WO2009096179A1 - Auxiliary unit for heating and air conditioner - Google Patents

Auxiliary unit for heating and air conditioner Download PDF

Info

Publication number
WO2009096179A1
WO2009096179A1 PCT/JP2009/000332 JP2009000332W WO2009096179A1 WO 2009096179 A1 WO2009096179 A1 WO 2009096179A1 JP 2009000332 W JP2009000332 W JP 2009000332W WO 2009096179 A1 WO2009096179 A1 WO 2009096179A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
unit
heating
heat exchanger
auxiliary
Prior art date
Application number
PCT/JP2009/000332
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Okamoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2009096179A1 publication Critical patent/WO2009096179A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/02Increasing the heating capacity of a reversible cycle during cold outdoor conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An auxiliary unit (50) for heating is connected with a refrigerant circuit (15) in an air conditioner (10). An expansion valve (53), a refrigerant heat exchanger (60) and an auxiliary compressor (54) are connected in series with the auxiliary circuit (51) of the auxiliary unit (50) for heating. During heating operation, a main compressor (22) and the auxiliary compressor (54) are operated and refrigerant is circulated between an outdoor unit (20) and an indoor unit (30) and further circulated between the auxiliary unit (50) and the indoor unit (30). The refrigerant flowed into the auxiliary unit (50) flows into a second passage (62) in the refrigerant heat exchanger (60) after the pressure of the refrigerant is reduced by the expansion valve (53), and evaporates by absorbing heat from the refrigerant flowing through a first passage (61). Thereafter, the refrigerant is compressed by the auxiliary compressor (54) and fed to the indoor unit (30).

