JP5637053B2 - Refrigeration cycle apparatus and hot water heating apparatus including the same - Google Patents

Refrigeration cycle apparatus and hot water heating apparatus including the same Download PDF

Info

Publication number
JP5637053B2
JP5637053B2 JP2011085142A JP2011085142A JP5637053B2 JP 5637053 B2 JP5637053 B2 JP 5637053B2 JP 2011085142 A JP2011085142 A JP 2011085142A JP 2011085142 A JP2011085142 A JP 2011085142A JP 5637053 B2 JP5637053 B2 JP 5637053B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
bypass
radiator
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011085142A
Other languages
Japanese (ja)
Other versions
JP2012220072A (en
Inventor
俊二 森脇
俊二 森脇
繁男 青山
繁男 青山
道美 日下
道美 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011085142A priority Critical patent/JP5637053B2/en
Priority to EP12163185.7A priority patent/EP2508821B1/en
Priority to CN201210101651.0A priority patent/CN102734969B/en
Publication of JP2012220072A publication Critical patent/JP2012220072A/en
Application granted granted Critical
Publication of JP5637053B2 publication Critical patent/JP5637053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、放熱器から流出した冷媒の一部をバイパスし、主流冷媒とバイパス流冷媒との間で熱交換を行って、主流冷媒を過冷却する冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus that bypasses a part of a refrigerant flowing out of a radiator and performs heat exchange between the mainstream refrigerant and the bypass refrigerant to supercool the mainstream refrigerant.

従来、この種の冷凍サイクル装置は、冷媒回路の放熱器の下流側に過冷却熱交換器が設けられ、この過冷却熱交換器に膨張させた冷媒を流入させることにより放熱器から流出した冷媒を過冷却している(例えば、特許文献1参照)。   Conventionally, this type of refrigeration cycle apparatus is provided with a supercooling heat exchanger on the downstream side of the radiator of the refrigerant circuit, and the refrigerant that has flowed out of the radiator by allowing the expanded refrigerant to flow into the supercooling heat exchanger. Is supercooled (see, for example, Patent Document 1).

図4は、特許文献1に記載された従来の冷凍サイクル装置を示すものである。   FIG. 4 shows a conventional refrigeration cycle apparatus described in Patent Document 1. As shown in FIG.

図4に示すように、冷凍サイクル装置100は、冷媒を循環させる冷媒回路110と、バイパス路120とを備えている。冷媒回路110は、圧縮機111、放熱器112、過冷却熱交換器113、主膨張弁114および蒸発器115が配管により環状に接続されて構成されている。   As shown in FIG. 4, the refrigeration cycle apparatus 100 includes a refrigerant circuit 110 that circulates refrigerant and a bypass 120. The refrigerant circuit 110 is configured by connecting a compressor 111, a radiator 112, a supercooling heat exchanger 113, a main expansion valve 114, and an evaporator 115 in an annular shape by piping.

バイパス路120は、過冷却熱交換器113と主膨張弁114の間で冷媒回路110から分岐し、過冷却熱交換器113を経由して蒸発器115と圧縮機111の間で冷媒回路110につながっている。また、バイパス路120には、過冷却熱交換器113よりも上流側にバイパス膨張弁121が設けられている。   The bypass 120 branches from the refrigerant circuit 110 between the supercooling heat exchanger 113 and the main expansion valve 114, and enters the refrigerant circuit 110 between the evaporator 115 and the compressor 111 via the supercooling heat exchanger 113. linked. The bypass passage 120 is provided with a bypass expansion valve 121 upstream of the supercooling heat exchanger 113.

さらに、冷凍サイクル装置100には、圧縮機111から吐出される冷媒の温度(圧縮機吐出管温度)Tdを検出する温度センサ141と、蒸発器115に流入する冷媒の温度(蒸発器入口温度)Teを検出する温度センサ142と、バイパス路120において過冷却熱交換器113に流入する冷媒の温度(バイパス側入口温度)Tbiを検出する温度センサ143と、バイパス路120において過冷却熱交換器113から流出する冷媒の温度(バイパス側出口温度)Tboを検出する温度センサ144と、温度センサ142で検出される蒸発器入口温度Teから圧縮機の吐出管の目標温度Td(target)が設定されている。   Further, the refrigeration cycle apparatus 100 includes a temperature sensor 141 that detects the temperature of the refrigerant discharged from the compressor 111 (compressor discharge pipe temperature) Td, and the temperature of the refrigerant that flows into the evaporator 115 (evaporator inlet temperature). A temperature sensor 142 for detecting Te, a temperature sensor 143 for detecting the temperature (bypass side inlet temperature) Tbi of the refrigerant flowing into the supercooling heat exchanger 113 in the bypass passage 120, and the supercooling heat exchanger 113 in the bypass passage 120 A temperature sensor 144 for detecting the temperature of the refrigerant flowing out of the refrigerant (bypass side outlet temperature) Tbo, and a target temperature Td (target) of the discharge pipe of the compressor is set from the evaporator inlet temperature Te detected by the temperature sensor 142 Yes.

そして、温度センサ141で検出された吐出管温度Tdが、その目標温度Td(target)となるように主膨張弁114を制御する主膨張弁制御部と、過冷却熱交換器113でのバイパス側出口温度Tboとバイパス側入口温度Tbiとの差(Tbo−Tbi)が所定の目標値となるようにバイパス膨張弁121を制御するバイパス膨張弁制御部から構成されている。   And the main expansion valve control part which controls the main expansion valve 114 so that the discharge pipe temperature Td detected by the temperature sensor 141 becomes the target temperature Td (target), and the bypass side in the supercooling heat exchanger 113 The bypass expansion valve control unit controls the bypass expansion valve 121 so that the difference (Tbo−Tbi) between the outlet temperature Tbo and the bypass side inlet temperature Tbi becomes a predetermined target value.

特開平10−68553号公報Japanese Patent Laid-Open No. 10-68553

しかしながら、前記従来の構成では、バイパス膨張弁はバイパス路の入口側と出口側の温度差、即ち、バイパス路出口の過熱度を制御するように動作するので、バイパス出口冷媒状態を湿り状態に制御することができない。   However, in the conventional configuration, the bypass expansion valve operates to control the temperature difference between the inlet side and the outlet side of the bypass passage, that is, the degree of superheat of the bypass passage outlet, so that the bypass outlet refrigerant state is controlled to be a wet state. Can not do it.

その為に、バイパス量を制限する必要があり、過冷却熱交換器を最大限有効に活用する
ことができないので、バイパスによる運転効率向上効果を最大にすることができないばかりか、外気温度が−20℃のような極低温時や、利用側熱交換器と熱源側熱交換器の接続配管が長くなった場合における、バイパスによる吐出温度上昇を抑制するために、主膨張弁の減圧量を低下させて蒸発温度を上げた運転状態とする必要があり、効率が悪く、十分な加熱能力を確保できないという課題を有していた。
Therefore, it is necessary to limit the amount of bypass, and the supercooling heat exchanger cannot be utilized to the maximum extent, so that the effect of improving the operation efficiency by bypass cannot be maximized, and the outside air temperature is − In order to suppress discharge temperature rise due to bypass at extremely low temperatures, such as 20 ° C, or when the connecting pipe between the use side heat exchanger and heat source side heat exchanger becomes long, the pressure reduction amount of the main expansion valve is reduced. Therefore, there is a problem that it is necessary to obtain an operation state in which the evaporation temperature is raised, the efficiency is poor, and sufficient heating capacity cannot be secured.

