JP6051401B2 - Heat pump air conditioning and hot water supply system - Google Patents

Heat pump air conditioning and hot water supply system Download PDF

Info

Publication number
JP6051401B2
JP6051401B2 JP2012132453A JP2012132453A JP6051401B2 JP 6051401 B2 JP6051401 B2 JP 6051401B2 JP 2012132453 A JP2012132453 A JP 2012132453A JP 2012132453 A JP2012132453 A JP 2012132453A JP 6051401 B2 JP6051401 B2 JP 6051401B2
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
heat exchanger
opening
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012132453A
Other languages
Japanese (ja)
Other versions
JP2013257057A (en
Inventor
繁男 青山
繁男 青山
安彦 諌山
安彦 諌山
和人 中谷
和人 中谷
俊二 森脇
俊二 森脇
松井 大
大 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012132453A priority Critical patent/JP6051401B2/en
Publication of JP2013257057A publication Critical patent/JP2013257057A/en
Application granted granted Critical
Publication of JP6051401B2 publication Critical patent/JP6051401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、冷暖房および給湯運転を行うヒートポンプ式冷暖房給湯装置に関するものである。   The present invention relates to a heat pump type air conditioning and hot water supply apparatus that performs air conditioning and hot water supply operations.

従来、冷房運転時に発生する高温排熱を利用して給湯運転を行うヒートポンプ式冷暖房給湯装置として、図6に示すようなヒートポンプ式冷暖房給湯装置90が開示されている(例えば、特許文献1参照)。   Conventionally, a heat pump type air conditioning and hot water supply apparatus 90 as shown in FIG. 6 is disclosed as a heat pump type air conditioning and hot water supply apparatus that performs hot water supply operation using high-temperature exhaust heat generated during cooling operation (see, for example, Patent Document 1). .

このヒートポンプ式冷暖房給湯装置90は、冷暖房運転のために冷媒を循環させる第1冷媒回路110と、給湯運転のための第2冷媒回路120とを備えている。第1冷媒回路110は、圧縮機111、四方弁112、熱源側熱交換器113、熱源側膨張手段114、過冷却器115、利用側膨張手段116、利用側熱交換器117、四方弁112、および気液分離器118が配管により環状に接続されて構成されている。   The heat pump type air conditioning and hot water supply apparatus 90 includes a first refrigerant circuit 110 that circulates a refrigerant for air conditioning operation and a second refrigerant circuit 120 for hot water operation. The first refrigerant circuit 110 includes a compressor 111, a four-way valve 112, a heat source side heat exchanger 113, a heat source side expansion means 114, a supercooler 115, a use side expansion means 116, a use side heat exchanger 117, a four way valve 112, The gas-liquid separator 118 is annularly connected by piping.

また、第2冷媒回路220は圧縮機111の吐出側配管から分岐して、開閉手段である電磁弁119、温水用熱交換器121、および温水用膨張手段122を介して、熱源側膨張手段114と利用側膨張弁116との間との間の第1冷媒回路110に連通する。   The second refrigerant circuit 220 branches from the discharge-side piping of the compressor 111 and is connected to the heat source side expansion means 114 via an electromagnetic valve 119 that is an opening / closing means, a hot water heat exchanger 121, and a hot water expansion means 122. And the use side expansion valve 116 communicate with the first refrigerant circuit 110.

上記ヒートポンプ式冷暖房給湯装置90において、第1冷媒回路110と第2冷媒回路220とにより、圧縮機111から吐出された冷媒は、温水用熱交換器121、温水用膨張手段122、利用側膨張手段116、利用側熱交換器117、四方弁112、および気液分離器118を介して圧縮機へ戻るサイクルを構成する。   In the heat pump type heating / cooling hot water supply apparatus 90, the refrigerant discharged from the compressor 111 by the first refrigerant circuit 110 and the second refrigerant circuit 220 is converted into the hot water heat exchanger 121, the hot water expansion means 122, and the use side expansion means. 116, a cycle returning to the compressor via the use side heat exchanger 117, the four-way valve 112, and the gas-liquid separator 118 is configured.

これにより、温水用熱交換器121において加熱(給湯運転)、利用側熱交換器117において冷却(冷房運転)の作用をさせて、冷房排熱を利用した給湯運転を行うことにより省エネルギー化が可能となる。   As a result, energy can be saved by performing heating (hot water supply operation) in the hot water heat exchanger 121 and cooling (cooling operation) in the use-side heat exchanger 117 and performing hot water supply operation using cooling exhaust heat. It becomes.

また、図7に示すようなヒートポンプ式冷暖房給湯装置100が開示されている(例えば、特許文献2参照)。   Moreover, the heat pump type air conditioning hot-water supply apparatus 100 as shown in FIG. 7 is disclosed (for example, refer patent document 2).

このヒートポンプ式冷暖房給湯装置100は、特許文献1と同様、冷暖房運転のために冷媒を循環させる第1冷媒回路110と、給湯運転のための第2冷媒回路120とを備えているが、第1冷媒回路110には、過冷却器115と利用側膨張手段116との間から分岐した一部の冷媒がバイパス膨張弁119を介して減圧冷却され、過冷却器115において第1冷媒回路110を循環する冷媒と熱交換して加熱、蒸発した後、気液分離器118の出口側配管に連通するバイパス回路130が追加されている点が異なる。   Although this heat pump type air conditioning and hot water supply apparatus 100 includes a first refrigerant circuit 110 that circulates refrigerant for air conditioning operation and a second refrigerant circuit 120 for hot water operation, as in Patent Document 1, In the refrigerant circuit 110, a part of the refrigerant branched from between the subcooler 115 and the use side expansion means 116 is cooled under reduced pressure via the bypass expansion valve 119, and circulates through the first refrigerant circuit 110 in the subcooler 115. After the heat exchange with the refrigerant to be heated and evaporated, a bypass circuit 130 communicating with the outlet side pipe of the gas-liquid separator 118 is added.

上記ヒートポンプ式冷暖房給湯装置100において、第1冷媒回路110と第2冷媒回路120とにより、圧縮機111から吐出された高温高圧のガス冷媒は、四方弁112に入るまでの間で分岐され、まず、一部の冷媒は熱源側熱交換器113により大気中に放熱されて冷媒自身は冷却される。   In the heat pump type air conditioning and hot water supply apparatus 100, the first refrigerant circuit 110 and the second refrigerant circuit 120 cause the high-temperature and high-pressure gas refrigerant discharged from the compressor 111 to branch until it enters the four-way valve 112. Part of the refrigerant is radiated to the atmosphere by the heat source side heat exchanger 113, and the refrigerant itself is cooled.

その後、過冷却器115で更に冷却されて、過冷却器115と利用側膨張手段116との間から分岐した一部の冷媒がバイパス回路130側へ分岐し、バイパス膨張弁119を介して減圧冷却され、過冷却器115において第1冷媒回路110を循環する冷媒と熱交換して加熱、蒸発した後、気液分離器118の出口側配管に連通する。   Thereafter, the refrigerant is further cooled by the subcooler 115, and a part of the refrigerant branched from between the subcooler 115 and the use side expansion means 116 branches to the bypass circuit 130 side, and is cooled under reduced pressure via the bypass expansion valve 119. The supercooler 115 exchanges heat with the refrigerant circulating in the first refrigerant circuit 110 to heat and evaporate, and then communicates with the outlet side pipe of the gas-liquid separator 118.

これによって、熱源側熱交換器113により冷却された冷媒は、過冷却器115にて第1バイパス回路130に分岐した低圧低温の冷媒により更に冷却され、冷媒過冷却度が大きくなり、蒸発器である室内熱交換器117に流入する冷媒エンタルピーが低下する。   As a result, the refrigerant cooled by the heat source side heat exchanger 113 is further cooled by the low-pressure and low-temperature refrigerant branched to the first bypass circuit 130 in the subcooler 115, and the refrigerant subcooling degree is increased. The refrigerant enthalpy flowing into a certain indoor heat exchanger 117 is lowered.

