WO2007040031A1 - Liquid gas heat exchanger for air conditioner - Google Patents

Liquid gas heat exchanger for air conditioner Download PDF

Info

Publication number
WO2007040031A1
WO2007040031A1 PCT/JP2006/318377 JP2006318377W WO2007040031A1 WO 2007040031 A1 WO2007040031 A1 WO 2007040031A1 JP 2006318377 W JP2006318377 W JP 2006318377W WO 2007040031 A1 WO2007040031 A1 WO 2007040031A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air conditioner
liquid
pipe
side heat
Prior art date
Application number
PCT/JP2006/318377
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Setoguchi
Makoto Kojima
Koji Nagasawa
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007040031A1 publication Critical patent/WO2007040031A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Definitions

  • the present invention relates to a liquid gas heat exchanger for an air conditioner used in a refrigeration cycle for an air conditioner.
  • a double pipe comprising a high pressure liquid pipe between a heat source side heat exchanger and the utilization side heat exchanger ⁇ and a suction pipe of a compressor.
  • the pressure loss of the heat exchanger itself increases the overall suction pressure loss, which may reduce the performance.
  • a separate heat exchanger is added to the refrigerant circuit, and the machine room of the outdoor unit is compressed, resulting in a problem that the outdoor unit itself becomes large.
  • the present invention has been made in view of the above points, and aims to be able to suppress an increase in suction pressure loss without adding new heat exchange.
  • the high pressure liquid pipe 7B is placed on the outer periphery of the suction pipe 7A of the compressor 1. By rotating, it is possible to suppress an increase in suction pressure loss. Therefore, it is possible to eliminate the COP drop as the entire refrigerant circuit. Since the existing suction pipe is also used, it is not necessary to install a separate heat exchanger and the outdoor unit can be compactly designed. Furthermore, by controlling the evaporator overheating in the liquid-gas heat exchanger, it is possible to take an accumulator, and further compact the outdoor unit.
  • the cross-sectional area of the flow path of the high-pressure liquid pipe 7B in the liquid gas heat exchanger provided with the first means, the cross-sectional area of the flow path of the high-pressure liquid pipe 7B.
  • the number of X passes is a and the flow path cross-sectional area of the suction pipe 7A is a, 0. OI K a / a ⁇ 0.
  • the liquid gas flow rate can be almost matched.
  • the performance of ⁇ can be improved, which contributes to the compactness of heat exchange ⁇ .
  • the refrigerant does not accumulate in the liquid gas heat exchanger, it is possible to suppress an increase in the amount of refrigerant charged in the system, and to provide an air conditioner that is environmentally friendly. This contributes to cost reduction.
  • 0.011 is the liquid gas density ratio of the refrigerant (eg, R410A) at ⁇ 10 ° C.
  • 0.200 is the liquid gas density ratio of the refrigerant (eg, R410A) at 70 ° C. .
  • a refrigeration cycle for an air conditioner in which a compressor heat source side heat exchanger 3, a pressure reducing mechanism 4 and a use side heat exchanger 6 are sequentially connected by a refrigerant pipe 7.
  • the high-pressure liquid pipe 7B between the heat source side heat exchanger 3 and the use side heat exchange 6 is placed on the outer periphery of the suction pipe 7A of the compressor 1. Since it is configured to be wound so that the increase in suction pressure loss can be suppressed, there is an effect that it is possible to eliminate the COP decrease in the refrigerant circuit as a whole.
  • a liquid gas heat exchanger provided with the first means is provided.
  • the cross-sectional area of the high-pressure liquid pipe 7B is X, and the cross-sectional area of the suction pipe 7 ⁇
  • the liquid gas flow rate can be almost matched, and as a result, the heat exchange performance can be improved by increasing the refrigerant flow rate and improving the condensation heat transfer coefficient. This contributes to a compact heat exchange.
  • the refrigerant does not accumulate in the liquid-gas heat exchange, the increase in the amount of refrigerant charged in the system can be suppressed, and an environmentally friendly air conditioner can be provided. This also contributes to cost reduction.
  • FIG. 1 is a front view showing a liquid gas heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is a refrigerant circuit diagram showing a refrigeration system for an air conditioner according to the first embodiment of the present invention.
  • FIG. 3 is a refrigerant circuit diagram showing a refrigeration system for an air conditioner according to a second embodiment of the present invention.
  • FIG. 4 is a refrigerant circuit diagram showing a refrigeration system for an air conditioner according to a third embodiment of the present invention.
  • [0009] 1 is a compressor
  • FIGS. 1 and 2 show a liquid gas heat exchanger useful for the first embodiment of the present invention and an air conditioner refrigeration cycle using the same.
  • the air conditioner refrigeration cycle acts as a compressor 1, a four-way switching valve 2, a condenser during cooling operation, and as an evaporator during heating operation.
  • Heat source side heat exchanger 3, heating decompression mechanism 4A, receiver 5, cooling decompression mechanism 4B and refrigerant on the use side heat exchange 6 that acts as an evaporator during cooling operation and acts as a condenser during heating operation 7 are sequentially connected.
  • the mechanism 4B is disposed in the outdoor unit, the use-side heat exchanger 6 is disposed in the indoor unit, and the heating decompression mechanism 4A and the cooling decompression mechanism 4B are fully opened during the cooling operation and the heating operation, respectively. It is constituted by an electronic expansion valve.
  • a single pressure reducing mechanism 4 may be used instead of the heating pressure reducing mechanism 4A and the cooling pressure reducing mechanism 4B.