本発明は、前記従来の課題を解決するもので、常に適正な冷凍サイクル状態に制御することで、低い外気温度においても効率が良く、十分な加熱能力を確保することができる冷凍サイクル装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and provides a refrigeration cycle apparatus capable of ensuring a sufficient heating capacity with high efficiency even at a low outside air temperature by always controlling to an appropriate refrigeration cycle state. The purpose is to do.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮機、放熱器、過冷却熱交換器、主膨張手段および蒸発器が環状に接続された冷媒回路と、前記放熱器と前記主膨張手段の間で前記冷媒回路から分岐し、前記過冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続したバイパス路と、前記バイパス路の前記過冷却熱交換器の上流側に設けたバイパス膨張手段と、前記過冷却熱交換器から流出する冷媒の温度を検出する第1温度センサと、前記圧縮機に吸入される冷媒の飽和温度を検出する第1飽和温度検出手段と、前記放熱器から流出する冷媒の温度を検出する第2温度センサと、前記放熱器の冷媒の飽和温度を検出する第2飽和温度検出手段と、制御装置とを備え、前記第1温度センサの検出温度が前記第1飽和温度検出手段の検出温度より高い場合は、前記第1温度センサの検出温度が前記第1飽和温度検出手段の検出温度に近づくように、前記バイパス膨張手段を動作させ、前記第1温度センサの検出温度と前記第1飽和温度検出手段の検出温度とが略同一の場合には、前記第2温度センサの検出温度が前記第2飽和温度検出手段の検出温度より所定温度低くなるように、前記バイパス膨張手段を動作させることを特徴とするものである。   In order to solve the conventional problems, a refrigeration cycle apparatus of the present invention includes a refrigerant circuit in which a compressor, a radiator, a supercooling heat exchanger, a main expansion unit, and an evaporator are connected in an annular shape, and the radiator. Branched from the refrigerant circuit between the main expansion means, and connected to the compressor circuit of the compressor or the refrigerant circuit between the evaporator and the compressor via the supercooling heat exchanger A bypass passage, bypass expansion means provided upstream of the subcooling heat exchanger in the bypass passage, a first temperature sensor for detecting the temperature of the refrigerant flowing out of the supercooling heat exchanger, and the compressor First saturation temperature detecting means for detecting the saturation temperature of the refrigerant sucked into the second, second temperature sensor for detecting the temperature of the refrigerant flowing out of the radiator, and second for detecting the saturation temperature of the refrigerant of the radiator. Saturation temperature detection means and control device When the detected temperature of the first temperature sensor is higher than the detected temperature of the first saturation temperature detecting means, the detected temperature of the first temperature sensor approaches the detected temperature of the first saturated temperature detecting means. When the bypass expansion means is operated and the detected temperature of the first temperature sensor is substantially the same as the detected temperature of the first saturation temperature detecting means, the detected temperature of the second temperature sensor is detected as the second saturation temperature detection. The bypass expansion means is operated so as to be lower than a detected temperature of the means by a predetermined temperature.

これによって、バイパス出口冷媒が常に飽和状態になるように制御されるとともに、バイパス出口冷媒が飽和状態の時には、放熱器出口の過冷却度を適正に制御するので、バイパス膨張手段の開き過ぎや、閉じ過ぎを防止し、バイパス量を適正量にすることができる。   As a result, the bypass outlet refrigerant is controlled so as to be always saturated, and when the bypass outlet refrigerant is saturated, the degree of supercooling of the radiator outlet is appropriately controlled. It is possible to prevent over-closing and to set the bypass amount to an appropriate amount.

本発明によれば、常に適正な冷凍サイクル状態に制御することで、低い外気温度においても効率が良く、十分な加熱能力を確保することができる冷凍サイクル装置を提供できる。   According to the present invention, it is possible to provide a refrigeration cycle apparatus capable of ensuring a sufficient heating capacity with high efficiency even at a low outside air temperature by always controlling to an appropriate refrigeration cycle state.

本発明の実施の形態1における冷凍サイクル装置の概略構成図Schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 図1に示す冷凍サイクル装置のモリエル線図Mollier diagram of the refrigeration cycle apparatus shown in FIG. 図1に示す冷凍サイクル装置の他のモリエル線図Another Mollier diagram of the refrigeration cycle apparatus shown in FIG. 本発明の実施の形態1における冷凍サイクル装置の運転制御のフローチャートFlowchart of operation control of the refrigeration cycle apparatus in Embodiment 1 of the present invention. 従来の冷凍サイクル装置の概略構成図Schematic configuration diagram of a conventional refrigeration cycle apparatus

第1の発明は、圧縮機、放熱器、過冷却熱交換器、主膨張手段および蒸発器が環状に接続された冷媒回路と、前記放熱器と前記主膨張手段の間で前記冷媒回路から分岐し、前記過冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続したバイパス路と、前記バイパス路の前記過冷却熱交換器の上流側に設けたバイパス膨張手段と、前記過冷却熱交換器から流出する冷媒の温度を検出する
第1温度センサと、前記圧縮機に吸入される冷媒の飽和温度を検出する第1飽和温度検出手段と、前記放熱器から流出する冷媒の温度を検出する第2温度センサと、前記放熱器の冷媒の飽和温度を検出する第2飽和温度検出手段と、制御装置とを備え、前記第1温度センサの検出温度が前記第1飽和温度検出手段の検出温度より高い場合は、前記第1温度センサの検出温度が前記第1飽和温度検出手段の検出温度に近づくように、前記バイパス膨張手段を動作させ、前記第1温度センサの検出温度と前記第1飽和温度検出手段の検出温度とが略同一の場合には、前記第2温度センサの検出温度が前記第2飽和温度検出手段の検出温度より所定温度低くなるように、前記バイパス膨張手段を動作させることを特徴とする冷凍サイクル装置である。
A first invention is a refrigerant circuit in which a compressor, a radiator, a supercooling heat exchanger, a main expansion unit and an evaporator are connected in an annular shape, and branches from the refrigerant circuit between the radiator and the main expansion unit And, via the supercooling heat exchanger, a bypass passage connected to the compressor chamber of the compressor or the refrigerant circuit between the evaporator and the compressor, and the supercooling of the bypass passage Bypass expansion means provided on the upstream side of the heat exchanger, a first temperature sensor for detecting the temperature of the refrigerant flowing out of the supercooling heat exchanger, and a first temperature sensor for detecting the saturation temperature of the refrigerant sucked into the compressor 1 saturation temperature detection means, a second temperature sensor for detecting the temperature of the refrigerant flowing out of the radiator, a second saturation temperature detection means for detecting the saturation temperature of the refrigerant of the radiator, and a control device, The detected temperature of the first temperature sensor is the first saturation. When the detected temperature of the first temperature sensor is higher than the detected temperature of the degree detecting means, the bypass expansion means is operated so that the detected temperature of the first temperature sensor approaches the detected temperature of the first saturated temperature detecting means, and the detection of the first temperature sensor is performed. When the temperature and the detected temperature of the first saturation temperature detecting means are substantially the same, the bypass temperature is set so that the detected temperature of the second temperature sensor is lower than the detected temperature of the second saturated temperature detecting means. A refrigeration cycle apparatus characterized by operating expansion means.