その結果、室内熱交換器117に流入する冷媒乾き度が小さくなり、即ち気相冷媒成分
が減少するため、利用側熱交換器117にて蒸発に寄与する冷媒量の比率が高まり、蒸発器としての性能を引き出される。
As a result, the dryness of the refrigerant flowing into the indoor heat exchanger 117 is reduced, that is, the gas-phase refrigerant component is reduced, so that the ratio of the refrigerant amount contributing to evaporation in the use-side heat exchanger 117 is increased, and the evaporator The performance is drawn out.

また、室内熱交換器117に流入する冷媒乾き度が小さくなる(液相成分が多い)ことにより、冷媒乾き度が大きい場合(気相成分が多い)と比較して、複数の冷媒流路から構成される利用側熱交換器117(蒸発器)の流入側において冷媒流量が不均一となる現象が回避(冷媒分流性能が向上)され、利用側熱交換器117の伝熱面積が有効に活用される。   Further, since the dryness of the refrigerant flowing into the indoor heat exchanger 117 is small (the liquid phase component is large), compared to the case where the refrigerant dryness is large (the gas phase component is large), a plurality of refrigerant flow paths are used. The phenomenon that the refrigerant flow rate becomes uneven on the inflow side of the configured use side heat exchanger 117 (evaporator) is avoided (refrigerant distribution performance is improved), and the heat transfer area of the use side heat exchanger 117 is effectively utilized. Is done.

さらに、利用側熱交換器117での蒸発に寄与しない冷媒は第1バイパス回路130を介して、利用側熱交換器117へ流入せずに圧縮機111へ戻ることにより、冷媒配管内における不要な圧力損失の発生がなくなる。   Further, the refrigerant that does not contribute to evaporation in the use side heat exchanger 117 returns to the compressor 111 via the first bypass circuit 130 without flowing into the use side heat exchanger 117, so that unnecessary refrigerant in the refrigerant pipe is removed. No pressure loss occurs.

一方、圧縮機111から吐出された高温高圧のガス冷媒は、四方弁112に入るまでの間で分岐された残りの冷媒は、温水用熱交換器121、温水用膨張手段122、利用側膨張手段116、利用側熱交換器117、四方弁112、および気液分離器118を介して圧縮機へ戻るサイクルを構成する。   On the other hand, the high-temperature and high-pressure gas refrigerant discharged from the compressor 111 is divided into the remaining refrigerant until it enters the four-way valve 112. The hot water heat exchanger 121, the hot water expansion means 122, and the use side expansion means. 116, a cycle returning to the compressor via the use side heat exchanger 117, the four-way valve 112, and the gas-liquid separator 118 is configured.

これらの作用により、熱源側熱交換器113での大気放熱運転、および温水用熱交換器121での温水加熱運転を行いながら、利用側熱交換器117において冷房運転する場合には、第1バイパス回路130を活用することができ、利用側熱交換器117での蒸発熱交換量(冷却能力)を維持したまま、低圧側での冷媒圧力損失を低減できる。その結果、圧縮機1の吸入側の冷媒密度が増大して冷媒流量が増大し、熱源側熱交換器113での放熱量増大、および温水用熱交換器121における加熱量の増大が可能となる。   By these actions, when performing the cooling operation in the use side heat exchanger 117 while performing the atmospheric heat radiation operation in the heat source side heat exchanger 113 and the hot water heating operation in the hot water heat exchanger 121, the first bypass The circuit 130 can be used, and the refrigerant pressure loss on the low pressure side can be reduced while maintaining the evaporation heat exchange amount (cooling capacity) in the use side heat exchanger 117. As a result, the refrigerant density on the suction side of the compressor 1 increases, the refrigerant flow rate increases, and the amount of heat released in the heat source side heat exchanger 113 and the amount of heating in the hot water heat exchanger 121 can be increased. .

登録実用新案第1586330号公報Registered Utility Model No. 1586330 特開2010−196953号公報JP 2010-196953 A

しかしながら、前記従来の構成では、ヒートポンプ式冷暖房給湯装置の高性能化のために設置されているバイパス回路130が、冷房排熱利用給湯運転では活用することができず、更なる省エネルギー化を図ることができない。   However, in the conventional configuration, the bypass circuit 130 installed for improving the performance of the heat pump type air conditioning and hot water supply apparatus cannot be used in the hot water supply operation using cooling exhaust heat, and further energy saving is achieved. I can't.

本発明は、上記従来の課題を解決するもので、冷房排熱利用給湯運転においても、過冷却器を有するバイパス回路を、有効に活用することができるヒートポンプ式冷暖房給湯装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a heat pump type air conditioning and hot water supply apparatus that can effectively use a bypass circuit having a supercooler even in a cooling exhaust heat utilization hot water supply operation. And

前記課題を解決するために、本発明のヒートポンプ式冷暖房給湯装置は、圧縮機、四方弁、熱源側熱交換器、熱源側膨張手段、過冷却器、利用側膨張手段、利用側熱交換器が環状に接続された第1冷媒回路と、前記熱源側膨張手段と前記過冷却器の間または前記過冷却器と前記利用側膨張手段の間で前記第1冷媒回路から分岐し、バイパス膨張手段および前記過冷却器を経由して、前記四方弁と前記圧縮機との間で前記第1冷媒回路に接続する第1バイパス回路と、前記圧縮機と前記四方弁の間から分岐して温水用熱交換器を介して、前記過冷却器と前記利用側膨張手段との間に接続する第2冷媒回路と、前記第2冷媒回路と前記第1冷媒回路との接続部と前記利用側膨張手段との間に設けられた第1開閉手段と、前記熱源側膨張手段と前記過冷却器との間から分岐して第2開閉手段を介して、前記
第1開閉手段と前記利用側膨張手段との間に接続する第2バイパス回路と、制御装置とを備え、前記制御装置は、前記利用側熱交換器にて冷房運転を行い、かつ、前記温水用熱交換器にて温水生成運転を行う場合に、前記第1開閉手段を閉、前記第2開閉手段を開、前記熱源側膨張手段を閉とすることを特徴とするものである。
In order to solve the above problems, a heat pump type air conditioning and hot water supply apparatus of the present invention includes a compressor, a four-way valve, a heat source side heat exchanger, a heat source side expansion means, a subcooler, a use side expansion means, and a use side heat exchanger. A first refrigerant circuit connected in a ring, and branching from the first refrigerant circuit between the heat source side expansion means and the subcooler or between the subcooler and the utilization side expansion means, and a bypass expansion means and Via the supercooler, the first bypass circuit connected to the first refrigerant circuit between the four-way valve and the compressor, and the heat for hot water branched from between the compressor and the four-way valve A second refrigerant circuit connected between the supercooler and the use side expansion means via an exchanger, a connection portion between the second refrigerant circuit and the first refrigerant circuit, and the use side expansion means; First opening and closing means provided between the heat source side expansion means and the A second bypass circuit branched from the cooler and connected between the first opening / closing means and the utilization side expansion means via the second opening / closing means, and a control device, the control device comprising: When the cooling operation is performed by the use side heat exchanger and the hot water generating operation is performed by the hot water heat exchanger, the first opening / closing means is closed, the second opening / closing means is opened, and the heat source The side expansion means is closed.

これによって、温水用熱交換器を凝縮器として作用させ、温水と熱交換することにより冷却された冷媒は、過冷却器と室外膨張手段との間で一部の冷媒が分岐して第1バイパス回路を流れる低圧低温の冷媒により更に冷却され、冷媒過冷却度が大きくなり、蒸発器である室内熱交換器に流入する冷媒エンタルピーが低下する。   As a result, the refrigerant cooled by causing the hot water heat exchanger to act as a condenser and exchanging heat with the hot water is divided into a part of the refrigerant between the subcooler and the outdoor expansion means, and thus the first bypass. The refrigerant is further cooled by the low-pressure and low-temperature refrigerant flowing in the circuit, the refrigerant supercooling degree is increased, and the refrigerant enthalpy flowing into the indoor heat exchanger as the evaporator is reduced.