  • the refrigerant circulates as indicated by a solid line arrow during cooling operation and circulates as indicated by a dotted line arrow during heating operation.
  • the heat source side heat exchange 3 that acts as a condenser during cooling operation or heating operation, respectively, 3 is the outlet of the use side heat exchanger 6
  • the refrigerant is subcooled, and the refrigerant circulation rate is increased by increasing the enthalpy difference on the use side heat exchange 6 or heat source side heat exchange 3 acting as an evaporator during cooling operation or heating operation, respectively.
  • the suction pipe 7A of the compressor 1, the heat source side heat exchange 3 and the use side heat exchange 4 A liquid gas heat exchanger 8 for exchanging heat with the high-pressure liquid pipe 7B between the two is attached.
  • the liquid gas heat exchanger 8 is connected directly to the suction pipe 7A of the compressor 1.
  • the high pressure liquid pipe 7 ⁇ in this embodiment, the heating decompressor
  • the flow passage cross-sectional area X of the high-pressure liquid pipe 7 ⁇ is a, and the flow passage cross-section X of the suction pipe 7 ⁇ is X
  • 0.11 is the liquid gas density ratio of the refrigerant (eg, R410A) at ⁇ 10 ° C.
  • 0.200 is the liquid gas density ratio of the refrigerant (eg, R410A) at 70 ° C.
  • the following operation is obtained. That is, during the cooling operation, the gas refrigerant supplied from the compressor 1 through the four-way switching valve 2 to the heat source side heat exchanger 3 is condensed and liquefied in the heat source side heat exchange 3 and then fully opened. It enters the receiver 5 through the high pressure liquid pipe 7B constituting the pressure reducing mechanism 4A for heating and the liquid gas heat exchanger 8.
  • the liquid refrigerant discharged from the receiver 5 is depressurized by the cooling decompression mechanism 4B to be in a gas-liquid mixed state, evaporated and vaporized by the use side heat exchanger 6, and constitutes the four-way switching valve 2 and the liquid gas heat exchanger 8. It is supposed to return to the compressor 1 through the suction pipe 7A. At this time, the cool air obtained by cooling the air blown to the use side heat exchanger 6 is provided for indoor cooling.
  • the gas refrigerant supplied to 6 is condensed and liquefied in the use-side heat exchange 6 and then enters the receiver 5 via the cooling decompression mechanism 4B in the fully opened state.
  • the liquid refrigerant coming out of the receiver 5 passes through the high-pressure liquid pipe 7B constituting the liquid gas heat exchanger 8 and is depressurized by the heating decompression mechanism 4A in the fully opened state to be in a gas-liquid mixed state, and the heat source side heat exchanger 3 Then, it evaporates and recirculates to the compressor 1 through the four-way switching valve 2 and the suction pipe 7A constituting the liquid gas heat exchanger 8. At this time, the warm air obtained by heating the air blown to the use-side heat exchanger 6 is used for indoor heating.
  • the high pressure liquid pipe 7 ⁇ is wound around the outer periphery of the suction pipe 7 ⁇ of the compressor 1 so as to function as a condenser during cooling operation or heating operation. Therefore, the heat on the side of the heat source 3 is used, and the refrigerant on the outlet side of the heat exchanger 6 on the use side is supercooled and used as an evaporator during cooling operation or heating operation.
  • the heat exchanger on the heat source side heat exchanger 3 side increases the enthalpy difference on the heat source side and cools it. The performance can be improved by reducing the amount of circulating fluid and reducing the pressure loss on the heat exchange side that acts as an evaporator.
  • the high pressure liquid pipe 7B is wound only around the outer circumference of 7A.
  • a high-pressure liquid pipe may be wound around the circumference.
  • FIG. 3 shows a refrigeration system for an air conditioner that works well with the second embodiment of the present invention.
  • the high-pressure liquid pipe 7B constituting the liquid-gas heat exchanger 8 is a high-pressure liquid pipe between the receiver 5 and the cooling decompression mechanism 4 ⁇ .
  • Other configurations and operational effects are the same as those in the first embodiment, and thus description thereof is omitted.
  • FIG. 4 shows a refrigeration system for an air conditioner that works well with the third embodiment of the present invention.
  • a flow path switching mechanism 9 which acts to flow the liquid refrigerant from the heat exchanger 6 on the use side to the receiver 5 and the decompression mechanism 7.
  • the flow path switching mechanism 9 is configured by bridge-connecting four check valves 10, 11, 12, and 13.
  • the liquid-gas heat exchanger 8 is configured by winding a high-pressure liquid pipe 7B between the flow path shelf structure 9 and the receiver 5 around a suction pipe 7A of the compressor 1.
  • the high-pressure liquid refrigerant flowing in the high-pressure liquid pipe 7B constituting the liquid-gas heat exchanger 8 and the gas refrigerant flowing in the suction pipe 7 ⁇ are always in parallel flow. Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.
  • the present invention is not limited to the above-described embodiments, and does not depart from the gist of the invention. Of course, the design can be changed as appropriate.
  • the present invention can be widely used in the field of liquid gas heat exchangers for air conditioners used in refrigeration cycles for air conditioners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A liquid gas heat exchanger for an air conditioner capable of suppressing the rise of a suction pressure loss without adding a heat exchanger. In the liquid gas heat exchanger used in a refrigerating cycle for an air conditioner, a high pressure liquid pipe (7B) between a heat source side heat exchanger (3) and a user side heat exchanger (6) is formed by wrapping it around the outer periphery of the suction pipe (7A) of a compressor (1) to suppress the rise of the suction pressure loss.