Description

暖房用補助ユニットおよび空気調和装置Auxiliary heating unit and air conditioner
 本発明は、冷凍サイクルを行って室内を暖房する空気調和装置の暖房能力の向上策に関するものである。 The present invention relates to a measure for improving the heating capacity of an air conditioner that heats a room by performing a refrigeration cycle.
 従来より、冷凍サイクルを行って室内の暖房を行う、いわゆるヒートポンプ式の空気調和装置が知られている。例えば、特許文献1には、いわゆるセパレート型の空気調和装置が開示されている。この空気調和装置では、室外ユニットと室内ユニットを液側およびガス側の連絡配管で接続することによって冷媒回路が形成され、冷媒回路で冷媒を循環させることによって冷凍サイクルが行われる。また、暖房運転中には、室外ユニットの圧縮機から吐出された高圧冷媒が室内ユニットへ供給され、この高圧冷媒によって室内空気が加熱される。 Conventionally, a so-called heat pump type air conditioner that heats a room by performing a refrigeration cycle is known. For example, Patent Document 1 discloses a so-called separate type air conditioner. In this air conditioner, a refrigerant circuit is formed by connecting an outdoor unit and an indoor unit through liquid-side and gas-side connecting pipes, and a refrigeration cycle is performed by circulating the refrigerant in the refrigerant circuit. Further, during the heating operation, the high-pressure refrigerant discharged from the compressor of the outdoor unit is supplied to the indoor unit, and the indoor air is heated by this high-pressure refrigerant.
 ところで、冬季の外気温が非常に低温(例えば-10℃以下)になる寒冷地に上記の空気調和装置を設置した場合は、暖房運転中における冷媒の蒸発温度を外気温よりも低い値に設定する必要がある。このため、冷凍サイクルの高圧と低圧の差が大きくなり、一般的な単段圧縮サイクルでは充分な暖房能力を得られないおそれがある。 By the way, when the air conditioner is installed in a cold area where the outside air temperature in winter is very low (for example, -10 ° C or lower), the evaporation temperature of the refrigerant during heating operation is set to a value lower than the outside air temperature. There is a need to. For this reason, the difference between the high pressure and the low pressure of the refrigeration cycle becomes large, and there is a possibility that sufficient heating capacity cannot be obtained in a general single stage compression cycle.
 このような寒冷地に設置された場合でも充分な暖房能力を得るための方策としては、空気調和装置に二段圧縮冷凍サイクルを行わせることが考えられる。例えば、特許文献2には、二段圧縮冷凍サイクルを行う空気調和装置が開示されている。この空気調和装置では、低圧冷媒が低段側圧縮機と高段側圧縮機で順に圧縮されると共に、低段側圧縮機と高段側圧縮機の間に中間圧のガス冷媒が供給される。そして、二段圧縮冷凍サイクルを行う空気調和装置では、圧縮機での消費電力が抑えられると共に、冷媒回路における冷媒の循環量が確保されるので充分な暖房能力が得られる。
特開2003-240365号公報 特開2001-056157号公報
As a measure for obtaining a sufficient heating capacity even when installed in such a cold district, it is conceivable to cause the air conditioner to perform a two-stage compression refrigeration cycle. For example, Patent Document 2 discloses an air conditioner that performs a two-stage compression refrigeration cycle. In this air conditioner, low-pressure refrigerant is sequentially compressed by a low-stage compressor and a high-stage compressor, and an intermediate-pressure gas refrigerant is supplied between the low-stage compressor and the high-stage compressor. . And in the air conditioner which performs a two-stage compression refrigeration cycle, while the power consumption in a compressor is suppressed, since the circulation amount of the refrigerant | coolant in a refrigerant circuit is ensured, sufficient heating capability is obtained.
JP 2003-240365 A JP 2001-056157 A
 上述したように、二段圧縮冷凍サイクルを行う空気調和装置には、低段側圧縮機と高段側圧縮機の両方を設ける必要がある。一方、単段圧縮冷凍サイクルを行う空気調和装置には、冷媒を冷凍サイクルの低圧から高圧にまで圧縮する圧縮機が1つ設けられていればよい。つまり、二段圧縮冷凍サイクルを行う空気調和装置と、一般的な単段圧縮冷凍サイクルを行う空気調和装置とでは、圧縮機が設置される室外ユニットの構造が大幅に異なる。従って、二段圧縮冷凍サイクルを行うことによって暖房能力を増大させる場合には、大きな暖房能力が必要な用途向けの二段圧縮冷凍サイクルを行う空気調和装置を、平均的な暖房能力で足りる用途向けの単段圧縮冷凍サイクルを行う空気調和装置とは別個に設計しなければならなくなる。このため、大きな暖房能力が必要な用途向けの空気調和装置の設計や製造に要する時間や費用が嵩むという問題があった。 As described above, it is necessary to provide both a low-stage compressor and a high-stage compressor in an air conditioner that performs a two-stage compression refrigeration cycle. On the other hand, an air conditioner that performs a single-stage compression refrigeration cycle only needs to have one compressor that compresses the refrigerant from the low pressure to the high pressure of the refrigeration cycle. That is, the structure of the outdoor unit in which the compressor is installed is significantly different between an air conditioner that performs a two-stage compression refrigeration cycle and an air conditioner that performs a general single-stage compression refrigeration cycle. Therefore, when heating capacity is increased by performing a two-stage compression refrigeration cycle, an air conditioner that performs a two-stage compression refrigeration cycle for applications that require a large heating capacity is suitable for applications that require an average heating capacity. Therefore, it must be designed separately from the air conditioner that performs the single-stage compression refrigeration cycle. For this reason, there existed a problem that the time and expense which design and manufacture of the air conditioning apparatus for uses which require a big heating capability increased.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、大きな暖房能力が必要な用途向けの空気調和装置を、その設計や製造に要する時間や費用を低く抑えながら実現することにある。 This invention is made | formed in view of this point, The objective is to implement | achieve the air conditioning apparatus for uses which require a big heating capability, suppressing the time and expense which the design and manufacture require low. is there.
 第1の発明は、室外ユニット(20)と室内ユニット(30)が液側連絡配管(16)及びガス側連絡配管(17)により接続されて冷凍サイクルを行う空気調和装置の冷媒回路(15)に接続される暖房用補助ユニットを対象としている。そして、上記液側連絡配管(16)から供給された冷媒を膨張させる膨張機構(53)と、上記膨張機構(53)を通過した冷媒と上記液側連絡配管(16)を流れる冷媒とを熱交換させる冷媒熱交換器(60)と、上記冷媒熱交換器(60)を通過した冷媒を圧縮して上記ガス側連絡配管(17)へ吐出する補助用圧縮機(54)とを備え、上記室内ユニット(30)で加熱した空気を室内へ供給する上記空気調和装置の暖房運転中に、上記冷媒熱交換器(60)と上記室内ユニット(30)の間で冷媒を循環させるために上記補助用圧縮機(54)を運転するように構成されるものである。 The first invention relates to a refrigerant circuit (15) of an air conditioner in which an outdoor unit (20) and an indoor unit (30) are connected by a liquid side connecting pipe (16) and a gas side connecting pipe (17) to perform a refrigeration cycle. It is intended for the heating auxiliary unit connected to. Then, an expansion mechanism (53) that expands the refrigerant supplied from the liquid side connection pipe (16), a refrigerant that has passed through the expansion mechanism (53), and a refrigerant that flows through the liquid side connection pipe (16) are heated. A refrigerant heat exchanger (60) to be replaced, and an auxiliary compressor (54) that compresses the refrigerant that has passed through the refrigerant heat exchanger (60) and discharges the refrigerant to the gas side communication pipe (17), The auxiliary unit for circulating the refrigerant between the refrigerant heat exchanger (60) and the indoor unit (30) during the heating operation of the air conditioner that supplies the air heated by the indoor unit (30) to the room. The compressor (54) is configured to operate.
 第1の発明の暖房用補助ユニット(50)は、空気調和装置(10)の冷媒回路(15)において、室内ユニット(30)と室外ユニット(20)の間に配置される。暖房運転中の冷媒回路(15)では、室内ユニット(30)と室外ユニット(20)の間で冷媒が循環する同時に、室内ユニット(30)と暖房用補助ユニット(50)の間でも冷媒が循環する。 The heating auxiliary unit (50) of the first invention is disposed between the indoor unit (30) and the outdoor unit (20) in the refrigerant circuit (15) of the air conditioner (10). In the refrigerant circuit (15) during heating operation, the refrigerant circulates between the indoor unit (30) and the outdoor unit (20), and at the same time, the refrigerant also circulates between the indoor unit (30) and the auxiliary heating unit (50). To do.
 具体的に、空気調和装置(10)の暖房運転中において、上記第1の発明の暖房用補助ユニット(50)には、室内ユニット(30)から室外ユニット(20)へ向けて液側連絡配管(16)を流れる冷媒の一部が流入する。暖房用補助ユニット(50)へ流入した冷媒は、膨張機構(53)を通過する際に減圧された後に冷媒熱交換器(60)へ流入する。冷媒熱交換器(60)では、膨張機構(53)を通過した冷媒が、液側連絡配管(16)内を室外ユニット(20)へ向かって流れる冷媒から吸熱して蒸発する。冷媒熱交換器(60)で蒸発した冷媒は、補助用圧縮機(54)で圧縮された後にガス側連絡配管(17)へ吐出され、室外ユニット(20)からガス側連絡配管(17)へ送り込まれた冷媒と共に室内ユニット(30)へ送られる。暖房運転中の室内ユニット(30)では、送り込まれた冷媒が空気へ放熱する。 Specifically, during the heating operation of the air conditioner (10), the heating auxiliary unit (50) according to the first aspect of the invention includes a liquid side communication pipe from the indoor unit (30) to the outdoor unit (20). Part of the refrigerant flowing through (16) flows in. The refrigerant flowing into the heating auxiliary unit (50) is decompressed when passing through the expansion mechanism (53) and then flows into the refrigerant heat exchanger (60). In the refrigerant heat exchanger (60), the refrigerant that has passed through the expansion mechanism (53) absorbs heat from the refrigerant flowing in the liquid side communication pipe (16) toward the outdoor unit (20) and evaporates. The refrigerant evaporated in the refrigerant heat exchanger (60) is compressed by the auxiliary compressor (54) and then discharged to the gas side communication pipe (17), from the outdoor unit (20) to the gas side communication pipe (17). It is sent to the indoor unit (30) together with the sent refrigerant. In the indoor unit (30) during the heating operation, the sent refrigerant radiates heat to the air.
 第2の発明は、上記第1の発明において、液冷媒を貯留可能な気液分離器(65)が上記冷媒熱交換器(60)と上記補助用圧縮機(54)の間に設けられるものである。 According to a second invention, in the first invention, a gas-liquid separator (65) capable of storing liquid refrigerant is provided between the refrigerant heat exchanger (60) and the auxiliary compressor (54). It is.
 第2の発明では、暖房用補助ユニット(50)に気液分離器(65)が設けられる。膨張機構(53)と冷媒熱交換器(60)を順に通過した冷媒は、気液分離器(65)を通って補助用圧縮機(54)へ吸入される。ここで、膨張機構(53)を通過する冷媒の流量が多くなると、膨張機構(53)から冷媒熱交換器(60)へ送られた冷媒が、完全に蒸発しきらずに冷媒熱交換器(60)から流出する場合がある。この場合、冷媒熱交換器(60)から気液分離器(65)へ送られた気液二相状態の冷媒は、気液分離器(65)で液冷媒とガス冷媒に分離される。そして、ガス冷媒は気液分離器(65)から流出して補助用圧縮機(54)に吸入される一方、液冷媒は気液分離器(65)の内部に溜まり込む。気液分離器(65)に溜まり込む液冷媒の量を変更すると、冷媒回路(15)内を室内ユニット(30)と室外ユニット(20)の間で循環する冷媒の量が変化する。 In the second invention, the auxiliary unit for heating (50) is provided with a gas-liquid separator (65). The refrigerant that has passed through the expansion mechanism (53) and the refrigerant heat exchanger (60) in order is sucked into the auxiliary compressor (54) through the gas-liquid separator (65). Here, when the flow rate of the refrigerant passing through the expansion mechanism (53) increases, the refrigerant sent from the expansion mechanism (53) to the refrigerant heat exchanger (60) does not completely evaporate and the refrigerant heat exchanger (60 ) May flow out. In this case, the gas-liquid two-phase refrigerant sent from the refrigerant heat exchanger (60) to the gas-liquid separator (65) is separated into liquid refrigerant and gas refrigerant by the gas-liquid separator (65). The gas refrigerant flows out of the gas-liquid separator (65) and is sucked into the auxiliary compressor (54), while the liquid refrigerant is accumulated in the gas-liquid separator (65). When the amount of liquid refrigerant accumulated in the gas-liquid separator (65) is changed, the amount of refrigerant circulating in the refrigerant circuit (15) between the indoor unit (30) and the outdoor unit (20) changes.
 第3の発明は、上記第2の発明において、上記室外ユニット(20)に設けられて冷媒を室外空気と熱交換させる室外熱交換器(24)を冷媒で加熱して除霜する上記空気調和装置の除霜動作中に、上記補助用圧縮機(54)から吐出された冷媒を上記室外ユニット(20)へ供給するために該補助用圧縮機(54)を運転するように構成されるものである。 The third aspect of the present invention is the air conditioner according to the second aspect, wherein the outdoor heat exchanger (24) provided in the outdoor unit (20) for exchanging heat between the refrigerant and outdoor air is defrosted by heating with the refrigerant. Configured to operate the auxiliary compressor (54) to supply the refrigerant discharged from the auxiliary compressor (54) to the outdoor unit (20) during the defrosting operation of the apparatus. It is.
 第3の発明の暖房用補助ユニット(50)が設けられた空気調和装置(10)は、除霜動作を行う。この空気調和装置(10)では、暖房運転中に室外ユニット(20)の室外熱交換器(24)に霜が付着する場合があり、室外熱交換器(24)に付着した霜を融かすために除霜動作が行われる。除霜動作中の室外ユニット(20)では、高温高圧のガス冷媒が室外熱交換器(24)へ供給され、室外熱交換器(24)に付着した霜がガス冷媒によって加熱されて融解する。 The air conditioner (10) provided with the auxiliary heating unit (50) of the third invention performs a defrosting operation. In this air conditioner (10), frost may adhere to the outdoor heat exchanger (24) of the outdoor unit (20) during heating operation, so that the frost attached to the outdoor heat exchanger (24) is melted. The defrosting operation is performed. In the outdoor unit (20) during the defrosting operation, the high-temperature and high-pressure gas refrigerant is supplied to the outdoor heat exchanger (24), and the frost attached to the outdoor heat exchanger (24) is heated and melted by the gas refrigerant.
 ところで、暖房運転中の暖房用補助ユニット(50)では、膨張機構(53)を通過して冷媒熱交換器(60)で吸熱した冷媒が気液分離器(65)を通って補助用圧縮機(54)へ吸入される。このため、暖房運転中の暖房用補助ユニット(50)において、気液分離器(65)を通過する冷媒の温度は、それ程低くない。従って、気液分離器(65)に液冷媒が溜まっている場合は、その液冷媒の温度もそれ程低くならない。 By the way, in the heating auxiliary unit (50) during the heating operation, the refrigerant that has passed through the expansion mechanism (53) and absorbed by the refrigerant heat exchanger (60) passes through the gas-liquid separator (65) and is used as an auxiliary compressor. Inhaled to (54). For this reason, in the heating auxiliary unit (50) during the heating operation, the temperature of the refrigerant passing through the gas-liquid separator (65) is not so low. Therefore, when the liquid refrigerant is accumulated in the gas-liquid separator (65), the temperature of the liquid refrigerant is not so low.
 一方、第3の発明の暖房用補助ユニット(50)では、空気調和装置(10)の除霜動作中に補助用圧縮機(54)が運転され、室外ユニット(20)から液側連絡配管(16)へ流入した冷媒が気液分離器(65)へ送り込まれる。空気調和装置(10)の除霜動作中に気液分離器(65)へ流入した冷媒は、空気調和装置(10)の暖房運転中に気液分離器(65)に溜まっていた液冷媒によって加熱され、その後に補助用圧縮機(54)で圧縮されてからガス側連絡配管(17)を通じて室外ユニット(20)へ送られる。ガス側連絡配管(17)から室外ユニット(20)へ流入した冷媒は、圧縮された後に室外熱交換器(24)へ供給され、室外熱交換器(24)の除霜に利用される。 On the other hand, in the heating auxiliary unit (50) of the third invention, the auxiliary compressor (54) is operated during the defrosting operation of the air conditioner (10), and the liquid side connection pipe ( The refrigerant flowing into 16) is sent to the gas-liquid separator (65). The refrigerant flowing into the gas-liquid separator (65) during the defrosting operation of the air conditioner (10) is caused by the liquid refrigerant accumulated in the gas-liquid separator (65) during the heating operation of the air conditioner (10). After being heated and then compressed by the auxiliary compressor (54), it is sent to the outdoor unit (20) through the gas side connecting pipe (17). The refrigerant flowing into the outdoor unit (20) from the gas side communication pipe (17) is compressed and then supplied to the outdoor heat exchanger (24) and used for defrosting the outdoor heat exchanger (24).
 第4の発明は、上記第1の発明において、上記補助用圧縮機(54)の吸入側と吐出側を接続するバイパス通路(58)と、上記バイパス通路(58)に設けられて上記補助用圧縮機(54)の吸入側から吐出側へ向かう冷媒の流通だけを許容する逆止弁(59)とを備え、上記室内ユニット(30)で冷却した空気を室内へ供給する上記空気調和装置の冷房運転中に、補助用圧縮機(54)を停止させた状態で上記膨張機構(53)を通過した冷媒を上記冷媒熱交換器(60)へ供給し、該膨張機構(53)を通過した冷媒と上記液側連絡配管(16)を流れる冷媒とを熱交換させるように構成されるものである。 According to a fourth invention, in the first invention, the auxiliary compressor (54) is provided in the bypass passage (58) connecting the suction side and the discharge side of the auxiliary compressor (54) and the bypass passage (58), and the auxiliary compressor A check valve (59) that allows only the refrigerant to flow from the suction side to the discharge side of the compressor (54), and for supplying the air cooled by the indoor unit (30) to the room. During the cooling operation, the refrigerant that passed through the expansion mechanism (53) with the auxiliary compressor (54) stopped was supplied to the refrigerant heat exchanger (60), and passed through the expansion mechanism (53). The refrigerant and the refrigerant flowing through the liquid side connecting pipe (16) are configured to exchange heat.