その結果、室内熱交換器に流入する冷媒乾き度が小さくなり、即ち気相冷媒成分が減少するため、利用側熱交換器にて蒸発に寄与する冷媒量の比率が高まり、蒸発器としての性能を引き出される。   As a result, the dryness of the refrigerant flowing into the indoor heat exchanger is reduced, that is, the gas-phase refrigerant component is reduced, so that the ratio of the refrigerant amount contributing to evaporation is increased in the use side heat exchanger, and the performance as an evaporator is increased. Drawn out.

また、室内熱交換器に流入する冷媒乾き度が小さくなる(液相成分が多い)ことにより、冷媒乾き度が大きい場合(気相成分が多い)と比較して、複数の冷媒流路から構成される利用側熱交換器(蒸発器)の流入側において冷媒流量が不均一となる現象が回避(冷媒分流性能が向上)され、利用側熱交換器(蒸発器)の伝熱面積が有効に活用される。   In addition, the refrigerant dryness flowing into the indoor heat exchanger is small (the liquid phase component is large), so that it is composed of a plurality of refrigerant channels compared to the case where the refrigerant dryness is large (the gas phase component is large). The phenomenon of non-uniform refrigerant flow on the inflow side of the use side heat exchanger (evaporator) is avoided (refrigerant distribution performance is improved), and the heat transfer area of the use side heat exchanger (evaporator) is effectively Be utilized.

さらに、利用側熱交換器での蒸発に寄与しない冷媒は第1バイパス回路を介して、利用側熱交換器へ流入せずに圧縮機へ戻ることにより、冷媒配管内における不要な圧力損失の発生がなくなる。   Furthermore, the refrigerant that does not contribute to evaporation in the use side heat exchanger returns to the compressor via the first bypass circuit without flowing into the use side heat exchanger, thereby generating unnecessary pressure loss in the refrigerant pipe. Disappears.

本発明によれば、冷房排熱利用給湯運転においても、過冷却器を有するバイパス回路を、有効に活用することができるヒートポンプ式冷暖房給湯装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump type heating and cooling hot-water supply apparatus which can utilize a bypass circuit which has a supercooler effectively also in a cooling exhaust heat utilization hot-water supply operation can be provided.

本発明の第1実施の形態に係る冷房単独運転におけるヒートポンプ式冷暖房給湯装置の概略構成図1 is a schematic configuration diagram of a heat pump type air conditioning and hot water supply apparatus in a single cooling operation according to the first embodiment of the present invention. 同ヒートポンプ式冷暖房給湯装置のモリエル線図(冷媒圧力P−冷媒エンタルピーh線図)Mollier diagram (refrigerant pressure P-refrigerant enthalpy h diagram) of the heat pump air-conditioning and hot water supply system 同ヒートポンプ式冷暖房給湯装置の冷房排熱利用給湯運転における第1バイパス回路利用時の原理説明図Explanatory drawing of the principle at the time of utilization of the 1st bypass circuit in the hot water supply operation using the cooling exhaust heat of the heat pump type air conditioning and hot water supply apparatus 同ヒートポンプ式冷暖房給湯装置の冷凍サイクル制御全体のフローチャートFlowchart of overall refrigeration cycle control of the heat pump type air conditioning and hot water supply system 本発明の第1実施の形態に係るヒートポンプ式冷暖房給湯装置の第1バイパス回路におけるバイパス膨張弁の開度制御フローチャートFlow chart for controlling the opening of a bypass expansion valve in the first bypass circuit of the heat pump type air conditioning and hot water supply apparatus according to the first embodiment of the present invention. 従来のヒートポンプ式冷暖房給湯装置の概略構成図Schematic configuration diagram of a conventional heat pump air conditioning and hot water supply system 従来の他のヒートポンプ式冷暖房給湯装置の概略構成図Schematic configuration diagram of another conventional heat pump type air conditioning and hot water supply system

第1の発明は、圧縮機、四方弁、熱源側熱交換器、熱源側膨張手段、過冷却器、利用側膨張手段、利用側熱交換器が環状に接続された第1冷媒回路と、前記熱源側膨張手段と前記過冷却器の間または前記過冷却器と前記利用側膨張手段の間で前記第1冷媒回路から分岐し、バイパス膨張手段および前記過冷却器を経由して、前記四方弁と前記圧縮機との間で前記第1冷媒回路に接続する第1バイパス回路と、前記圧縮機と前記四方弁の間から分岐して温水用熱交換器を介して、前記過冷却器と前記利用側膨張手段との間に接続する第2冷媒回路と、前記第2冷媒回路と前記第1冷媒回路との接続部と前記利用側膨張手段との間に設けられた第1開閉手段と、前記熱源側膨張手段と前記過冷却器との間から分岐して第2開閉手段を介して、前記第1開閉手段と前記利用側膨張手段との間に接続する第2
バイパス回路と、制御装置とを備え、前記制御装置は、前記利用側熱交換器にて冷房運転を行い、かつ、前記温水用熱交換器にて温水生成運転を行う場合に、前記第1開閉手段を閉、前記第2開閉手段を開、前記熱源側膨張手段を閉とすることを特徴とするヒートポンプ式冷暖房給湯装置である。
The first invention includes a compressor, a four-way valve, a heat source side heat exchanger, a heat source side expansion means, a subcooler, a use side expansion means, a first refrigerant circuit in which a use side heat exchanger is connected in an annular shape, The four-way valve branches from the first refrigerant circuit between the heat source side expansion means and the subcooler or between the subcooler and the utilization side expansion means, and passes through the bypass expansion means and the subcooler. A first bypass circuit connected to the first refrigerant circuit between the compressor and the compressor, a branch from between the compressor and the four-way valve, and via a hot water heat exchanger, the supercooler and the A second refrigerant circuit connected between the use side expansion means, a first opening / closing means provided between the connection portion between the second refrigerant circuit and the first refrigerant circuit and the use side expansion means; Branching from between the heat source side expansion means and the supercooler, via the second opening and closing means, Second connecting between the opening-closing means and the usage-side expansion means
A bypass circuit; and a control device, wherein the control device performs the cooling operation in the use-side heat exchanger and the first opening and closing when performing the hot water generation operation in the hot water heat exchanger. The heat pump air-conditioning hot-water supply apparatus is characterized in that the means is closed, the second opening / closing means is opened, and the heat source side expansion means is closed.

これにより、温水用熱交換器を凝縮器(加熱器)として作用させ、温水と熱交換することにより冷却された冷媒は、過冷却器と室外膨張手段との間で一部の冷媒が分岐して第1バイパス回路を流れる低圧低温の冷媒により更に冷却され、冷媒過冷却度が大きくなり、蒸発器(冷却器)である室内熱交換器に流入する冷媒エンタルピーが低下する。   Accordingly, the refrigerant cooled by causing the hot water heat exchanger to act as a condenser (heater) and exchanging heat with the hot water is partially branched between the subcooler and the outdoor expansion means. The refrigerant is further cooled by the low-pressure and low-temperature refrigerant flowing through the first bypass circuit, the refrigerant supercooling degree is increased, and the refrigerant enthalpy flowing into the indoor heat exchanger that is an evaporator (cooler) is reduced.

その結果、室内熱交換器に流入する冷媒乾き度が小さくなり、即ち気相冷媒成分が減少するため、利用側熱交換器にて蒸発に寄与する冷媒量の比率が高まり、蒸発器としての性能が引き出される。   As a result, the dryness of the refrigerant flowing into the indoor heat exchanger is reduced, that is, the gas-phase refrigerant component is reduced, so that the ratio of the refrigerant amount contributing to evaporation is increased in the use side heat exchanger, and the performance as an evaporator is increased. Is pulled out.

また、室内熱交換器に流入する冷媒乾き度が小さくなる(液相成分が多い)ことにより、冷媒乾き度が大きい場合(気相成分が多い)と比較して、複数の冷媒流路から構成される利用側熱交換器(蒸発器)の流入側において冷媒流量が不均一となる現象を回避(冷媒分流性能が向上)でき、利用側熱交換器(蒸発器)の有効活用が可能となる。   In addition, the refrigerant dryness flowing into the indoor heat exchanger is small (the liquid phase component is large), so that it is composed of a plurality of refrigerant channels compared to the case where the refrigerant dryness is large (the gas phase component is large). The phenomenon that the refrigerant flow rate becomes uneven on the inflow side of the use side heat exchanger (evaporator) can be avoided (refrigerant distribution performance is improved), and the use side heat exchanger (evaporator) can be effectively used. .