Description

明 細 書  Specification
空気調和機用液ガス熱交換器  Liquid gas heat exchanger for air conditioner
技術分野  Technical field
[0001] 本願発明は、空気調和機用冷凍サイクルに用いられる空気調和機用液ガス熱交換 器に関するものである。  The present invention relates to a liquid gas heat exchanger for an air conditioner used in a refrigeration cycle for an air conditioner.
背景技術  Background art
[0002] 圧縮機、熱源側熱交換器、減圧機構および利用側熱交換器を冷媒配管により順 次接続してなる空気調和機用冷凍サイクルにお ヽて、熱源側熱交換器と前記利用 側熱交^^との間の高圧液管と圧縮機の吸入管とからなる二重管式熱交 により 構成される空気調和機用液ガス熱交換器が提案されて!ヽる (特許文献 1参照)。 特許文献 1 :特開 2005— 83741号公報。  [0002] In a refrigeration cycle for an air conditioner in which a compressor, a heat source side heat exchanger, a pressure reducing mechanism, and a use side heat exchanger are sequentially connected by a refrigerant pipe, the heat source side heat exchanger and the use side A liquid-gas heat exchanger for air conditioners composed of a double-pipe heat exchanger consisting of a high-pressure liquid pipe between the heat exchanger ^^ and a compressor suction pipe has been proposed! reference). Patent Document 1: Japanese Patent Application Laid-Open No. 2005-83741.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところで、上記特許文献 1に開示されて ヽるように、熱源側熱交換器と前記利用側 熱交^^との間の高圧液管と圧縮機の吸入管とからなる二重管式熱交 を配設 した場合、熱交 自体の圧損が全体の吸入圧損を上昇させることとなり、性能が低 下するおそれがある。また、冷媒回路に別途熱交^^が追加されることとなり、室外 機の機械室が圧迫され、室外機自体が大きくなつてしまうという不具合も生ずる。 本願発明は、上記の点に鑑みてなされたもので、新たな熱交 を追加することな く、吸入圧損の上昇を抑え得るようにすることを目的として!/ヽる。 By the way, as disclosed in Patent Document 1 above, a double pipe comprising a high pressure liquid pipe between a heat source side heat exchanger and the utilization side heat exchanger ^^ and a suction pipe of a compressor. When a heat exchanger is installed, the pressure loss of the heat exchanger itself increases the overall suction pressure loss, which may reduce the performance. In addition, a separate heat exchanger is added to the refrigerant circuit, and the machine room of the outdoor unit is compressed, resulting in a problem that the outdoor unit itself becomes large. The present invention has been made in view of the above points, and aims to be able to suppress an increase in suction pressure loss without adding new heat exchange.
課題を解決するための手段  Means for solving the problem
[0004] 本願発明では、上記課題を解決するための第 1の手段として、圧縮機 熱源側熱 交換器 3、減圧機構 4および利用側熱交換器 6を冷媒配管 7により順次接続してなる 空気調和機用冷凍サイクルに用いられる空気調和機用液ガス熱交^^にぉ 、て、 前記熱源側熱交換器 3と前記利用側熱交換器 6との間の高圧液管 7Bを、前記圧縮 機 1の吸入管 7Aの外周に卷回して構成して 、る。 [0004] In the present invention, as a first means for solving the above-mentioned problem, air in which a compressor heat source side heat exchanger 3, a pressure reducing mechanism 4, and a use side heat exchanger 6 are sequentially connected by a refrigerant pipe 7 is used. The high-pressure liquid pipe 7B between the heat source side heat exchanger 3 and the use side heat exchanger 6 is compressed into the compressed air through the liquid gas heat exchanger for the air conditioner used in the refrigerating cycle for the air conditioner. It is constructed around the outer periphery of the suction pipe 7A of the machine 1.
上記のように構成したことにより、高圧液管 7Bを圧縮機 1の吸入管 7Aの外周に卷 回することで、吸入圧損の上昇を抑えることができることとなる。従って、冷媒回路全 体としての COP低下をなくすことが可能となる。し力も、既存の吸入管を利用している ため、別途熱交翻を設置する必要がなくなり、室外機のコンパクト設計が可能とな る。さらに、液ガス熱交^^において蒸発器の過熱制御を行うことで、アキュムレータ を取ることが可能となり、室外機のさらなるコンパクトィ匕が可能となる。 By configuring as described above, the high pressure liquid pipe 7B is placed on the outer periphery of the suction pipe 7A of the compressor 1. By rotating, it is possible to suppress an increase in suction pressure loss. Therefore, it is possible to eliminate the COP drop as the entire refrigerant circuit. Since the existing suction pipe is also used, it is not necessary to install a separate heat exchanger and the outdoor unit can be compactly designed. Furthermore, by controlling the evaporator overheating in the liquid-gas heat exchanger, it is possible to take an accumulator, and further compact the outdoor unit.
[0005] 本願発明では、さらに、上記課題を解決するための第 2の手段として、上記第 1の 手段を備えた液ガス熱交換器にお 、て、前記高圧液管 7Bの流路断面積 Xパス数を a 、前記吸入管 7Aの流路断面積 Xパス数を a としたとき、 0. OI K a / a < 0.  [0005] In the present invention, as a second means for solving the above-mentioned problem, in the liquid gas heat exchanger provided with the first means, the cross-sectional area of the flow path of the high-pressure liquid pipe 7B. When the number of X passes is a and the flow path cross-sectional area of the suction pipe 7A is a, 0. OI K a / a <0.
1 2 1 2 1 2 1 2
