第2圧力センサ52は、圧縮機の吐出配管から主膨張弁の間であれば、冷媒回路2のどの位置に設けられていてもよい。配管の圧力損失が大きい場合は、圧力損失分を補正した値を検出値として使用すればよい。   In FIG. 1, the second pressure sensor 52 is provided between the radiator 22 and the supercooling heat exchanger 23 in the refrigerant circuit 2, but the second pressure sensor 52 is connected to the main expansion from the discharge pipe of the compressor. It may be provided at any position in the refrigerant circuit 2 as long as it is between the valves. When the pressure loss of the pipe is large, a value obtained by correcting the pressure loss may be used as the detection value.

さらに、本発明の主膨張手段およびバイパス膨張手段は、必ずしも膨張弁である必要はなく、膨張する冷媒から動力を回収する膨張機であってもよい。この場合、例えば、膨張機と連結された発電機によって負荷を変化させることにより、膨張機の回転数を制御すればよい。   Furthermore, the main expansion means and bypass expansion means of the present invention are not necessarily expansion valves, and may be an expander that recovers power from the expanding refrigerant. In this case, for example, the rotational speed of the expander may be controlled by changing the load with a generator connected to the expander.

本発明は、冷凍サイクル装置によって温水を生成し、その温水を暖房に利用する温水暖房装置に特に有用である。   INDUSTRIAL APPLICABILITY The present invention is particularly useful for a hot water heater that generates hot water using a refrigeration cycle apparatus and uses the hot water for heating.

1A 冷凍サイクル装置
2 冷媒回路
3 バイパス路
4 制御装置
21 圧縮機
22 放熱器
23 過冷却熱交換器
24 主膨張弁(主膨張手段)
25 蒸発器
31 バイパス膨張弁(バイパス膨張手段)
51 第1圧力センサ(第1飽和温度検出手段)
52 第2圧力センサ(第2飽和温度検出手段)
61 第1温度センサ
62 第2温度センサ
63 第3温度センサ
64 第4温度センサ
65 第5温度センサ
DESCRIPTION OF SYMBOLS 1A Refrigeration cycle apparatus 2 Refrigerant circuit 3 Bypass path 4 Control apparatus 21 Compressor 22 Radiator 23 Supercooling heat exchanger 24 Main expansion valve (main expansion means)
25 Evaporator 31 Bypass expansion valve (Bypass expansion means)
51 1st pressure sensor (1st saturation temperature detection means)
52 Second pressure sensor (second saturation temperature detecting means)
61 1st temperature sensor 62 2nd temperature sensor 63 3rd temperature sensor 64 4th temperature sensor 65 5th temperature sensor

Claims (4)

圧縮機、放熱器、過冷却熱交換器、主膨張手段、蒸発器が環状に接続された冷媒回路と、前記放熱器と前記主膨張手段の間で前記冷媒回路から分岐され、前記過冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続されたバイパス路と、
前記バイパス路の前記過冷却熱交換器の上流側に設けられたバイパス膨張手段と、
前記過冷却熱交換器から流出する冷媒の温度を検出する第1温度センサと、
前記圧縮機に吸入される冷媒の飽和温度を検出する第1飽和温度検出手段と、
前記圧縮機から吐出される冷媒の温度を検出する第2温度センサと、
制御装置と、
を備え、
前記第1温度センサで検出される温度が、前記第1飽和温度検出手段で検出される飽和温度より高く、かつ、前記第2温度センサで検出される温度の所定時間における温度上昇値が所定値以上となったときに、前記主膨張手段と前記バイパス膨張手段の開度を閉方向に動作させることを特徴とする冷凍サイクル装置。
A refrigerant circuit in which a compressor, a radiator, a supercooling heat exchanger, a main expansion unit, and an evaporator are connected in a ring shape; and the refrigerant circuit is branched between the radiator and the main expansion unit, and the supercooling heat Via a exchanger, a compression chamber of the compressor, or a bypass connected to the refrigerant circuit between the evaporator and the compressor;
Bypass expansion means provided on the upstream side of the subcooling heat exchanger in the bypass path;
A first temperature sensor for detecting the temperature of the refrigerant flowing out of the supercooling heat exchanger;
First saturation temperature detection means for detecting a saturation temperature of refrigerant sucked into the compressor;
A second temperature sensor for detecting the temperature of the refrigerant discharged from the compressor;
A control device;
With
The temperature detected by the first temperature sensor is higher than the saturation temperature detected by the first saturation temperature detecting means, and the temperature rise value at a predetermined time of the temperature detected by the second temperature sensor is a predetermined value. When it becomes above, the opening degree of the said main expansion means and the said bypass expansion means is operated in a closing direction, The refrigerating-cycle apparatus characterized by the above-mentioned.
前記温度上昇値が小さいときより大きいときの方が、前記主膨張手段と前記バイパス膨張手段の閉方向への動作量が大きいことを特徴とする前記請求項1に記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the amount of operation of the main expansion unit and the bypass expansion unit in the closing direction is larger when the temperature increase value is larger than when the temperature increase value is small. 前記放熱器から流出する冷媒の温度を検出する第3温度センサと、
前記放熱器を流れる冷媒の飽和温度を検出する第2飽和温度検出手段と、
前記放熱器に流入する利用側熱媒体の温度を検出する第4温度センサと、
前記放熱器から流出する前記利用側熱媒体の温度を検出する第5温度センサと、
を備え、
前記第3温度センサで検出される温度と前記第2飽和温度検出手段で検出される飽和温度との温度差である過冷却度が、前記第4温度センサで検出される温度と前記第5温度センサで検出される温度との温度差よりも所定温度大きくなったときに、前記主膨張手段と前記バイパス膨張手段の開度の閉方向への動作を終了させることを特徴とする前記請求項1または2に記載の冷凍サイクル装置。
A third temperature sensor for detecting the temperature of the refrigerant flowing out of the radiator;
Second saturation temperature detection means for detecting the saturation temperature of the refrigerant flowing through the radiator;
A fourth temperature sensor for detecting the temperature of the use side heat medium flowing into the radiator;
A fifth temperature sensor for detecting the temperature of the use side heat medium flowing out of the radiator;
With
The degree of supercooling, which is the temperature difference between the temperature detected by the third temperature sensor and the saturation temperature detected by the second saturation temperature detecting means, is the temperature detected by the fourth temperature sensor and the fifth temperature. 2. The operation in the closing direction of the opening degree of the main expansion means and the bypass expansion means is terminated when a predetermined temperature becomes larger than a temperature difference with a temperature detected by a sensor. Or the refrigeration cycle apparatus of 2.
前記請求項1〜3のいずれか1項に記載の冷凍サイクル装置を備えた温水暖房装置。 The hot-water heating apparatus provided with the refrigeration cycle apparatus of any one of the said Claims 1-3.
JP2016036755A 2016-02-29 2016-02-29 Refrigeration cycle device and hot water heating device including the same Pending JP2017155944A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016036755A JP2017155944A (en) 2016-02-29 2016-02-29 Refrigeration cycle device and hot water heating device including the same
EP17155270.6A EP3211350B1 (en) 2016-02-29 2017-02-08 Refrigeration cycle device, and hot water heating device provided with the same
DK17155270.6T DK3211350T3 (en) 2016-02-29 2017-02-08 Cooling circuit and hot water heater provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016036755A JP2017155944A (en) 2016-02-29 2016-02-29 Refrigeration cycle device and hot water heating device including the same

