WO2005114064A1 - Engine heat pump - Google Patents

Engine heat pump Download PDF

Info

Publication number
WO2005114064A1
WO2005114064A1 PCT/JP2005/007411 JP2005007411W WO2005114064A1 WO 2005114064 A1 WO2005114064 A1 WO 2005114064A1 JP 2005007411 W JP2005007411 W JP 2005007411W WO 2005114064 A1 WO2005114064 A1 WO 2005114064A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
liquid refrigerant
heat exchanger
auxiliary compressor
Prior art date
Application number
PCT/JP2005/007411
Other languages
French (fr)
Japanese (ja)
Inventor
Ken-Ichi Minami
Jirou Fukudome
Hiroshi Azuma
Keishi Yamanaka
Eita Kureha
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Priority to US11/569,429 priority Critical patent/US20070295025A1/en
Priority to EP05730684A priority patent/EP1762792A4/en
Publication of WO2005114064A1 publication Critical patent/WO2005114064A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present invention relates to a device configuration of an engine heat pump, and more particularly, to a technique for reducing total compression work without newly increasing the amount of electric power used.
  • Patent Document 1 Regarding an engine heat pump configured to drive a compressor by an engine, a configuration described in Patent Document 1 is known.
  • the compression work of an engine heat pump is divided into two systems: compression work by a main compressor and compression work by an auxiliary compressor, and the evaporation pressure on one side (the auxiliary compressor side) is An invention is disclosed in which the compression work on one side is reduced by keeping the pressure higher than the evaporation pressure on the compressor side), thereby reducing the total compression work in the engine heat pump.
  • Patent Document 1 discloses a configuration in which compression work on the side where the evaporation pressure becomes high (auxiliary compressor side) is performed by an electrically driven compressor (electric compressor).
  • the electric compressor equipment that requires new electric power (the electric compressor) will be added to the engine heat pump.
  • the compression work can be reduced, the amount of electric power used increases, resulting in "reduction of the amount of electric power used” and the full advantage of the engine heat pump.
  • Patent Document 1 JP 2004-20153
  • the engine heat pump of the present invention includes a main compressor and an auxiliary compressor driven by an engine, an indoor heat exchanger, an outdoor heat exchanger, an expansion valve for an indoor heat exchanger, an expansion valve for an outdoor heat exchanger, and indoor heat.
  • the connection route between the heat exchanger and the outdoor heat exchanger is installed in the liquid refrigerant passage.
  • a subcooling heat exchanger for subcooling the liquid refrigerant before branching with a subcooling liquid refrigerant branched to a branch path, and the refrigerant discharged from the auxiliary compressor is discharged from the main compressor.
  • the supercooling liquid coolant is compressed by the auxiliary compressor, and the capacity of the auxiliary compressor with respect to the total capacity of the main compressor and the auxiliary compressor.
  • the ratio is configured from 20% to 29%.
  • an engine waste heat recovery device is provided in parallel with the outdoor heat exchanger, and the supercooling liquid refrigerant is evaporated by the engine waste heat recovery device and compressed by an auxiliary compressor.
  • the configuration is such that:
  • the supercooling refrigerant having a higher evaporating pressure (refrigerant suction pressure) than the refrigerant compressed by the main compressor is compressed by the auxiliary compressor driven by the engine.
  • the cooling capacity can be maintained or improved during cooling, and at the same time, heating can be performed.
  • the performance of supercooling heat exchange can be secured.
  • the operation efficiency (energy efficiency) during cooling and heating can be improved.
  • the total compression work during cooling is reduced by configuring the auxiliary compressor such that the capacity ratio of the auxiliary compressor to the total capacity of the main compressor and the auxiliary compressor is within a predetermined numerical range.
  • the supercooling effect increases the heat absorption capacity of the external force per unit mass flow rate of the refrigerant, thereby reducing the total amount of refrigerant flowing through the refrigerant cycle. Can be. As a result, the total compression work can be reduced Operation efficiency (energy efficiency) can be improved.
  • FIG. 1 is a refrigerant circuit diagram of an engine heat pump according to the present invention.
  • FIG. 2 is a block diagram of the control devices.
  • FIG. 3 is a Mollier diagram similarly showing a refrigerant circuit configuration.
  • FIG. 4 is a graph showing the relationship between the auxiliary compressor capacity ratio and COP.
  • FIG. 5 is a graph showing a relationship between a capacity ratio of an auxiliary compressor and a refrigerant temperature of a subcooling heat exchanger.
  • the engine heat pump according to the present invention includes a main compressor 2 and an auxiliary compressor 3 driven by an engine 4, an indoor heat exchanger 8, an outdoor heat exchanger 5, an expansion valve 23 for an indoor heat exchanger, and an expansion for an outdoor heat exchanger.