200となるように設定することもでき、そのように構成した場合、液ガスの流速をほぼ 合わせることが可能となる結果、冷媒流速を上げ、凝縮熱伝達率を向上させることで 、熱交^^の性能を向上させることができることとなり、熱交^^のコンパクト化に寄 与する。し力も、液ガス熱交^^に冷媒が溜まり込むことがなくなるので、システムに 充填する冷媒量の上昇を抑制することができ、環境に優し 、空気調和機を提供でき るとともに、空気調和機のコストダウンにも寄与する。なお、 0. 011は、— 10°Cにおけ る冷媒 (例えば、 R410A)の液ガス密度比であり、 0. 200は 70°Cにおける冷媒 (例 えば、 R410A)の液ガス密度比である。 It can also be set to 200, and in such a case, the liquid gas flow rate can be almost matched. As a result, by increasing the refrigerant flow rate and improving the condensation heat transfer rate, The performance of ^ can be improved, which contributes to the compactness of heat exchange ^^. In addition, since the refrigerant does not accumulate in the liquid gas heat exchanger, it is possible to suppress an increase in the amount of refrigerant charged in the system, and to provide an air conditioner that is environmentally friendly. This contributes to cost reduction. Here, 0.011 is the liquid gas density ratio of the refrigerant (eg, R410A) at −10 ° C., and 0.200 is the liquid gas density ratio of the refrigerant (eg, R410A) at 70 ° C. .
発明の効果  The invention's effect
[0006] 本願発明の第 1の手段によれば、圧縮機 熱源側熱交換器 3、減圧機構 4および 利用側熱交換器 6を冷媒配管 7により順次接続してなる空気調和機用冷凍サイクル に用いられる空気調和機用液ガス熱交換器において、前記熱源側熱交換器 3と前 記利用側熱交翻 6との間の高圧液管 7Bを、前記圧縮機 1の吸入管 7Aの外周に 卷回して構成して、吸入圧損の上昇を抑えることができるようにしたので、冷媒回路 全体としての COP低下をなくすことが可能となるという効果がある。し力も、既存の吸 入管を利用しているため、別途熱交換器を設置する必要がなくなり、室外機のコンパ タト設計が可能となるという効果もある。さらに、液ガス熱交^^において蒸発器の過 熱制御を行うことで、アキュムレータを取ることが可能となり、室外機のさらなるコンパ クトイ匕が可能となるという効果もある。  [0006] According to the first means of the present invention, there is provided a refrigeration cycle for an air conditioner in which a compressor heat source side heat exchanger 3, a pressure reducing mechanism 4 and a use side heat exchanger 6 are sequentially connected by a refrigerant pipe 7. In the liquid gas heat exchanger for air conditioner used, the high-pressure liquid pipe 7B between the heat source side heat exchanger 3 and the use side heat exchange 6 is placed on the outer periphery of the suction pipe 7A of the compressor 1. Since it is configured to be wound so that the increase in suction pressure loss can be suppressed, there is an effect that it is possible to eliminate the COP decrease in the refrigerant circuit as a whole. However, since the existing suction pipe is used, there is no need to install a separate heat exchanger, and the outdoor unit can be compactly designed. Furthermore, by controlling the evaporator overheating in the liquid gas heat exchange, it is possible to take an accumulator, and there is an effect that further compaction of the outdoor unit is possible.
[0007] 本願発明の第 2の手段におけるように、上記第 1の手段を備えた液ガス熱交換器に おいて、前記高圧液管 7Bの流路断面積 Xパス数を α、前記吸入管 7Αの流路断面 [0007] As in the second means of the present invention, a liquid gas heat exchanger provided with the first means is provided. The cross-sectional area of the high-pressure liquid pipe 7B is X, and the cross-sectional area of the suction pipe 7 断面
1  1
積 Xパス数を αとしたとき、 0. OI K / a < 0. 200となるように設定することも  If the number of product X passes is α, it can be set to 0. OI K / a <0.200
2 1 2  2 1 2
でき、そのように構成した場合、液ガスの流速をほぼ合わせることが可能となる結果、 冷媒流速を上げ、凝縮熱伝達率を向上させることで、熱交^^の性能を向上させる ことができることとなり、熱交^^のコンパクト化に寄与する。しカゝも、液ガス熱交翻 に冷媒が溜まり込むことがなくなるので、システムに充填する冷媒量の上昇を抑制す ることができ、環境に優しい空気調和機を提供できるとともに、空気調和機のコストダ ゥンにも寄与する。  In such a configuration, the liquid gas flow rate can be almost matched, and as a result, the heat exchange performance can be improved by increasing the refrigerant flow rate and improving the condensation heat transfer coefficient. This contributes to a compact heat exchange. In addition, since the refrigerant does not accumulate in the liquid-gas heat exchange, the increase in the amount of refrigerant charged in the system can be suppressed, and an environmentally friendly air conditioner can be provided. This also contributes to cost reduction.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本願発明の実施の形態にカゝかる液ガス熱交換器を示す正面図である。 FIG. 1 is a front view showing a liquid gas heat exchanger according to an embodiment of the present invention.
[図 2]本願発明の第 1の実施の形態に力かる空気調和機用冷凍システムを示す冷媒 回路図である。  FIG. 2 is a refrigerant circuit diagram showing a refrigeration system for an air conditioner according to the first embodiment of the present invention.
[図 3]本願発明の第 2の実施の形態に力かる空気調和機用冷凍システムを示す冷媒 回路図である。  FIG. 3 is a refrigerant circuit diagram showing a refrigeration system for an air conditioner according to a second embodiment of the present invention.
[図 4]本願発明の第 3の実施の形態に力かる空気調和機用冷凍システムを示す冷媒 回路図である。  FIG. 4 is a refrigerant circuit diagram showing a refrigeration system for an air conditioner according to a third embodiment of the present invention.
符号の説明  Explanation of symbols
[0009] 1は圧縮機 [0009] 1 is a compressor
3は熱源側熱交換器  3 is the heat source side heat exchanger
4は減圧機構  4 is a decompression mechanism
4Aは暖房用減圧機構  4A is a heating decompression mechanism
4Bは冷房用減圧機構  4B is a cooling decompression mechanism
6は利用側熱交換器  6 is the use side heat exchanger
7は冷媒配管  7 is refrigerant piping
7Aは吸入管  7A is the suction pipe
7Bは高圧液管  7B is a high-pressure liquid pipe
8は液ガス熱交換器 8 liquid-gas heat exchanger
発明を実施するための最良の形態 [0010] 以下、添付の図面を参照して、本願発明の幾つかの好適な実施の形態について 説明する。 BEST MODE FOR CARRYING OUT THE INVENTION [0010] Hereinafter, some preferred embodiments of the present invention will be described with reference to the accompanying drawings.