さらに、利用側熱交換器での蒸発に寄与しない冷媒は第1バイパス回路を介して、利用側熱交換器へ流入せずに圧縮機へ戻ることにより、冷凍サイクルにおける不要な配管内圧力損失の上昇を回避できる。   Furthermore, the refrigerant that does not contribute to evaporation in the use side heat exchanger returns to the compressor without flowing into the use side heat exchanger via the first bypass circuit, thereby reducing unnecessary pipe pressure loss in the refrigeration cycle. The rise can be avoided.

これらの作用により、利用側熱交換器での冷房運転、および温水側熱交換器での温水生成運転を同時に行う冷房排熱利用給湯運転においても、利用側熱交換器での蒸発熱交換量(冷却能力)を維持したまま、低圧側での冷媒圧力損失を低減できるため、圧縮機吸入側の冷媒密度が増大し、その結果、冷媒流量が増大し、温水用熱交換器における加熱量の増大が可能となる。   Through these actions, the amount of heat exchanged in the heat exchanger (evaporation heat exchange) in the heat exchanger using the exhaust heat (cooling exhaust heat hot water supply operation in which the cooling operation in the heat exchanger on the use side and the hot water generation operation in the hot water heat exchanger are performed simultaneously ( Refrigerant pressure loss on the low pressure side can be reduced while maintaining the cooling capacity), increasing the refrigerant density on the compressor suction side, resulting in an increase in the refrigerant flow rate and an increase in the amount of heat in the hot water heat exchanger Is possible.

第2の発明は、特に、第1の発明のヒートポンプ式冷暖房給湯装置において、前記第1バイパス回路の出口側における冷媒過熱度を検出する冷媒過熱度検出手段を備え、前記制御装置は、前記冷媒過熱度検出手段による冷媒過熱度が所定範囲内となるように、前記バイパス膨張手段の開度を制御することを特徴とするものである。   The second aspect of the invention is particularly the heat pump type air conditioning and hot water supply apparatus of the first aspect of the invention, further comprising refrigerant superheat degree detecting means for detecting the degree of refrigerant superheat on the outlet side of the first bypass circuit, wherein the control device includes the refrigerant The opening degree of the bypass expansion means is controlled so that the refrigerant superheat degree by the superheat degree detection means falls within a predetermined range.

これにより、第1の発明の効果に加えて、第1バイパス回路の出口側冷媒過熱度を所定の目標範囲内に収めることが可能となり、運転条件ごとに第1バイパス回路を通過するバイパス流量が最適化される。   Thereby, in addition to the effect of 1st invention, it becomes possible to keep the refrigerant | coolant superheat degree of the exit side of a 1st bypass circuit in a predetermined target range, and the bypass flow volume which passes a 1st bypass circuit for every driving | running condition is obtained. Optimized.

特に、第1バイパス回路の出口側冷媒過熱度の制御目標の上限値を1K以内と設定することにより、第1バイパス回路の出口側における冷媒が過度に過熱されることがなく、過熱度がほぼゼロ(冷媒飽和状態)にすることができ、過冷却器の性能を最大限に引き出すことができ、効率の最大化が可能となる。   In particular, by setting the upper limit value of the control target of the outlet side refrigerant superheat degree of the first bypass circuit to be within 1K, the refrigerant on the outlet side of the first bypass circuit is not excessively heated, and the degree of superheat is almost equal. Zero (refrigerant saturated state) can be achieved, the performance of the subcooler can be maximized, and the efficiency can be maximized.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1に、本発明の第1の実施の形態に係るヒートポンプ式冷暖房給湯装置10を示す。このヒートポンプ式冷暖房給湯装置10は、冷媒を循環させる第1冷媒回路20、第2冷媒回路21、第1バイパス回路30、第2バイパス回路40と、各種アクチュエータ、各
種センサ、および、制御装置50とを備えている。
(Embodiment 1)
FIG. 1 shows a heat pump air-conditioning / heating water heater 10 according to a first embodiment of the present invention. This heat pump type heating and cooling water heater 10 includes a first refrigerant circuit 20, a second refrigerant circuit 21, a first bypass circuit 30, a second bypass circuit 40, various actuators, various sensors, and a control device 50 that circulate refrigerant. It has.

冷媒としては、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、または単一冷媒等を用いることができる。   As the refrigerant, for example, a non-azeotropic refrigerant mixture such as R407C, a pseudo-azeotropic refrigerant mixture such as R410A, or a single refrigerant can be used.

第1冷媒回路20は、圧縮機1、四方弁2、熱源側熱交換器3、熱源側膨張弁4、過冷却器5、第1開閉手段41、利用側膨張弁6、および、利用側熱交換器7が環状に接続され、第2冷媒回路21は圧縮機1と四方弁2の間から分岐して温水用熱交換器22、温水用膨張弁23を介して、過冷却器5と利用側膨張弁6との間の第1冷媒回路20に連通する。   The first refrigerant circuit 20 includes a compressor 1, a four-way valve 2, a heat source side heat exchanger 3, a heat source side expansion valve 4, a supercooler 5, a first opening / closing means 41, a use side expansion valve 6, and a use side heat. The exchanger 7 is connected in a ring shape, and the second refrigerant circuit 21 branches from between the compressor 1 and the four-way valve 2 and is used with the supercooler 5 via the hot water heat exchanger 22 and the hot water expansion valve 23. It communicates with the first refrigerant circuit 20 between the side expansion valve 6.

この温水用熱交換器22としては外側流路に水が流動し、内側流路に冷媒が流動する冷媒対水熱交換器、例えば、二重管式熱交換器とし、熱源側熱交換器3、および利用側熱交換器6はフィンチューブ熱交換器とする。   The hot water heat exchanger 22 is a refrigerant-to-water heat exchanger in which water flows in the outer flow path and refrigerant flows in the inner flow path, for example, a double-pipe heat exchanger, and the heat source side heat exchanger 3 The use side heat exchanger 6 is a finned tube heat exchanger.

第2冷媒回路21と第1冷媒回路20との接続部と、利用側膨張弁6との間に第1開閉手段41が設けられている。   A first opening / closing means 41 is provided between the connection portion of the second refrigerant circuit 21 and the first refrigerant circuit 20 and the use side expansion valve 6.

次に、第1バイパス回路30は、過冷却器5と第1開閉手段41との間で第1冷媒回路20から分岐し、バイパス膨張弁9、および、過冷却器5の低圧側熱交換部を経由して気液分離器8と圧縮機1との間で第1冷媒回路に再び連通し、第2バイパス回路40は熱源側膨張弁4と過冷却器5との間で第1冷媒回路20から分岐し、第2開閉手段42を介して、第1開閉手段41と利用側膨張弁6との間に再び連通する。   Next, the first bypass circuit 30 branches from the first refrigerant circuit 20 between the supercooler 5 and the first opening / closing means 41, and the bypass expansion valve 9 and the low pressure side heat exchange part of the supercooler 5. The second refrigerant circuit 40 communicates again with the first refrigerant circuit between the gas-liquid separator 8 and the compressor 1 via the first refrigerant circuit between the heat source side expansion valve 4 and the subcooler 5. 20, and communicates again between the first opening / closing means 41 and the use side expansion valve 6 via the second opening / closing means 42.

なお、冷媒回路20には冷媒の流動方向を切り換えるための四方弁2が設けられ、利用側熱交換器7における冷房運転、および暖房運転、温水用熱交換器22における温水生成(給湯)運転など、運転モードによって切替え制御を行う。   The refrigerant circuit 20 is provided with a four-way valve 2 for switching the flow direction of the refrigerant, such as cooling operation and heating operation in the use side heat exchanger 7, and hot water generation (hot water supply) operation in the hot water heat exchanger 22. Switching control is performed according to the operation mode.