  • the valve 21 and the connection path between the indoor heat exchanger 8 and the outdoor heat exchanger 5 It has a subcooling heat exchanger 15 that is provided in the main path 26, which is a medium passage path, and supercools the liquid refrigerant before branching with the subcooling liquid refrigerant branched to the branch path 27 (27a, 27b). And a refrigerant cycle composed of these.
  • the supercooled heat exchanger has connection points 15a and 15b with the main path 26 and connection points 15c and 15d with the branch path 27. In this configuration, a plurality of indoor heat exchanges 8 may be provided.
  • the main compressor 2 is driven by the engine 4, sucks and compresses the gas refrigerant from which the liquid refrigerant has been separated by an accumulator (not shown), and discharges the high-temperature and high-pressure gas refrigerant.
  • the gas refrigerant discharged from the main compressor 2 is guided by the four-way valve 24 in a predetermined direction. Since the gas refrigerant sucked into the main compressor 2 is also guided by the four-way valve 24, the refrigerant inlet of the main compressor 2 and the four-way valve 24 communicate with each other through a path 32 forming a suction line of the main compressor 2. Have been.
  • the auxiliary compressor 3 is also driven by the engine 4, and is separated by an accumulator (not shown) from the subcooling liquid refrigerant that branches into the branch path 27 and passes through the supercooling heat exchange ⁇ 15. Suction of compressed gas refrigerant and discharge of high temperature and high pressure gas refrigerant
  • the subcooling heat exchange is for supercooling the liquid refrigerant before branching by the subcooling liquid refrigerant whose temperature has been lowered by the supercooling heat exchange expansion valve 22 provided in the branch path 27.
  • the subcooling liquid refrigerant after heat exchange by heat exchange is sucked into the auxiliary compressor 3.
  • the supercooling heat exchange 15 and the refrigerant inlet of the auxiliary compressor 3 are communicated with each other through a path 33 constituting a suction line of the auxiliary compressor 3.
  • a branch path 27 provided in the main path 26 constitutes a branch path 27a between the indoor heat exchange 8 and the supercooled heat exchange 15, and a branch path 27a between the outdoor heat exchange 5 and the supercooled heat exchange.
  • a branch path 27b is formed between the branch 15 and the inversion valve 15, and on-off valves 28a and 28b are provided between the branch paths 27a and 27b and the supercooled heat exchange expansion valve 22, respectively. The opening and closing of these opening / closing valves 28a 'and 28b is switched so that the liquid refrigerant before branching of the main path 26 is supercooled in a cooling cycle or a heating cycle described later.
  • the refrigerant discharged from the auxiliary compressor 3 is combined with the refrigerant discharged from the main compressor 2 at a junction 65 provided in a path from each of the compressors 2, 3 to the four-way valve 24. It is configured to join. Here, the flowing direction of the joined refrigerant is changed at the four-way valve 24, and will be described later. A cooling cycle or a heating cycle is performed.
  • An oil separator (not shown) is provided between the junction 65 and the four-way valve 24 to separate the refrigerating machine oil contained in the high-temperature and high-pressure gas refrigerant to separate the main compressor 2 and the auxiliary compressor 3 from each other. It is recirculated to the suction side so that both compressors 2 and 3 can be lubricated well.
  • the cooling cycle or the heating cycle is performed by switching the flow direction of the refrigerant by the four-way valve 24.
  • the refrigerant compressed by the main compressor 2 and the auxiliary compressor 3 joins at the junction 65 is sent to the outdoor heat exchanger 5 through the four-way valve 24, and the outdoor heat exchanger After the heat is released at 5 and condensed, it is sent to the subcooling heat exchanger 15, flows in from the connection point 15b, and flows out from the connection point 15a.
  • the liquid refrigerant supercooled in the subcooling heat exchanger 15 expands in the indoor heat exchanger expansion valve 23, absorbs heat in the indoor heat exchanger 8, evaporates, and then passes through the four-way valve 24 to the main compressor. Sucked in 2. After the drawn refrigerant is compressed by the main compressor 2, it is discharged again.
  • a part of the liquid refrigerant sent from the outdoor heat exchanger 5 and passing through the main path 26 is diverted to the branch path 27a as a liquid refrigerant for supercooling, and is divided by the expansion valve 22 for the subcooling heat exchanger.
  • the liquid refrigerant that flows through the main path 26 is supercooled in the process of flowing into the supercooled heat exchanger from the connection point 15c and flowing out to the connection point 15d to become a low-temperature wet refrigerant due to a decrease in temperature.
  • the on-off valve 28a is in an open state and the on-off valve 28b is in a closed state, and the liquid refrigerant passing through the main path 26 is branched to the branch path 27a without being branched to the branch path 27b.