 第4の発明では、暖房用補助ユニット(50)にバイパス通路(58)と逆止弁(59)が設けられる。この発明の暖房用補助ユニット(50)では、空気調和装置(10)の冷房運転中においても冷媒が流通する。具体的に、空気調和装置(10)の冷房運転中において、暖房用補助ユニット(50)では、補助用圧縮機(54)が停止している。冷房運転中に室外ユニット(20)から液側連絡配管(16)へ流入した冷媒は、その一部が暖房用補助ユニット(50)へ流入し、膨張機構(53)で減圧されてから冷媒熱交換器(60)へ送られる。冷媒熱交換器(60)では、膨張機構(53)から送り込まれた冷媒が、液側連絡配管(16)を室内ユニット(30)へ向かって流れる冷媒から吸熱して蒸発する。膨張機構(53)と冷媒熱交換器(60)を順に通過した冷媒は、バイパス通路(58)へ流入し、逆止弁(59)を通過してガス側連絡配管(17)へ流入する。また、冷房運転中の室内ユニット(30)へは、冷媒熱交換器(60)で冷却された冷媒が液側連絡配管(16)を通じて供給される。 In the fourth invention, a bypass passage (58) and a check valve (59) are provided in the heating auxiliary unit (50). In the heating auxiliary unit (50) of the present invention, the refrigerant flows even during the cooling operation of the air conditioner (10). Specifically, during the cooling operation of the air conditioner (10), the auxiliary compressor (54) is stopped in the heating auxiliary unit (50). A part of the refrigerant flowing into the liquid side connection pipe (16) from the outdoor unit (20) during the cooling operation flows into the heating auxiliary unit (50), and is decompressed by the expansion mechanism (53). Sent to exchanger (60). In the refrigerant heat exchanger (60), the refrigerant sent from the expansion mechanism (53) absorbs heat from the refrigerant flowing through the liquid side connecting pipe (16) toward the indoor unit (30) and evaporates. The refrigerant that has passed through the expansion mechanism (53) and the refrigerant heat exchanger (60) in turn flows into the bypass passage (58), passes through the check valve (59), and flows into the gas side communication pipe (17). Further, the refrigerant cooled by the refrigerant heat exchanger (60) is supplied to the indoor unit (30) during the cooling operation through the liquid side connection pipe (16).
 第5の発明は、室外ユニット(20)と室内ユニット(30)が液側連絡配管(16)及びガス側連絡配管(17)により接続されて冷凍サイクルを行う冷媒回路(15)を備え、上記室内ユニット(30)で加熱した空気を室内へ供給する暖房運転を少なくとも行う空気調和装置を対象としている。そして、上記液側連絡配管(16)から供給された冷媒を膨張させる膨張機構(53)と、上記膨張機構(53)を通過した冷媒を上記液側連絡配管(16)を流れる冷媒と熱交換させる冷媒熱交換器(60)と、上記冷媒熱交換器(60)を通過した冷媒を圧縮して上記ガス側連絡配管(17)へ吐出する補助用圧縮機(54)とを備えており、上記暖房運転中に、上記冷媒熱交換器(60)と上記室内ユニット(30)の間で冷媒を循環させるために上記補助用圧縮機(54)を運転するように構成されるものである。 The fifth invention includes a refrigerant circuit (15) in which an outdoor unit (20) and an indoor unit (30) are connected by a liquid side connecting pipe (16) and a gas side connecting pipe (17) to perform a refrigeration cycle, It is intended for an air conditioner that performs at least a heating operation for supplying air heated by an indoor unit (30) to a room. Then, an expansion mechanism (53) that expands the refrigerant supplied from the liquid side connection pipe (16), and heat exchange between the refrigerant that has passed through the expansion mechanism (53) and the refrigerant that flows through the liquid side connection pipe (16) A refrigerant heat exchanger (60) to be compressed, and an auxiliary compressor (54) that compresses the refrigerant that has passed through the refrigerant heat exchanger (60) and discharges the refrigerant to the gas side communication pipe (17), During the heating operation, the auxiliary compressor (54) is operated to circulate the refrigerant between the refrigerant heat exchanger (60) and the indoor unit (30).
 第5の発明の空気調和装置(10)の冷媒回路(15)には、膨張機構(53)と、冷媒熱交換器(60)と、補助用圧縮機(54)とが設けられる。暖房運転中の冷媒回路(15)では、室内ユニット(30)と室外ユニット(20)の間で冷媒が循環する同時に、室内ユニット(30)と冷媒熱交換器(60)の間でも冷媒が循環する。 The refrigerant circuit (15) of the air conditioner (10) of the fifth invention is provided with an expansion mechanism (53), a refrigerant heat exchanger (60), and an auxiliary compressor (54). In the refrigerant circuit (15) during heating operation, the refrigerant circulates between the indoor unit (30) and the outdoor unit (20), and at the same time, the refrigerant also circulates between the indoor unit (30) and the refrigerant heat exchanger (60). To do.
 具体的に、第5の発明の空気調和装置(10)の暖房運転中において、室内ユニット(30)から室外ユニット(20)へ向けて液側連絡配管(16)を流れる冷媒は、その一部が膨張機構(53)へ流入する。膨張機構(53)へ流入した冷媒は、膨張機構(53)を通過する際に減圧された後に冷媒熱交換器(60)へ流入する。冷媒熱交換器(60)では、膨張機構(53)を通過した冷媒が、液側連絡配管(16)内を室外ユニット(20)へ向かって流れる冷媒から吸熱して蒸発する。冷媒熱交換器(60)で蒸発した冷媒は、補助用圧縮機(54)で圧縮された後にガス側連絡配管(17)へ吐出され、室外ユニット(20)からガス側連絡配管(17)へ送り込まれた冷媒と共に室内ユニット(30)へ送られる。暖房運転中の室内ユニット(30)では、送り込まれた冷媒が空気へ放熱する。 Specifically, during the heating operation of the air conditioner (10) of the fifth invention, a part of the refrigerant flowing through the liquid side connection pipe (16) from the indoor unit (30) toward the outdoor unit (20) Flows into the expansion mechanism (53). The refrigerant flowing into the expansion mechanism (53) is decompressed when passing through the expansion mechanism (53), and then flows into the refrigerant heat exchanger (60). In the refrigerant heat exchanger (60), the refrigerant that has passed through the expansion mechanism (53) absorbs heat from the refrigerant flowing in the liquid side communication pipe (16) toward the outdoor unit (20) and evaporates. The refrigerant evaporated in the refrigerant heat exchanger (60) is compressed by the auxiliary compressor (54) and then discharged to the gas side communication pipe (17), from the outdoor unit (20) to the gas side communication pipe (17). It is sent to the indoor unit (30) together with the sent refrigerant. In the indoor unit (30) during the heating operation, the sent refrigerant radiates heat to the air.
 上記第1の発明の暖房用補助ユニット(50)が設けられた空気調和装置(10)において、暖房運転中の冷媒回路(15)では、室内ユニット(30)と室外ユニット(20)の間だけでなく、室内ユニット(30)と暖房用補助ユニット(50)の間でも冷媒が循環する。そして、暖房用補助ユニット(50)へ流入した冷媒は、冷媒熱交換器(60)において室内ユニット(30)から室外ユニット(20)へ送られる冷媒から吸熱し、その後に補助用圧縮機(54)で圧縮されてから再び室内ユニット(30)へ送られる。 In the air conditioner (10) provided with the heating auxiliary unit (50) according to the first aspect of the present invention, the refrigerant circuit (15) during heating operation is only between the indoor unit (30) and the outdoor unit (20). In addition, the refrigerant circulates between the indoor unit (30) and the auxiliary heating unit (50). Then, the refrigerant flowing into the heating auxiliary unit (50) absorbs heat from the refrigerant sent from the indoor unit (30) to the outdoor unit (20) in the refrigerant heat exchanger (60), and then the auxiliary compressor (54 ) And then sent again to the indoor unit (30).
 また、上記第5の発明の空気調和装置(10)において、暖房運転中の冷媒回路(15)では、室内ユニット(30)と室外ユニット(20)の間だけでなく、室内ユニット(30)と冷媒熱交換器(60)の間でも冷媒が循環する。そして、膨張機構(53)で減圧されて冷媒熱交換器(60)へ流入した冷媒は、室内ユニット(30)から室外ユニット(20)へ送られる冷媒から吸熱し、その後に補助用圧縮機(54)で圧縮されてから再び室内ユニット(30)へ送られる。 In the air conditioner (10) according to the fifth aspect of the present invention, the refrigerant circuit (15) during the heating operation includes not only between the indoor unit (30) and the outdoor unit (20) but also the indoor unit (30). The refrigerant also circulates between the refrigerant heat exchangers (60). Then, the refrigerant decompressed by the expansion mechanism (53) and flowing into the refrigerant heat exchanger (60) absorbs heat from the refrigerant sent from the indoor unit (30) to the outdoor unit (20), and then the auxiliary compressor ( After being compressed in 54), it is sent again to the indoor unit (30).
 このように、本発明によれば、室内ユニット(30)から室外ユニット(20)へ送り返される冷媒に残存する熱を、冷媒熱交換器(60)から補助用圧縮機(54)へ送られる冷媒に回収することができる。従って、室内ユニット(30)から室外ユニット(20)へ送り返される冷媒から回収した熱を室内ユニット(30)での空気の加熱に利用することができ、室内ユニット(30)の暖房能力を増大させることができる。 Thus, according to the present invention, the heat remaining in the refrigerant sent back from the indoor unit (30) to the outdoor unit (20) is transferred from the refrigerant heat exchanger (60) to the auxiliary compressor (54). Can be recovered. Therefore, the heat recovered from the refrigerant sent back from the indoor unit (30) to the outdoor unit (20) can be used for heating the air in the indoor unit (30), and the heating capacity of the indoor unit (30) is increased. be able to.
 更に、上記第1の発明によれば、空気調和装置(10)の冷媒回路(15)に暖房用補助ユニット(50)を接続することで、室外ユニット(20)の構造を変更することなく空気調和装置(10)の暖房能力を向上させることができる。また、上記第5の発明によれば、空気調和装置(10)の冷媒回路(15)に膨張機構(53)と冷媒熱交換器(60)と補助用圧縮機(54)とを設けることで、室外ユニット(20)の構造を変更することなく空気調和装置(10)の暖房能力を向上させることができる。このように、本発明によれば、室外ユニット(20)の構造を変更せずに暖房能力を増大させることができる。従って、本発明によれば、大きな暖房能力が必要な用途向けの空気調和装置を、その設計や製造に要する時間や費用を低く抑えながら実現することが可能となる。 Furthermore, according to the first aspect of the invention, the heating auxiliary unit (50) is connected to the refrigerant circuit (15) of the air conditioner (10), so that the air unit without changing the structure of the outdoor unit (20). The heating capacity of the harmony device (10) can be improved. According to the fifth aspect of the present invention, the refrigerant circuit (15) of the air conditioner (10) is provided with the expansion mechanism (53), the refrigerant heat exchanger (60), and the auxiliary compressor (54). The heating capacity of the air conditioner (10) can be improved without changing the structure of the outdoor unit (20). Thus, according to the present invention, the heating capacity can be increased without changing the structure of the outdoor unit (20). Therefore, according to this invention, it becomes possible to implement | achieve the air conditioning apparatus for uses which require a big heating capability, suppressing the time and expense which the design and manufacture require low.
 上記第2の発明では、暖房用補助ユニット(50)に気液分離器(65)が設けられている。そして、気液分離器(65)に溜まり込む液冷媒の量を変更すれば、冷媒回路(15)内を室内ユニット(30)と室外ユニット(20)の間で循環する冷媒の量が変化する。ところで、冷媒回路(15)内を室内ユニット(30)と室外ユニット(20)の間で循環する冷媒の量の適正値は、冷媒回路(15)で行われる冷凍サイクルの条件によって異なる。例えば、空気調和装置(10)の暖房運転中において、冷媒回路(15)内を室内ユニット(30)と室外ユニット(20)の間で循環する冷媒の量の適正値は、室外ユニット(20)で冷媒と熱交換する冷媒の温度が低くにつれて少なくなる。従って、この発明によれば、暖房用補助ユニット(50)の気液分離器(65)に溜まり込む液冷媒の量を調節することによって、冷媒回路(15)内を室内ユニット(30)と室外ユニット(20)の間で循環する冷媒の量を適正値に保つことが可能となる。 In the second invention, the gas-liquid separator (65) is provided in the heating auxiliary unit (50). If the amount of liquid refrigerant accumulated in the gas-liquid separator (65) is changed, the amount of refrigerant circulating in the refrigerant circuit (15) between the indoor unit (30) and the outdoor unit (20) changes. . By the way, the appropriate value of the amount of refrigerant circulating in the refrigerant circuit (15) between the indoor unit (30) and the outdoor unit (20) varies depending on the conditions of the refrigeration cycle performed in the refrigerant circuit (15). For example, during the heating operation of the air conditioner (10), the appropriate value of the amount of refrigerant circulating in the refrigerant circuit (15) between the indoor unit (30) and the outdoor unit (20) is the outdoor unit (20) As the temperature of the refrigerant exchanging heat with the refrigerant decreases, the temperature decreases. Therefore, according to the present invention, by adjusting the amount of liquid refrigerant that accumulates in the gas-liquid separator (65) of the heating auxiliary unit (50), the interior of the refrigerant circuit (15) is connected to the indoor unit (30) and the outdoor unit. It becomes possible to keep the amount of refrigerant circulating between the units (20) at an appropriate value.
 上記第3の発明では、空気調和装置(10)の除霜動作中に暖房用補助ユニット(50)の補助用圧縮機(54)が運転される。そして、除霜動作中の室外ユニット(20)から暖房用補助ユニット(50)へ流入した冷媒は、空気調和装置(10)の暖房運転中に気液分離器(65)に溜まった液冷媒によって暖められ、その後に補助用圧縮機(54)で圧縮されてから室外ユニット(20)へ送り返される。このように、この発明の暖房用補助ユニット(50)が設けられた空気調和装置(10)では、暖房運転中に気液分離器(65)に溜まった液冷媒が保有する熱を、室外熱交換器(24)の除霜に利用することができる。従って、この発明によれば、室外熱交換器(24)の除霜に利用できる熱量を増大させることができ、室外熱交換器(24)の除霜に要する時間を短縮することができる。 In the third aspect, the auxiliary compressor (54) of the heating auxiliary unit (50) is operated during the defrosting operation of the air conditioner (10). The refrigerant flowing into the heating auxiliary unit (50) from the outdoor unit (20) during the defrosting operation is caused by the liquid refrigerant accumulated in the gas-liquid separator (65) during the heating operation of the air conditioner (10). It is warmed and then compressed by the auxiliary compressor (54) before being sent back to the outdoor unit (20). Thus, in the air conditioner (10) provided with the heating auxiliary unit (50) of the present invention, the heat retained by the liquid refrigerant accumulated in the gas-liquid separator (65) during the heating operation is converted into the outdoor heat. It can be used for defrosting the exchanger (24). Therefore, according to the present invention, the amount of heat available for defrosting the outdoor heat exchanger (24) can be increased, and the time required for defrosting the outdoor heat exchanger (24) can be shortened.
 上記第4の発明では、暖房用補助ユニット(50)にバイパス通路(58)と逆止弁(59)が設けられており、空気調和装置(10)の冷房運転中においても暖房用補助ユニット(50)を冷媒が通過する。そして、冷房運転中の室内ユニット(30)には、暖房用補助ユニット(50)の冷媒熱交換器(60)で冷却された冷媒が液側連絡配管(16)を通じて供給される。従って、この発明によれば、冷房運転中の室内ユニット(30)へ供給される冷媒のエンタルピを引き下げることができ、室内ユニット(30)で得られる冷房能力を向上させることができる。 In the fourth aspect of the invention, the heating auxiliary unit (50) is provided with the bypass passage (58) and the check valve (59), and the heating auxiliary unit (50) is also provided during the cooling operation of the air conditioner (10). 50) The refrigerant passes through. Then, the refrigerant cooled by the refrigerant heat exchanger (60) of the heating auxiliary unit (50) is supplied to the indoor unit (30) during the cooling operation through the liquid side connection pipe (16). Therefore, according to the present invention, the enthalpy of the refrigerant supplied to the indoor unit (30) during the cooling operation can be lowered, and the cooling capacity obtained by the indoor unit (30) can be improved.
図1は、実施形態1の空気調和装置の概略構成と冷房運転中における冷媒の流れを示すを示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of an air-conditioning apparatus according to Embodiment 1 and a refrigerant flow during a cooling operation. 図2は、実施形態1の空気調和装置の概略構成と暖房運転中における冷媒の流れを示すを示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram illustrating a schematic configuration of the air-conditioning apparatus according to the first embodiment and a flow of the refrigerant during heating operation. 図3は、実施形態1の空気調和装置の冷媒回路において暖房運転中に行われる冷凍サイクルを示す圧力-エンタルピ線図(モリエル線図)である。FIG. 3 is a pressure-enthalpy diagram (Mollier diagram) showing a refrigeration cycle performed during heating operation in the refrigerant circuit of the air-conditioning apparatus of Embodiment 1. 図4は、実施形態2の空気調和装置の概略構成と冷房運転中における冷媒の流れを示すを示す冷媒回路図である。FIG. 4 is a refrigerant circuit diagram illustrating a schematic configuration of the air-conditioning apparatus according to Embodiment 2 and a flow of the refrigerant during the cooling operation. 図5は、実施形態2の空気調和装置の概略構成と暖房運転中における冷媒の流れを示すを示す冷媒回路図である。FIG. 5 is a refrigerant circuit diagram illustrating a schematic configuration of the air-conditioning apparatus according to Embodiment 2 and a flow of the refrigerant during heating operation. 図6は、実施形態2の空気調和装置の概略構成と除霜動作中における冷媒の流れを示すを示す冷媒回路図である。FIG. 6 is a refrigerant circuit diagram illustrating a schematic configuration of the air-conditioning apparatus according to Embodiment 2 and a refrigerant flow during a defrosting operation. 図7は、その他の実施形態の空気調和装置の概略構成と冷房運転中における冷媒の流れを示すを示す冷媒回路図である。FIG. 7 is a refrigerant circuit diagram illustrating a schematic configuration of an air conditioner according to another embodiment and a flow of the refrigerant during the cooling operation. 図8は、その他の実施形態の空気調和装置の冷媒回路において冷房運転中に行われる冷凍サイクルを示す圧力-エンタルピ線図(モリエル線図)である。FIG. 8 is a pressure-enthalpy diagram (Mollier diagram) showing a refrigeration cycle performed during cooling operation in the refrigerant circuit of the air conditioner of another embodiment.
符号の説明Explanation of symbols
 10  空気調和装置
 15  冷媒回路
 16  液側連絡配管
 17  ガス側連絡配管
 20  室外ユニット
 30  室内ユニット
 50  暖房用補助ユニット
 53  膨張弁(膨張機構)
 54  補助用圧縮機
 58  バイパス管(バイパス通路)
 59  逆止弁
 60  冷媒熱交換器
 65  気液分離器
10 Air conditioner 15 Refrigerant circuit 16 Liquid side connection pipe 17 Gas side connection pipe 20 Outdoor unit 30 Indoor unit 50 Heating auxiliary unit 53 Expansion valve (expansion mechanism)
54 Auxiliary compressor 58 Bypass pipe (bypass passage)
59 Check valve 60 Refrigerant heat exchanger 65 Gas-liquid separator
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 《発明の実施形態1》
 本発明の実施形態1について説明する。本実施形態は、いわゆるセパレート型の空気調和装置(10)である。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described. The present embodiment is a so-called separate type air conditioner (10).
 図1,図2に示すように、本実施形態の空気調和装置(10)は、室外ユニット(20)と、室内ユニット(30)と、暖房用補助ユニット(50)とを1台ずつ備えている。室外ユニット(20)及び暖房用補助ユニット(50)は屋外に設置され、室内ユニット(30)は屋内に設置される。なお、ここで示した室外ユニット(20)、室内ユニット(30)、及び暖房用補助ユニット(50)の台数は、何れも単なる一例である。また、暖房用補助ユニット(50)は、屋内に設置されていてもよい。 As shown in FIGS. 1 and 2, the air conditioner (10) of the present embodiment includes an outdoor unit (20), an indoor unit (30), and a heating auxiliary unit (50) one by one. Yes. The outdoor unit (20) and the heating auxiliary unit (50) are installed outdoors, and the indoor unit (30) is installed indoors. The numbers of outdoor units (20), indoor units (30), and heating auxiliary units (50) shown here are merely examples. The heating auxiliary unit (50) may be installed indoors.