また、第1バイパス回路30には、過冷却器5から流出した冷媒の温度Tr、および圧力Prを検出する温度センサTh、および圧力センサPSが設けられている。   Further, the first bypass circuit 30 is provided with a temperature sensor Th for detecting the temperature Tr of the refrigerant flowing out of the subcooler 5 and a pressure Pr, and a pressure sensor PS.

また、制御装置50は、温度検出手段51、圧力検出手段52、冷媒過熱度検出手段53、開閉手段制御手段54、および膨張弁制御手段55から構成され、温度検出手段51は温度センサThによる検出値を取り込み、圧力検出手段52は圧力センサPSによる検出値を取り込み、それらの検出値を冷媒過熱度検出手段53に入力し、第1バイパス回路30の出口側における冷媒過熱度SHを検出する。   The control device 50 includes a temperature detection means 51, a pressure detection means 52, a refrigerant superheat degree detection means 53, an opening / closing means control means 54, and an expansion valve control means 55. The temperature detection means 51 is detected by a temperature sensor Th. The pressure detection means 52 takes in the detection values by the pressure sensor PS, inputs these detection values to the refrigerant superheat degree detection means 53, and detects the refrigerant superheat degree SH at the outlet side of the first bypass circuit 30.

以上のように構成されたヒートポンプ式冷暖房給湯装置10における冷房排熱利用給湯運転時の運転動作について説明する。   The operation of the heat pump air-conditioning and hot water supply apparatus 10 configured as described above during the cooling exhaust heat hot water supply operation will be described.

図1では、利用側熱交換器6での冷房運転、および、温水側熱交換器22での温水生成運転を同時に行う冷房排熱利用給湯運転時の冷媒および温水の流れ方向を矢印で示しており、図2に本発明の第1実施の形態に係るヒートポンプ式冷暖房給湯装置のモリエル線図(冷媒圧力P−冷媒エンタルピーh線図)を示す。   In FIG. 1, the flow directions of the refrigerant and hot water during the cooling operation in the use side heat exchanger 6 and the hot water generation operation in the cooling waste heat use hot water operation in which the hot water generation operation in the hot water side heat exchanger 22 is performed are indicated by arrows. FIG. 2 shows a Mollier diagram (refrigerant pressure P-refrigerant enthalpy h diagram) of the heat pump type air conditioning and hot water supply system according to the first embodiment of the present invention.

冷房排熱利用給湯運転では、温水用膨張弁23:全開、四方弁2:冷房モード(圧縮機1と熱源側熱交換器3を連通)、熱源側膨張弁4:全閉、第1開閉手段:閉、第2開閉手段:開、利用側膨張弁6:所定開度、バイパス膨張弁9:所定開度と設定する。   In the hot water supply operation using cooling exhaust heat, the hot water expansion valve 23: fully open, the four-way valve 2: cooling mode (communicating the compressor 1 and the heat source side heat exchanger 3), the heat source side expansion valve 4: fully closed, first opening / closing means : Closed, second opening / closing means: open, use side expansion valve 6: predetermined opening, bypass expansion valve 9: predetermined opening.

この設定により、圧縮機1から吐出された高圧高温ガス冷媒(図2中a点)は、熱源側
膨張弁4:全閉に設定されているため熱源側熱交換器3側には流れず、温水用熱交換器22に流入して放熱器として機能し、温水端末機器と連通する温水利用回路の水媒体を加熱して温水を生成して、高圧高温ガス冷媒自身は冷却されて液化凝縮し、飽和液状態または過冷却液状態となる(図2中b点)。
With this setting, the high-pressure high-temperature gas refrigerant discharged from the compressor 1 (point a in FIG. 2) does not flow to the heat source side heat exchanger 3 side because it is set to the heat source side expansion valve 4: fully closed, It flows into the heat exchanger 22 for hot water, functions as a radiator, heats the aqueous medium of the hot water utilization circuit communicating with the hot water terminal equipment, generates hot water, and the high-pressure high-temperature gas refrigerant itself is cooled and liquefied and condensed. Then, it becomes a saturated liquid state or a supercooled liquid state (point b in FIG. 2).

温水用熱交換器22から流出した高圧液冷媒は温水用膨張弁23(全開)を通過後、第1開閉手段が閉に設定されているため、過冷却器5側に流れ、過冷却器5の入口側にて一部の高圧冷媒は第1バイパス回路30側に分岐し、残りの高圧冷媒は過冷却器5により更に過冷却された後(図2中c点)、熱源側膨張弁4が全閉に、かつ、第2開閉手段が開に設定されているため熱源側熱交換器3側には流れず、熱源側膨張弁4と過冷却器5との間で第1冷媒回路20から第2バイパス回路40側に流れ、第2開閉手段42(開)を介して、第1開閉手段41と利用側膨張弁6との間に流れる。   The high-pressure liquid refrigerant that has flowed out of the hot water heat exchanger 22 passes through the hot water expansion valve 23 (fully open) and then flows to the subcooler 5 side because the first opening / closing means is set to be closed. A part of the high-pressure refrigerant branches to the first bypass circuit 30 side on the inlet side, and the remaining high-pressure refrigerant is further subcooled by the subcooler 5 (point c in FIG. 2), and then the heat source side expansion valve 4. Is fully closed and the second opening / closing means is set to open, so that it does not flow to the heat source side heat exchanger 3 side, and the first refrigerant circuit 20 is interposed between the heat source side expansion valve 4 and the subcooler 5. From the first opening / closing means 41 and the utilization side expansion valve 6 via the second opening / closing means 42 (open).

その後、第1開閉手段が閉に設定されているため、高圧液冷媒は利用側熱交換器7側に流れ、利用側膨張弁6にて減圧されて膨張した後(図2中d点)、蒸発器として作用する利用側熱交換器7に流入する。   After that, since the first opening / closing means is set to be closed, the high-pressure liquid refrigerant flows to the use side heat exchanger 7 side and is decompressed and expanded by the use side expansion valve 6 (point d in FIG. 2). It flows into the utilization side heat exchanger 7 which acts as an evaporator.

利用側熱交換器7に流入した低圧二相冷媒は、冷房単独運転の場合と同様、ここで蒸発して空気側から吸熱して、空気を冷却、除湿し、冷媒自身は加熱され、過熱ガス状態(図2中g点)となって圧縮機1へと戻る。   The low-pressure two-phase refrigerant that has flowed into the use-side heat exchanger 7 evaporates here and absorbs heat from the air side, cools and dehumidifies the air, and the refrigerant itself is heated, as in the case of the single cooling operation. It will be in a state (g point in FIG. 2) and will return to the compressor 1. FIG.

一方、過冷却器5の入口側にて第1バイパス回路30側に分岐した高圧冷媒は、バイパス膨張弁9によって減圧、膨張した後(図2中e点)、過冷却器5の2次側熱交換部にて1次側熱交換部を流れる第1冷媒回路20の液冷媒を冷却しながら、自身は加熱されて二相冷媒状態または飽和ガス状態(図2中f点)となり、圧縮機1の吸入側にて第1冷媒回路20を流れる冷媒に再び合流し(図2中h点)、再度圧縮機1に吸入される。   On the other hand, the high-pressure refrigerant branched to the first bypass circuit 30 side on the inlet side of the subcooler 5 is depressurized and expanded by the bypass expansion valve 9 (point e in FIG. 2), and then the secondary side of the subcooler 5. While the liquid refrigerant in the first refrigerant circuit 20 flowing through the primary heat exchange section is cooled in the heat exchange section, the liquid refrigerant is heated to become a two-phase refrigerant state or a saturated gas state (point f in FIG. 2), and the compressor 1 again joins the refrigerant flowing through the first refrigerant circuit 20 (point h in FIG. 2) and is sucked into the compressor 1 again.

その際、第1バイパス回路30の出口側冷媒過熱度SHを所定の目標範囲内、例えば±1Kに収めるように、バイパス膨張弁9の開度制御を行うものである。   At that time, the opening degree control of the bypass expansion valve 9 is performed so that the outlet side refrigerant superheat degree SH of the first bypass circuit 30 falls within a predetermined target range, for example, ± 1K.