  • the entire amount of liquid refrigerant before branching is supercooled by the subcooling liquid refrigerant.
  • the subcooling liquid refrigerant is sucked into the auxiliary compressor 3, compressed by the auxiliary compressor 3, and discharged again.
  • the refrigerant compressed by the main compressor 2 and the auxiliary compressor 3 joins at a junction 65 and is sent to the indoor heat exchange 8 via the four-way valve 24. After being radiated and condensed in the indoor heat exchanger 8, it is sent to the supercooling heat exchanger 15, and flows in from the connection point 15a and flows out from the connection point 15b.
  • the liquid refrigerant supercooled in the supercooling heat exchanger 15 expands in the outdoor heat exchanger expansion valve 21 and absorbs heat in the outdoor heat exchanger 5 to evaporate. Is sucked into the main compressor 2. Then, the drawn refrigerant is compressed by the main compressor 2 and then discharged again.
  • a part of the liquid refrigerant sent from the indoor heat exchange 8 and passing through the main path 26 is diverted to the branch path 27b as a liquid refrigerant for subcooling, and is divided by the expansion valve 22 for the subcooling heat exchanger.
  • the liquid refrigerant that flows through the main path 26 is supercooled in the process of flowing into the supercooled heat exchanger from the connection point 15c and flowing out to the connection point 15d to become a low-temperature wet refrigerant due to a decrease in temperature.
  • the on-off valve 28a is in a closed state and the on-off valve 28b is in an open state, and the liquid refrigerant passing through the main path 26 is branched into a branch path 27b that is not diverted to the branch path 27a side.
  • the entire amount of liquid refrigerant before branching is supercooled by the supercooling liquid refrigerant.
  • the supercooling liquid refrigerant that has passed through the supercooling heat exchanger 5 absorbs heat in the engine waste heat recovery unit 6, evaporates, is sucked by the auxiliary compressor 3, and is compressed by the auxiliary compressor 3. Is discharged again.
  • the controller 25 which is a control device provided in the engine heat pump according to the present invention, is connected to the outdoor heat exchanger expansion valve 21, the supercooling heat exchanger expansion valve 22, and the indoor heat exchanger expansion valve 23, The controller 25 controls the opening of each expansion valve.
  • the controller 25 is connected to on-off valves 28a and 28b provided in the branch paths 27a and 27b, respectively, and controls the opening and closing of these valves.
  • the on-off valves 28a and 28b are specifically controlled as follows. That is, the on-off valve 28a is opened when the liquid refrigerant is supercooled in the cooling cycle described above, and is closed otherwise. Further, the opening / closing valve 28b is opened when the liquid refrigerant is supercooled in the above-described heating cycle, and is closed otherwise.
  • the liquid refrigerant is branched off downstream of the subcooling heat exchanger 15 in each of the cooling cycle and the heating cycle, and The entire amount of liquid refrigerant before branching is supercooled by supercooling heat exchange 15.
  • the controller 25 is connected to (the control circuit of) the engine 4 and controls the operation of the main compressor 2 and the auxiliary compressor 3 by performing start / stop control of the engine 4.
  • the controller 25 controls the subcooling heat exchanger so that the wet refrigerant expanded by the subcooling heat exchanger expansion valve 22 has a degree of superheating in the path 33 that is the suction line of the auxiliary compressor 3.
  • the opening of the expansion valve 22 is controlled.
  • the compression work AWs by the auxiliary compressor 3 can be made smaller than the compression work AWm by the main compressor 2.
  • the total compression work is reduced as compared with the case where all the refrigerant is compressed by a single compression work AWm.
  • FIG. 3 a Mollier diagram of the refrigeration cycle in the above-described refrigerant circuit configuration will be described according to the flow of the refrigerant in the refrigerant circuit configuration.
  • the state change of the refrigerant per unit mass flow rate is shown, and the horizontal axis shows the specific enthalpy (kj / kg), which is the energy per 1 kg of the mass of the refrigerant.
  • the axis indicates (absolute) pressure (MPa abs).
  • a point Am in the Mollier diagram is a state where the refrigerant flows through the path 32 constituting the suction line of the main compressor 2.
  • h2 (kj / kg) and p2 (MPa abs) are the specific enthalpy and pressure value in this state, respectively.
  • the flow rate of the refrigerant in the refrigerant circuit is Gm.
  • the point As indicates the state in which the refrigerant is flowing through the path 33 constituting the suction line of the auxiliary compressor 3, and the specific enthalpy and the pressure value in this state are hi (kj / kg) and pi (MPa abs, respectively).
  • the flow rate of the refrigerant in the refrigerant circuit is set to Gs.
  • the refrigerant in these states is sucked into the respective compressors 2 and 3 at the respective suction line forces, and the respective compressors 2 and 3 perform compression work.