Publications (1)

Publication Number Publication Date
JP2017155944A true JP2017155944A (en) 2017-09-07

Family

ID=57995147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016036755A Pending JP2017155944A (en) 2016-02-29 2016-02-29 Refrigeration cycle device and hot water heating device including the same

Country Status (3)

Country Link
EP (1) EP3211350B1 (en)
JP (1) JP2017155944A (en)
DK (1) DK3211350T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134122A (en) * 2019-02-15 2020-08-31 パナソニックIpマネジメント株式会社 Heat pump system
CN113669934A (en) * 2021-07-12 2021-11-19 浙江中广电器股份有限公司 Flash tank system and serial double-throttling control method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352473B (en) * 2016-08-19 2019-08-30 广东美的暖通设备有限公司 Multi-line system and its fault detection method that branch valve component is subcooled
CN111397176B (en) * 2020-03-17 2021-03-12 珠海格力电器股份有限公司 High-temperature refrigeration control method and device and air conditioning equipment
DE102020122713A1 (en) 2020-08-31 2022-03-03 Andreas Bangheri Heat pump and method for operating a heat pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068553A (en) 1996-08-27 1998-03-10 Daikin Ind Ltd Air conditioner
JP5278451B2 (en) * 2011-01-27 2013-09-04 パナソニック株式会社 Refrigeration cycle apparatus and hot water heater using the same
JP5637053B2 (en) * 2011-04-07 2014-12-10 パナソニック株式会社 Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5816789B2 (en) * 2011-06-17 2015-11-18 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and hot water heating apparatus including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134122A (en) * 2019-02-15 2020-08-31 パナソニックIpマネジメント株式会社 Heat pump system
JP7117513B2 (en) 2019-02-15 2022-08-15 パナソニックIpマネジメント株式会社 heat pump system
CN113669934A (en) * 2021-07-12 2021-11-19 浙江中广电器股份有限公司 Flash tank system and serial double-throttling control method thereof
CN113669934B (en) * 2021-07-12 2022-11-04 浙江中广电器集团股份有限公司 Flash tank system and serial double-throttling control method thereof

Also Published As

Publication number Publication date
DK3211350T3 (en) 2018-12-03
EP3211350B1 (en) 2018-09-26
EP3211350A1 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP5816789B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5637053B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5533491B2 (en) Refrigeration cycle apparatus and hot water heater
JP5278451B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP5452138B2 (en) Refrigeration air conditioner
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP5421717B2 (en) Refrigeration cycle apparatus and hot water heater
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
WO2014080612A1 (en) Refrigeration cycle device and hot water-producing device provided therewith
EP3211350B1 (en) Refrigeration cycle device, and hot water heating device provided with the same
JP2011174672A (en) Refrigerating cycle device and hot water heating apparatus
JP5824628B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
WO2014091909A1 (en) Heat pump-type heating device
JP2014105890A (en) Refrigeration cycle device and hot-water generating device including the same
JP2017161182A (en) Heat pump device
JP2013127332A (en) Hydronic heating device
JP6051401B2 (en) Heat pump air conditioning and hot water supply system
JP2011185507A (en) Refrigerating cycle device and hot water heating device including the same
JP5233960B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP2014016067A (en) Heat pump type air-conditioning hot water supply device
JP2013117330A (en) Refrigeration cycle device and hot water producing apparatus comprising the same
JP2017166709A (en) Refrigeration cycle device and hot water heating device including the same
JP2011099571A (en) Refrigerating cycle device and hot-water heating device using the same
JP2014031930A (en) Refrigeration cycle device
JP2013002801A (en) Refrigeration cycle device, and hot-water heater including the same