以上の運転動作により、利用側熱交換器7において冷房運転を行いながら、温水用熱交換器22を介して温水を生成する運転においても、第1バイパス回路30を利用でき、高効率な運転が可能になる。   With the above operation, the first bypass circuit 30 can be used in the operation of generating hot water through the heat exchanger 22 for hot water while performing the cooling operation in the use-side heat exchanger 7, and highly efficient operation can be performed. It becomes possible.

従って、冷房排熱利用給湯運転時においても、この第1バイパス回路30を用いた運転により、蒸発器である利用側熱交換器7に流入する冷媒エンタルピーを低減、すなわち高圧側における過冷却度の拡大を図りながら(図2中矢印A)、同時に蒸発に寄与しない冷媒ガス成分を、第1バイパス回路30を介して圧縮機1の吸入側にバイパスできるため、蒸発器における無意味な圧力損失増大を抑制、すなわち圧縮機1の吸入圧力上昇を図れ(図2中矢印B)、冷媒流量の増大、凝縮(加熱)能力の増大を図ることが可能となる。   Accordingly, even during the cooling exhaust heat utilization hot water supply operation, the operation using the first bypass circuit 30 reduces the refrigerant enthalpy flowing into the utilization side heat exchanger 7 as an evaporator, that is, the degree of supercooling on the high pressure side. While enlarging (arrow A in FIG. 2), a refrigerant gas component that does not contribute to evaporation can be bypassed to the suction side of the compressor 1 through the first bypass circuit 30 at the same time, so that a significant pressure loss increase in the evaporator In other words, the suction pressure of the compressor 1 can be increased (arrow B in FIG. 2), and the refrigerant flow rate can be increased and the condensation (heating) capacity can be increased.

なお、温水利用回路において生成された温水は、例えばラジエータ等の熱交換ユニット(図示せず)や、貯湯タンク(図示せず)など搬送され、これにより暖房や給湯が行われる。   In addition, the hot water produced | generated in the hot water utilization circuit is conveyed, such as heat exchange units (not shown), such as a radiator, and a hot water storage tank (not shown), for example, and heating and hot water supply are performed.

それに対して、各種アクチュエータの設定変更、および制御装置50の制御により、図3に示すような、利用側熱交換器6での冷房運転、熱源側熱交換器3にて冷房排熱を大気へ放熱する運転を行う冷房単独運転時も従来と同様に実施することができ、この場合の動作について図3を用いて以下に説明する。   On the other hand, by changing the setting of various actuators and controlling the control device 50, the cooling operation in the use side heat exchanger 6 and the cooling exhaust heat to the atmosphere are performed in the heat source side heat exchanger 3 as shown in FIG. The cooling operation can be performed in the same manner as in the conventional cooling operation in which the operation of dissipating heat is performed. The operation in this case will be described below with reference to FIG.

冷房単独運転では、温水用膨張弁23:全閉、四方弁2:冷房モード(圧縮機1と熱源側熱交換器3を連通)、熱源側膨張弁4:全開、第1開閉手段:開、第2開閉手段:閉、利用側膨張弁6:所定開度、バイパス膨張弁9:所定開度と設定する。なお、設定により本発明のヒートポンプ式冷暖房給湯装置は、図5に示す従来例と基本的に同様の冷房サイクルを形成することになる。   In cooling only operation, the hot water expansion valve 23: fully closed, four-way valve 2: cooling mode (compressor 1 and heat source side heat exchanger 3 are communicated), heat source side expansion valve 4: fully open, first opening / closing means: open, Second opening / closing means: closed, use side expansion valve 6: predetermined opening, bypass expansion valve 9: predetermined opening. In addition, the heat pump type air conditioning and hot water supply apparatus of the present invention forms a cooling cycle basically similar to that of the conventional example shown in FIG.

この設定により、圧縮機1から吐出された高圧ガス冷媒(図2中a点)は、熱源側熱交換器3に流入し、室外側空気に放熱して、冷媒自身は冷却されて液化凝縮し、過冷却液状態(図2中b点)となる。   With this setting, the high-pressure gas refrigerant discharged from the compressor 1 (point a in FIG. 2) flows into the heat source side heat exchanger 3, dissipates heat to the outdoor air, and the refrigerant itself is cooled and liquefied and condensed. Then, the supercooled liquid state (b point in FIG. 2) is obtained.

熱源側熱交換器3から流出した高圧液冷媒(図2中b点)は過冷却器5により更に過冷却(図2中c点)され、過冷却器5の出口側にて一部の高圧冷媒は第1バイパス回路30側に分岐し、残りの高圧冷媒は利用側膨張弁6にて減圧されて膨張した後(図2中d点)、蒸発器として作用する利用側熱交換器7に流入する。   The high-pressure liquid refrigerant (point b in FIG. 2) that has flowed out of the heat source side heat exchanger 3 is further subcooled (point c in FIG. The refrigerant branches to the first bypass circuit 30 side, and the remaining high-pressure refrigerant is decompressed and expanded by the use side expansion valve 6 (point d in FIG. 2), and then enters the use side heat exchanger 7 acting as an evaporator. Inflow.

フィンチューブ熱交換器である利用側熱交換器7に流入した低圧二相冷媒は、ここで蒸発して空気側から吸熱して、空気を冷却、除湿し、冷媒自身は加熱され、過熱ガス状態(図2中g点)となって利用側熱交換器7から流出し、圧縮機1へと戻る。   The low-pressure two-phase refrigerant that has flowed into the use-side heat exchanger 7 that is a finned-tube heat exchanger evaporates and absorbs heat from the air side, cools and dehumidifies the air, and the refrigerant itself is heated to be in a superheated gas state. (Point g in FIG. 2) flows out from the use side heat exchanger 7 and returns to the compressor 1.

一方、過冷却器5の出口側にて第1バイパス回路30側に分岐した高圧冷媒は、バイパス膨張弁9によって減圧、膨張した後(図2中e点)、過冷却器5の2次側熱交換部にて1次側熱交換部を流れる第1冷媒回路20の液冷媒を冷却しながら、自身は加熱されて二相冷媒状態または飽和ガス状態(図2中f点)となり、圧縮機1の吸入側にて第1冷媒回路20を流れる冷媒に再び合流し(図2中h点)、再度圧縮機1に吸入される。   On the other hand, the high-pressure refrigerant branched to the first bypass circuit 30 side on the outlet side of the subcooler 5 is depressurized and expanded by the bypass expansion valve 9 (point e in FIG. 2), and then the secondary side of the subcooler 5. While the liquid refrigerant in the first refrigerant circuit 20 flowing through the primary heat exchange section is cooled in the heat exchange section, the liquid refrigerant is heated to become a two-phase refrigerant state or a saturated gas state (point f in FIG. 2), and the compressor 1 again joins the refrigerant flowing through the first refrigerant circuit 20 (point h in FIG. 2) and is sucked into the compressor 1 again.

その際、第1バイパス回路30の出口側冷媒過熱度SHを所定の目標範囲内、例えば±1Kに収めるように、バイパス膨張弁9の開度制御を行うものである。   At that time, the opening degree control of the bypass expansion valve 9 is performed so that the outlet side refrigerant superheat degree SH of the first bypass circuit 30 falls within a predetermined target range, for example, ± 1K.

以上の運転動作により、利用側熱交換器6での冷房運転、熱源側熱交換器3にて冷房排熱を大気へ放熱する運転を行う冷房単独運転が可能になる。   With the above operation, the cooling operation in the use side heat exchanger 6 and the cooling single operation in which the heat source side heat exchanger 3 performs the operation of dissipating the cooling exhaust heat to the atmosphere become possible.

以上のような運転動作を行う本発明のヒートポンプ式冷暖房給湯装置10に関連する冷房排熱利用給湯運転時の冷凍サイクル制御アルゴリズムについて、図4に示す冷凍サイクル制御全体のフローチャート、および図5に示す第1バイパス回路30におけるバイパス膨張弁9の開度制御のフローチャートを参照して以下に詳細に説明する。   The refrigeration cycle control algorithm in the cooling exhaust heat utilization hot water supply operation related to the heat pump type air conditioning and hot water supply apparatus 10 of the present invention performing the above operation is shown in the flowchart of the entire refrigeration cycle control shown in FIG. 4 and FIG. A detailed description will be given below with reference to a flowchart of opening degree control of the bypass expansion valve 9 in the first bypass circuit 30.