  • the compression work AWm is performed on the refrigerant per unit mass flow rate in the main compressor 2 (compression section AmB), and the compression work AWs on the refrigerant per unit mass flow rate is performed in the auxiliary compressor 3. (Compression section AsB).
  • the refrigerant (gas refrigerant) which has been compressed by each of the compressors 2 and 3 to have a high pressure joins at a junction 65.
  • Go the total flow rate of the combined refrigerant in the refrigerant circuit
  • Go the total flow rate of the combined refrigerant in the refrigerant circuit
  • Go the total flow rate of the combined refrigerant in the refrigerant circuit
  • Go the total flow rate of the combined refrigerant in the refrigerant circuit
  • Go the total flow rate of the combined refrigerant in the refrigerant circuit
  • Go the total flow rate of the combined refrigerant in the refrigerant circuit
  • Go the total flow rate of the combined refrigerant in the refrigerant circuit
  • Go the total flow rate of the combined refrigerant in the refrigerant circuit
  • Go the total flow rate of the combined refrigerant in the refrigerant circuit
  • Go the total flow rate of the combined refrigerant in the refrigerant circuit
  • the refrigerant sent out as a liquid refrigerant from the outdoor heat exchanger 5 is supplied to the subcooling heat exchanger 15 at a downstream side of the subcooling heat exchanger 15 to a subcooling liquid refrigerant branched to a branch path 27a.
  • Tl, ⁇ 2, and ⁇ 3 in the figure indicate isotherms (tl> t2> t3) of the temperatures tl (° C), t2 (° C), and t3 (° C), respectively, and indicate the main route 26.
  • This indicates that the flowing liquid refrigerant is subcooled in the subcooling heat exchanger 15 from tl (° C) to t2 (° C).
  • the pressure value of the liquid refrigerant after supercooling in the state at point D is defined as pO (MPa abs).
  • the liquid refrigerant after being supercooled is partially branched in the main path 26 and then expanded by the indoor heat exchanger expansion valve 23 to have a lower temperature and a lower pressure than the indoor air for cooling. It becomes liquid refrigerant (expansion section DEm).
  • P 2 (MPa abs) be the pressure value of the liquid refrigerant at the low temperature and low pressure at the point Em.
  • the liquid refrigerant in the state of the point Em is sent to the indoor heat exchanger 8, and in the indoor heat exchange 8, the refrigerant is evaporated by absorbing heat from the indoor air (evaporation section EmAm).
  • the refrigerant that has become the gas refrigerant flows through the path 32 constituting the suction line of the main compressor 2 and is sucked into the main compressor 2 again. That is, the refrigerant pressure (value p2) in the evaporation section E mAm is equal to the refrigerant suction pressure Pm of the refrigerant of the main compressor 2 described above, and the flow force SGm of the refrigerant sucked into the main compressor 2 in the refrigerant circuit SGm It becomes.
  • the supercooling liquid refrigerant branched to the branch path 27a is expanded by the subcooling heat exchanger expansion valve 22 and has a pressure * temperature lower than that of the liquid refrigerant in the state at the point C ( Expansion zone DEs).
  • the temperature of the liquid refrigerant for supercooling drops from the temperature t2 (° C) of the liquid refrigerant after supercooling described above by the supercooling heat exchange expansion valve 22 to t3 (° C).
  • the liquid refrigerant branched to the branch path 27a becomes the liquid refrigerant for supercooling.
  • the flow rate of the liquid refrigerant branched into the branch path 27a in the refrigerant circuit becomes Gs.
  • the expansion of the branched liquid refrigerant by the supercooling heat exchange expansion valve 22 (expansion section DEs) is suppressed more than the expansion of the liquid refrigerant by the indoor heat exchange expansion valve 23 (expansion section DEm).
  • the liquid refrigerant (point) before the supercooling liquid refrigerant is sent to the subcooling heat exchanger 15 (State C), the expansion of the subcooling liquid refrigerant in the subcooling heat exchanger expansion valve 22 until the pressure value ⁇ of the refrigerant at the state of point D drops to the pressure value pi. It is a cara that can perform supercooling even if stopped.
  • the supercooling liquid refrigerant in the state at the point Es absorbs heat from the liquid refrigerant flowing through the main path 26 in the supercooling heat exchanger 15, thereby superposing the liquid refrigerant flowing through the main path 26.
  • Cool (EsAs evaporation section) The refrigerant that has been supercooled flows through the path 33 constituting the suction line of the auxiliary compressor 3 and is sucked into the auxiliary compressor 3 again.
  • a part (flow rate Gs) of the liquid refrigerant flowing through the main path 26 is branched to the branch path 27a, and the flow rate Gm of the liquid refrigerant sent to the indoor heat exchanger 8 is reduced compared to the total amount Go.