第 1の実施の形態  First embodiment
図 1および図 2には、本願発明の第 1の実施の形態に力かる液ガス熱交換器および それを用いた空気調和機用冷凍サイクルが示されて 、る。  FIGS. 1 and 2 show a liquid gas heat exchanger useful for the first embodiment of the present invention and an air conditioner refrigeration cycle using the same.
本実施の形態に力かる空気調和機用冷凍サイクルは、図 2に示すように、圧縮機 1 、四路切換弁 2、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器とし て作用する熱源側熱交換器 3、暖房用減圧機構 4A、レシーバ 5、冷房用減圧機構 4 Bおよび冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用す る利用側熱交翻6を冷媒配管 7により順次接続して構成されている。この場合、圧 縮機 1、四路切換弁 2、冷房運転時には凝縮器として作用し、暖房運転時には蒸発 器として作用する熱源側熱交換器 3、暖房用減圧機構 4A、レシーバ 5および冷房用 減圧機構 4Bは室外機内に配設され、利用側熱交換器 6は室内機内に配設され、前 記暖房用減圧機構 4Aおよび冷房用減圧機構 4Bは、それぞれ冷房運転時および暖 房運転時において全開とされる電子膨張弁により構成されている。なお、暖房用減 圧機構 4Aおよび冷房用減圧機構 4Bに代えて、 1個の減圧機構 4を用いることもある  As shown in FIG. 2, the air conditioner refrigeration cycle according to the present embodiment acts as a compressor 1, a four-way switching valve 2, a condenser during cooling operation, and as an evaporator during heating operation. Heat source side heat exchanger 3, heating decompression mechanism 4A, receiver 5, cooling decompression mechanism 4B and refrigerant on the use side heat exchange 6 that acts as an evaporator during cooling operation and acts as a condenser during heating operation 7 are sequentially connected. In this case, the compressor 1, the four-way switching valve 2, the heat source side heat exchanger 3, which acts as a condenser during cooling operation, and acts as an evaporator during heating operation, the decompression mechanism 4A for heating, the receiver 5, and the decompression for cooling The mechanism 4B is disposed in the outdoor unit, the use-side heat exchanger 6 is disposed in the indoor unit, and the heating decompression mechanism 4A and the cooling decompression mechanism 4B are fully opened during the cooling operation and the heating operation, respectively. It is constituted by an electronic expansion valve. A single pressure reducing mechanism 4 may be used instead of the heating pressure reducing mechanism 4A and the cooling pressure reducing mechanism 4B.
[0011] 上記構成の空気調和機用冷凍サイクルにおいて、冷媒は、冷房運転時には実線 矢印のように循環し、暖房運転時には点線矢印のように循環することとなって 、る。 上記構成の空気調和機用冷凍サイクルにお 、て、冷房運転時あるいは暖房運転 時にお ヽてそれぞれ凝縮器として作用して ヽる熱源側熱交翻 3ある ヽは利用側熱 交換器 6の出口冷媒の過冷却をとり、冷房運転時あるいは暖房運転時においてそれ ぞれ蒸発器として作用している利用側熱交翻 6あるいは熱源側熱交翻 3側のェ ンタルピ差を拡大して冷媒循環量を落とし、蒸発器として作用している熱交換器側の 圧損低減による性能向上などを狙うために、圧縮機 1の吸入管 7Aと、前記熱源側熱 交翻 3と前記利用側熱交翻 4との間の高圧液管 7Bとを熱交換させる液ガス熱交 8が付設されることとなって 、る。 In the refrigeration cycle for an air conditioner having the above-described configuration, the refrigerant circulates as indicated by a solid line arrow during cooling operation and circulates as indicated by a dotted line arrow during heating operation. In the refrigeration cycle for an air conditioner having the above configuration, the heat source side heat exchange 3 that acts as a condenser during cooling operation or heating operation, respectively, 3 is the outlet of the use side heat exchanger 6 The refrigerant is subcooled, and the refrigerant circulation rate is increased by increasing the enthalpy difference on the use side heat exchange 6 or heat source side heat exchange 3 acting as an evaporator during cooling operation or heating operation, respectively. In order to improve the performance by reducing the pressure loss on the heat exchanger side acting as an evaporator, the suction pipe 7A of the compressor 1, the heat source side heat exchange 3 and the use side heat exchange 4 A liquid gas heat exchanger 8 for exchanging heat with the high-pressure liquid pipe 7B between the two is attached.
上記液ガス熱交換器 8は、図 1に示すように、前記圧縮機 1の吸入管 7Aにおける直 管部 7A , 7Α外周に前記高圧液管 7Β (本実施の形態においては、暖房用減圧機As shown in FIG. 1, the liquid gas heat exchanger 8 is connected directly to the suction pipe 7A of the compressor 1. The high pressure liquid pipe 7Β (in this embodiment, the heating decompressor
1 2 1 2
構 4Αとレシーノ 5との間に位置する高圧液管)を卷回して構成されている。  It is constructed by winding a high-pressure liquid pipe located between Structure 4 and Resino 5.
[0012] 前記高圧液管 7Βの流路断面積 Xパス数を a、前記吸入管 7Αの流路断面積 Xパ [0012] The flow passage cross-sectional area X of the high-pressure liquid pipe 7Β is a, and the flow passage cross-section X of the suction pipe 7Α is X
1  1
ス数を αとしたとき、 0. OI K a / a < 0. 200となるように設定されている。なお、  It is set so that 0. OI K a / a <0. 200, where α is the number of cells. In addition,
2 1 2  2 1 2
0. 011は、— 10°Cにおける冷媒(例えば、 R410A)の液ガス密度比であり、 0. 200 は 70°Cにおける冷媒 (例えば、 R410A)の液ガス密度比である。  0.11 is the liquid gas density ratio of the refrigerant (eg, R410A) at −10 ° C., and 0.200 is the liquid gas density ratio of the refrigerant (eg, R410A) at 70 ° C.