まず、図4に示すステップS1にて、冷房排熱利用給湯運転に向けた各アクチュエータの設定として、温水用膨張弁23:全開、四方弁2:冷房モード(圧縮機1と熱源側熱交換器3を連通)、熱源側膨張弁4:全閉、第1開閉手段:閉、第2開閉手段:開、利用側膨張弁6:所定開度、バイパス膨張弁9:所定開度と設定する。   First, in step S1 shown in FIG. 4, as the setting of each actuator for the cooling exhaust heat utilization hot water supply operation, the hot water expansion valve 23: fully open, four-way valve 2: cooling mode (compressor 1 and heat source side heat exchanger 3), heat source side expansion valve 4: fully closed, first opening / closing means: closed, second opening / closing means: open, use side expansion valve 6: predetermined opening, bypass expansion valve 9: predetermined opening.

次に、ステップS2にて圧縮機1の運転周波数Fqを設定し、ステップS3にて利用側膨張弁6の開度制御を行った後、ステップS4にて圧縮機1の運転を開始する。   Next, the operation frequency Fq of the compressor 1 is set in step S2, the opening degree control of the use side expansion valve 6 is performed in step S3, and then the operation of the compressor 1 is started in step S4.

その後、所定条件を満足した時点で、ステップS5にて第1バイパス回路30のバイパス膨張弁9の開度制御に移行する。   Thereafter, when a predetermined condition is satisfied, the process proceeds to opening degree control of the bypass expansion valve 9 of the first bypass circuit 30 in step S5.

バイパス膨張弁9の開度制御としては、図5に示すステップS6にて、温度センサTh、および圧力センサPSにより、過冷却器5から流出した冷媒温度Tr、および冷媒圧力Prを検出し、ステップS7にて、上記冷媒圧力Prの検出値を冷媒過熱度検出手段53
に入力して冷媒の飽和温度Tsatを算出する。
As the opening degree control of the bypass expansion valve 9, the refrigerant temperature Tr and the refrigerant pressure Pr flowing out from the subcooler 5 are detected by the temperature sensor Th and the pressure sensor PS in step S6 shown in FIG. In S7, the detected value of the refrigerant pressure Pr is changed to the refrigerant superheat degree detecting means 53.
To calculate the saturation temperature Tsat of the refrigerant.

そして、ステップS8にて、第1バイパス回路30の出口側における冷媒過熱度SHを算出する。   In step S8, the refrigerant superheat degree SH on the outlet side of the first bypass circuit 30 is calculated.

その後、ステップS9にて、検出された冷媒過熱度SHが予め設定された下限値SH1と上限値SH2の間にあるか否かを判定し、SH1〜SH2の範囲内にある場合(ステップS9でYesの場合)は、バイパス膨張弁9の開度は維持したまま、ステップS6へ戻る。   Thereafter, in step S9, it is determined whether or not the detected refrigerant superheat degree SH is between a preset lower limit value SH1 and upper limit value SH2, and if it is within the range of SH1 to SH2 (in step S9). In the case of Yes), the process returns to step S6 while the opening of the bypass expansion valve 9 is maintained.

一方、冷媒過熱度SHが下限値SH1と上限値SH2の間にない場合(ステップS9でNoの場合)には、制御装置50にて冷媒過熱度SHと下限値SH1の大小関係を比較するべくステップS10に移行する。   On the other hand, when the refrigerant superheat degree SH is not between the lower limit value SH1 and the upper limit value SH2 (No in step S9), the controller 50 should compare the magnitude relationship between the refrigerant superheat degree SH and the lower limit value SH1. The process proceeds to step S10.

ステップS10にて、冷媒過熱度SHが下限値SH1以下となると判定された場合(ステップS10でYesの場合)は、ステップS11に移行し、制御装置50によりバイパス膨張弁9の開度を所定量下げて流れる冷媒流量を少なくする動作を行う。   In Step S10, when it is determined that the refrigerant superheat degree SH is equal to or lower than the lower limit value SH1 (Yes in Step S10), the process proceeds to Step S11, and the opening degree of the bypass expansion valve 9 is set to a predetermined amount by the control device 50. The operation of reducing the flow rate of the refrigerant flowing down is performed.

逆にステップS11にて冷媒過熱度SHが上限値SH2以上となると判定された場合(ステップS10でNoの場合)は、ステップS12に移行し、制御装置50によりバイパス膨張弁9の開度を所定量上げて流れる冷媒流量を多くする動作を行った後、ステップS6に戻り、ステップS6〜ステップS12の動作を繰り返す。   Conversely, when it is determined in step S11 that the refrigerant superheat degree SH is equal to or higher than the upper limit value SH2 (No in step S10), the process proceeds to step S12, and the opening degree of the bypass expansion valve 9 is determined by the control device 50. After performing the operation of increasing the flow rate of the refrigerant flowing by increasing the fixed amount, the process returns to step S6 and the operations of steps S6 to S12 are repeated.

以上のように、冷房排熱利用給湯運転時においても、第1バイパス回路30を用いたステップS1〜ステップS12の動作を繰り返すことにより、蒸発器である利用側熱交換器7に流入する冷媒エンタルピーを低減、すなわち高圧側における過冷却度の拡大を図りながら、同時に蒸発に寄与しない冷媒ガス成分を、第1バイパス回路30を介して圧縮機1の吸入側にバイパスできるため、蒸発器における無意味な圧力損失増大を抑制、すなわち圧縮機1の吸入圧力上昇を図れ、冷媒流量の増大、凝縮(加熱)能力の増大を図ることが可能となる。   As described above, the refrigerant enthalpy flowing into the use-side heat exchanger 7 that is the evaporator is also obtained by repeating the operations of Step S1 to Step S12 using the first bypass circuit 30 even during the cooling exhaust heat utilization hot water supply operation. The refrigerant gas component that does not contribute to evaporation at the same time can be bypassed to the suction side of the compressor 1 through the first bypass circuit 30 while increasing the degree of supercooling on the high-pressure side. Therefore, it is possible to suppress an increase in pressure loss, that is, increase the suction pressure of the compressor 1 and increase the refrigerant flow rate and the condensation (heating) capacity.

さらに、バイパス膨張弁9の開度制御により、第1バイパス回路30の出口側冷媒過熱度SHを所定の目標範囲内に収めることが可能となり、運転条件ごとに第1バイパス回路30を通過するバイパス流量が最適化される。   Furthermore, the opening degree control of the bypass expansion valve 9 makes it possible to keep the outlet side refrigerant superheat degree SH of the first bypass circuit 30 within a predetermined target range, and the bypass that passes through the first bypass circuit 30 for each operating condition. The flow rate is optimized.

特に、第1バイパス回路30の出口側冷媒過熱度SHの制御目標範囲を、例えば0K〜1K以内とする制御を行うことにより、第1バイパス回路30の出口側における冷媒が過度に過熱されることがなく、過熱度がほぼゼロ(冷媒飽和状態)にすることができ、過冷却器5の性能を最大限に引き出すことができ、効率の最大化が可能となる。   In particular, the refrigerant on the outlet side of the first bypass circuit 30 is excessively overheated by performing control so that the control target range of the outlet side refrigerant superheat degree SH of the first bypass circuit 30 is, for example, within 0K to 1K. Therefore, the degree of superheat can be made almost zero (refrigerant saturation state), the performance of the supercooler 5 can be maximized, and the efficiency can be maximized.

以上のように、本発明は、ヒートポンプ装置によって、冷房、暖房、および、水を加熱し、その水を暖房・給湯に利用するヒートポンプ式冷暖房給湯装置に特に有用である。   As described above, the present invention is particularly useful for the cooling, heating, and heat pump type air conditioning and hot water supply apparatus that heats water and uses the water for heating and hot water supply by the heat pump apparatus.