  • the heat absorption capacity (cooling capacity) (kj / kg) per unit mass flow rate of the liquid refrigerant increases.
  • the cooling capacity of the indoor heat exchanger 8 is maintained or improved.
  • the expansion of the subcooling liquid refrigerant at the flow rate Gs branched to the branch path 27a by the expansion valve 22 for the subcooling heat exchanger is performed by the expansion valve for the indoor heat exchanger at the flow rate Gm of the branched refrigerant.
  • the evaporation pressure in the evaporation section EsAs can be increased.
  • the evaporating pressure of the subcooling refrigerant having the flow rate Gs to be branched can be increased as compared with the evaporating pressure of the refrigerant having the remaining flow rate Gm after branching.
  • Ws can be significantly reduced compared to the required compression work AWm in the compression section AmB.
  • the compression work in the auxiliary compressor 3 can be significantly reduced as compared with the compression work in the main compressor 2, and the total compression work in the engine heat pump can be reduced.
  • a specific reduction amount of the compression work is expressed as follows. Note that the comparison here The elephant is the total compression work when all the Go refrigerant is compressed by a single compression work AWm. In other words, in a refrigerant circuit having a single compressor without an auxiliary compressor, it is the total compression work in the case where all the Go refrigerant is compressed by the compression work AWm. This is equivalent to the total compression work when the pressure drop in the expansion section DEs of the subcooling liquid refrigerant having the flow rate Gs branched into the branch path 27a is changed from the pressure value ⁇ to the pressure value p2.
  • the compression work of the engine heat pump as a whole according to the present invention is, as described above, because the pressure drop of the subcooling liquid refrigerant having the flow rate Gs branched to the branch path 27a is limited from ⁇ to pi.
  • Is represented by (GmX AWm) + (Gs X AWs) ⁇ Gm X (hO—h2) ⁇ + ⁇ Gs X (hO—1 ⁇ 1) ⁇ ...
  • the pressure drop of the subcooling liquid refrigerant having the flow rate Gs branched into the branch path 27a is limited from ⁇ to pi, and the amount of reduction of the compression work by increasing the evaporation pressure of the refrigerant having the flow rate Gs is expressed by the above equation
  • the capacity ratio between the main compressor 2 and the auxiliary compressor 3 is the ratio of the discharge capacity of each of the compressors 2 and 3, and the discharge capacity of each of the compressors 2 and 3 is the volume capacity and rotation of each. Derived from numbers.
  • the volume capacity is the suction volume (ccZ cycle) of the refrigerant per cycle (1 rotation) of the rotating body provided in each of the compressors 2 and 3.
  • the rotation speed of each of the compressors 2 and 3 depends on the main compressor 2 and the auxiliary compressor 3, which are driven by the common engine 4 as described above.
  • Each of the compressor 2 and the auxiliary compressor 3 is determined by a pulley ratio (speed ratio) of the engine 4 to the engine pulley.
  • the discharge capacity of each of the compressors 2 and 3 is determined by the product force of the volume capacity and the pulley ratio, and the volume capacity and the pulley ratio of the main compressor 2 are set to Vm and Um, respectively.
  • the discharge capacity of the main compressor 2 is VmX Um
  • the discharge capacity of the auxiliary compressor 3 is Vs X Us. That is, the capacity ratio of the auxiliary compressor 3 to the total capacity (total discharge capacity) of the main compressor 2 and the auxiliary compressor 3 (hereinafter “auxiliary compressor capacity ratio R (%)” and!
  • auxiliary compressor capacity ratio R (Vs X Us) / ⁇ (Vm X Um) + (Vs X Us) ⁇ .
  • the auxiliary compressor capacity ratio R is determined by the pulley ratio Um and Us for each engine 4 when the volume capacities Vm and Vs of the compressors 2 and 3 are equivalent, and the capacity of each compressor 2 and 3 When the pulley ratios Um and Us for the engine 4 are equal, they are determined by their respective volume capacities Vm and Vs.
  • the discharge capacity of the auxiliary compressor 3 is smaller than the discharge capacity of the main compressor 2.
  • the auxiliary compressor capacity ratio R (%) is configured to be 20% to 29%.
  • the configuration of the auxiliary compressor capacity ratio R within the above numerical range will be described.
  • the effect of the change in the auxiliary compressor capacity ratio R affects the flow rate of the main path 26 that is branched to the branch path 27a (during the cooling cycle) or 27b (during the heating cycle).
  • the ratio of Gs to the total amount of liquid refrigerant for supercooling, Go changes. That is, when the auxiliary compressor capacity ratio R increases, the ratio of the branched flow rate Gs to the total amount of liquid refrigerant Go increases, and when the auxiliary compressor capacity ratio R decreases, the ratio of the branched flow rate Gs to the total amount of liquid refrigerant Go relative to Go Decrease.