これによって、バイパス出口冷媒が、常に飽和状態になるように制御されるとともに、バイパス出口冷媒が飽和状態の時には、放熱器出口の過冷却度を適正に制御するので、バイパス膨張手段の開き過ぎや、閉じ過ぎが抑制され、バイパス量を適正量にすることができる。   As a result, the bypass outlet refrigerant is controlled to be always saturated, and when the bypass outlet refrigerant is saturated, the degree of supercooling of the radiator outlet is appropriately controlled. , Over-closing is suppressed, and the bypass amount can be set to an appropriate amount.

したがって、過冷却熱交換器での主流冷媒とバイパス流冷媒との熱交換による蒸発器におけるエンタルピー差増大効果、および、冷媒のバイパスによる低圧側冷媒経路の圧力損失低減効果を最大とすることが可能となり、外気温度が−20℃のような極低温時においても、吐出温度の異常上昇を抑制しながら、より高い運転効率と十分な加熱能力を得ることができる。   Therefore, it is possible to maximize the effect of increasing the enthalpy difference in the evaporator by heat exchange between the mainstream refrigerant and the bypass refrigerant in the supercooling heat exchanger and the pressure loss reducing effect in the low-pressure side refrigerant path due to the refrigerant bypass. Thus, even when the outside air temperature is extremely low such as −20 ° C., higher operating efficiency and sufficient heating capacity can be obtained while suppressing an abnormal increase in the discharge temperature.

第2の発明は、第1の発明において、前記蒸発器から流出する冷媒の温度を検出する第3温度センサを備え、前記第3温度センサの検出温度と前記第1飽和温度検出手段の検出温度との温度差が大きいほど、前記所定温度の値は小さいことを特徴とするものである。   According to a second invention, in the first invention, a third temperature sensor for detecting a temperature of the refrigerant flowing out of the evaporator is provided, the detected temperature of the third temperature sensor and the detected temperature of the first saturation temperature detecting means. The value of the predetermined temperature is smaller as the temperature difference between is larger.

これにより、蒸発器出口冷媒の過熱度から、冷媒量の不足状態が判断でき、冷媒量が不足状態にあるときは、放熱器出口冷媒の過冷却度を小さく制御するので、バイパス膨張手段の絞り過ぎによる低圧低下を防止することができる。   Thus, it is possible to determine the shortage state of the refrigerant amount from the superheat degree of the evaporator outlet refrigerant, and when the refrigerant amount is in a shortage state, the supercooling degree of the radiator outlet refrigerant is controlled to be small. It is possible to prevent a decrease in the low pressure due to the excess.

したがって、上記第1の発明の効果に加え、利用側熱交換器と熱源側熱交換器の接続配管が長くなった場合においても、ガス量不足状態を検知して、膨張手段の閉じ過ぎによる吸入圧力低下を防止しながら、効率の良い加熱運転を維持することができるので、機器の設置自由度が向上する。   Therefore, in addition to the effect of the first aspect of the invention, even when the connecting pipe between the use side heat exchanger and the heat source side heat exchanger becomes long, the gas amount shortage state is detected and the suction due to the expansion means being closed too much is detected. Since an efficient heating operation can be maintained while preventing a pressure drop, the degree of freedom of equipment installation is improved.

第3の発明は、第1または第2の発明の冷凍サイクル装置を備えた温水暖房装置で、放熱器が冷媒対空気熱交換器の場合だけでなく、冷媒対水熱交換器の場合にも適用でき、加えて第1または第2の発明と同様の効果を得ることができる。   3rd invention is a hot water heating apparatus provided with the refrigerating cycle device of the 1st or 2nd invention, and not only when a radiator is a refrigerant-to-air heat exchanger, but also in the case of a refrigerant-to-water heat exchanger In addition, the same effects as those of the first or second invention can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における冷凍サイクル装置および温水暖房装置の概略構成図を示すものである。図1において、冷凍サイクル装置1Aは、冷媒を循環させる冷媒回路2と、バイパス路3と、制御装置4とを備えている。冷媒としては、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、または単一冷媒等を用いることができる。
(Embodiment 1)
FIG. 1 shows a schematic configuration diagram of a refrigeration cycle apparatus and a hot water heater in the first embodiment of the present invention. In FIG. 1, the refrigeration cycle apparatus 1 </ b> A includes a refrigerant circuit 2 that circulates refrigerant, a bypass 3, and a control device 4. As the refrigerant, for example, a non-azeotropic refrigerant mixture such as R407C, a pseudo-azeotropic refrigerant mixture such as R410A, or a single refrigerant can be used.

冷媒回路2は、圧縮機21、放熱器22、過冷却熱交換器23、主膨張弁(主膨張手段)24および蒸発器25が配管により環状に接続されて構成されている。本実施の形態で
は、蒸発器25と圧縮機21の間に、気液分離を行うサブアキュムレータ26および主アキュムレータ27が設けられている。また、冷媒回路2には、通常運転とデフロスト運転を切り換えるための四方弁28が設けられている。
The refrigerant circuit 2 includes a compressor 21, a radiator 22, a supercooling heat exchanger 23, a main expansion valve (main expansion means) 24, and an evaporator 25 that are annularly connected by piping. In the present embodiment, a sub-accumulator 26 and a main accumulator 27 that perform gas-liquid separation are provided between the evaporator 25 and the compressor 21. The refrigerant circuit 2 is provided with a four-way valve 28 for switching between normal operation and defrost operation.

本実施の形態では、冷凍サイクル装置1Aが、加熱手段により生成した温水を暖房に利用する温水暖房装置の加熱手段を構成しており、放熱器22が、冷媒と水との間で熱交換を行わせて水を加熱する熱交換器となっている。   In the present embodiment, the refrigeration cycle apparatus 1A constitutes heating means of a hot water heating apparatus that uses hot water generated by the heating means for heating, and the radiator 22 exchanges heat between the refrigerant and water. It is a heat exchanger that heats water.

具体的には、放熱器22に供給管71と回収管72が接続されており、供給管71を通じて放熱器22に水が供給され、放熱器22で加熱された水(温水)が回収管72を通じて回収されるようになっている。回収管72により回収された温水は、例えばラジエータ等の暖房機に直接的または貯湯タンクを介して送られ、これにより暖房が行われる。   Specifically, a supply pipe 71 and a recovery pipe 72 are connected to the radiator 22, water is supplied to the radiator 22 through the supply pipe 71, and water (hot water) heated by the radiator 22 is the recovery pipe 72. It has come to be collected through. The hot water collected by the collection pipe 72 is sent to a heater such as a radiator directly or via a hot water storage tank, and thereby heating is performed.

本実施の形態では、バイパス路3は、過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐し、過冷却熱交換器23を経由して蒸発器25と圧縮機21の間における、サブアキュムレータ26と主アキュムレータ27の間の冷媒回路2につながっている。また、バイパス路3には、過冷却熱交換器23よりも上流側にバイパス膨張弁(バイパス膨張手段)31が設けられている。   In the present embodiment, the bypass passage 3 branches from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and the evaporator 25 and the compressor 21 are connected via the supercooling heat exchanger 23. The refrigerant is connected to the refrigerant circuit 2 between the sub accumulator 26 and the main accumulator 27. The bypass passage 3 is provided with a bypass expansion valve (bypass expansion means) 31 on the upstream side of the supercooling heat exchanger 23.

通常運転では、圧縮機21から吐出された冷媒が四方弁28を介して放熱器22に送られ、デフロスト運転では、圧縮機21から吐出された冷媒が四方弁28を介して蒸発器25に送られる。図1では、通常運転時の冷媒の流れ方向を矢印で示している。以下、通常運転における冷媒の状態変化を説明する。   In the normal operation, the refrigerant discharged from the compressor 21 is sent to the radiator 22 via the four-way valve 28, and in the defrost operation, the refrigerant discharged from the compressor 21 is sent to the evaporator 25 via the four-way valve 28. It is done. In FIG. 1, the direction of refrigerant flow during normal operation is indicated by arrows. Hereinafter, the state change of the refrigerant in the normal operation will be described.