1 圧縮機
2 四方弁
3 熱源側熱交換器
4 熱源側膨張弁(熱源側膨張手段)
5 過冷却器
6 利用側膨張弁(利用側膨張手段)
7 利用側熱交換器
9 バイパス膨張弁(バイパス膨張手段)
10 ヒートポンプ式冷暖房給湯装置
20 第1冷媒回路
21 第2冷媒回路
22 温水用熱交換器
23 温水用膨張弁(温水用膨張手段)
30 第1バイパス回路
40 第2バイパス回路
41 第1開閉手段
42 第2開閉手段
50 制御装置
51 温度検出手段
52 圧力検出手段
53 冷媒過熱度検出手段
54 開閉手段制御手段
55 膨張弁制御手段(膨張手段制御手段)
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Heat source side heat exchanger 4 Heat source side expansion valve (heat source side expansion means)
5 Subcooler 6 User side expansion valve (User side expansion means)
7 Use side heat exchanger 9 Bypass expansion valve (Bypass expansion means)
DESCRIPTION OF SYMBOLS 10 Heat pump type air conditioning hot-water supply apparatus 20 1st refrigerant circuit 21 2nd refrigerant circuit 22 Heat exchanger for hot water 23 Hot water expansion valve (expansion means for hot water)
DESCRIPTION OF SYMBOLS 30 1st bypass circuit 40 2nd bypass circuit 41 1st opening / closing means 42 2nd opening / closing means 50 Control apparatus 51 Temperature detection means 52 Pressure detection means 53 Refrigerant superheat degree detection means 54 Opening / closing means control means 55 Expansion valve control means (expansion means) Control means)

Claims (2)

圧縮機、四方弁、熱源側熱交換器、熱源側膨張手段、過冷却器、利用側膨張手段、利用側熱交換器が環状に接続された第1冷媒回路と、前記熱源側膨張手段と前記過冷却器の間または前記過冷却器と前記利用側膨張手段の間で前記第1冷媒回路から分岐し、バイパス膨張手段および前記過冷却器を経由して、前記四方弁と前記圧縮機との間で前記第1冷媒回路に接続する第1バイパス回路と、前記圧縮機と前記四方弁の間から分岐して温水用熱交換器を介して、前記過冷却器と前記利用側膨張手段との間に接続する第2冷媒回路と、前記第2冷媒回路と前記第1冷媒回路との接続部と前記利用側膨張手段との間に設けられた第1開閉手段と、前記熱源側膨張手段と前記過冷却器との間から分岐して第2開閉手段を介して、前記第1開閉手段と前記利用側膨張手段との間に接続する第2バイパス回路と、制御装置とを備え、前記制御装置は、前記利用側熱交換器にて冷房運転を行い、かつ、前記温水用熱交換器にて温水生成運転を行う場合に、前記第1開閉手段を閉、前記第2開閉手段を開、前記熱源側膨張手段を閉とすることを特徴とするヒートポンプ式冷暖房給湯装置。 A compressor, a four-way valve, a heat source side heat exchanger, a heat source side expansion means, a supercooler, a use side expansion means, a first refrigerant circuit in which a use side heat exchanger is connected in an annular shape, the heat source side expansion means and the Branching from the first refrigerant circuit between the subcoolers or between the subcooler and the utilization side expansion means, and via the bypass expansion means and the subcooler, the four-way valve and the compressor A first bypass circuit connected to the first refrigerant circuit, and between the compressor and the four-way valve, and via a hot water heat exchanger, the supercooler and the utilization side expansion means A second refrigerant circuit connected between the first refrigerant circuit, a first opening / closing means provided between a connecting portion of the second refrigerant circuit and the first refrigerant circuit, and the use side expansion means, and the heat source side expansion means Branching from between the subcooler and the first opening and closing means via the second opening and closing means; A second bypass circuit connected between the serial usage-side expansion means, and a control unit, said control unit performs a cooling operation in the use side heat exchanger and the hot water heat exchanger When the hot water generating operation is performed, the first opening / closing means is closed, the second opening / closing means is opened, and the heat source side expansion means is closed. 前記第1バイパス回路の出口側における冷媒過熱度を検出する冷媒過熱度検出手段を備え、前記制御装置は、前記冷媒過熱度検出手段による冷媒過熱度が所定範囲内となるように、前記バイパス膨張手段の開度を制御することを特徴とする請求項1に記載のヒートポンプ式冷暖房給湯装置。 A refrigerant superheat degree detecting means for detecting a refrigerant superheat degree at the outlet side of the first bypass circuit is provided, and the control device is configured to perform the bypass expansion so that the refrigerant superheat degree by the refrigerant superheat degree detecting means falls within a predetermined range. The heat pump air-conditioning / hot water supply apparatus according to claim 1, wherein the opening degree of the means is controlled.
JP2012132453A 2012-06-12 2012-06-12 Heat pump air conditioning and hot water supply system Expired - Fee Related JP6051401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012132453A JP6051401B2 (en) 2012-06-12 2012-06-12 Heat pump air conditioning and hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012132453A JP6051401B2 (en) 2012-06-12 2012-06-12 Heat pump air conditioning and hot water supply system

Publications (2)

Publication Number Publication Date
JP2013257057A JP2013257057A (en) 2013-12-26
JP6051401B2 true JP6051401B2 (en) 2016-12-27

Family

ID=49953644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132453A Expired - Fee Related JP6051401B2 (en) 2012-06-12 2012-06-12 Heat pump air conditioning and hot water supply system

Country Status (1)

Country Link
JP (1) JP6051401B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6272365B2 (en) * 2014-02-14 2018-01-31 三菱電機株式会社 Refrigeration cycle equipment
WO2015121992A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Refrigeration cycle device
EP3171096A4 (en) * 2014-07-16 2018-03-14 Mitsubishi Electric Corporation Refrigerating and air conditioning device
CN106322826A (en) * 2016-05-28 2017-01-11 河南惠康人工环境设备有限公司 Water-air dual-purpose heat pump water heater unit for recovering waste heat
CN108105907A (en) * 2017-03-01 2018-06-01 宁波港菱环境科技股份有限公司 A kind of hot water, air-conditioning, heating combined supply system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922437Y2 (en) * 1978-12-19 1984-07-04 松下電器産業株式会社 Air conditioning/heating water heater
JP2008020152A (en) * 2006-07-14 2008-01-31 Matsushita Electric Ind Co Ltd Heat pump device
JP2010196953A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system
EP2527751B1 (en) * 2010-01-19 2019-08-07 Mitsubishi Electric Corporation Air conditioning-hot water supply combined system
US9068766B2 (en) * 2010-04-05 2015-06-30 Mitsubishi Electric Corporation Air-conditioning and hot water supply combination system
WO2012164608A1 (en) * 2011-05-31 2012-12-06 三菱電機株式会社 Combined air-conditioning/hot water supply system

Also Published As

Publication number Publication date
JP2013257057A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP5991989B2 (en) Refrigeration air conditioner
JP5452138B2 (en) Refrigeration air conditioner
JP2554208B2 (en) Heat pump water heater
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP5637053B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
EP2735819B1 (en) Refrigeration cycle apparatus and warm water producing apparatus having refrigeration cycle apparatus
JP2011174672A (en) Refrigerating cycle device and hot water heating apparatus
JP5824628B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP2013002744A (en) Refrigerating cycle device and hot water heating device having the same
JP6051401B2 (en) Heat pump air conditioning and hot water supply system
JP2011080633A (en) Refrigerating cycle device and hot-water heating device
JP2017161182A (en) Heat pump device
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
EP2770278B1 (en) Water heater
JP2017155944A (en) Refrigeration cycle device and hot water heating device including the same
JP2014016067A (en) Heat pump type air-conditioning hot water supply device
JP2004003825A (en) Heat pump system, and heat pump type hot water supplying machine
WO2013080497A1 (en) Refrigeration cycle device and hot water generating apparatus comprising same
JP5233960B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP2009162403A (en) Air conditioner
JP2013007522A (en) Refrigeration cycle device and hot-water generation apparatus with the same
KR20170000029U (en) cascade heat pump
JP2011099572A (en) Refrigerating cycle device and hot-water heating device using the same
JP2013249967A (en) Hot water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R151 Written notification of patent or utility model registration

Ref document number: 6051401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees