JP2009162403A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2009162403A
JP2009162403A JP2007340187A JP2007340187A JP2009162403A JP 2009162403 A JP2009162403 A JP 2009162403A JP 2007340187 A JP2007340187 A JP 2007340187A JP 2007340187 A JP2007340187 A JP 2007340187A JP 2009162403 A JP2009162403 A JP 2009162403A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
fluid
air conditioner
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007340187A
Other languages
Japanese (ja)
Inventor
Masaaki Sato
全秋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2007340187A priority Critical patent/JP2009162403A/en
Publication of JP2009162403A publication Critical patent/JP2009162403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize heat loss in a refrigerant-fluid heat exchanger for exchanging heat between a primary side refrigerating cycle and a secondary side liquid fluid cycle. <P>SOLUTION: This air conditioner 10 heats and cools a room by heat exchange between: the refrigerating cycle 20 provided with successively connecting a compressor 21, a four-way valve 22, an outdoor side heat exchanger 23, an expansion device 25 and a refrigerant-fluid heat exchanger 40, and using hydrocarbons refrigerant as a refrigerant; and the liquid fluid cycle 30 constituted by successively connecting a liquid pump 11, the refrigerant-fluid heat exchanger 40, and an indoor side heat exchanger 32 by the refrigerant-fluid heat exchanger 40. The air conditioner is further provided with: an internal heat exchanger 24 exchanging heat between a suction side of the compressor 21 and an intermediate part between the outdoor side heat exchanger 23 and the expansion device 25; and a control portion 50 performing the control so that the refrigerant of the refrigerating cycle is not in a superheated state in the refrigerant-fluid heat exchanger 40 and is in a superheated state in the internal heat exchanger 24 in a cooling operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば家庭用エアコン等の空気調和機に関し、特に冷媒として可燃性冷媒を用いたものに関する。   The present invention relates to an air conditioner such as a home air conditioner, and more particularly to a combustible refrigerant used as a refrigerant.

冷凍サイクルで用いられてきたフロン系冷媒の代替冷媒として、R290(プロパン)やR600a(イソブタン)等のHC冷媒が冷蔵庫等に用いられている。しかしながら、HC冷媒は、可燃性冷媒であるため、冷媒量が多く、配管接続される空気調和機の室内側に流入させるためには制約が多い。このため、屋外側にHC冷媒を用いた1次側の冷凍サイクル、屋内側に水やブライン等の顕熱流体により熱搬送を行う2次側の液流体サイクルを配置し、両者の間は冷媒−流体熱交換器で熱交換を行っているものが知られている(例えば、特許文献1参照)。
特開2006−3679号公報
HC refrigerants such as R290 (propane) and R600a (isobutane) are used in refrigerators and the like as alternative refrigerants for fluorocarbon refrigerants that have been used in refrigeration cycles. However, since the HC refrigerant is a flammable refrigerant, the amount of the refrigerant is large, and there are many restrictions for flowing into the indoor side of the air conditioner connected to the pipe. For this reason, a primary side refrigeration cycle using HC refrigerant is disposed on the outdoor side, and a secondary side liquid fluid cycle that performs heat transfer using sensible heat fluid such as water or brine is disposed on the indoor side. -What is performing heat exchange with a fluid heat exchanger is known (for example, refer to patent documents 1).
JP 2006-3679 A

上述した空気調和機では、次のような問題があった。すなわち、上述した1次側の冷凍サイクルと2次側の液流体サイクル間で熱交換を行うための冷媒−流体熱交換器では、熱ロスが発生しやすく、冷凍効率が低下する虞があった。   The air conditioner described above has the following problems. That is, in the above-described refrigerant-fluid heat exchanger for exchanging heat between the primary-side refrigeration cycle and the secondary-side liquid-fluid cycle, heat loss is likely to occur, and refrigeration efficiency may be reduced. .

そこで本発明は、1次側の冷凍サイクルと2次側の液流体サイクルの熱交換を行う冷媒−流体熱交換器における熱ロスを最小とすることができる空気調和機を提供することを目的としている。   Accordingly, an object of the present invention is to provide an air conditioner that can minimize heat loss in a refrigerant-fluid heat exchanger that performs heat exchange between a primary-side refrigeration cycle and a secondary-side liquid-fluid cycle. Yes.

前記課題を解決し目的を達成するために、本発明の空気調和機は次のように構成されている。   In order to solve the problems and achieve the object, the air conditioner of the present invention is configured as follows.

圧縮機、四方切換弁、室外側熱交換器、膨張装置、冷媒−流体熱交換器を順次接続してなり、冷媒として炭化水素系冷媒を用いる冷凍サイクルと、液ポンプ、冷媒−流体熱交換器、室内側熱交換器を順次接続してなる液流体サイクルとを、上記冷媒−流体熱交換器で熱交換させて室内の冷暖房を行なう空気調和機において、上記圧縮機の吸込側と、上記室外側熱交換器と上記膨張装置間との中間部分で熱交換を行なう内部熱交換器と、冷房運転時に冷凍サイクルの冷媒が、上記内部熱交換器でスーパーヒート状態となるように制御を行う制御部とを備えていることを特徴とする。   A compressor, a four-way switching valve, an outdoor heat exchanger, an expansion device, a refrigerant-fluid heat exchanger are sequentially connected, and a refrigeration cycle using a hydrocarbon-based refrigerant as a refrigerant, a liquid pump, a refrigerant-fluid heat exchanger In an air conditioner that performs heat exchange with a liquid-fluid cycle formed by sequentially connecting indoor heat exchangers with the refrigerant-fluid heat exchanger to perform indoor air conditioning, the suction side of the compressor, and the chamber An internal heat exchanger that exchanges heat between the outer heat exchanger and the expansion device, and a control that controls the refrigerant in the refrigeration cycle to be in a superheat state in the internal heat exchanger during cooling operation And a portion.

本発明によれば、1次側冷凍サイクルと2次側液流体サイクルの熱交換を行う冷媒−流体熱交換器における熱ロスを最小とすることが可能となる。   According to the present invention, it is possible to minimize heat loss in the refrigerant-fluid heat exchanger that performs heat exchange between the primary-side refrigeration cycle and the secondary-side liquid fluid cycle.

図1は本発明の一実施の形態に係る空気調和機10の構造を示す説明図である。空気調和機10は、冷凍サイクル20と、液流体サイクル30と、これらのサイクルで共用する冷媒−流体熱交換器40と、各部を連携制御する制御部50とを備えている。なお、図1中実線矢印Rは冷房時、破線矢印Dは暖房時の冷媒の流れ方向を示している。   FIG. 1 is an explanatory view showing the structure of an air conditioner 10 according to an embodiment of the present invention. The air conditioner 10 includes a refrigeration cycle 20, a liquid-fluid cycle 30, a refrigerant-fluid heat exchanger 40 shared by these cycles, and a control unit 50 that controls each unit in a coordinated manner. In FIG. 1, a solid line arrow R indicates the flow direction of the refrigerant during cooling, and a broken line arrow D indicates the flow direction of the refrigerant during heating.

冷凍サイクル20は、圧縮機21、四方弁22、室外側熱交換器23、内部熱交換器24、膨張弁25、冷媒−流体熱交換器40、圧縮機21が順次接続されている。なお、図1中26は温度センサ(出力値:Ta)、27は温度センサ(出力値:Tb)、28は温度センサ(出力値:Tc)を示している。冷媒としてHC系の冷媒が用いられる。   In the refrigeration cycle 20, a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an internal heat exchanger 24, an expansion valve 25, a refrigerant-fluid heat exchanger 40, and the compressor 21 are sequentially connected. In FIG. 1, 26 indicates a temperature sensor (output value: Ta), 27 indicates a temperature sensor (output value: Tb), and 28 indicates a temperature sensor (output value: Tc). An HC refrigerant is used as the refrigerant.

液流体サイクル30は、液ポンプ31、冷媒−流体熱交換器40、室内側熱交換器(FCU)32が順次接続されている。なお、図1中33はリザーバタンクを示している。液流体には通常、水もしくはブライン(塩化カルシウム水溶液や塩化ナトリウム水溶液等)が用いられる。   In the liquid fluid cycle 30, a liquid pump 31, a refrigerant-fluid heat exchanger 40, and an indoor heat exchanger (FCU) 32 are sequentially connected. In FIG. 1, reference numeral 33 denotes a reservoir tank. As the liquid fluid, water or brine (calcium chloride aqueous solution, sodium chloride aqueous solution, etc.) is usually used.

このように構成された空気調和機10は、次のように動作する。すなわち、冷房時においては、圧縮機21及び液ポンプ31を作動させて、図1中実線矢印Cに沿って冷媒及び液流体が通流する。冷凍サイクル20では、圧縮機21を出た高温高圧の冷媒蒸気は、四方弁22を通って、室外側熱交換器23に流入し、外気によって熱を奪われ、凝縮、液化する。室外側熱交換器23を出た高圧液冷媒は、内部熱交換器24を通過し、膨張弁25に流入し減圧され、低圧の気液二相冷媒となって冷媒−流体熱交換器40に流入する。そして冷媒−流体熱交換器40内の冷媒流路を流れる間に、ブライン流路内を流れるブラインによって加熱され、低圧の液冷媒の大部分が蒸気となり、冷媒−流体熱交換器40から流出する。この低圧の冷媒は、四方弁22を通って、再び圧縮機21に吸入される。   The air conditioner 10 configured as described above operates as follows. That is, during cooling, the compressor 21 and the liquid pump 31 are operated, and the refrigerant and liquid fluid flow along the solid arrow C in FIG. In the refrigeration cycle 20, the high-temperature and high-pressure refrigerant vapor exiting the compressor 21 passes through the four-way valve 22 and flows into the outdoor heat exchanger 23, where heat is taken away by the outside air, and condensed and liquefied. The high-pressure liquid refrigerant that has exited the outdoor heat exchanger 23 passes through the internal heat exchanger 24, flows into the expansion valve 25, is decompressed, becomes a low-pressure gas-liquid two-phase refrigerant, and enters the refrigerant-fluid heat exchanger 40. Inflow. Then, while flowing through the refrigerant flow path in the refrigerant-fluid heat exchanger 40, it is heated by the brine flowing in the brine flow path, and most of the low-pressure liquid refrigerant becomes vapor and flows out of the refrigerant-fluid heat exchanger 40. . This low-pressure refrigerant passes through the four-way valve 22 and is sucked into the compressor 21 again.

一方、液流体サイクル30では、液ポンプ31によって吐出されたブラインは、冷媒−流体熱交換器40を介して室内側熱交換器32に流入し、室内空気と熱交換して、室内を冷房する。室内空気によって加熱され、温度が上昇したブラインは、冷媒−流体熱交換器40に流入する。そして冷媒−流体熱交換器40内のブライン流路内を流れる間に、冷媒流路内を流れる冷媒によって冷却され、ブライン温度は低下する。冷媒−流体熱交換器40を出たブラインは、再び液ポンプ31へ流入する。このように、冷房運転時に冷媒−流体熱交換器40を冷媒とブラインの同一方向に流れる平行流となるようにされている。   On the other hand, in the liquid fluid cycle 30, the brine discharged by the liquid pump 31 flows into the indoor heat exchanger 32 via the refrigerant-fluid heat exchanger 40, exchanges heat with indoor air, and cools the room. . The brine heated by the room air and having a raised temperature flows into the refrigerant-fluid heat exchanger 40. And while flowing in the brine flow path in the refrigerant-fluid heat exchanger 40, it is cooled by the refrigerant flowing in the refrigerant flow path, and the brine temperature decreases. The brine that has left the refrigerant-fluid heat exchanger 40 flows into the liquid pump 31 again. In this way, the refrigerant-fluid heat exchanger 40 is configured to have a parallel flow that flows in the same direction of the refrigerant and the brine during the cooling operation.

次に、制御部50による制御について説明する。冷凍サイクル20では、冷房運転時に冷媒−流体熱交換器40が蒸発器として機能するが、この冷媒−流体熱交換器40内で液冷媒を完全に蒸発させず、スーパーヒートを起こさせないように制御を行う。具体的には、冷媒−流体熱交換器40入口の温度センサ26の温度Taと内部熱交換器24出ロ側にある温度センサ28の温度Tcが、Ta>Tb、かつ、Ta<Tc(+β)を満たすように膨張弁25の開度または圧縮機21の運転周波数を調節することで、冷媒−流体熱交換器40内でスーパーヒートしないように制御する。   Next, control by the control unit 50 will be described. In the refrigeration cycle 20, the refrigerant-fluid heat exchanger 40 functions as an evaporator during the cooling operation, but the liquid refrigerant is not completely evaporated in the refrigerant-fluid heat exchanger 40, and control is performed so as not to cause superheat. I do. Specifically, the temperature Ta of the temperature sensor 26 at the inlet of the refrigerant-fluid heat exchanger 40 and the temperature Tc of the temperature sensor 28 on the outlet side of the internal heat exchanger 24 are Ta> Tb and Ta <Tc (+ β ) Is adjusted so as not to be superheated in the refrigerant-fluid heat exchanger 40 by adjusting the opening of the expansion valve 25 or the operating frequency of the compressor 21 so as to satisfy.

図2のように冷媒を冷媒−流体熱交換器40内でスーパーヒートをさせずに出口から流出させるようにする。この結果、冷媒−流体熱交換器40の出口部においても冷媒の温度がTrと水の温度Twとの間の温度差ΔTが確保できる。   As shown in FIG. 2, the refrigerant is allowed to flow out of the outlet without being superheated in the refrigerant-fluid heat exchanger 40. As a result, the temperature difference ΔT between the refrigerant temperature Tr and the water temperature Tw can be ensured also at the outlet of the refrigerant-fluid heat exchanger 40.

一方、スーパーヒートしないまま冷媒−流体熱交換器40から流出した冷媒が液混じりの状態で圧縮機21に戻ると、圧縮機21の信頼性が損なわれるため、内部熱交換器24により室外側熱交換器(凝縮器)23の出口の冷媒と熱交換させ、冷媒をスーパーヒートさせる。   On the other hand, if the refrigerant that has flowed out of the refrigerant-fluid heat exchanger 40 returns to the compressor 21 in a liquid mixture state without being superheated, the reliability of the compressor 21 is impaired. Heat is exchanged with the refrigerant at the outlet of the exchanger (condenser) 23 to superheat the refrigerant.

図3は比較のため、冷媒−流体熱交換器40において冷媒がスーパーヒートする場合の制御について示したものである。すなわち、蒸発時に冷媒−流体熱交換器40の入口側にある温度センサ26の温度Taと出口側にある温度センサ27の温度Tbとの差を取り、Ta<Tb(+α)となるように制御することで、冷媒−流体熱交換器40内で冷媒がスーパーヒートするように制御する。これにより、冷媒が冷媒−流体熱交換器40の出ロ側でスーパーヒートを起こして温度Trが上昇し、水の温度Twとの温度差ΔT′が減少する。   For comparison, FIG. 3 shows control when the refrigerant superheats in the refrigerant-fluid heat exchanger 40. That is, the difference between the temperature Ta of the temperature sensor 26 on the inlet side of the refrigerant-fluid heat exchanger 40 and the temperature Tb of the temperature sensor 27 on the outlet side during evaporation is controlled so that Ta <Tb (+ α). Thus, control is performed so that the refrigerant superheats in the refrigerant-fluid heat exchanger 40. As a result, the refrigerant causes superheat on the outlet side of the refrigerant-fluid heat exchanger 40, the temperature Tr rises, and the temperature difference ΔT ′ from the water temperature Tw decreases.

したがって、図2に示した本発明のものにおいて、図3に示した従来のものと同等の熱交換量を得る場合には、蒸発温度(蒸発圧力)をTr´に上昇させることができ、圧縮機21の負荷を減少させ、ひいては冷凍サイクル効率(サイクルCOP)を上げることができる。   Therefore, in the case of the present invention shown in FIG. 2, when a heat exchange amount equivalent to the conventional one shown in FIG. 3 is obtained, the evaporation temperature (evaporation pressure) can be increased to Tr ′, and compression The load on the machine 21 can be reduced, and the refrigeration cycle efficiency (cycle COP) can be increased.

なお、上記α及びβは固定値または冷媒流量等を考慮した変数である。   Note that α and β are variables that take a fixed value or a refrigerant flow rate into consideration.