 室外ユニット(20)には、室外回路(21)が収容されている。室内ユニット(30)には、室内回路(31)が収容されている。暖房用補助ユニット(50)には、暖房用補助回路(51)が収容されている。本実施形態の空気調和装置(10)では、室外回路(21)と室内回路(31)と暖房用補助回路(51)とを液側連絡配管(16)及びガス側連絡配管(17)で接続することによって、冷媒回路(15)が形成されている。 The outdoor circuit (21) is accommodated in the outdoor unit (20). An indoor circuit (31) is accommodated in the indoor unit (30). A heating auxiliary circuit (51) is accommodated in the heating auxiliary unit (50). In the air conditioner (10) of this embodiment, the outdoor circuit (21), the indoor circuit (31), and the heating auxiliary circuit (51) are connected by the liquid side connection pipe (16) and the gas side connection pipe (17). Thus, the refrigerant circuit (15) is formed.
 室外回路(21)には、主圧縮機(22)と、四方切換弁(23)と、室外熱交換器(24)と、室外膨張弁(25)とが設けられている。この室外回路(21)において、主圧縮機(22)は、その吐出側が四方切換弁(23)の第1のポートに接続され、その吸入側が四方切換弁(23)の第2のポートに接続されている。また、室外熱交換器(24)は、その一端が四方切換弁(23)の第3のポートに接続され、その他端が室外膨張弁(25)を介して液側連絡配管(16)に接続されている。また、四方切換弁(23)は、その第4のポートがガス側連絡配管(17)に接続されている。 The outdoor circuit (21) is provided with a main compressor (22), a four-way switching valve (23), an outdoor heat exchanger (24), and an outdoor expansion valve (25). In this outdoor circuit (21), the main compressor (22) has its discharge side connected to the first port of the four-way switching valve (23) and its suction side connected to the second port of the four-way switching valve (23). Has been. The outdoor heat exchanger (24) has one end connected to the third port of the four-way selector valve (23) and the other end connected to the liquid side communication pipe (16) via the outdoor expansion valve (25). Has been. The four-way switching valve (23) has a fourth port connected to the gas side communication pipe (17).
 室外熱交換器(24)は、冷媒を室外空気と熱交換させるフィン・アンド・チューブ型の熱交換器である。室外ユニット(20)には、室外熱交換器(24)へ室外空気を送るための室外ファン(26)が収容されている。四方切換弁(23)は、第1のポートと第3のポートが連通し且つ第2のポートと第4のポートが連通する第1状態(図1に示す状態)と、第1のポートと第4のポートが連通し且つ第2のポートと第3のポートが連通する第2状態(図2に示す状態)とに切り換え可能に構成されている。室外膨張弁(25)は、いわゆる電子膨張弁である。 The outdoor heat exchanger (24) is a fin-and-tube heat exchanger that exchanges heat between the refrigerant and outdoor air. The outdoor unit (20) accommodates an outdoor fan (26) for sending outdoor air to the outdoor heat exchanger (24). The four-way switching valve (23) includes a first state (state shown in FIG. 1) in which the first port and the third port communicate with each other, and the second port and the fourth port communicate with each other; It is configured to be switchable to a second state (state shown in FIG. 2) in which the fourth port communicates and the second port communicates with the third port. The outdoor expansion valve (25) is a so-called electronic expansion valve.
 室内回路(31)には、室内熱交換器(32)が設けられている。この室内回路(31)は、室内熱交換器(32)の液側に位置する一端が液側連絡配管(16)に接続され、室内熱交換器(32)のガス側に位置する他端がガス側連絡配管(17)に接続されている。室内熱交換器(32)は、冷媒を室内空気と熱交換させるフィン・アンド・チューブ型の熱交換器である。室内ユニット(30)には、室内熱交換器(32)へ室内空気を送るための室内ファン(34)が収容されている。 The indoor circuit (31) is provided with an indoor heat exchanger (32). The indoor circuit (31) has one end located on the liquid side of the indoor heat exchanger (32) connected to the liquid side connecting pipe (16) and the other end located on the gas side of the indoor heat exchanger (32). It is connected to the gas side communication pipe (17). The indoor heat exchanger (32) is a fin-and-tube heat exchanger that exchanges heat between refrigerant and room air. The indoor unit (30) accommodates an indoor fan (34) for sending room air to the indoor heat exchanger (32).
 暖房用補助回路(51)は、主配管部(56)と連絡用配管部(57)とによって構成されている。また、暖房用補助回路(51)には、補助用圧縮機(54)と、冷媒熱交換器(60)と、膨張機構である膨張弁(53)とが1つずつ設けられている。冷媒熱交換器(60)は、いわゆるプレート式熱交換器である。この冷媒熱交換器(60)では、第1通路(61)と第2通路(62)とが複数ずつ形成されており、第1通路(61)を流れる冷媒と第2通路(62)を流れる冷媒との間で熱交換が行われる。暖房用補助回路(51)の膨張弁(53)は、いわゆる電子膨張弁である。 The heating auxiliary circuit (51) is composed of a main pipe section (56) and a communication pipe section (57). The heating auxiliary circuit (51) is provided with an auxiliary compressor (54), a refrigerant heat exchanger (60), and an expansion valve (53) that is an expansion mechanism. The refrigerant heat exchanger (60) is a so-called plate heat exchanger. In the refrigerant heat exchanger (60), a plurality of first passages (61) and second passages (62) are formed, and the refrigerant flowing through the first passage (61) and the second passage (62) flow. Heat exchange is performed with the refrigerant. The expansion valve (53) of the heating auxiliary circuit (51) is a so-called electronic expansion valve.
 主配管部(56)では、その一端から他端へ向かって順に、膨張弁(53)と、冷媒熱交換器(60)の第2通路(62)と、補助用圧縮機(54)とが配置されている。この主配管部(56)は、膨張弁(53)側の一端が連絡用配管部(57)に接続され、補助用圧縮機(54)側の他端(即ち、補助用圧縮機(54)の吐出側の端部)がガス側連絡配管(17)に接続されている。 In the main pipe section (56), an expansion valve (53), a second passage (62) of the refrigerant heat exchanger (60), and an auxiliary compressor (54) are sequentially arranged from one end to the other end. Has been placed. One end of the main pipe (56) on the expansion valve (53) side is connected to the connecting pipe (57), and the other end on the auxiliary compressor (54) side (that is, the auxiliary compressor (54)). The discharge side end of the gas is connected to the gas side connecting pipe (17).
 連絡用配管部(57)は、室外ユニット(20)と室内ユニット(30)を繋ぐ液側連絡配管(16)の途中に挿入されている。また、連絡用配管部(57)では、主配管部(56)が接続された箇所よりも室外ユニット(20)寄りの部分に、冷媒熱交換器(60)の第1通路(61)が接続されている。 The connecting pipe (57) is inserted in the middle of the liquid side connecting pipe (16) connecting the outdoor unit (20) and the indoor unit (30). Further, in the communication piping section (57), the first passage (61) of the refrigerant heat exchanger (60) is connected to a portion closer to the outdoor unit (20) than the position where the main piping section (56) is connected. Has been.
  -運転動作-
 本実施形態の空気調和装置(10)は、冷房運転と暖房運転を選択的に行う。ここでは、冷房運転中と暖房運転中のそれぞれにおける空気調和装置(10)の動作を説明する。
-Driving operation-
The air conditioner (10) of the present embodiment selectively performs a cooling operation and a heating operation. Here, the operation of the air conditioner (10) during the cooling operation and the heating operation will be described.
   〈冷房運転〉
 冷房運転時の空気調和装置(10)の動作について説明する。図1に示すように、冷房運転時には、主圧縮機(22)が運転され、四方切換弁(23)が第1状態に設定され、室外膨張弁(25)の開度が適宜調節される。また、冷房運転時には、暖房用補助ユニット(50)が休止状態となる。つまり、暖房用補助ユニット(50)では、膨張弁(53)が全閉状態となり、補助用圧縮機(54)が停止状態となる。
<Cooling operation>
The operation of the air conditioner (10) during the cooling operation will be described. As shown in FIG. 1, during the cooling operation, the main compressor (22) is operated, the four-way switching valve (23) is set to the first state, and the opening degree of the outdoor expansion valve (25) is appropriately adjusted. Further, during the cooling operation, the heating auxiliary unit (50) is in a resting state. That is, in the heating auxiliary unit (50), the expansion valve (53) is fully closed, and the auxiliary compressor (54) is stopped.
 冷房運転中の冷媒回路(15)で行われる冷凍サイクルについて説明する。 The refrigeration cycle performed in the refrigerant circuit (15) during the cooling operation will be described.
 主圧縮機(22)から吐出された冷媒は、四方切換弁(23)を通って室外熱交換器(24)へ流入し、室外空気へ放熱して凝縮する。室外熱交換器(24)で凝縮した冷媒は、室外膨張弁(25)を通過する際に減圧されて気液二相状態となり、その後に液側連絡配管(16)へ流入する。液側連絡配管(16)へ流入した冷媒は、暖房用補助回路(51)の連絡用配管部(57)を通過後に室内回路(31)へ流入する。 The refrigerant discharged from the main compressor (22) flows into the outdoor heat exchanger (24) through the four-way switching valve (23), dissipates heat to the outdoor air, and condenses. The refrigerant condensed in the outdoor heat exchanger (24) is reduced in pressure when passing through the outdoor expansion valve (25) to be in a gas-liquid two-phase state, and thereafter flows into the liquid side communication pipe (16). The refrigerant flowing into the liquid side connection pipe (16) flows into the indoor circuit (31) after passing through the connection pipe section (57) of the heating auxiliary circuit (51).
 室内回路(31)へ流入した冷媒は、室内熱交換器(32)へ流入し、室内空気から吸熱して蒸発する。室内ユニット(30)は、室内熱交換器(32)を通過する間に冷却された空気を室内へ供給する。室内熱交換器(32)で蒸発した冷媒は、ガス側連絡配管(17)を通って室外回路(21)へ戻り、四方切換弁(23)を通過後に主圧縮機(22)へ吸入される。主圧縮機(22)は、吸入した冷媒を圧縮してから吐出する。 The refrigerant flowing into the indoor circuit (31) flows into the indoor heat exchanger (32), absorbs heat from the indoor air, and evaporates. The indoor unit (30) supplies air cooled to the room while passing through the indoor heat exchanger (32). The refrigerant evaporated in the indoor heat exchanger (32) returns to the outdoor circuit (21) through the gas side connecting pipe (17), and is sucked into the main compressor (22) after passing through the four-way switching valve (23). . The main compressor (22) compresses the sucked refrigerant and discharges it.
   〈暖房運転〉
 暖房運転時の空気調和装置(10)の動作について説明する。図2に示すように、暖房運転中には、主圧縮機(22)が運転され、四方切換弁(23)が第2状態に設定され、室外膨張弁(25)の開度が適宜調節される。また、暖房運転中において、暖房用補助ユニット(50)は、暖房負荷の大きい場合(例えば外気温が0℃未満の場合)に運転され、暖房負荷の小さい場合(例えば外気温が0℃以上の場合)に休止する。運転中の暖房用補助ユニット(50)では、補助用圧縮機(54)が運転され、膨張弁(53)の開度が適宜調節される。
<Heating operation>
The operation of the air conditioner (10) during the heating operation will be described. As shown in FIG. 2, during the heating operation, the main compressor (22) is operated, the four-way switching valve (23) is set to the second state, and the opening degree of the outdoor expansion valve (25) is appropriately adjusted. The Further, during the heating operation, the heating auxiliary unit (50) is operated when the heating load is large (for example, when the outside air temperature is less than 0 ° C), and when the heating load is small (for example, the outside air temperature is 0 ° C or higher). If). In the heating auxiliary unit (50) during operation, the auxiliary compressor (54) is operated, and the opening degree of the expansion valve (53) is appropriately adjusted.
 暖房運転中の冷媒回路(15)で行われる冷凍サイクルについて、図3を参照しながら説明する。ここでは、暖房用補助ユニット(50)が運転されている場合の冷凍サイクルについて説明する。暖房用補助ユニット(50)が運転されている場合、暖房運転中の冷媒回路(15)では、室外ユニット(20)と室内ユニット(30)の間で冷媒が循環すると共に、暖房用補助ユニット(50)と室内ユニット(30)の間でも冷媒が循環する。 The refrigeration cycle performed in the refrigerant circuit (15) during the heating operation will be described with reference to FIG. Here, the refrigeration cycle when the heating auxiliary unit (50) is operated will be described. When the heating auxiliary unit (50) is in operation, in the refrigerant circuit (15) during heating operation, the refrigerant circulates between the outdoor unit (20) and the indoor unit (30), and the heating auxiliary unit ( 50) and the refrigerant circulate between the indoor unit (30).
 主圧縮機(22)は、点Aの状態のガス冷媒を吸入して圧縮する。主圧縮機(22)で圧縮されて点Bの状態となった冷媒は、四方切換弁(23)を通過後にガス側連絡配管(17)へ流入し、室内回路(31)へ向かって流れる。一方、補助用圧縮機(54)は、点Gの状態のガス冷媒を吸入して圧縮する。補助用圧縮機(54)で圧縮されて点Hの状態となった冷媒は、ガス側連絡配管(17)へ流入し、主圧縮機(22)から吐出された冷媒と合流する。主圧縮機(22)から吐出された冷媒と補助用圧縮機(54)から吐出された冷媒は、ガス側連絡配管(17)内で合流した後に室内回路(31)へ流入する。 The main compressor (22) sucks and compresses the gas refrigerant in the state of point A. The refrigerant that has been compressed by the main compressor (22) to the state of point B passes through the four-way switching valve (23), then flows into the gas side communication pipe (17), and flows toward the indoor circuit (31). On the other hand, the auxiliary compressor (54) sucks and compresses the gas refrigerant in the state of point G. The refrigerant that has been compressed by the auxiliary compressor (54) to the state of point H flows into the gas side connecting pipe (17) and joins with the refrigerant discharged from the main compressor (22). The refrigerant discharged from the main compressor (22) and the refrigerant discharged from the auxiliary compressor (54) merge in the gas side connecting pipe (17) and then flow into the indoor circuit (31).
 室内回路(31)へ流入した冷媒は、室内熱交換器(32)へ流入する。室内熱交換器(32)へ流入した冷媒は、室内ファン(34)によって送られた室内空気へ放熱して凝縮し、点Cの状態の液冷媒となる。室内熱交換器(32)から流出した冷媒は、液側連絡配管(16)へ流入する暖房運転中の室内ユニット(30)は、室内熱交換器(32)で加熱された室内空気を室内へ吹き出す。 The refrigerant that has flowed into the indoor circuit (31) flows into the indoor heat exchanger (32). The refrigerant flowing into the indoor heat exchanger (32) dissipates heat and condenses into the indoor air sent by the indoor fan (34), and becomes a liquid refrigerant in the state of point C. The refrigerant that has flowed out of the indoor heat exchanger (32) flows into the liquid side communication pipe (16). The indoor unit (30) in the heating operation takes indoor air heated by the indoor heat exchanger (32) into the room. Blow out.
 室内回路(31)から液側連絡配管(16)へ流入した冷媒は、暖房用補助回路(51)の連絡用配管部(57)へ流入する。その後、冷媒は、その一部が主配管部(56)へ流入し、残りが冷媒熱交換器(60)の第1通路(61)へ流入する。 The refrigerant that has flowed from the indoor circuit (31) into the liquid side communication pipe (16) flows into the communication pipe section (57) of the heating auxiliary circuit (51). Thereafter, a part of the refrigerant flows into the main pipe part (56), and the remaining part flows into the first passage (61) of the refrigerant heat exchanger (60).
 冷媒熱交換器(60)の第1通路(61)へ流入した冷媒は、その第2通路(62)を流れる冷媒へ放熱して点Dの状態となる。冷媒熱交換器(60)の第1通路(61)から流出した冷媒は、再び液側連絡配管(16)を通って室外回路(21)へ流入する。室外回路(21)へ流入した冷媒は、室外膨張弁(25)を通過する際に減圧されて点Eの状態となり、その後に室外熱交換器(24)へ流入する。室外熱交換器(24)へ流入した冷媒は、室外ファン(26)によって供給された室外空気と熱交換して蒸発し、点Aの状態のガス冷媒となる。室外熱交換器(24)から流出した冷媒は、四方切換弁(23)を通過後に主圧縮機(22)へ吸入されて圧縮される。 The refrigerant that has flowed into the first passage (61) of the refrigerant heat exchanger (60) dissipates heat to the refrigerant flowing through the second passage (62) and enters the state of point D. The refrigerant that has flowed out of the first passage (61) of the refrigerant heat exchanger (60) again flows into the outdoor circuit (21) through the liquid side connection pipe (16). The refrigerant that has flowed into the outdoor circuit (21) is decompressed when passing through the outdoor expansion valve (25), becomes a state of point E, and then flows into the outdoor heat exchanger (24). The refrigerant flowing into the outdoor heat exchanger (24) evaporates by exchanging heat with the outdoor air supplied by the outdoor fan (26), and becomes a gas refrigerant in the state of point A. The refrigerant that has flowed out of the outdoor heat exchanger (24) passes through the four-way switching valve (23) and is then sucked into the main compressor (22) and compressed.
 一方、主配管部(56)へ流入した冷媒は、膨張弁(53)で減圧されて点Fの状態となり、その後に冷媒熱交換器(60)の第2通路(62)へ流入する。冷媒熱交換器(60)の第2通路(62)へ流入した冷媒は、その第1通路(61)を流れる冷媒から吸熱して蒸発し、点Gの状態のガス冷媒となる。冷媒熱交換器(60)の第2通路(62)から流出した冷媒は、補助用圧縮機(54)へ吸入されて圧縮される。 On the other hand, the refrigerant flowing into the main pipe section (56) is depressurized by the expansion valve (53) to be in the state of point F, and then flows into the second passage (62) of the refrigerant heat exchanger (60). The refrigerant flowing into the second passage (62) of the refrigerant heat exchanger (60) absorbs heat from the refrigerant flowing through the first passage (61) and evaporates to become a gas refrigerant in the state of point G. The refrigerant flowing out from the second passage (62) of the refrigerant heat exchanger (60) is sucked into the auxiliary compressor (54) and compressed.
 暖房運転中の暖房用補助ユニット(50)において、補助用圧縮機(54)の容量や膨張弁(53)の開度は、次のように制御される。暖房運転中の暖房用補助ユニット(50)は、補助用圧縮機(54)の容量の目標値を外気温と主圧縮機(22)の容量とに基づいて設定し、補助用圧縮機(54)の容量が設定した目標値となるように、補助用圧縮機(54)の電動機へ供給される交流の周波数を調節する。また、暖房運転中の暖房用補助ユニット(50)は、冷媒熱交換器(60)の第2通路(62)の出口における冷媒の過熱度が所定の目標値(例えば2℃)となるように、膨張弁(53)の開度を調節する。 In the heating auxiliary unit (50) during the heating operation, the capacity of the auxiliary compressor (54) and the opening of the expansion valve (53) are controlled as follows. During the heating operation, the heating auxiliary unit (50) sets the target value of the capacity of the auxiliary compressor (54) based on the outside air temperature and the capacity of the main compressor (22), and sets the auxiliary compressor (54). The frequency of the alternating current supplied to the motor of the auxiliary compressor (54) is adjusted so that the capacity of) becomes the set target value. Further, the heating auxiliary unit (50) during the heating operation is set such that the degree of superheat of the refrigerant at the outlet of the second passage (62) of the refrigerant heat exchanger (60) becomes a predetermined target value (for example, 2 ° C.). The opening degree of the expansion valve (53) is adjusted.