圧縮機21から吐出された高圧冷媒は、放熱器22に流入し、放熱器22を通過する水に放熱する。放熱器22から流出した高圧冷媒は、過冷却熱交換器23に流入し、バイパス膨張弁31で減圧された低圧冷媒によって過冷却される。過冷却熱交換器23から流出した高圧冷媒は、主膨張弁24側とバイパス膨張弁31側とに分配される。   The high-pressure refrigerant discharged from the compressor 21 flows into the radiator 22 and radiates heat to the water passing through the radiator 22. The high-pressure refrigerant flowing out of the radiator 22 flows into the supercooling heat exchanger 23 and is supercooled by the low-pressure refrigerant decompressed by the bypass expansion valve 31. The high-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 is distributed to the main expansion valve 24 side and the bypass expansion valve 31 side.

主膨張弁24側に分配された高圧冷媒は、主膨張弁24によって減圧されて膨張した後に、蒸発器25に流入する。蒸発器25に流入した低圧冷媒は、ここで空気から吸熱する。   The high-pressure refrigerant distributed to the main expansion valve 24 is decompressed and expanded by the main expansion valve 24 and then flows into the evaporator 25. Here, the low-pressure refrigerant flowing into the evaporator 25 absorbs heat from the air.

一方、バイパス膨張弁31側に分配された高圧冷媒は、バイパス膨張弁31によって減圧されて膨張した後に、過冷却熱交換器23に流入する。過冷却熱交換器23に流入した低圧冷媒は、放熱器22から流出した高圧冷媒によって加熱される。その後、過冷却熱交換器23から流出した低圧冷媒は、蒸発器25から流出した低圧冷媒と合流し、再度圧縮機21に吸入される。   On the other hand, the high-pressure refrigerant distributed to the bypass expansion valve 31 side is decompressed by the bypass expansion valve 31 and expanded, and then flows into the supercooling heat exchanger 23. The low-pressure refrigerant that has flowed into the supercooling heat exchanger 23 is heated by the high-pressure refrigerant that has flowed out of the radiator 22. Thereafter, the low-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 merges with the low-pressure refrigerant that has flowed out of the evaporator 25, and is sucked into the compressor 21 again.

本実施の形態の冷凍サイクル装置1Aの構成は、低外気温度時に圧縮機21に吸入される冷媒の圧力が低下して冷媒循環量が減少し、これにより放熱器22の加熱能力が低下することを防止するためのものである。   In the configuration of the refrigeration cycle apparatus 1A according to the present embodiment, the pressure of the refrigerant sucked into the compressor 21 at the low outside air temperature decreases and the refrigerant circulation amount decreases, thereby reducing the heating capacity of the radiator 22. It is for preventing.

これを実現するには、過冷却により蒸発器25でのエンタルピー差を増大させるとともに、バイパス路3によって冷媒をバイパスさせることにより冷媒回路2の低圧側部分を流れる吸熱効果の小さい気相冷媒の量を抑え、これにより冷媒回路2の低圧側部分での圧力損失を低減させることが重要である。   In order to realize this, the amount of gas-phase refrigerant having a small endothermic effect that flows through the low pressure side portion of the refrigerant circuit 2 by increasing the enthalpy difference in the evaporator 25 by supercooling and bypassing the refrigerant by the bypass passage 3. It is important to reduce the pressure loss at the low pressure side portion of the refrigerant circuit 2.

冷媒回路2の低圧側部分での圧力損失が低減すれば、その分圧縮機21に吸入される冷媒の圧力が上昇して比体積が減少するため、冷媒循環量が増加する。また、蒸発器25で
のエンタルピー差を増大させれば、バイパスにより蒸発器25を通過する冷媒の質量流量が低下したとしても、蒸発器25での吸熱量を確保することができる。すなわち、冷媒の過冷却度とバイパス量を最大にすれば、最大限の放熱器22の加熱能力向上効果と冷凍サイクル装置1Aの成績係数向上効果が得られる。
If the pressure loss in the low pressure side portion of the refrigerant circuit 2 is reduced, the pressure of the refrigerant sucked into the compressor 21 is increased by that amount, and the specific volume is reduced, so that the refrigerant circulation amount is increased. Moreover, if the enthalpy difference in the evaporator 25 is increased, even if the mass flow rate of the refrigerant passing through the evaporator 25 is reduced by bypass, the heat absorption amount in the evaporator 25 can be secured. That is, if the degree of supercooling of the refrigerant and the amount of bypass are maximized, the maximum heating capacity improvement effect of the radiator 22 and the coefficient of performance improvement effect of the refrigeration cycle apparatus 1A can be obtained.

本実施の形態では、詳しくは後述するが、制御装置4は、バイパス路3の出口冷媒が、過熱状態である場合には、飽和状態となるように、バイパス膨張弁31を動作させるとともに、バイパス路3の出口冷媒が、飽和状態である場合には、放熱器22出口の過冷却度が、予め設定された所定の過冷却度となるように、バイパス膨張弁31を動作させるように制御する。また、蒸発器25の過熱度が大きいほど、放熱器22出口の所定の過冷却度を小さくするように設定する。   In the present embodiment, as will be described in detail later, the control device 4 operates the bypass expansion valve 31 so that the outlet refrigerant of the bypass passage 3 is saturated when the outlet refrigerant is in an overheated state. When the outlet refrigerant of the passage 3 is in a saturated state, the bypass expansion valve 31 is controlled to operate so that the degree of supercooling at the outlet of the radiator 22 becomes a predetermined degree of supercooling set in advance. . Moreover, it sets so that the predetermined supercooling degree of the radiator 22 outlet may become small, so that the superheating degree of the evaporator 25 is large.

これにより、バイパス路3出口の冷媒状態は、図2中のa点、b点、c点のように、常に飽和状態に制御される。しかしながら、図2中のa点やc点のように、バイパス路3出口の冷媒状態が飽和状態であったとしても、バイパス量が過大・過少となる場合がある。このような場合は、バイパス膨張弁31の減圧量の差から、放熱器22出口の過冷却度が、図2中のa′点やc′点のように過大・過少になるので、バイパス量が不適正であることが判断でき、この過冷却度を予め設定された所定値(図2中のb′点)に制御することで、バイパス量が図2中のb点のように適正に制御されることとなる。   Thereby, the refrigerant | coolant state of the bypass 3 exit is always controlled to a saturated state like the point a, b point, and c point in FIG. However, even if the refrigerant state at the outlet of the bypass passage 3 is saturated as indicated by points a and c in FIG. 2, the amount of bypass may be excessive or excessive. In such a case, since the degree of supercooling at the outlet of the radiator 22 becomes excessive and excessive as shown by points a 'and c' in FIG. Can be determined to be inappropriate, and by controlling the degree of supercooling to a predetermined value (point b ′ in FIG. 2), the amount of bypass is appropriately adjusted as shown by point b in FIG. Will be controlled.

また、機器の設置状態により、接続配管長が長くなった場合は、冷凍サイクルとして冷媒量が不足した状態となるため、図3中のa′点のように適正冷媒量と同じ過冷却度を用いて制御した場合は、バイパス膨張弁による減圧量が過多となり吸入圧力が低下する。このような場合は、図3中のa点のように、蒸発器25出口の冷媒状態が、過熱状態となるので、制御装置4は、図3中のb′点のように所定の過冷却度を下げて設定するので、バイパス膨張弁の減圧量が減少して、バイパス量が適正に制御されることとなる。   Also, if the connection pipe length becomes longer due to the installation state of the equipment, the refrigerant amount will be insufficient as a refrigeration cycle. Therefore, the same degree of supercooling as the appropriate refrigerant amount as shown by point a 'in FIG. When used and controlled, the amount of pressure reduction by the bypass expansion valve becomes excessive, and the suction pressure decreases. In such a case, since the refrigerant state at the outlet of the evaporator 25 becomes an overheated state as indicated by point a in FIG. 3, the control device 4 performs predetermined supercooling as indicated by point b ′ in FIG. Therefore, the pressure reduction amount of the bypass expansion valve is reduced and the bypass amount is appropriately controlled.

以下、運転制御の動作について説明する。   Hereinafter, the operation control operation will be described.

冷媒回路2には、圧縮機21に吸入される冷媒の圧力(吸入圧力)Psを検出する第1圧力センサ51と、放熱器22から流出する冷媒の圧力(放熱器出口圧力)Pcを検出する第2圧力センサ52と、放熱器22から流出する冷媒の温度(放熱器出口温度)Tcoを検出する第2温度センサ62と、蒸発器25から流出する冷媒の温度(蒸発器出口温度)Teoを検出する第3温度センサ63と、圧縮機21から吐出される冷媒の温度(吐出温度)Tdを検出する第4温度センサ64と、が設けられている。一方、バイパス路3には、過冷却熱交換器23から流出する冷媒の温度(バイパス路出口温度)Tboを検出する第1温度センサ61が設けられている。   The refrigerant circuit 2 detects a first pressure sensor 51 that detects the pressure (suction pressure) Ps of the refrigerant sucked into the compressor 21, and a pressure (radiator outlet pressure) Pc of the refrigerant that flows out of the radiator 22. The second pressure sensor 52, the second temperature sensor 62 that detects the temperature of the refrigerant that flows out of the radiator 22 (heat radiator outlet temperature) Tco, and the temperature of the refrigerant that flows out of the evaporator 25 (evaporator outlet temperature) Teo A third temperature sensor 63 for detecting and a fourth temperature sensor 64 for detecting the temperature (discharge temperature) Td of the refrigerant discharged from the compressor 21 are provided. On the other hand, the bypass passage 3 is provided with a first temperature sensor 61 that detects the temperature (bypass passage outlet temperature) Tbo of the refrigerant flowing out of the supercooling heat exchanger 23.

制御装置4は、各種のセンサ51、52、61、62、63、64で検出される検出値等に基づいて、圧縮機21の回転数、四方弁28の切り換え、ならびに主膨張弁24およびバイパス膨張弁31の開度を動作させる。   Based on the detection values detected by the various sensors 51, 52, 61, 62, 63, 64, the control device 4 switches the rotation speed of the compressor 21, the four-way valve 28, the main expansion valve 24 and the bypass. The opening degree of the expansion valve 31 is operated.

本実施の形態では、制御装置4は、通常運転時に、吐出温度Tdが、予め定められた所定の目標温度Tdtになるように、主膨張弁24を動作させる。   In the present embodiment, the control device 4 operates the main expansion valve 24 so that the discharge temperature Td becomes a predetermined target temperature Tdt determined in advance during normal operation.

また、制御装置4は、通常運転時に、バイパス路出口温度Tboが、吸入圧力Psに基づいて算出される吸入飽和温度Tsになるように、バイパス膨張弁31を動作させるとともに、バイパス路出口温度Tboが、吸入飽和温度Tsに略等しい場合は、放熱器出口圧力Pcに基づいて算出される放熱器飽和温度Tcと、放熱器出口温度Tcoとの差で求まる放熱器出口過冷却度Scが、吸入飽和温度Tsと蒸発器出口温度Teoとの差で求まる
蒸発器出口過熱度Shに基づいて決定される、放熱器出口目標過冷却度Sctになるように、バイパス膨張弁31を動作させる。
In addition, the control device 4 operates the bypass expansion valve 31 so that the bypass passage outlet temperature Tbo becomes the suction saturation temperature Ts calculated based on the suction pressure Ps during the normal operation, and the bypass passage outlet temperature Tbo. Is substantially equal to the suction saturation temperature Ts, the radiator outlet subcooling degree Sc obtained by the difference between the radiator saturation temperature Tc calculated based on the radiator outlet pressure Pc and the radiator outlet temperature Tco is The bypass expansion valve 31 is operated so that the radiator outlet target supercooling degree Sct is determined based on the evaporator outlet superheat degree Sh determined by the difference between the saturation temperature Ts and the evaporator outlet temperature Teo.

次に、通常運転時の制御装置4の制御を図4に示すフローチャートを参照して詳細に説明する。   Next, the control of the control device 4 during normal operation will be described in detail with reference to the flowchart shown in FIG.

まず、制御装置4は、第4温度センサ64で吐出温度Tdを検出し(ステップS1)、吐出温度Tdが、予め設定された目標吐出温度Tdmに等しくなるように、主膨張弁24を動作させる(ステップS2)。   First, the control device 4 detects the discharge temperature Td with the fourth temperature sensor 64 (step S1), and operates the main expansion valve 24 so that the discharge temperature Td becomes equal to the preset target discharge temperature Tdm. (Step S2).

ついで、制御装置4は、圧力センサ51で吸入圧力Psを検出するとともに、第1温度センサ61でバイパス路出口温度Tboを検出する(ステップS3)。そして、圧力センサ51で検出した吸入圧力Psから圧縮機21に吸入される冷媒の圧力での吸入飽和温度Tsを算出する(ステップS4)。この吸入飽和温度Tsの算出は、冷媒物性式を用いて行われる。   Next, the control device 4 detects the suction pressure Ps with the pressure sensor 51, and detects the bypass passage outlet temperature Tbo with the first temperature sensor 61 (step S3). Then, the suction saturation temperature Ts at the pressure of the refrigerant sucked into the compressor 21 is calculated from the suction pressure Ps detected by the pressure sensor 51 (step S4). The calculation of the suction saturation temperature Ts is performed using a refrigerant physical property formula.

その後、制御装置4は、バイパス路出口温度Tboと、吸入飽和温度Tsを比較し、TboとTsが等しいか否かを判断する(ステップS5)。バイパス路出口温度Tboが、吸入飽和温度Tsと等しくない場合には(ステップS5でNO)、バイパス路出口冷媒が過熱状態であると判断し、バイパス路出口温度Tboが吸入飽和温度Tsに等しくなるようにバイパス膨張弁31の開度を調整し(ステップS6)、ステップS1に戻る。   Thereafter, the control device 4 compares the bypass passage outlet temperature Tbo with the suction saturation temperature Ts and determines whether Tbo and Ts are equal (step S5). If the bypass passage outlet temperature Tbo is not equal to the suction saturation temperature Ts (NO in step S5), it is determined that the bypass passage outlet refrigerant is in an overheated state, and the bypass passage outlet temperature Tbo becomes equal to the suction saturation temperature Ts. Thus, the opening degree of the bypass expansion valve 31 is adjusted (step S6), and the process returns to step S1.