  • the numerical range of the auxiliary compressor capacity ratio R in the present invention in the range of 20% to 29% will be described.
  • the subcooling liquid refrigerant (flow rate Gs) branched to the branch path 27a or 27b in the main path 26 is referred to as a ⁇ branch liquid refrigerant, '' and the liquid refrigerant flowing through the main path 26 after the branch (flow rate Gm) is defined and described as “main liquid refrigerant”.
  • the upper limit of 29% of the auxiliary compressor capacity ratio R is derived from the changing power of the operating efficiency (energy efficiency) during the cooling cycle (cooling).
  • the flow rate Gs of the branch liquid refrigerant to the branch path 27a that is, the supercooling liquid for supercooling the entire amount of liquid refrigerant flowing through the main path 26, Go. Since the amount of the refrigerant increases, the supercooling action in the supercooling heat exchanger 15 increases, and the cooling capacity per unit mass flow of the main liquid refrigerant also increases.
  • the upper limit of the auxiliary compressor capacity ratio R is determined from changes in operating efficiency (energy efficiency) based on these phenomena.
  • Fig. 4 is a graph showing specific measurement data as a basis for setting the upper limit of the auxiliary compressor capacity ratio R to 29% in the present invention.
  • the horizontal axis represents the auxiliary compressor capacity ratio R (%), and the vertical axis represents the coefficient of performance (COP) in the refrigerant cycle.
  • This COP is represented by cooling / heating capacity Z fuel consumption, and the larger the value of COP, the higher the operating efficiency (energy-efficient).
  • the graph indicated by the broken line shows the COP in the refrigerant circuit configuration when a single compressor is provided without the auxiliary compressor.
  • the COP during cooling becomes higher and flatter than the single compressor when the auxiliary compressor capacity ratio R is around 10%! From around the compressor capacity ratio R approaching 15%, the COP decreases as the auxiliary compressor capacity ratio R increases. Also, the instantaneous force at which the auxiliary compressor capacity ratio R becomes about 30% is lower than the COP for a single compressor during cooling. In other words, the value of the auxiliary compressor capacity ratio R at this point (approximately 30%) 1S The critical value (upper limit) at which the operation efficiency (COP) can be improved by reducing the total compression work during cooling in the present invention described above. If the auxiliary compressor capacity ratio R is less than about 30%, the COP during cooling can be maintained at a higher value than before. For this reason, the upper limit of the auxiliary compressor capacity ratio R in the present invention is set to 29%. As can be seen from the graph, the COP during the heating cycle always shows a higher value than before, regardless of the value of the auxiliary compressor capacity ratio R.
  • the lower limit is set to 20%. This will be described.
  • the lower limit of 20% of the auxiliary compressor capacity ratio R is the refrigerant temperature at the connection point 15a, which is the refrigerant inlet on the main path 26 side of the supercooling heat exchange 15 during the heating cycle (heating) (hereinafter simply referred to as “ Temperature)) and the refrigerant temperature at the connection point 15b, which is the refrigerant outlet on the main path 26 side of the supercooling heat exchange 15 (hereinafter simply referred to as “outlet temperature").
  • the flow rate Gs of the branched liquid refrigerant branched into the branch path 27b that is, the supercooling for supercooling the total amount of liquid refrigerant flowing through the main path 26, Go. Since the amount of the liquid refrigerant is reduced, the supercooling effect in the supercooling heat exchange 5 is reduced, and the branched liquid refrigerant is easily evaporated. However, as the flow rate Gs of the branch liquid refrigerant decreases, the flow rate Gm of the main liquid refrigerant increases, and the liquid refrigerant of the total amount Go is not sufficiently supercooled by the supercooling heat exchanger 15, and becomes supercooled.
  • the outlet temperature rises with respect to the inlet temperature that is substantially constant.
  • Such an increase in the outlet temperature with respect to the inlet temperature in the subcooling heat exchanger 15 hinders obtaining a sufficient degree of subcooling in the subcooling heat exchanger 15 during heating.
  • a temperature difference between the inlet temperature of the supercooled liquid refrigerant and the outlet temperature after the supercooling exceeds a certain level (for example, 5 °). C or more), that is, the capacity of the auxiliary compressor 3 needs to be selected (configured) so that the degree of supercooling occurs. Therefore, the lower limit of the auxiliary compressor capacity ratio R is determined.
  • FIG. 5 is a graph showing specific measurement data as a basis for setting the lower limit of the auxiliary compressor capacity ratio R to 20% in the present invention.
  • the horizontal axis represents the auxiliary compressor capacity ratio R (%), and the vertical axis represents the inlet or outlet temperature (° C) of the subcooling heat exchanger 15, and the respective values during heating are shown. Is shown.