 なお、暖房用補助ユニット(50)が休止している場合には、暖房運転中の冷媒回路(15)においても、室外ユニット(20)と室内ユニット(30)の間だけで冷媒が循環する。つまり、室外ユニット(20)の主圧縮機(22)から吐出された冷媒だけが室内ユニット(30)へ送られ、室内ユニット(30)の室内熱交換器(32)で凝縮した冷媒が室外ユニット(20)へ送り返される。 In addition, when the heating auxiliary unit (50) is stopped, the refrigerant circulates only between the outdoor unit (20) and the indoor unit (30) in the refrigerant circuit (15) during the heating operation. That is, only the refrigerant discharged from the main compressor (22) of the outdoor unit (20) is sent to the indoor unit (30), and the refrigerant condensed in the indoor heat exchanger (32) of the indoor unit (30) is the outdoor unit. Sent back to (20).
  -実施形態1の効果-
 本実施形態の空気調和装置(10)において、暖房運転中の冷媒回路(15)では、室内ユニット(30)と室外ユニット(20)の間だけでなく、室内ユニット(30)と暖房用補助ユニット(50)の間でも冷媒が循環する。そして、暖房用補助ユニット(50)へ流入した冷媒は、冷媒熱交換器(60)において室内ユニット(30)から室外ユニット(20)へ送られる冷媒から吸熱し、その後に補助用圧縮機(54)で圧縮されてから再び室内ユニット(30)へ送られる。
-Effect of Embodiment 1-
In the air conditioner (10) of the present embodiment, in the refrigerant circuit (15) during heating operation, not only between the indoor unit (30) and the outdoor unit (20), but also the indoor unit (30) and the heating auxiliary unit. The refrigerant circulates even during (50). Then, the refrigerant flowing into the heating auxiliary unit (50) absorbs heat from the refrigerant sent from the indoor unit (30) to the outdoor unit (20) in the refrigerant heat exchanger (60), and then the auxiliary compressor (54 ) And then sent again to the indoor unit (30).
 このように、本実施形態によれば、室内ユニット(30)から室外ユニット(20)へ送り返される冷媒に残存する熱を、冷媒熱交換器(60)から補助用圧縮機(54)へ送られる冷媒に回収することができる。従って、室内ユニット(30)から室外ユニット(20)へ送り返される冷媒から回収した熱を室内ユニット(30)での空気の加熱に利用することができ、室内ユニット(30)の暖房能力を増大させることができる。 Thus, according to this embodiment, the heat remaining in the refrigerant sent back from the indoor unit (30) to the outdoor unit (20) is sent from the refrigerant heat exchanger (60) to the auxiliary compressor (54). It can be recovered in the refrigerant. Therefore, the heat recovered from the refrigerant sent back from the indoor unit (30) to the outdoor unit (20) can be used for heating the air in the indoor unit (30), and the heating capacity of the indoor unit (30) is increased. be able to.
 更に、暖房運転時に室外膨張弁(25)流入する冷媒のエンタルピは、暖房用補助ユニット(50)が設けられていない場合は図3の点Cにおける値であるのに対し、本実施形態の空気調和装置(10)では同図の点Dにおける値となる。このため、暖房運転中に蒸発器となる室外熱交換器(24)へ流入する冷媒のエンタルピを引き下げることができる。従って、本実施形態によれば、暖房運転中の室外熱交換器(24)で冷媒が室外空気から吸熱する熱量を増大させることができ、これによっても室内ユニット(30)の暖房能力を増大させることができる。 Further, the enthalpy of the refrigerant flowing into the outdoor expansion valve (25) during the heating operation is the value at the point C in FIG. 3 when the heating auxiliary unit (50) is not provided, whereas the air of the present embodiment In the harmony device (10), the value is at point D in the figure. For this reason, the enthalpy of the refrigerant flowing into the outdoor heat exchanger (24) serving as an evaporator during the heating operation can be lowered. Therefore, according to the present embodiment, the amount of heat absorbed by the refrigerant from the outdoor air can be increased in the outdoor heat exchanger (24) during the heating operation, and this also increases the heating capacity of the indoor unit (30). be able to.
 また、本実施形態によれば、室外ユニット(20)の構造を変更することなく、冷媒回路(15)に暖房用補助ユニット(50)を接続するだけで空気調和装置(10)の暖房能力を向上させることができる。従って、本実施形態によれば、大きな暖房能力が必要な用途向け(例えば寒冷地向け)の空気調和装置(10)を、その設計や製造に要する時間や費用を低く抑えながら実現することが可能となる。 Further, according to the present embodiment, the heating capacity of the air conditioner (10) can be increased by simply connecting the heating auxiliary unit (50) to the refrigerant circuit (15) without changing the structure of the outdoor unit (20). Can be improved. Therefore, according to this embodiment, it is possible to realize an air conditioner (10) for an application that requires a large heating capacity (for example, for a cold district) while keeping the time and cost required for the design and manufacture low. It becomes.
 《発明の実施形態2》
 本発明の実施形態2について説明する。本実施形態は、上記実施形態1の空気調和装置(10)において、暖房用補助ユニット(50)の構成を変更したものである。ここでは、本実施形態の暖房用補助ユニット(50)について、上記実施形態1と異なる点を説明する。
<< Embodiment 2 of the Invention >>
A second embodiment of the present invention will be described. The present embodiment is obtained by changing the configuration of the heating auxiliary unit (50) in the air conditioner (10) of the first embodiment. Here, about the heating auxiliary unit (50) of the present embodiment, differences from the first embodiment will be described.
 図4~図6の各図に示すように、本実施形態の暖房用補助ユニット(50)には、気液分離器(65)が設けられている。気液分離器(65)は、概ね円筒形の密閉容器状に形成されている。また、気液分離器(65)には、流入管(66)と流出管(67)とが設けられている。流入管(66)と流出管(67)は、何れも気液分離器(65)の頂部を貫通している。気液分離器(65)の内部空間では、その底部付近に流入管(66)の下端が開口し、その上端部付近に流出管(67)の下端が開口している。気液分離器(65)は、流入管(66)を通って流入した冷媒を液冷媒とガス冷媒に分離し、ガス冷媒だけを流出管(67)から送り出すように構成されている。 4 to 6, the heating auxiliary unit (50) of the present embodiment is provided with a gas-liquid separator (65). The gas-liquid separator (65) is formed in a substantially cylindrical closed container shape. The gas-liquid separator (65) is provided with an inflow pipe (66) and an outflow pipe (67). The inflow pipe (66) and the outflow pipe (67) both penetrate the top of the gas-liquid separator (65). In the internal space of the gas-liquid separator (65), the lower end of the inflow pipe (66) opens near its bottom, and the lower end of the outflow pipe (67) opens near its upper end. The gas-liquid separator (65) is configured to separate the refrigerant that has flowed in through the inflow pipe (66) into liquid refrigerant and gas refrigerant, and send out only the gas refrigerant from the outflow pipe (67).
 気液分離器(65)は、暖房用補助回路(51)の主配管部(56)に接続されている。具体的に、気液分離器(65)は、主配管部(56)における冷媒熱交換器(60)と補助用圧縮機(54)の間に配置されている。この気液分離器(65)は、その流入管(66)が冷媒熱交換器(60)の第2通路(62)に接続され、その流出管(67)が補助用圧縮機(54)の吸入側に接続されている。 The gas-liquid separator (65) is connected to the main pipe section (56) of the heating auxiliary circuit (51). Specifically, the gas-liquid separator (65) is disposed between the refrigerant heat exchanger (60) and the auxiliary compressor (54) in the main pipe section (56). The gas-liquid separator (65) has an inflow pipe (66) connected to the second passage (62) of the refrigerant heat exchanger (60) and an outflow pipe (67) of the auxiliary compressor (54). Connected to the suction side.
  -運転動作-
 本実施形態の空気調和装置(10)は、上記実施形態1と同様に、冷房運転と暖房運転を選択的に行う。冷房運転中には、暖房用補助ユニット(50)が上記実施形態1の場合と同様に休止し、冷媒回路(15)で上記実施形態1の場合と同様に冷媒が循環する(図4を参照)。ここでは、暖房運転中における空気調和装置(10)の動作を説明する。
-Driving operation-
The air conditioner (10) of the present embodiment selectively performs the cooling operation and the heating operation as in the first embodiment. During the cooling operation, the heating auxiliary unit (50) pauses in the same manner as in the first embodiment, and the refrigerant circulates in the refrigerant circuit (15) as in the first embodiment (see FIG. 4). ). Here, the operation of the air conditioner (10) during the heating operation will be described.
   〈暖房運転〉
 本実施形態の空気調和装置(10)では、上記実施形態1の場合と同様に、暖房負荷の大きい場合に暖房用補助ユニット(50)が運転され、暖房負荷の小さい場合に暖房用補助ユニット(50)が休止する。以下の説明では、暖房用補助ユニット(50)が運転される暖房運転を「高負荷時暖房運転」といい、暖房用補助ユニット(50)が休止する暖房運転を「低負荷時暖房運転」という。
<Heating operation>
In the air conditioner (10) of the present embodiment, as in the case of the first embodiment, the heating auxiliary unit (50) is operated when the heating load is large, and the heating auxiliary unit (50) when the heating load is small. 50) pauses. In the following description, the heating operation in which the heating auxiliary unit (50) is operated is referred to as “high load heating operation”, and the heating operation in which the heating auxiliary unit (50) is stopped is referred to as “low load heating operation”. .
 高負荷時暖房運転中の冷媒回路(15)では、上記実施形態1の場合と同様に冷媒が循環して冷凍サイクルが行われる。つまり、冷媒回路(15)では、室外ユニット(20)と室内ユニット(30)の間で冷媒が循環すると共に、暖房用補助ユニット(50)と室内ユニット(30)の間でも冷媒が循環する(図5を参照)。ただし、本実施形態の暖房用補助ユニット(50)の主配管部(56)では、冷媒熱交換器(60)の第2通路(62)から流出した冷媒が気液分離器(65)を通過した後に補助用圧縮機(54)へ吸入される。 In the refrigerant circuit (15) during the high load heating operation, the refrigerant circulates and the refrigeration cycle is performed as in the case of the first embodiment. That is, in the refrigerant circuit (15), the refrigerant circulates between the outdoor unit (20) and the indoor unit (30), and also circulates between the heating auxiliary unit (50) and the indoor unit (30) ( (See FIG. 5). However, in the main piping section (56) of the heating auxiliary unit (50) of the present embodiment, the refrigerant flowing out from the second passage (62) of the refrigerant heat exchanger (60) passes through the gas-liquid separator (65). After that, it is sucked into the auxiliary compressor (54).
 また、低負荷時暖房運転中の冷媒回路(15)でも、上記実施形態1の場合と同様に冷媒が循環して冷凍サイクルが行われる。つまり、冷媒回路(15)では、室外ユニット(20)と室内ユニット(30)の間でだけ冷媒が循環する。 In the refrigerant circuit (15) during the low load heating operation, the refrigerant is circulated and the refrigeration cycle is performed as in the case of the first embodiment. That is, in the refrigerant circuit (15), the refrigerant circulates only between the outdoor unit (20) and the indoor unit (30).
   〈暖房用補助ユニットの冷媒量調節動作〉
 本実施形態の暖房用補助ユニット(50)は、冷媒回路(15)において循環する冷媒の量を調節するための冷媒量調節動作を行うように構成されている。この冷媒量調節動作は、高負荷暖房運転中と低負荷暖房運転中の何れにおいても行われる可能性がある。つまり、本実施形態の空気調和装置(10)では、低負荷暖房運転中にも冷媒量調節動作を行うために暖房用補助ユニット(50)が一時的に運転されることがある。
<Refrigerant amount adjustment operation of heating auxiliary unit>
The heating auxiliary unit (50) of the present embodiment is configured to perform a refrigerant amount adjusting operation for adjusting the amount of refrigerant circulating in the refrigerant circuit (15). This refrigerant quantity adjustment operation may be performed both during the high load heating operation and during the low load heating operation. That is, in the air conditioner (10) of the present embodiment, the heating auxiliary unit (50) may be temporarily operated to perform the refrigerant amount adjustment operation even during the low load heating operation.
 暖房用補助ユニット(50)の冷媒量調節動作について説明する。この冷媒量調節動作は、冷媒回路(15)において循環する冷媒の量がその時点の運転状態に応じた適正値となるように気液分離器(65)における液冷媒の貯留量を調節する動作である。 The refrigerant quantity adjusting operation of the heating auxiliary unit (50) will be described. This refrigerant quantity adjustment operation adjusts the amount of liquid refrigerant stored in the gas-liquid separator (65) so that the amount of refrigerant circulating in the refrigerant circuit (15) becomes an appropriate value according to the operating state at that time. It is.
 冷媒量調節動作中の暖房用補助ユニット(50)は、冷媒回路(15)において循環する冷媒の量が適正値かどうかを監視する。 The heating auxiliary unit (50) during the refrigerant amount adjustment operation monitors whether the amount of refrigerant circulating in the refrigerant circuit (15) is an appropriate value.
 先ず、暖房用補助ユニット(50)は、主圧縮機(22)の吐出圧力(即ち、冷凍サイクルの高圧)が通常よりも高くなっているにも拘わらず主圧縮機(22)へ吸入される冷媒が湿り状態となっている場合に冷媒量が過剰であると判断し、気液分離器(65)における液冷媒の貯留量を増大させるための動作を行う。 First, the heating auxiliary unit (50) is sucked into the main compressor (22) even though the discharge pressure of the main compressor (22) (that is, the high pressure of the refrigeration cycle) is higher than usual. When the refrigerant is in a wet state, it is determined that the amount of refrigerant is excessive, and an operation for increasing the amount of liquid refrigerant stored in the gas-liquid separator (65) is performed.
 具体的に、高負荷時暖房運転中において、暖房用補助ユニット(50)は、膨張弁(53)の開度を強制的に拡大する動作を、気液分離器(65)における液冷媒の貯留量を増大させるための動作として行う。暖房用補助ユニット(50)がこの動作を行うと、連絡用配管部(57)から主配管部(56)へ流入する冷媒の流量が増大し、冷媒熱交換器(60)の第2通路(62)へ流入した冷媒の一部は蒸発せずに液冷媒のまま気液分離器(65)へ流入する。そして、補助用圧縮機(54)は気液分離器(65)からガス冷媒だけを吸い込むため、気液分離器(65)内の液冷媒の量が増加する。 Specifically, during the high load heating operation, the heating auxiliary unit (50) performs an operation of forcibly expanding the opening degree of the expansion valve (53) to store the liquid refrigerant in the gas-liquid separator (65). This is done as an operation to increase the amount. When the heating auxiliary unit (50) performs this operation, the flow rate of the refrigerant flowing from the communication pipe (57) into the main pipe (56) increases, and the second passage ( A part of the refrigerant flowing into 62) does not evaporate and flows into the gas-liquid separator (65) as liquid refrigerant. Since the auxiliary compressor (54) sucks only the gas refrigerant from the gas-liquid separator (65), the amount of liquid refrigerant in the gas-liquid separator (65) increases.
 また、低負荷時暖房運転中において、暖房用補助ユニット(50)は、膨張弁(53)の開度を開いて補助用圧縮機(54)を起動する動作を、気液分離器(65)における液冷媒の貯留量を増大させるための動作として行う。暖房用補助ユニット(50)がこの動作を行うと、連絡用配管部(57)から主配管部(56)へ冷媒が流入する。主配管部(56)へ流入する冷媒の流量がある程度以上に達すると、冷媒熱交換器(60)の第2通路(62)へ流入した冷媒の一部は蒸発せずに液冷媒のまま気液分離器(65)へ流入する。そして、補助用圧縮機(54)は気液分離器(65)からガス冷媒だけを吸い込むため、気液分離器(65)内の液冷媒の量が増加する。 In addition, during the low load heating operation, the heating auxiliary unit (50) opens the opening of the expansion valve (53) to start the auxiliary compressor (54). This is performed as an operation for increasing the amount of liquid refrigerant stored. When the heating auxiliary unit (50) performs this operation, the refrigerant flows from the communication pipe (57) into the main pipe (56). When the flow rate of the refrigerant flowing into the main pipe (56) reaches a certain level or more, a part of the refrigerant flowing into the second passage (62) of the refrigerant heat exchanger (60) is not evaporated but remains as a liquid refrigerant. It flows into the liquid separator (65). Since the auxiliary compressor (54) sucks only the gas refrigerant from the gas-liquid separator (65), the amount of liquid refrigerant in the gas-liquid separator (65) increases.
 次に、暖房用補助ユニット(50)は、室外ユニット(20)が適切な動作を行っているにも拘わらず主圧縮機(22)の吸入圧力(即ち、冷凍サイクルの低圧)が低くなり過ぎたり主圧縮機(22)の吸入冷媒の過熱度が大きくなり過ぎる場合に冷媒量が不足していると判断し、気液分離器(65)における液冷媒の貯留量を減少させるための動作を行う。 Next, in the heating auxiliary unit (50), the suction pressure of the main compressor (22) (that is, the low pressure of the refrigeration cycle) becomes too low despite the outdoor unit (20) performing proper operation. When the superheat of the refrigerant sucked in the main compressor (22) becomes too large, it is judged that the refrigerant amount is insufficient, and the operation for reducing the amount of liquid refrigerant stored in the gas-liquid separator (65) is performed. Do.
 具体的に、高負荷時暖房運転中において、暖房用補助ユニット(50)は、膨張弁(53)の開度を強制的に縮小する動作を、気液分離器(65)における液冷媒の貯留量を減少させるための動作として行う。暖房用補助ユニット(50)がこの動作を行うと、連絡用配管部(57)から主配管部(56)へ流入する冷媒の流量が減少し、気液分離器(65)へ流入する冷媒の流量も減少する。そして、補助用圧縮機(54)が気液分離器(65)から吸い込む冷媒の流量は変化しないため、気液分離器(65)内の液冷媒の量が減少する。 Specifically, during the heating operation under high load, the heating auxiliary unit (50) performs an operation for forcibly reducing the opening degree of the expansion valve (53) to store liquid refrigerant in the gas-liquid separator (65). This is done as an operation to reduce the amount. When the heating auxiliary unit (50) performs this operation, the flow rate of the refrigerant flowing from the communication pipe (57) to the main pipe (56) decreases, and the refrigerant flowing into the gas-liquid separator (65) is reduced. The flow rate is also reduced. And since the flow volume of the refrigerant | coolant which the compressor for auxiliary (54) sucks from a gas-liquid separator (65) does not change, the quantity of the liquid refrigerant in a gas-liquid separator (65) reduces.
 また、低負荷時暖房運転中において、暖房用補助ユニット(50)は、膨張弁(53)を閉じたまま補助用圧縮機(54)を起動する動作を、気液分離器(65)における液冷媒の貯留量を減少させるための動作として行う。暖房用補助ユニット(50)がこの動作を行うと、補助用圧縮機(54)によって気液分離器(65)からガス冷媒が吸い出されるが、気液分離器(65)へは冷媒が流入しない。このため、気液分離器(65)内の液冷媒の量が減少する。 In addition, during the low load heating operation, the heating auxiliary unit (50) performs the operation of starting the auxiliary compressor (54) with the expansion valve (53) closed, and the liquid in the gas-liquid separator (65). This is performed as an operation for reducing the amount of refrigerant stored. When the heating auxiliary unit (50) performs this operation, the auxiliary compressor (54) sucks out the gas refrigerant from the gas-liquid separator (65), but the refrigerant flows into the gas-liquid separator (65). do not do. For this reason, the amount of liquid refrigerant in the gas-liquid separator (65) decreases.
   〈空気調和装置の除霜動作〉