次に、暖房時においては、冷凍サイクル20では、圧縮機21を出た高温高圧の冷媒蒸気は、四方弁22を通って、冷媒−流体熱交換器40に流入する。冷媒−流体熱交換器40内の冷媒流路に流入した冷媒は、ブライン流路内を流れるブラインによって冷却され、凝縮、液化する。冷媒−流体熱交換器40を出た高圧液冷媒は、膨張弁25に流入し減圧され、低圧の気液二相冷媒となり、内部熱交換器24を通り、蒸発器として動作する室外側熱交換器23へ流入する。この低圧の気液二相冷媒は室外側熱交換器23で外気から熱を奪って蒸発し、低圧蒸気冷媒となって室外側熱交換器23を流出する。この低圧の蒸気冷媒は、四方弁22を通って、再び圧縮機21に吸入される。   Next, during heating, in the refrigeration cycle 20, the high-temperature and high-pressure refrigerant vapor that has exited the compressor 21 flows into the refrigerant-fluid heat exchanger 40 through the four-way valve 22. The refrigerant that has flowed into the refrigerant flow path in the refrigerant-fluid heat exchanger 40 is cooled, condensed, and liquefied by the brine flowing in the brine flow path. The high-pressure liquid refrigerant that has exited the refrigerant-fluid heat exchanger 40 flows into the expansion valve 25 and is depressurized to become a low-pressure gas-liquid two-phase refrigerant that passes through the internal heat exchanger 24 and operates as an outdoor heat exchanger. Flows into the vessel 23. This low-pressure gas-liquid two-phase refrigerant takes heat from the outside air in the outdoor heat exchanger 23 and evaporates to become a low-pressure vapor refrigerant and flows out of the outdoor heat exchanger 23. This low-pressure vapor refrigerant passes through the four-way valve 22 and is sucked into the compressor 21 again.

また、液流体サイクル30では、液ポンプ11によって吐出されたブラインは、冷媒−流体熱交換器40を介して室内側熱交換器32に流入し、室内空気と熱交換して、室内を暖房する。室内空気に熱を奪われ、温度が低下したブラインは、冷媒−流体熱交換器40に流入する。そして冷媒−流体熱交換器40内のブライン流路内を流れる間に、冷媒流路内を流れる冷媒によって加熱され、ブライン温度は上昇する。冷媒−流体熱交換器40を出たブラインは、再び室内側熱交換器32へ流入する。このように、暖房運転時には、冷媒−流体熱交換器40を冷媒とブラインの逆方向に流れる対向流となる。   In the liquid fluid cycle 30, the brine discharged by the liquid pump 11 flows into the indoor heat exchanger 32 through the refrigerant-fluid heat exchanger 40, exchanges heat with indoor air, and heats the room. . The brine whose heat has been taken away by the room air and whose temperature has been lowered flows into the refrigerant-fluid heat exchanger 40. And while flowing in the brine flow path in the refrigerant-fluid heat exchanger 40, it is heated by the refrigerant flowing in the refrigerant flow path, and the brine temperature rises. The brine that has left the refrigerant-fluid heat exchanger 40 flows into the indoor heat exchanger 32 again. Thus, at the time of heating operation, it becomes a counterflow which flows through the refrigerant | coolant-fluid heat exchanger 40 in the reverse direction of a refrigerant | coolant and a brine.

上述したように本実施の形態に係る空気調和機10においては、冷房運転時に冷媒−流体熱交換器40の出口側で冷媒と水との温度差ΔTを十分に確保することで、冷凍サイクル効率を向上させることができる。   As described above, in the air conditioner 10 according to the present embodiment, the refrigeration cycle efficiency is ensured by sufficiently ensuring the temperature difference ΔT between the refrigerant and water on the outlet side of the refrigerant-fluid heat exchanger 40 during the cooling operation. Can be improved.