  • the inlet temperature of the subcooling heat exchanger 15 is a substantially constant temperature (32 to 33 ° C) regardless of the value of the auxiliary compressor capacity ratio R.
  • the outlet temperature of the subcooling heat exchanger 15 increases from a temperature lower than the inlet temperature to a higher temperature as the auxiliary compressor capacity ratio R decreases. In other words, the outlet temperature becomes higher than the inlet temperature from the point in time when the auxiliary compressor capacity ratio R reaches a certain value.
  • when heating The relationship between the inlet temperature and the outlet temperature that can ensure the performance of supercooling heat exchange 15 is that the outlet temperature is preferably about 5 ° C or more lower than the inlet temperature.
  • the critical value (lower limit) of the auxiliary compressor capacity ratio R which is lower than the temperature by about 5 ° C or more, is 20%. For this reason, the lower limit of the auxiliary compressor capacity ratio R in the present invention is set to 20%.
  • the numerical value range of the auxiliary compressor capacity ratio R in the engine heat pump according to the present invention ranges from 20% to 29% from the upper limit determined from cooling and the lower limit determined from heating power.
  • the cooling capacity can be maintained or improved during cooling, and the performance of supercooling heat exchange can be ensured during heating. That is, in the configuration of the present invention in which the main compressor 2 and the auxiliary compressor 3 are driven by the common engine 4, by setting the auxiliary compressor capacity ratio R within the range of 20% to 29%, cooling and heating are performed. Operation with good operation efficiency (energy efficiency) at the time is possible.
  • a continuously variable transmission is used to transmit the driving force from the engine 4 to the main compressor 2 and the auxiliary compressor 3. It can also be configured to be.
  • the gear ratio of the main compressor 2 and the auxiliary compressor 3 is changed by CVT in consideration of the critical value of the auxiliary compressor capacity ratio R at the time of cooling and at the time of heating as described above.
  • the value of the auxiliary compressor capacity ratio R is smaller than the above-mentioned upper limit during cooling, and the auxiliary compressor capacity ratio during heating. It is sufficient that the value of R is larger than the lower limit described above. That is, during cooling, the CVT is controlled so that the auxiliary compressor capacity ratio R is less than about 30%, and during heating, the auxiliary compressor capacity ratio is 20% or more. To change the gear ratio.
  • the degree of freedom of the volume capacity Vs of the auxiliary compressor 3 and the pulley ratio Us set with respect to the volume capacity Vm of the main compressor 2 and the pulley ratio Um is improved. Can be done. In the cooling cycle, only the upper limit should be determined. In the heating cycle, only the lower limit needs to be determined. In each of heating and heating, the auxiliary compressor capacity ratio R can be set to a more suitable value, and the operation efficiency (energy efficiency) in each cycle can be improved.
  • the engine waste heat recovery device 6 is provided in parallel with the outdoor heat exchange 5.
  • the supercooling liquid refrigerant branched off in the main path 26 is evaporated by the engine waste heat recovery unit 6 and compressed by the auxiliary compressor 3.
  • the engine waste heat recovery device 6 is for absorbing and evaporating the branched liquid refrigerant that has passed through the supercooling heat exchanger 15 during heating.
  • the branch liquid refrigerant absorbs heat and evaporates by heat exchange between the branch liquid refrigerant and the engine cooling water CW having a higher temperature than the branch liquid refrigerant.
  • the combined refrigerant is sent to indoor heat exchange 8.
  • heat is dissipated by condensation of the refrigerant that has become high-pressure gas, and is dissipated in the room where heating is performed and cooled to become a liquid refrigerant (condensation section BC). That is, the state at the point B indicates a state where the refrigerant is on the path from the junction 65 to the indoor heat exchanger 8.
  • the refrigerant sent out as liquid refrigerant from the indoor heat exchanger 8 is supplied to the subcooling heat exchanger 15 at a downstream side of the subcooling heat exchanger 15 to a subcooling liquid refrigerant branched to a branch path 27b. Is supercooled (supercooling section CD).
  • the liquid refrigerant after being supercooled is partially branched in the main path 26 and then expanded by the outdoor heat exchange expansion valve 21 to become a low-temperature and low-pressure liquid refrigerant (expansion section). D Em).
  • the liquid refrigerant in the state of the point Em is sent to the outdoor heat exchanger 5, where the refrigerant is evaporated by absorbing heat from the outside air (evaporation section EmAm).
  • the refrigerant that has become the gas refrigerant flows through the path 32 constituting the suction line of the main compressor 2 and is sucked into the main compressor 2 again.
  • the subcooling liquid refrigerant branched to the branch path 27b is the expansion valve 2 for the subcooling heat exchanger.