一方、バイパス路出口温度Tboが、吸入飽和温度Tsと略等しい場合には(ステップS5でYES)、バイパス路出口冷媒が飽和状態であると判断し、バイパス流量を最適にする制御ステップに移行する。   On the other hand, when the bypass passage outlet temperature Tbo is substantially equal to the suction saturation temperature Ts (YES in step S5), it is determined that the bypass passage outlet refrigerant is in a saturated state, and the process proceeds to a control step for optimizing the bypass flow rate. .

まず、第2圧力センサ52で放熱器出口圧力Pcを、第2温度センサ62で放熱器出口温度Tcoを、第3温度センサで蒸発器出口温度Teoを、それぞれ検出し(ステップS7)、そして、圧力センサ52で検出した放熱器出口圧力Pcから放熱器22から流出する冷媒の圧力での放熱器飽和温度Tcを算出する(ステップS8)。この放熱器飽和温度Tcの算出も、冷媒物性式を用いて行われる。   First, the second pressure sensor 52 detects the radiator outlet pressure Pc, the second temperature sensor 62 detects the radiator outlet temperature Tco, the third temperature sensor detects the evaporator outlet temperature Teo (step S7), and The radiator saturation temperature Tc at the refrigerant pressure flowing out of the radiator 22 is calculated from the radiator outlet pressure Pc detected by the pressure sensor 52 (step S8). The calculation of the radiator saturation temperature Tc is also performed using the refrigerant physical property formula.

その後、制御装置4は、放熱器22出口での冷媒過冷却度Scを、Sc=Tc−Tcoにより算出し、さらに、蒸発器25出口での冷媒過熱度Shを、Sh=Teo−Tsにより算出して(ステップS9)、放熱器22出口の目標過冷却度Sctを、例えば、Sct=a×Sh+bのような式で算出する(ステップS10)。ここで、aとbは係数であり、aは正の実数とする。   Thereafter, the control device 4 calculates the refrigerant supercooling degree Sc at the outlet of the radiator 22 by Sc = Tc−Tco, and further calculates the refrigerant superheat degree Sh at the outlet of the evaporator 25 by Sh = Teo−Ts. Then, the target subcooling degree Sct at the outlet of the radiator 22 is calculated by an expression such as Sct = a × Sh + b (step S10). Here, a and b are coefficients, and a is a positive real number.

そして、制御装置4は、放熱器出口過冷却度Scが放熱器出口目標過冷却度Sctに等しくなるように、バイパス膨張弁31の開度を調整し(ステップS11)、ステップS1に戻る。   And the control apparatus 4 adjusts the opening degree of the bypass expansion valve 31 so that the radiator outlet subcooling degree Sc becomes equal to the radiator outlet target supercooling degree Sct (step S11), and returns to step S1.

以上のように、本実施の形態は、冷媒回路2において、圧縮機21に吸入される冷媒の圧力を検出する第1圧力センサ51と、放熱器22から流出する冷媒の圧力を検出する第2圧力センサ52と、放熱器22から流出する冷媒の温度を検出する第2温度センサ62と、蒸発器25から流出する冷媒の温度を検出する第3温度センサと、圧縮機21から吐出される冷媒の温度を検出する第4温度センサ64と、バイパス路3において過冷却熱交換器23から流出する冷媒の温度を検出する第1温度センサ61と、制御装置4とを備えた構成である。   As described above, in the present embodiment, in the refrigerant circuit 2, the first pressure sensor 51 that detects the pressure of the refrigerant sucked into the compressor 21 and the second pressure that detects the pressure of the refrigerant flowing out of the radiator 22. A pressure sensor 52, a second temperature sensor 62 that detects the temperature of the refrigerant flowing out of the radiator 22, a third temperature sensor that detects the temperature of the refrigerant flowing out of the evaporator 25, and the refrigerant discharged from the compressor 21 The temperature sensor 64 includes a fourth temperature sensor 64 that detects the temperature of the refrigerant, a first temperature sensor 61 that detects the temperature of the refrigerant flowing out of the supercooling heat exchanger 23 in the bypass passage 3, and the control device 4.

そして、制御装置4は、第4温度センサ64で検出される吐出温度Tdが、予め定められた所定の目標温度Tdtとなるように、主膨張弁24を動作させ、さらに、第1温度センサ61で検出されるバイパス路出口温度Tboが、圧力センサ51で検出される吸入圧力Psに基づいて算出される吸入飽和温度Tsと等しくない場合には、飽和状態Tsと等しくなるように、バイパス膨張弁31を動作させる。   Then, the control device 4 operates the main expansion valve 24 so that the discharge temperature Td detected by the fourth temperature sensor 64 becomes a predetermined target temperature Tdt set in advance, and further the first temperature sensor 61. When the bypass passage outlet temperature Tbo detected in step S is not equal to the suction saturation temperature Ts calculated based on the suction pressure Ps detected by the pressure sensor 51, the bypass expansion valve is set equal to the saturation state Ts. 31 is operated.

また、バイパス路出口温度Tboが、吸入飽和温度Tsと略等しい場合には、放熱器出口温度Tcoと、圧力センサ52で検出される放熱器出口圧力Pcに基づいて算出される放熱器飽和温度Tcとの差で求まる放熱器出口過冷却度Scが、吸入飽和温度Tsと蒸発器出口温度Teoとの差で求まる蒸発器出口過熱度Shに基づいて決定される、放熱器出口目標過冷却度Sctになるように、バイパス膨張弁31を動作させる。   Further, when the bypass passage outlet temperature Tbo is substantially equal to the suction saturation temperature Ts, the radiator saturation temperature Tc calculated based on the radiator outlet temperature Tco and the radiator outlet pressure Pc detected by the pressure sensor 52. Is determined based on the evaporator outlet superheat degree Sh determined by the difference between the suction saturation temperature Ts and the evaporator outlet temperature Teo, and the radiator outlet target supercool degree Sct The bypass expansion valve 31 is operated so that

これによって、バイパス路3の出口冷媒が常に飽和状態になるように制御されるとともに、バイパス路3の出口冷媒が飽和状態の時には、放熱器22出口の過冷却度を適正に制御するので、バイパス膨張弁31の開き過ぎや、閉じ過ぎが抑制され、バイパス量を適正量にすることができる。   As a result, the outlet refrigerant of the bypass passage 3 is controlled to be always saturated, and when the outlet refrigerant of the bypass passage 3 is saturated, the degree of supercooling at the outlet of the radiator 22 is appropriately controlled. Too much opening and closing of the expansion valve 31 are suppressed, and the bypass amount can be set to an appropriate amount.

したがって、過冷却熱交換器23での主流冷媒とバイパス流冷媒との熱交換による蒸発器25におけるエンタルピー差増大効果、および、冷媒のバイパスによる低圧側冷媒経路の圧力損失低減効果を最大とすることが可能となり、外気温度が−20℃のような極低温時においても、吐出温度の異常上昇を抑制しながら、より高い運転効率と十分な加熱能力を得ることができる。   Therefore, the effect of increasing the enthalpy difference in the evaporator 25 due to heat exchange between the mainstream refrigerant and the bypass refrigerant in the supercooling heat exchanger 23 and the effect of reducing the pressure loss in the low-pressure side refrigerant path due to refrigerant bypass are maximized. Even when the outside air temperature is extremely low such as −20 ° C., it is possible to obtain higher operating efficiency and sufficient heating capacity while suppressing an abnormal increase in the discharge temperature.