 本実施形態の空気調和装置(10)は、暖房運転中に所定の条件(例えば主圧縮機(22)の運転時間の積算値が所定値に達する条件)が成立する毎に除霜動作を行う。ここでは、空気調和装置(10)の除霜動作について、図6を参照しながら説明する。
<Defrosting operation of air conditioner>
The air conditioner (10) of the present embodiment performs a defrosting operation every time a predetermined condition (for example, a condition in which the integrated value of the operation time of the main compressor (22) reaches a predetermined value) is satisfied during the heating operation. . Here, the defrosting operation of the air conditioner (10) will be described with reference to FIG.
 除霜動作時の室外ユニット(20)では、主圧縮機(22)が運転され、四方切換弁(23)が第1状態(図6に示す状態)に設定され、室外膨張弁(25)の開度が適宜調節される。また、除霜動作時の暖房用補助ユニット(50)では、補助用圧縮機(54)が運転され、膨張弁(53)が全開状態に設定される。 In the outdoor unit (20) during the defrosting operation, the main compressor (22) is operated, the four-way switching valve (23) is set to the first state (the state shown in FIG. 6), and the outdoor expansion valve (25) The opening is adjusted as appropriate. Further, in the heating auxiliary unit (50) during the defrosting operation, the auxiliary compressor (54) is operated, and the expansion valve (53) is set to a fully open state.
 除霜動作時の冷媒回路(15)において、主圧縮機(22)から吐出された高温高圧の冷媒は、四方切換弁(23)を通って室外熱交換器(24)へ送られる。室外熱交換器(24)では、その表面に付着した霜が供給された冷媒によって暖められて融解する。室外熱交換器(24)から流出した冷媒は、液側連絡配管(16)を通って暖房用補助回路(51)の連絡用配管部(57)へ流入する。除霜動作時には補助用圧縮機(54)が運転されているため、連絡用配管部(57)へ流入した冷媒は、その殆ど全てが主配管部(56)へ流入する。主配管部(56)へ流入した冷媒は、膨張弁(53)と冷媒熱交換器(60)の第2通路(62)を順に通過し、その後に気液分離器(65)へ流入する。 In the refrigerant circuit (15) during the defrosting operation, the high-temperature and high-pressure refrigerant discharged from the main compressor (22) is sent to the outdoor heat exchanger (24) through the four-way switching valve (23). In the outdoor heat exchanger (24), frost adhering to the surface is heated and melted by the supplied refrigerant. The refrigerant that has flowed out of the outdoor heat exchanger (24) flows through the liquid side connecting pipe (16) into the connecting pipe section (57) of the heating auxiliary circuit (51). Since the auxiliary compressor (54) is operated during the defrosting operation, almost all of the refrigerant that has flowed into the communication pipe (57) flows into the main pipe (56). The refrigerant flowing into the main pipe section (56) sequentially passes through the expansion valve (53) and the second passage (62) of the refrigerant heat exchanger (60), and then flows into the gas-liquid separator (65).
 気液分離器(65)には、液冷媒が貯留されている。また、暖房運転中には例えば10℃程度の中間圧の冷媒が気液分離器(65)を通過するため、気液分離器(65)内に溜まった液冷媒の温度は、暖房運転中に気液分離器(65)を通過する冷媒の温度と同等となっている。このため、除霜動作中に気液分離器(65)へ流入した冷媒は、気液分離器(65)内に溜まった冷媒によって暖められる。そして、補助用圧縮機(54)は、気液分離器(65)から吸い込んだ冷媒を圧縮し、ガス側連絡配管(17)へ向けて吐出する。補助用圧縮機(54)からガス側連絡配管(17)へ吐出された冷媒は、室外回路(21)へ流入し、その後に主圧縮機(22)へ吸入されて圧縮される。 Liquid refrigerant is stored in the gas-liquid separator (65). Further, during the heating operation, for example, a refrigerant having an intermediate pressure of about 10 ° C. passes through the gas-liquid separator (65). Therefore, the temperature of the liquid refrigerant accumulated in the gas-liquid separator (65) is changed during the heating operation. It is equivalent to the temperature of the refrigerant passing through the gas-liquid separator (65). For this reason, the refrigerant flowing into the gas-liquid separator (65) during the defrosting operation is warmed by the refrigerant accumulated in the gas-liquid separator (65). Then, the auxiliary compressor (54) compresses the refrigerant sucked from the gas-liquid separator (65) and discharges the refrigerant toward the gas side connecting pipe (17). The refrigerant discharged from the auxiliary compressor (54) to the gas side communication pipe (17) flows into the outdoor circuit (21), and then is sucked into the main compressor (22) and compressed.
  -実施形態2の効果-
 本実施形態では、暖房用補助ユニット(50)に気液分離器(65)が設けられている。そして、暖房用補助ユニット(50)が冷媒量調節動作を行うことによって気液分離器(65)に溜まり込む液冷媒の量を調整すると、それに伴って冷媒回路(15)内を室内ユニット(30)と室外ユニット(20)の間で循環する冷媒の量が変化する。
-Effect of Embodiment 2-
In this embodiment, the gas-liquid separator (65) is provided in the heating auxiliary unit (50). When the amount of liquid refrigerant that accumulates in the gas-liquid separator (65) is adjusted by the heating auxiliary unit (50) performing the refrigerant amount adjustment operation, the inside of the refrigerant circuit (15) is associated with the indoor unit (30 ) And the outdoor unit (20) change the amount of refrigerant circulating.
 ところで、冷媒回路(15)内を室内ユニット(30)と室外ユニット(20)の間で循環する冷媒の量の適正値は、冷媒回路(15)で行われる冷凍サイクルの条件によって異なる。例えば、空気調和装置(10)の暖房運転中において、冷媒回路(15)内を室内ユニット(30)と室外ユニット(20)の間で循環する冷媒の量の適正値は、室外ユニット(20)で冷媒と熱交換する冷媒の温度が低くにつれて少なくなる。従って、本実施形態によれば、暖房用補助ユニット(50)の気液分離器(65)に溜まり込む液冷媒の量を調節することによって、冷媒回路(15)内を室内ユニット(30)と室外ユニット(20)の間で循環する冷媒の量を適正値に保つことが可能となる。 Incidentally, the appropriate value of the amount of the refrigerant circulating in the refrigerant circuit (15) between the indoor unit (30) and the outdoor unit (20) varies depending on the conditions of the refrigeration cycle performed in the refrigerant circuit (15). For example, during the heating operation of the air conditioner (10), the appropriate value of the amount of refrigerant circulating in the refrigerant circuit (15) between the indoor unit (30) and the outdoor unit (20) is the outdoor unit (20) As the temperature of the refrigerant exchanging heat with the refrigerant decreases, the temperature decreases. Therefore, according to the present embodiment, by adjusting the amount of liquid refrigerant that accumulates in the gas-liquid separator (65) of the heating auxiliary unit (50), the inside of the refrigerant circuit (15) is connected to the indoor unit (30). It becomes possible to keep the amount of refrigerant circulating between the outdoor units (20) at an appropriate value.
 また、本実施形態の空気調和装置(10)では、除霜動作中に暖房用補助ユニット(50)の補助用圧縮機(54)が運転される。そして、除霜動作中の室外ユニット(20)から暖房用補助ユニット(50)へ流入した冷媒は、気液分離器(65)に溜まった液冷媒によって暖められ、その後に補助用圧縮機(54)で圧縮されてから室外ユニット(20)へ送り返される。 In the air conditioner (10) of the present embodiment, the auxiliary compressor (54) of the heating auxiliary unit (50) is operated during the defrosting operation. The refrigerant flowing into the heating auxiliary unit (50) from the outdoor unit (20) during the defrosting operation is warmed by the liquid refrigerant accumulated in the gas-liquid separator (65), and then the auxiliary compressor (54 ) And then sent back to the outdoor unit (20).
 このように、本実施形態の空気調和装置(10)では、気液分離器(65)に溜まっている液冷媒が保有する熱を、室外熱交換器(24)の除霜に利用することができる。また、この空気調和装置(10)では、補助用圧縮機(54)が冷媒を圧縮する際に冷媒に付与される熱も、室外熱交換器(24)の除霜に利用することができる。従って、本実施形態によれば、室外熱交換器(24)の除霜に利用できる熱量を増大させることができ、室外熱交換器(24)の除霜に要する時間を短縮することができる。 Thus, in the air conditioner (10) of the present embodiment, the heat retained by the liquid refrigerant accumulated in the gas-liquid separator (65) can be used for defrosting the outdoor heat exchanger (24). it can. Moreover, in this air conditioning apparatus (10), the heat imparted to the refrigerant when the auxiliary compressor (54) compresses the refrigerant can also be used for defrosting the outdoor heat exchanger (24). Therefore, according to the present embodiment, the amount of heat available for defrosting the outdoor heat exchanger (24) can be increased, and the time required for defrosting the outdoor heat exchanger (24) can be shortened.
 また、本実施形態の空気調和装置(10)では、除霜動作中に暖房用補助ユニット(50)の補助用圧縮機(54)が運転される。このため、除霜動作中において、室外ユニット(20)から液側連絡配管(16)へ送り出された冷媒は、そのほぼ全量が暖房用補助回路(51)の主配管部(56)へ流入する。つまり、除霜動作中において、室外ユニット(20)から流出した低温の冷媒は、室内ユニット(30)の室内熱交換器(32)へ殆ど流入しない。従って、本実施形態によれば、除霜動作中に室内熱交換器(32)へ低温の冷媒が流入するのを実質的に防ぐことができ、室内熱交換器(32)で冷やされた空気が室内に流れ込んで在室者に不快感を与えるといった事態を回避できる。 In the air conditioner (10) of the present embodiment, the auxiliary compressor (54) of the heating auxiliary unit (50) is operated during the defrosting operation. For this reason, during the defrosting operation, almost all of the refrigerant sent from the outdoor unit (20) to the liquid side connection pipe (16) flows into the main pipe section (56) of the heating auxiliary circuit (51). . That is, during the defrosting operation, the low-temperature refrigerant that has flowed out of the outdoor unit (20) hardly flows into the indoor heat exchanger (32) of the indoor unit (30). Therefore, according to this embodiment, it is possible to substantially prevent the low-temperature refrigerant from flowing into the indoor heat exchanger (32) during the defrosting operation, and the air cooled by the indoor heat exchanger (32). Can be prevented from flowing into the room and causing discomfort to the people in the room.
 《その他の実施形態》
 上記の各実施形態では、暖房用補助ユニット(50)の暖房用補助回路(51)にバイパス通路を形成するバイパス管(58)を設けてもよい。ここでは、上記実施形態2の空気調和装置(10)にバイパス管(58)を設けたものについて説明する。
<< Other Embodiments >>
In each of the above embodiments, a bypass pipe (58) that forms a bypass passage may be provided in the heating auxiliary circuit (51) of the heating auxiliary unit (50). Here, what provided the bypass pipe (58) in the air conditioning apparatus (10) of the said Embodiment 2 is demonstrated.
 図7に示すように、バイパス管(58)は、暖房用補助回路(51)の主配管部(56)に設けられている。主配管部(56)において、バイパス管(58)は、補助用圧縮機(54)の吸入側と吐出側を接続している。具体的に、バイパス管(58)は、その一端が補助用圧縮機(54)と気液分離器(65)の間に接続され、その他端が補助用圧縮機(54)とガス側連絡配管(17)の間に接続されている。バイパス管(58)には、逆止弁(59)が設けられている。この逆止弁(59)は、バイパス管(58)の一端から他端へ向かう冷媒の流通を許容し、その逆向きの冷媒の流通を阻止するように構成されている。つまり、補助用圧縮機(54)の運転中はバイパス管(58)の一端側に比べて他端側が高圧となるため、逆止弁(59)は閉鎖状態となる。 As shown in FIG. 7, the bypass pipe (58) is provided in the main pipe section (56) of the heating auxiliary circuit (51). In the main pipe section (56), the bypass pipe (58) connects the suction side and the discharge side of the auxiliary compressor (54). Specifically, one end of the bypass pipe (58) is connected between the auxiliary compressor (54) and the gas-liquid separator (65), and the other end is connected to the auxiliary compressor (54) and the gas side communication pipe. Connected during (17). The bypass pipe (58) is provided with a check valve (59). The check valve (59) is configured to allow the refrigerant to flow from one end to the other end of the bypass pipe (58) and prevent the refrigerant from flowing in the opposite direction. That is, during operation of the auxiliary compressor (54), the other end side is at a higher pressure than the one end side of the bypass pipe (58), so that the check valve (59) is closed.
 本変形例の暖房用補助ユニット(50)は、空気調和装置(10)の冷房運転中に、液側連絡配管(16)を流れる冷媒を冷却するための動作を行う。ここでは、本変形例の暖房用補助ユニット(50)が設けられた空気調和装置(10)が冷房運転中に行う冷凍サイクルについて、図8を参照しながら説明する。 The heating auxiliary unit (50) of this modification performs an operation for cooling the refrigerant flowing through the liquid side communication pipe (16) during the cooling operation of the air conditioner (10). Here, the refrigeration cycle performed during the cooling operation by the air conditioner (10) provided with the heating auxiliary unit (50) of the present modification will be described with reference to FIG.
 主圧縮機(22)は、点Iの状態のガス冷媒を吸入して圧縮する。主圧縮機(22)で圧縮されて点Jの状態となった冷媒は、四方切換弁(23)を通って室外熱交換器(24)へ送られる。室外熱交換器(24)へ流入した冷媒は、室外空気へ放熱して点Kの状態の液冷媒となる。室外熱交換器(24)から流出した冷媒は、室外膨張弁(25)を通過する際に減圧されて点Lの状態となる。 The main compressor (22) sucks and compresses the gas refrigerant in the state of point I. The refrigerant that has been compressed by the main compressor (22) to the state of point J is sent to the outdoor heat exchanger (24) through the four-way switching valve (23). The refrigerant flowing into the outdoor heat exchanger (24) dissipates heat to the outdoor air and becomes a liquid refrigerant in the state of point K. The refrigerant that has flowed out of the outdoor heat exchanger (24) is depressurized when passing through the outdoor expansion valve (25), and is in a state of point L.
 室外膨張弁(25)を通過した冷媒は、液側連絡配管(16)を通って冷媒熱交換器(60)の第1通路(61)へ流入する。冷媒熱交換器(60)の第1通路(61)へ流入した冷媒は、その第2通路(62)を流れる冷媒によって冷却されて点Mの状態となる。冷媒熱交換器(60)の第1通路(61)を通過した冷媒は、その一部が暖房用補助回路(51)へ流入し、残りが室内回路(31)へ流入する。 The refrigerant that has passed through the outdoor expansion valve (25) flows into the first passage (61) of the refrigerant heat exchanger (60) through the liquid side connection pipe (16). The refrigerant that has flowed into the first passage (61) of the refrigerant heat exchanger (60) is cooled by the refrigerant flowing through the second passage (62) to be in the state of point M. Part of the refrigerant that has passed through the first passage (61) of the refrigerant heat exchanger (60) flows into the heating auxiliary circuit (51), and the rest flows into the indoor circuit (31).
 暖房用補助回路(51)へ流入した冷媒は、膨張弁(53)を通過する際に減圧され、点Nの状態の気液二相冷媒となる。膨張弁(53)を通過した冷媒は、冷媒熱交換器(60)の第2通路(62)へ流入し、その第1通路(61)を流れる冷媒から吸熱して蒸発する。冷媒熱交換器(60)の第2通路(62)を通過した冷媒は、バイパス管(58)を通って、ガス側連絡配管(17)へ流入する。 The refrigerant flowing into the heating auxiliary circuit (51) is decompressed when passing through the expansion valve (53), and becomes a gas-liquid two-phase refrigerant in the state of point N. The refrigerant that has passed through the expansion valve (53) flows into the second passage (62) of the refrigerant heat exchanger (60), absorbs heat from the refrigerant flowing through the first passage (61), and evaporates. The refrigerant that has passed through the second passage (62) of the refrigerant heat exchanger (60) flows into the gas side communication pipe (17) through the bypass pipe (58).
 室内回路(31)へ流入した冷媒は、室内熱交換器(32)へ送られる。室内熱交換器(32)へ流入した冷媒は、室内空気から吸熱して蒸発する。室内熱交換器(32)を通過する間において、冷媒の圧力は、室内熱交換器(32)の伝熱管を通過する際の流通抵抗によって次第に低下してゆく。室内熱交換器(32)を通過した冷媒は、室内回路(31)からガス側連絡配管(17)へと流入する。 The refrigerant flowing into the indoor circuit (31) is sent to the indoor heat exchanger (32). The refrigerant flowing into the indoor heat exchanger (32) absorbs heat from the indoor air and evaporates. While passing through the indoor heat exchanger (32), the pressure of the refrigerant gradually decreases due to the flow resistance when passing through the heat transfer tube of the indoor heat exchanger (32). The refrigerant that has passed through the indoor heat exchanger (32) flows from the indoor circuit (31) into the gas side communication pipe (17).
 ガス側連絡配管(17)では、室内回路(31)から流入した冷媒と暖房用補助回路(51)から流入した冷媒とが合流する。ガス側連絡配管(17)を流れる冷媒は、室外回路(21)へ流入し、四方切換弁(23)を通過後に主圧縮機(22)へ吸入される。 In the gas side communication pipe (17), the refrigerant flowing from the indoor circuit (31) and the refrigerant flowing from the heating auxiliary circuit (51) merge. The refrigerant flowing through the gas side communication pipe (17) flows into the outdoor circuit (21), passes through the four-way switching valve (23), and is sucked into the main compressor (22).
 本変形例の暖房用補助ユニット(50)には、バイパス通路と逆止弁(59)が設けられている。そして、空気調和装置(10)の冷房運転中には、暖房用補助ユニット(50)の冷媒熱交換器(60)で冷却された冷媒が液側連絡配管(16)を通じて室内ユニット(30)へ供給される。従って、本変形例によれば、冷房運転中の室内ユニット(30)へ供給される冷媒のエンタルピを引き下げることができ、室内ユニット(30)で得られる冷房能力を増大させることができる。 The heating auxiliary unit (50) of this modification is provided with a bypass passage and a check valve (59). During the cooling operation of the air conditioner (10), the refrigerant cooled by the refrigerant heat exchanger (60) of the heating auxiliary unit (50) passes through the liquid side connection pipe (16) to the indoor unit (30). Supplied. Therefore, according to this modification, the enthalpy of the refrigerant supplied to the indoor unit (30) during the cooling operation can be lowered, and the cooling capacity obtained by the indoor unit (30) can be increased.
 また、上記の各実施形態では、室外回路(21)と暖房用補助回路(51)とを1つのケーシングに収容して1つのユニットを形成してもよい。つまり、室外ユニット(20)と暖房用補助ユニット(50)を一体化してもよい。この場合も、室外回路(21)の構成は一般的な単段圧縮冷凍サイクルを行うものと同様であるため、大きな暖房能力が求められる用途向けの空気調和装置(10)の設計や製造に要する時間や費用を低く抑えることができる。 In each of the above embodiments, the outdoor circuit (21) and the heating auxiliary circuit (51) may be housed in one casing to form one unit. That is, the outdoor unit (20) and the heating auxiliary unit (50) may be integrated. In this case as well, the configuration of the outdoor circuit (21) is the same as that of a general single-stage compression refrigeration cycle, so it is required for the design and manufacture of an air conditioner (10) for applications that require large heating capacity. Time and costs can be kept low.
 以上説明したように、本発明は、冷凍サイクルを行う空気調和装置について有用である。 As described above, the present invention is useful for an air conditioner that performs a refrigeration cycle.