上記のように構成した液ガス熱交換器においては、次のような作用が得られる。 即ち、冷房運転時においては、圧縮機 1から四路切換弁 2を経て熱源側熱交換器 3に供給されたガス冷媒は、熱源側熱交翻 3において凝縮液化された後、全開状 態の暖房用減圧機構 4Aおよび液ガス熱交換器 8を構成する高圧液管 7Bを経てレ シーバ 5に入る。該レシーバ 5から出た液冷媒は、冷房用減圧機構 4Bで減圧されて 気液混合状態となり、利用側熱交換器 6で蒸発気化し、四路切換弁 2および液ガス 熱交 8を構成する吸入管 7Aを経て圧縮機 1に還流することとなっている。この際 、利用側熱交 6に送風される空気を冷却して得られる冷風は、室内冷房用に供 される。  In the liquid gas heat exchanger configured as described above, the following operation is obtained. That is, during the cooling operation, the gas refrigerant supplied from the compressor 1 through the four-way switching valve 2 to the heat source side heat exchanger 3 is condensed and liquefied in the heat source side heat exchange 3 and then fully opened. It enters the receiver 5 through the high pressure liquid pipe 7B constituting the pressure reducing mechanism 4A for heating and the liquid gas heat exchanger 8. The liquid refrigerant discharged from the receiver 5 is depressurized by the cooling decompression mechanism 4B to be in a gas-liquid mixed state, evaporated and vaporized by the use side heat exchanger 6, and constitutes the four-way switching valve 2 and the liquid gas heat exchanger 8. It is supposed to return to the compressor 1 through the suction pipe 7A. At this time, the cool air obtained by cooling the air blown to the use side heat exchanger 6 is provided for indoor cooling.
[0013] 一方、暖房運転時においては、圧縮機 1から四路切換弁 2を経て利用側熱交  [0013] On the other hand, during heating operation, use side heat exchange from the compressor 1 through the four-way selector valve 2
6に供給されたガス冷媒は、利用側熱交翻 6において凝縮液化された後、全開状 態の冷房用減圧機構 4Bを経てレシーバ 5に入る。該レシーバ 5から出た液冷媒は、 液ガス熱交換器 8を構成する高圧液管 7Bを通り、全開状態の暖房用減圧機構 4Aで 減圧されて気液混合状態となり、熱源側熱交換器 3で蒸発気化し、四路切換弁 2およ び液ガス熱交 8を構成する吸入管 7Aを経て圧縮機 1に還流することとなって ヽ る。この際、利用側熱交翻6に送風される空気を加熱して得られる温風は、室内暖 房用に供される。  The gas refrigerant supplied to 6 is condensed and liquefied in the use-side heat exchange 6 and then enters the receiver 5 via the cooling decompression mechanism 4B in the fully opened state. The liquid refrigerant coming out of the receiver 5 passes through the high-pressure liquid pipe 7B constituting the liquid gas heat exchanger 8 and is depressurized by the heating decompression mechanism 4A in the fully opened state to be in a gas-liquid mixed state, and the heat source side heat exchanger 3 Then, it evaporates and recirculates to the compressor 1 through the four-way switching valve 2 and the suction pipe 7A constituting the liquid gas heat exchanger 8. At this time, the warm air obtained by heating the air blown to the use-side heat exchanger 6 is used for indoor heating.
上記構成の液ガス熱交換器 8においては、前記高圧液管 7Βを圧縮機 1の吸入管 7 Αの外周に卷回することで、冷房運転時あるいは暖房運転時にぉ ヽてそれぞれ凝縮 器として作用して 、る熱源側熱交翻 3ある 、は利用側熱交翻 6の出口冷媒の過 冷却をとり、冷房運転時あるいは暖房運転時にぉ ヽてそれぞれ蒸発器として作用し て ヽる利用側熱交換器 6ある ヽは熱源側熱交換器 3側のェンタルピ差を拡大して冷 媒循環量を落とし、蒸発器として作用している熱交 側の圧損低減による性能向 上などが得られる。 In the liquid gas heat exchanger 8 configured as described above, the high pressure liquid pipe 7Β is wound around the outer periphery of the suction pipe 7Α of the compressor 1 so as to function as a condenser during cooling operation or heating operation. Therefore, the heat on the side of the heat source 3 is used, and the refrigerant on the outlet side of the heat exchanger 6 on the use side is supercooled and used as an evaporator during cooling operation or heating operation. The heat exchanger on the heat source side heat exchanger 3 side increases the enthalpy difference on the heat source side and cools it. The performance can be improved by reducing the amount of circulating fluid and reducing the pressure loss on the heat exchange side that acts as an evaporator.
[0014] また、吸入圧損の上昇を抑えることができるところから、冷媒回路全体としての COP 低下をなくすことが可能となる。し力も、既存の吸入管 7Aを利用しているため、別途 熱交 を設置する必要がなくなり、室外機のコンパクト設計が可能となる。さらに、 液ガス熱交 8において蒸発器の過熱制御を行うことで、アキュムレータを取ること が可能となり、室外機のさらなるコンパクトィ匕が可能となる。  [0014] Further, since it is possible to suppress an increase in suction pressure loss, it is possible to eliminate a COP decrease as the entire refrigerant circuit. Since the existing suction pipe 7A is also used, there is no need to install a separate heat exchanger, and the outdoor unit can be compactly designed. Furthermore, by controlling the evaporator overheating in the liquid-gas heat exchanger 8, it is possible to remove the accumulator, and further compact the outdoor unit.
上記液ガス熱交換器 8においては、高圧液管 7Βの流路断面積 Xパス数を α 、前  In the liquid gas heat exchanger 8, the cross-sectional area X of the high-pressure liquid pipe 7Β
1 記吸入管 7Αの流路断面積 Xパス数を α としたとき、 0. OI K a / a < 0. 200と  1 Suction pipe cross-sectional area of 7mm When the number of passes X is α, 0. OI K a / a <0. 200
2 1 2  2 1 2
なるように設定しているで、液ガスの流速をほぼ合わせることが可能となる結果、冷媒 流速を上げ、凝縮熱伝達率を向上させることで、熱交^^の性能を向上させることが できることとなり、熱交^^のコンパクト化に寄与する。し力も、液ガス熱交^^に冷 媒が溜まり込むことがなくなるので、システムに充填する冷媒量の上昇を抑制すること ができ、環境に優しい空気調和機を提供できるとともに、空気調和機のコストダウンに も寄与する。  As a result, it is possible to almost match the liquid gas flow rate. As a result, it is possible to improve the heat exchange performance by increasing the refrigerant flow rate and improving the condensation heat transfer coefficient. This contributes to a compact heat exchange. Since the refrigerant does not accumulate in the liquid gas heat exchanger, the increase in the amount of refrigerant charged in the system can be suppressed, and an environmentally friendly air conditioner can be provided. It also contributes to cost reduction.