さらに、放熱器22と蒸発器25の冷媒接続配管が長くなったような場合においても、ガス量不足状態を検知して、バイパス膨張弁31の閉じ過ぎによる吸入圧力低下を防止しながら効率の良い加熱運転を維持することができるので、機器の設置自由度も向上する。   Furthermore, even when the refrigerant connection pipes of the radiator 22 and the evaporator 25 are long, it is efficient while detecting an insufficient gas amount state and preventing a reduction in suction pressure due to the bypass expansion valve 31 being too closed. Since the heating operation can be maintained, the degree of freedom of equipment installation is also improved.

なお、図1では、第1圧力センサ51が冷媒回路2におけるバイパス路3がつながる位置と主アキュムレータ27の間に設けられているが、第1圧力センサ51は、蒸発器25と圧縮機21の間であれば、冷媒回路2のどの位置に設けられていてもよい。あるいは、圧力センサ51は、バイパス路3の過冷却熱交換器23よりも下流側に設けられていてもよい。   In FIG. 1, the first pressure sensor 51 is provided between the position where the bypass path 3 in the refrigerant circuit 2 is connected and the main accumulator 27, but the first pressure sensor 51 is connected to the evaporator 25 and the compressor 21. As long as it is between, it may be provided at any position in the refrigerant circuit 2. Alternatively, the pressure sensor 51 may be provided on the downstream side of the subcooling heat exchanger 23 in the bypass passage 3.

また、本実施の形態では、第1圧力センサ51により吸入飽和温度を算出しているが、吸入飽和温度は、冷媒回路2およびバイパス路3における低圧の二相冷媒が流通する部分の温度を検出して代用してもよい。   Further, in the present embodiment, the suction saturation temperature is calculated by the first pressure sensor 51, but the suction saturation temperature detects the temperature of the portion where the low-pressure two-phase refrigerant flows in the refrigerant circuit 2 and the bypass passage 3. It may be substituted.

また、第2圧力センサ52は、冷媒回路2における放熱器22の出口位置に設けられているが、第2圧力センサ52は、圧縮機21と主膨張弁24の間であれば、冷媒回路2のどの位置に設けられていてもよく、放熱器出口位置と第2圧力センサ位置の間の圧力損失分を冷媒流量などから算出して補正すれば、さらによい。   Moreover, although the 2nd pressure sensor 52 is provided in the exit position of the heat radiator 22 in the refrigerant circuit 2, if the 2nd pressure sensor 52 is between the compressor 21 and the main expansion valve 24, the refrigerant circuit 2 It may be provided in any position, and it is even better if the pressure loss between the radiator outlet position and the second pressure sensor position is calculated from the refrigerant flow rate and corrected.

また、第2圧力センサ52により放熱器22の飽和温度を算出しているが、飽和温度は、放熱器22における高圧の二相冷媒が流通する部分の温度を検出して代用してもよい。   Moreover, although the saturation temperature of the radiator 22 is calculated by the second pressure sensor 52, the saturation temperature may be detected by detecting the temperature of the portion of the radiator 22 where the high-pressure two-phase refrigerant flows.

さらに、バイパス路3は、必ずしも過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐している必要はなく、放熱器22と過冷却熱交換器23の間で冷媒回路2から分岐していてもよい。   Further, the bypass passage 3 is not necessarily branched from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and the refrigerant circuit 2 is interposed between the radiator 22 and the supercooling heat exchanger 23. You may branch from.

また、バイパス路3の接続部は、必ずしも圧縮機21の吸入配管である必要はなく、イ
ンジェクション機構のある圧縮機の場合は、例えば、インジェクションポートに接続すればよい。
Moreover, the connection part of the bypass path 3 does not necessarily need to be the suction piping of the compressor 21, and in the case of a compressor having an injection mechanism, it may be connected to, for example, an injection port.

さらに、本発明の主膨張手段およびバイパス膨張手段は、必ずしも膨張弁である必要はなく、膨張する冷媒から動力を回収する膨張機であってもよい。この場合、例えば、膨張機と連結された発電機によって負荷を変化させることにより、膨張機の回転数を制御すればよい。   Furthermore, the main expansion means and bypass expansion means of the present invention are not necessarily expansion valves, and may be an expander that recovers power from the expanding refrigerant. In this case, for example, the rotational speed of the expander may be controlled by changing the load with a generator connected to the expander.

本発明は、冷凍サイクル装置によって温水を生成し、その温水を暖房に利用する温水暖房装置に特に有用である。   INDUSTRIAL APPLICABILITY The present invention is particularly useful for a hot water heater that generates hot water using a refrigeration cycle apparatus and uses the hot water for heating.

1A 冷凍サイクル装置
2 冷媒回路
3 バイパス路
4 制御装置
21 圧縮機
22 放熱器
23 過冷却熱交換器
24 主膨張弁(主膨張手段)
25 蒸発器
31 バイパス膨張弁(バイパス膨張手段)
51 第1圧力センサ(第1飽和温度検出手段)
52 第2圧力センサ(第2飽和温度検出手段)
61 第1温度センサ
62 第2温度センサ
63 第3温度センサ
DESCRIPTION OF SYMBOLS 1A Refrigeration cycle apparatus 2 Refrigerant circuit 3 Bypass path 4 Control apparatus 21 Compressor 22 Radiator 23 Supercooling heat exchanger 24 Main expansion valve (main expansion means)
25 Evaporator 31 Bypass expansion valve (Bypass expansion means)
51 1st pressure sensor (1st saturation temperature detection means)
52 Second pressure sensor (second saturation temperature detecting means)
61 1st temperature sensor 62 2nd temperature sensor 63 3rd temperature sensor

Claims (3)