Claims (5)

  1.  室外ユニット(20)と室内ユニット(30)が液側連絡配管(16)及びガス側連絡配管(17)により接続されて冷凍サイクルを行う空気調和装置の冷媒回路(15)に接続され、
     上記液側連絡配管(16)から供給された冷媒を膨張させる膨張機構(53)と、上記膨張機構(53)を通過した冷媒と上記液側連絡配管(16)を流れる冷媒とを熱交換させる冷媒熱交換器(60)と、上記冷媒熱交換器(60)を通過した冷媒を圧縮して上記ガス側連絡配管(17)へ吐出する補助用圧縮機(54)とを備え、
     上記室内ユニット(30)で加熱した空気を室内へ供給する上記空気調和装置の暖房運転中に、上記冷媒熱交換器(60)と上記室内ユニット(30)の間で冷媒を循環させるために上記補助用圧縮機(54)を運転するように構成されている
    ことを特徴とする暖房用補助ユニット。
    The outdoor unit (20) and the indoor unit (30) are connected by a liquid side connecting pipe (16) and a gas side connecting pipe (17) and connected to a refrigerant circuit (15) of an air conditioner that performs a refrigeration cycle,
    The expansion mechanism (53) that expands the refrigerant supplied from the liquid side connection pipe (16), and the refrigerant that has passed through the expansion mechanism (53) and the refrigerant that flows through the liquid side connection pipe (16) exchange heat. A refrigerant heat exchanger (60), and an auxiliary compressor (54) that compresses the refrigerant that has passed through the refrigerant heat exchanger (60) and discharges it to the gas side connecting pipe (17),
    In order to circulate the refrigerant between the refrigerant heat exchanger (60) and the indoor unit (30) during the heating operation of the air conditioner that supplies air heated by the indoor unit (30) to the room, An auxiliary unit for heating, which is configured to operate the auxiliary compressor (54).
  2.  請求項1において、
     液冷媒を貯留可能な気液分離器(65)が上記冷媒熱交換器(60)と上記補助用圧縮機(54)の間に設けられている
    ことを特徴とする暖房用補助ユニット。
    In claim 1,
    A heating auxiliary unit, wherein a gas-liquid separator (65) capable of storing liquid refrigerant is provided between the refrigerant heat exchanger (60) and the auxiliary compressor (54).
  3.  請求項2において、
     上記室外ユニット(20)に設けられて冷媒を室外空気と熱交換させる室外熱交換器(24)を冷媒で加熱して除霜する上記空気調和装置の除霜動作中に、上記補助用圧縮機(54)から吐出された冷媒を上記室外ユニット(20)へ供給するために該補助用圧縮機(54)を運転するように構成されている
    ことを特徴とする暖房用補助ユニット。
    In claim 2,
    During the defrosting operation of the air conditioner that defrosts the outdoor heat exchanger (24) that is provided in the outdoor unit (20) and heats the refrigerant with the outdoor air to defrost, the auxiliary compressor An auxiliary unit for heating, wherein the auxiliary compressor (54) is operated to supply the refrigerant discharged from (54) to the outdoor unit (20).
  4.  請求項1において、
     上記補助用圧縮機(54)の吸入側と吐出側を接続するバイパス通路(58)と、
     上記バイパス通路(58)に設けられて上記補助用圧縮機(54)の吸入側から吐出側へ向かう冷媒の流通だけを許容する逆止弁(59)とを備え、
     上記室内ユニット(30)で冷却した空気を室内へ供給する上記空気調和装置の冷房運転中に、補助用圧縮機(54)を停止させた状態で上記膨張機構(53)を通過した冷媒を上記冷媒熱交換器(60)へ供給し、該膨張機構(53)を通過した冷媒と上記液側連絡配管(16)を流れる冷媒とを熱交換させるように構成されている
    ことを特徴とする暖房用補助ユニット。
    In claim 1,
    A bypass passage (58) connecting the suction side and the discharge side of the auxiliary compressor (54);
    A check valve (59) that is provided in the bypass passage (58) and allows only the refrigerant to flow from the suction side to the discharge side of the auxiliary compressor (54),
    During the cooling operation of the air conditioner that supplies the air cooled by the indoor unit (30) to the room, the refrigerant that has passed through the expansion mechanism (53) while the auxiliary compressor (54) is stopped is Heating characterized in that the refrigerant is supplied to the refrigerant heat exchanger (60), and heat exchange is performed between the refrigerant that has passed through the expansion mechanism (53) and the refrigerant that flows through the liquid side communication pipe (16). Auxiliary unit.
  5.  室外ユニット(20)と室内ユニット(30)が液側連絡配管(16)及びガス側連絡配管(17)により接続されて冷凍サイクルを行う冷媒回路(15)を備え、上記室内ユニット(30)で加熱した空気を室内へ供給する暖房運転を少なくとも行う空気調和装置であって、
     上記液側連絡配管(16)から供給された冷媒を膨張させる膨張機構(53)と、上記膨張機構(53)を通過した冷媒を上記液側連絡配管(16)を流れる冷媒と熱交換させる冷媒熱交換器(60)と、上記冷媒熱交換器(60)を通過した冷媒を圧縮して上記ガス側連絡配管(17)へ吐出する補助用圧縮機(54)とを備えており、
     上記暖房運転中に、上記冷媒熱交換器(60)と上記室内ユニット(30)の間で冷媒を循環させるために上記補助用圧縮機(54)を運転するように構成されている
    ことを特徴とする空気調和装置。
    The outdoor unit (20) and the indoor unit (30) are connected by a liquid side connecting pipe (16) and a gas side connecting pipe (17), and have a refrigerant circuit (15) for performing a refrigeration cycle. An air conditioner that performs at least a heating operation for supplying heated air into a room,
    An expansion mechanism (53) that expands the refrigerant supplied from the liquid side connection pipe (16), and a refrigerant that exchanges heat between the refrigerant that has passed through the expansion mechanism (53) and the refrigerant that flows through the liquid side connection pipe (16). A heat exchanger (60), and an auxiliary compressor (54) that compresses the refrigerant that has passed through the refrigerant heat exchanger (60) and discharges the refrigerant to the gas side communication pipe (17),
    The auxiliary compressor (54) is operated to circulate the refrigerant between the refrigerant heat exchanger (60) and the indoor unit (30) during the heating operation. Air conditioner.
PCT/JP2009/000332 2008-02-01 2009-01-28 Auxiliary unit for heating and air conditioner WO2009096179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008022898A JP5163161B2 (en) 2008-02-01 2008-02-01 Auxiliary heating unit and air conditioner
JP2008-022898 2008-02-01