[0015] 本実施の形態においては、液ガス熱交換器 8において、吸入管 7Aの直管部 7A ,  In the present embodiment, in the liquid gas heat exchanger 8, the straight pipe portion 7A of the suction pipe 7A,
1 1
7Aの外周にのみ高圧液管 7Bを卷回するようにしているが、吸入管の曲管部等の外The high pressure liquid pipe 7B is wound only around the outer circumference of 7A.
2 2
周に高圧液管を卷回するようにしてもょ 、ことは勿論である。  Of course, a high-pressure liquid pipe may be wound around the circumference.
第 2の実施の形態  Second embodiment
図 3には、本願発明の第 2の実施の形態に力かる空気調和機用冷凍システムが示 されている。  FIG. 3 shows a refrigeration system for an air conditioner that works well with the second embodiment of the present invention.
この場合、液ガス熱交 8を構成する高圧液管 7Bは、レシーバ 5と冷房用減圧 機構 4Βとの間の高圧液管とされている。その他の構成および作用効果は、第 1の実 施の形態におけると同様なので説明を省略する。  In this case, the high-pressure liquid pipe 7B constituting the liquid-gas heat exchanger 8 is a high-pressure liquid pipe between the receiver 5 and the cooling decompression mechanism 4 機構. Other configurations and operational effects are the same as those in the first embodiment, and thus description thereof is omitted.
第 3の実施の形態  Third embodiment
図 4には、本願発明の第 3の実施の形態に力かる空気調和機用冷凍システムが示 されている。  FIG. 4 shows a refrigeration system for an air conditioner that works well with the third embodiment of the present invention.
[0016] この場合、熱源側熱交換器 3と利用側熱交換器 6との間には、熱源側熱交換器 3あ るいは利用側熱交 6から出た液冷媒をレシーバ 5および減圧機構 7に流すように 作用する流路切換機構 9が介設されている。該流路切換機構 9は、 4個の逆止弁 10 , 11, 12, 13をブリッジ結合させて構成されている。そして、液ガス熱交翻8は、前 記流路切棚構 9とレシーバ 5との間の高圧液管 7Bを圧縮機 1の吸入管 7Aに卷回 して構成されている。このよう〖こすると、液ガス熱交 8を構成する高圧液管 7B内 を流れる高圧液冷媒と吸入管 7Α内を流れるガス冷媒とが常に並行流となる。その他 の構成および作用効果は、第 1の実施の形態におけると同様なので説明を省略する 本願発明は、上記各実施の形態に限定されるものではなぐ発明の要旨を逸脱し な 、範囲にぉ 、て、適宜設計変更可能なことは勿論である。 In this case, between the heat source side heat exchanger 3 and the use side heat exchanger 6, the heat source side heat exchanger 3 Alternatively, a flow path switching mechanism 9 is provided, which acts to flow the liquid refrigerant from the heat exchanger 6 on the use side to the receiver 5 and the decompression mechanism 7. The flow path switching mechanism 9 is configured by bridge-connecting four check valves 10, 11, 12, and 13. The liquid-gas heat exchanger 8 is configured by winding a high-pressure liquid pipe 7B between the flow path shelf structure 9 and the receiver 5 around a suction pipe 7A of the compressor 1. In this case, the high-pressure liquid refrigerant flowing in the high-pressure liquid pipe 7B constituting the liquid-gas heat exchanger 8 and the gas refrigerant flowing in the suction pipe 7Α are always in parallel flow. Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted. The present invention is not limited to the above-described embodiments, and does not depart from the gist of the invention. Of course, the design can be changed as appropriate.
産業上の利用可能性 Industrial applicability
本願発明は、空気調和機用冷凍サイクルに用いられる空気調和機用液ガス熱交換 器の分野において広く利用することが可能である。  The present invention can be widely used in the field of liquid gas heat exchangers for air conditioners used in refrigeration cycles for air conditioners.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機(1)、熱源側熱交換器 (3)、減圧機構 (4)および利用側熱交換器 (6)を冷媒 配管(7)により順次接続してなる空気調和機用冷凍サイクルに用いられる空気調和 機用液ガス熱交換器であって、前記熱源側熱交換器 (3)と前記利用側熱交換器 (6) との間の高圧液管(7B)を、前記圧縮機(1)の吸入管(7A)の外周に卷回して構成し たことを特徴とする空気調和機用液ガス熱交換器。  [1] Refrigeration cycle for an air conditioner in which a compressor (1), a heat source side heat exchanger (3), a pressure reducing mechanism (4), and a use side heat exchanger (6) are sequentially connected by a refrigerant pipe (7) A liquid-gas heat exchanger for an air conditioner used in a high-pressure liquid pipe (7B) between the heat source side heat exchanger (3) and the use side heat exchanger (6). A liquid gas heat exchanger for an air conditioner, characterized by being wound around the outer periphery of the suction pipe (7A) of (1).
[2] 前記高圧液管(7B)の流路断面積 Xパス数を o 、前記吸入管(7A)の流路断面積  [2] Channel cross-sectional area of the high-pressure liquid pipe (7B) X is the number of passes, and channel cross-sectional area of the suction pipe (7A)
1  1
Xパス数を αとしたとき、 0. OI K / a < 0. 200となるように設定したことを特  When the number of X passes is α, it is set so that 0. OI K / a <0.200.
2 1 2  2 1 2
徴とする請求項 2記載の空気調和機用液ガス熱交換器。  The liquid gas heat exchanger for an air conditioner according to claim 2, wherein
PCT/JP2006/318377 2005-09-30 2006-09-15 Liquid gas heat exchanger for air conditioner WO2007040031A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-286635 2005-09-30
JP2005286635A JP2007093167A (en) 2005-09-30 2005-09-30 Liquid gas heat exchanger for air-conditioner