図4は、冷凍サイクル20の冷媒にプ口パンを用いた場合の圧縮機21の吸込温度(サクション温度)とサイクルCOP、内部熱交換器24の高圧側出口温度との関係を示したグラフである。内部熱交換器24内での熱交換量を大きくすると高圧側内部熱交換器24の出口温度が下がり、圧縮機21の吸込温度が上昇する。そして、吸込温度の上昇に伴い、サイクルCOPが上昇している。このようにプロパンを冷媒として用いると吐出温度等システムに差し支えない限り、内部熱交換器24の熱交換量を大きくし、吸込温度を大きくすることでシステム効率を向上させることができる。   FIG. 4 is a graph showing the relationship between the suction temperature (suction temperature) of the compressor 21 and the cycle COP and the high-pressure side outlet temperature of the internal heat exchanger 24 when a puff pan is used as the refrigerant of the refrigeration cycle 20. is there. When the amount of heat exchange in the internal heat exchanger 24 is increased, the outlet temperature of the high-pressure side internal heat exchanger 24 is lowered, and the suction temperature of the compressor 21 is raised. And the cycle COP is rising with the rise in suction temperature. As described above, when propane is used as a refrigerant, the system efficiency can be improved by increasing the heat exchange amount of the internal heat exchanger 24 and increasing the suction temperature, as long as the system does not interfere with the discharge temperature.

なお、本発明は前記実施の形態に限定されるものではない。例えば、温度センサ25は冷媒−流体熱交換器40内の任意の箇所、温度センサ26は内部熱交換器24入口側に設けるようにしてもよい。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。   The present invention is not limited to the above embodiment. For example, the temperature sensor 25 may be provided at an arbitrary location in the refrigerant-fluid heat exchanger 40, and the temperature sensor 26 may be provided at the inlet side of the internal heat exchanger 24. Of course, various modifications can be made without departing from the scope of the present invention.

本発明の一実施の形態に係る空気調和機の構造を示す説明図。Explanatory drawing which shows the structure of the air conditioner which concerns on one embodiment of this invention. 同空気調和機に組み込まれ、制御を行った場合における冷媒−流体熱交換器内における冷媒と水との温度変化を示すグラフ。The graph which shows the temperature change of the refrigerant | coolant and water in the refrigerant | coolant-fluid heat exchanger at the time of incorporating and controlling in the air conditioner. 同空気調和機に組み込まれ、制御を行わない場合における冷媒−流体熱交換器内における冷媒と水との温度変化を示すグラフ。The graph which shows the temperature change of the refrigerant | coolant and water in the refrigerant | coolant-fluid heat exchanger in the case of not incorporating control in the air conditioner. 冷凍サイクルの冷媒にプ口パンを用いた場合の圧縮機の吸込温度(サクション温度)とサイクルCOP、内部熱交換器の高圧側出口温度との関係を示したグラフ。The graph which showed the relationship between the suction temperature (suction temperature) of a compressor at the time of using a blow pan as a refrigerant | coolant of a refrigerating cycle, cycle COP, and the high temperature side exit temperature of an internal heat exchanger.

Claims (3)

圧縮機、四方切換弁、室外側熱交換器、膨張装置、冷媒−流体熱交換器を順次接続してなり、冷媒として炭化水素系冷媒を用いる冷凍サイクルと、
液ポンプ、冷媒−流体熱交換器、室内側熱交換器を順次接続してなる液流体サイクルとを、
上記冷媒−流体熱交換器で熱交換させて室内の冷暖房を行なう空気調和機において、
上記圧縮機の吸込側と、上記室外側熱交換器と上記膨張装置間との中間部分で熱交換を行なう内部熱交換器と、
冷房運転時に冷凍サイクルの冷媒が、上記内部熱交換器でスーパーヒート状態となるように制御を行う制御部とを備えていることを特徴とする空気調和機。
A refrigeration cycle in which a compressor, a four-way switching valve, an outdoor heat exchanger, an expansion device, a refrigerant-fluid heat exchanger are sequentially connected, and a hydrocarbon-based refrigerant is used as a refrigerant;
A liquid fluid cycle in which a liquid pump, a refrigerant-fluid heat exchanger, and an indoor heat exchanger are sequentially connected,
In the air conditioner that performs heat exchange with the refrigerant-fluid heat exchanger to cool and heat the room,
An internal heat exchanger that exchanges heat at the suction side of the compressor and an intermediate portion between the outdoor heat exchanger and the expansion device;
An air conditioner comprising: a control unit that performs control so that the refrigerant of the refrigeration cycle is in a superheat state in the internal heat exchanger during cooling operation.
上記冷媒−流体熱交換器は、冷房運転時に上記冷媒と上記流体の流れが平行流となるように構成されていることを特徴とする請求項1に記載の空気調和機。   The air conditioner according to claim 1, wherein the refrigerant-fluid heat exchanger is configured such that the refrigerant and the fluid flow in parallel during a cooling operation. 上記冷媒は、プロパンであることを特徴とする請求項1又は2に記載の空気調和機。   The air conditioner according to claim 1 or 2, wherein the refrigerant is propane.
JP2007340187A 2007-12-28 2007-12-28 Air conditioner Pending JP2009162403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007340187A JP2009162403A (en) 2007-12-28 2007-12-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007340187A JP2009162403A (en) 2007-12-28 2007-12-28 Air conditioner