圧縮機、放熱器、過冷却熱交換器、主膨張手段および蒸発器が環状に接続された冷媒回路と、前記放熱器と前記主膨張手段の間で前記冷媒回路から分岐し、前記過冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続したバイパス路と、前記バイパス路の前記過冷却熱交換器の上流側に設けたバイパス膨張手段と、前記過冷却熱交換器から流出する冷媒の温度を検出する第1温度センサと、前記圧縮機に吸入される冷媒の飽和温度を検出する第1飽和温度検出手段と、前記放熱器から流出する冷媒の温度を検出する第2温度センサと、前記放熱器の冷媒の飽和温度を検出する第2飽和温度検出手段と、制御装置とを備え、前記第1温度センサの検出温度が前記第1飽和温度検出手段の検出温度より高い場合は、前記第1温度センサの検出温度が前記第1飽和温度検出手段の検出温度に近づくように、前記バイパス膨張手段を動作させ、前記第1温度センサの検出温度と前記第1飽和温度検出手段の検出温度とが略同一の場合には、前記第2温度センサの検出温度が前記第2飽和温度検出手段の検出温度より所定温度低くなるように、前記バイパス膨張手段を動作させることを特徴とする冷凍サイクル装置。 A refrigerant circuit in which a compressor, a radiator, a supercooling heat exchanger, a main expansion unit and an evaporator are annularly connected, and a branch from the refrigerant circuit between the radiator and the main expansion unit; A bypass path connected to the compressor chamber of the compressor or the refrigerant circuit between the evaporator and the compressor via an exchanger, and an upstream side of the subcooling heat exchanger of the bypass path A bypass expansion means provided in the first, a first temperature sensor for detecting a temperature of the refrigerant flowing out of the supercooling heat exchanger, and a first saturation temperature detection means for detecting a saturation temperature of the refrigerant sucked into the compressor. A second temperature sensor for detecting a temperature of the refrigerant flowing out of the radiator, a second saturation temperature detecting means for detecting a saturation temperature of the refrigerant of the radiator, and a control device; The detected temperature of the first saturation temperature detecting means When the temperature is higher than the outlet temperature, the bypass expansion means is operated so that the detected temperature of the first temperature sensor approaches the detected temperature of the first saturation temperature detecting means, and the detected temperature of the first temperature sensor and the first temperature of the first temperature sensor are detected. When the detected temperature of the first saturation temperature detecting means is substantially the same, the bypass expansion means is operated so that the detected temperature of the second temperature sensor is lower than the detected temperature of the second saturated temperature detecting means. A refrigeration cycle apparatus characterized in that 前記蒸発器から流出する冷媒の温度を検出する第3温度センサを備え、前記第3温度センサの検出温度と前記第1飽和温度検出手段の検出温度との温度差が大きいほど、前記所定温度の値は小さいことを特徴とする請求項1に記載の冷凍サイクル装置。 A third temperature sensor for detecting the temperature of the refrigerant flowing out of the evaporator; the larger the temperature difference between the detected temperature of the third temperature sensor and the detected temperature of the first saturation temperature detecting means, the higher the predetermined temperature. The refrigeration cycle apparatus according to claim 1, wherein the value is small. 前記請求項1または2に記載の冷凍サイクル装置を備えた温水暖房装置。 A hot water heater provided with the refrigeration cycle apparatus according to claim 1 or 2.
JP2011085142A 2011-04-07 2011-04-07 Refrigeration cycle apparatus and hot water heating apparatus including the same Active JP5637053B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011085142A JP5637053B2 (en) 2011-04-07 2011-04-07 Refrigeration cycle apparatus and hot water heating apparatus including the same
EP12163185.7A EP2508821B1 (en) 2011-04-07 2012-04-04 Refrigeration cycle apparatus and hydronic heater including the refrigeration cycle apparatus
CN201210101651.0A CN102734969B (en) 2011-04-07 2012-04-09 The hot-water central heating system of freezing cycle device and this freezing cycle device of outfit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085142A JP5637053B2 (en) 2011-04-07 2011-04-07 Refrigeration cycle apparatus and hot water heating apparatus including the same

Publications (2)

Publication Number Publication Date
JP2012220072A JP2012220072A (en) 2012-11-12
JP5637053B2 true JP5637053B2 (en) 2014-12-10

Family

ID=45954479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085142A Active JP5637053B2 (en) 2011-04-07 2011-04-07 Refrigeration cycle apparatus and hot water heating apparatus including the same

Country Status (3)

Country Link
EP (1) EP2508821B1 (en)
JP (1) JP5637053B2 (en)
CN (1) CN102734969B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105890A (en) * 2012-11-26 2014-06-09 Panasonic Corp Refrigeration cycle device and hot-water generating device including the same
FR3004784B1 (en) * 2013-04-18 2015-04-10 Air Liquide METHOD AND SYSTEM FOR SUPPLYING AT LEAST ONE WORKING UNIT IN SUB-COOLING CRYOGENIC LIQUID
JP6125325B2 (en) * 2013-05-20 2017-05-10 サンデンホールディングス株式会社 Air conditioner for vehicles
WO2015063838A1 (en) * 2013-10-28 2015-05-07 三菱電機株式会社 Refrigeration cycle device
CN104729162B (en) * 2013-12-24 2018-02-27 珠海格力电器股份有限公司 Cooling system and air conditioner with same
CN104896793A (en) * 2014-03-06 2015-09-09 珠海格力电器股份有限公司 Air conditioner water heater system
JP6339036B2 (en) * 2015-03-17 2018-06-06 ヤンマー株式会社 heat pump
JP6643627B2 (en) * 2015-07-30 2020-02-12 パナソニックIpマネジメント株式会社 Heat generation unit
JP2017155944A (en) * 2016-02-29 2017-09-07 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water heating device including the same
US10502468B2 (en) * 2016-10-05 2019-12-10 Johnson Controls Technology Company Parallel capillary expansion tube systems and methods
DE102021126837A1 (en) 2021-10-15 2023-04-20 Audi Aktiengesellschaft Operating method for a refrigeration system in heat pump operation at low ambient temperatures and motor vehicle with a refrigeration system operated in this way
DE102021126839A1 (en) 2021-10-15 2023-04-20 Audi Aktiengesellschaft Operating method (diversion) for a refrigeration system in heat pump operation at low ambient temperatures, refrigeration system and motor vehicle with a refrigeration system operated in this way
WO2024072876A2 (en) * 2022-09-28 2024-04-04 Energy Recovery, Inc. Control of refrigeration and heat pump system architectures that include pressure exchangers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068553A (en) 1996-08-27 1998-03-10 Daikin Ind Ltd Air conditioner
JP3757967B2 (en) * 2003-08-25 2006-03-22 ダイキン工業株式会社 Refrigeration equipment
JP3963190B2 (en) * 2005-04-07 2007-08-22 ダイキン工業株式会社 Refrigerant amount determination system for air conditioner
CN1896646A (en) * 2005-07-11 2007-01-17 海尔集团公司 Condensate depression controller and controlling method for air-conditioner cryogen
JP4114691B2 (en) * 2005-12-16 2008-07-09 ダイキン工業株式会社 Air conditioner
JP2008082601A (en) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
CN101153760A (en) * 2006-09-30 2008-04-02 海尔集团公司 Air conditioner back-heating device and its control method
JP2010091135A (en) * 2008-10-03 2010-04-22 Tokyo Electric Power Co Inc:The Two-stage compression type hot water supply device and method of controlling its start
KR20110004152A (en) * 2009-07-07 2011-01-13 엘지전자 주식회사 Air conditioner

Also Published As

Publication number Publication date
CN102734969B (en) 2016-03-09
EP2508821A2 (en) 2012-10-10
EP2508821B1 (en) 2016-02-24
JP2012220072A (en) 2012-11-12
CN102734969A (en) 2012-10-17
EP2508821A3 (en) 2015-02-11

Similar Documents

Publication Publication Date Title
JP5637053B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5278451B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP5816789B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5421717B2 (en) Refrigeration cycle apparatus and hot water heater
JP5533491B2 (en) Refrigeration cycle apparatus and hot water heater
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP2011174672A (en) Refrigerating cycle device and hot water heating apparatus
WO2014080612A1 (en) Refrigeration cycle device and hot water-producing device provided therewith
JP5824628B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP2014119157A (en) Heat pump type heating device
EP3211350B1 (en) Refrigeration cycle device, and hot water heating device provided with the same
JP2014105890A (en) Refrigeration cycle device and hot-water generating device including the same
EP3220078A1 (en) Refrigeration cycle device and hot water heating device provided with the same
JP2011185507A (en) Refrigerating cycle device and hot water heating device including the same
JP5233960B2 (en) Refrigeration cycle apparatus and hot water heater using the same
WO2013080497A1 (en) Refrigeration cycle device and hot water generating apparatus comprising same
JP5440100B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP2013007522A (en) Refrigeration cycle device and hot-water generation apparatus with the same
JP2011099572A (en) Refrigerating cycle device and hot-water heating device using the same
JP2014031930A (en) Refrigeration cycle device
JP6250428B2 (en) Refrigeration cycle equipment
JP5421716B2 (en) Refrigeration cycle apparatus and hot water heater
JP2014202365A (en) Hot water generating equipment
JP5333292B2 (en) Refrigeration cycle apparatus and cold / hot water apparatus equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R151 Written notification of patent or utility model registration

Ref document number: 5637053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151