Publications (1)

Publication Number Publication Date
WO2007040031A1 true WO2007040031A1 (en) 2007-04-12

Family

ID=37906075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318377 WO2007040031A1 (en) 2005-09-30 2006-09-15 Liquid gas heat exchanger for air conditioner

Country Status (2)

Country Link
JP (1) JP2007093167A (en)
WO (1) WO2007040031A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204271A (en) * 2008-02-29 2009-09-10 Tgk Co Ltd Refrigerating cycle
JP5385800B2 (en) * 2010-01-19 2014-01-08 東プレ株式会社 Gas-liquid separation type refrigeration equipment
JP5627559B2 (en) * 2011-11-29 2014-11-19 日立アプライアンス株式会社 Air conditioner
AU2014410881B2 (en) * 2014-11-04 2018-01-18 Mitsubishi Electric Corporation Air-conditioning apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213518A (en) * 1993-01-13 1994-08-02 Hitachi Ltd Heat pump type air conditioner for mixed refrigerant
JPH0712431A (en) * 1993-06-23 1995-01-17 Hitachi Ltd Air conditioner
JPH09145168A (en) * 1995-11-22 1997-06-06 Mitsubishi Heavy Ind Ltd Refrigerating device
JPH11316067A (en) * 1997-12-16 1999-11-16 Matsushita Electric Ind Co Ltd Air conditioner using combustible refrigerant
JP2001056188A (en) * 1999-06-10 2001-02-27 Sanden Corp Heat exchanger used in vapor pressurizing type refrigeration cycle and the like

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213518A (en) * 1993-01-13 1994-08-02 Hitachi Ltd Heat pump type air conditioner for mixed refrigerant
JPH0712431A (en) * 1993-06-23 1995-01-17 Hitachi Ltd Air conditioner
JPH09145168A (en) * 1995-11-22 1997-06-06 Mitsubishi Heavy Ind Ltd Refrigerating device
JPH11316067A (en) * 1997-12-16 1999-11-16 Matsushita Electric Ind Co Ltd Air conditioner using combustible refrigerant
JP2001056188A (en) * 1999-06-10 2001-02-27 Sanden Corp Heat exchanger used in vapor pressurizing type refrigeration cycle and the like

Also Published As

Publication number Publication date
JP2007093167A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP3982545B2 (en) Air conditioner
JP5049888B2 (en) Refrigeration cycle equipment
WO2011105270A1 (en) Refrigeration cycle device
KR101146460B1 (en) A refrigerant system
US20100058800A1 (en) Air conditioning apparatus
JP2007240025A (en) Refrigerating device
JP2007240026A (en) Refrigerating device
WO2016071955A1 (en) Air conditioning apparatus
JP5277854B2 (en) Air conditioner
JP2011133133A (en) Refrigerating device
US20150000330A1 (en) Air conditioner
JP2006242515A (en) Refrigerating device
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
JP2008267653A (en) Refrigerating device
JPH11182953A (en) Refrigerator
JP6242289B2 (en) Refrigeration cycle equipment
WO2009096179A1 (en) Auxiliary unit for heating and air conditioner
JP2008180435A (en) Air conditioner
KR20080082357A (en) Air conditioner
JP2006138612A (en) Heat pump system
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
KR20050043089A (en) Heat pump
JP4279511B2 (en) Apparatus using refrigeration cycle and air conditioner
JP2012063083A (en) Heat source unit
KR20110074069A (en) Refrigerant system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798040

Country of ref document: EP

Kind code of ref document: A1