Publications (1)

Publication Number Publication Date
WO2009096179A1 true WO2009096179A1 (en) 2009-08-06

Family

ID=40912535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000332 WO2009096179A1 (en) 2008-02-01 2009-01-28 Auxiliary unit for heating and air conditioner

Country Status (2)

Country Link
JP (1) JP5163161B2 (en)
WO (1) WO2009096179A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207826A (en) * 2011-03-29 2012-10-25 Fujitsu General Ltd Refrigerating cycle device
JP2012207823A (en) * 2011-03-29 2012-10-25 Fujitsu General Ltd Refrigerating cycle device
KR101635571B1 (en) * 2015-09-10 2016-07-01 송원대학교산학협력단 Electricity heat storage type heat pump system having refrigerant recovery function
CN106016873B (en) * 2016-05-26 2018-07-17 西安交通大学 A kind of two stages of compression switches to the air source heat pump defrosting system of part binary overlapping

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226669A (en) * 1984-04-24 1985-11-11 三洋電機株式会社 Refrigerator
JP2005061784A (en) * 2003-08-20 2005-03-10 Yanmar Co Ltd Engine heat pump
WO2005114064A1 (en) * 2004-05-20 2005-12-01 Yanmar Co., Ltd. Engine heat pump
US20070017240A1 (en) * 2005-07-19 2007-01-25 Hussmann Corporation Refrigeration system with mechanical subcooling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007353615B9 (en) * 2007-05-22 2012-04-19 Angelantoni Industrie Spa Refrigerating device and method for circulating a refrigerating fluid associated with it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226669A (en) * 1984-04-24 1985-11-11 三洋電機株式会社 Refrigerator
JP2005061784A (en) * 2003-08-20 2005-03-10 Yanmar Co Ltd Engine heat pump
WO2005114064A1 (en) * 2004-05-20 2005-12-01 Yanmar Co., Ltd. Engine heat pump
US20070017240A1 (en) * 2005-07-19 2007-01-25 Hussmann Corporation Refrigeration system with mechanical subcooling

Also Published As

Publication number Publication date
JP5163161B2 (en) 2013-03-13
JP2009180493A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
US10563872B2 (en) Regenerative air conditioner
US8656729B2 (en) Air conditioning system with defrosting operation
JP6685409B2 (en) Air conditioner
JP3925545B2 (en) Refrigeration equipment
KR101873595B1 (en) A cascade heat pump and a driving method for the same
JP5357418B2 (en) Heat pump air conditioner
JP4096934B2 (en) Refrigeration equipment
WO2013144994A1 (en) Air conditioning device
US20100154451A1 (en) Refrigerating Apparatus
WO2009131083A1 (en) Refrigeration device
JP2006284035A (en) Air conditioner and its control method
JP2007240025A (en) Refrigerating device
JP2005147456A (en) Air conditioner
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2003172523A (en) Heat-pump floor heater air conditioner
JP5163161B2 (en) Auxiliary heating unit and air conditioner
WO2007102345A1 (en) Refrigeration device
JP2008267653A (en) Refrigerating device
JP4902585B2 (en) Air conditioner
WO2014192138A1 (en) Refrigeration cycle device
JP4084915B2 (en) Refrigeration system
KR100528292B1 (en) Heat-pump type air conditioner
CN213089945U (en) Air conditioner
JP6042037B2 (en) Refrigeration cycle equipment
US20070144200A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706943

Country of ref document: EP

Kind code of ref document: A1