Publications (1)

Publication Number Publication Date
JP2009162403A true JP2009162403A (en) 2009-07-23

Family

ID=40965232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007340187A Pending JP2009162403A (en) 2007-12-28 2007-12-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP2009162403A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099065A1 (en) * 2010-02-10 2011-08-18 三菱電機株式会社 Air conditioner
WO2020174684A1 (en) * 2019-02-28 2020-09-03 三菱電機株式会社 Refrigeration cycle device
CN112682910A (en) * 2020-12-08 2021-04-20 珠海格力电器股份有限公司 Method and system for switching operation modes of dual-power cooling system
WO2022230034A1 (en) 2021-04-27 2022-11-03 三菱電機株式会社 Air conditioning device
WO2023042268A1 (en) 2021-09-14 2023-03-23 三菱電機株式会社 Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281572A (en) * 1997-04-01 1998-10-23 Denso Corp Secondary refrigerant freezer
JP2006003079A (en) * 2005-08-08 2006-01-05 Mitsubishi Electric Corp Refrigerating air conditioner and control method for refrigerating air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281572A (en) * 1997-04-01 1998-10-23 Denso Corp Secondary refrigerant freezer
JP2006003079A (en) * 2005-08-08 2006-01-05 Mitsubishi Electric Corp Refrigerating air conditioner and control method for refrigerating air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099065A1 (en) * 2010-02-10 2011-08-18 三菱電機株式会社 Air conditioner
CN102770715A (en) * 2010-02-10 2012-11-07 三菱电机株式会社 Air conditioner
US8844301B2 (en) 2010-02-10 2014-09-30 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2020174684A1 (en) * 2019-02-28 2020-09-03 三菱電機株式会社 Refrigeration cycle device
JPWO2020174684A1 (en) * 2019-02-28 2021-09-30 三菱電機株式会社 Refrigeration cycle equipment
CN112682910A (en) * 2020-12-08 2021-04-20 珠海格力电器股份有限公司 Method and system for switching operation modes of dual-power cooling system
WO2022230034A1 (en) 2021-04-27 2022-11-03 三菱電機株式会社 Air conditioning device
WO2023042268A1 (en) 2021-09-14 2023-03-23 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
KR101212698B1 (en) Heat pump type speed heating apparatus
KR100758902B1 (en) multi type air conditioning system and controlling method of the system
WO2009150761A1 (en) Refrigeration cycle device and control method therefor
JP5847366B1 (en) Air conditioner
JP5409715B2 (en) Air conditioner
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
WO2017138107A1 (en) Refrigeration cycle device
JP5908183B1 (en) Air conditioner
JP5300806B2 (en) Heat pump equipment
WO2016071955A1 (en) Air conditioning apparatus
JP5264936B2 (en) Air conditioning and hot water supply complex system
EP2770278B1 (en) Water heater
JP2009162403A (en) Air conditioner
JP6051401B2 (en) Heat pump air conditioning and hot water supply system
JP2008082601A (en) Heat pump hot water supply device
JP2014016067A (en) Heat pump type air-conditioning hot water supply device
JP2012237518A (en) Air conditioner
JP2011106718A (en) Heat pump chiller
JP2009293887A (en) Refrigerating device
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
JP7343755B2 (en) refrigerant cycle system
JPH10220911A (en) Air conditioner
JP6978242B2 (en) Refrigerant circuit equipment
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
KR20050043089A (en) Heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626