  • the pressure * temperature is lower than that of the liquid refrigerant in the state at the point C when expanded at 2 (expansion section DEs).
  • the liquid refrigerant branched to the branch path 27b becomes the subcooling liquid refrigerant.
  • the flow rate of the liquid refrigerant branched in the branch path 27b in the refrigerant circuit becomes Gs.
  • the subcooling liquid refrigerant in the state of point Es absorbs heat from the liquid refrigerant flowing through main path 26 in subcooling heat exchanger 15, thereby superposing the liquid refrigerant flowing through main path 26. Cooling.
  • the subcooling liquid refrigerant that has passed through the subcooling heat exchanger 15 is sent to the engine waste heat recovery unit 6.
  • heat exchange between the supercooling liquid refrigerant and the engine cooling water CW is performed, and the supercooling liquid refrigerant absorbs heat and evaporates (evaporation section EsAs).
  • the evaporated refrigerant flows through the path 33 forming the suction line of the auxiliary compressor 3 and is sucked into the auxiliary compressor 3 again.
  • the liquid refrigerant of the total amount Go flowing through the main path 26 is supercooled by the supercooling heat exchange 15 as described above.
  • the subcooling of the liquid refrigerant increases the heat absorption capacity (kjZkg) per unit mass flow rate of the refrigerant. That is, in the outdoor heat exchanger 5 after being supercooled, the heat absorption capacity from the outside air per unit mass flow rate of the liquid refrigerant is increased, and a smaller amount of the liquid refrigerant is used as compared with the liquid refrigerant that is not supercooled. It is possible to absorb the same amount of heat.
  • the flow rate Gm of the main liquid refrigerant sent to the outdoor heat exchanger 5 during heating can be reduced, and the total amount Go of the refrigerant circulating in the refrigerant cycle can be reduced.
  • the total compression work in the refrigerant cycle can be reduced, and the operation efficiency (energy efficiency) can be improved.
  • the engine waste heat recovery unit 6 is provided in parallel with the outdoor heat exchanger 5, and the branch liquid refrigerant for supercooling is evaporated by the engine waste heat recovery unit 6 and compressed by the auxiliary compressor 3.
  • the auxiliary compressor capacity ratio R within the above range, it is possible to reduce the total compression work during cooling, and also to increase the amount of electric power used during heating without newly increasing Thus, the total compression work can be reduced.
  • the main compressor 2 and the auxiliary compressor 3 driven by the engine 4 may be configured to be driven independently.
  • the main compressor 2 and the auxiliary compressor 3 can be operated and stopped according to the magnitude of the air conditioning load, and operation efficiency (energy efficiency) can be improved.
  • a clutch 42 for the main compressor and a clutch 43 for the auxiliary compressor for switching the connection) are provided.
  • a path 32 forming a suction line of the main compressor 2 and a path 33 forming a suction line of the auxiliary compressor 3 are connected by a communication path 34, and an on-off valve 35 is provided in the communication path 34.
  • an on-off valve 35 is provided in the communication path 34.
  • the controller 25 described above is connected to the main compressor clutch 42 and the auxiliary compressor clutch 43. Control the connection and disconnection of the driving force to the motor. Similarly, the controller 25 is connected to the on-off valve 35 and controls opening and closing of the on-off valve 35.
  • control according to each load state is performed, for example, as follows in each of cooling and heating. That is, during cooling, the auxiliary compressor 3 is operated independently when the air conditioning load is low, and the main compressor 2 is operated independently when the air conditioning load is medium. When the load is high, the operation is performed by both the main compressor 2 and the auxiliary compressor 3 as described above, and the supercooling heat exchanger 15 performs supercooling. On the other hand, during heating, when the air conditioning load is low, the auxiliary compressor 3 is operated independently, and when the air conditioning load is medium, the main compressor 2 is operated independently, and heat is exchanged by the engine waste heat recovery unit 6. I do. And high In the case of a load, the operation is performed by both the main compressor 2 and the auxiliary compressor 3 as described above, and the supercooling in the supercooling heat exchange 15 and the heat exchange in the engine waste heat recovery unit 6 are performed.
  • the level of the air-conditioning load referred to here means that the air-conditioning load (%) of the engine heat pump is approximately 0% to 15%, low load, 15% to 60%, medium load, and 60% to 60%. High load is set in the range of 100%.
  • the controller 25 sets the clutch 42 for the main compressor to the disengaged state and opens the on-off valve 35.
  • the controller 25 sets the clutch 42 for the main compressor to the disengaged state and opens the on-off valve 35.
  • the controller 25 sets the clutch 42 for the main compressor to the disengaged state and opens the on-off valve 35.
  • the controller 25 When supercooling is performed by the supercooling heat exchanger 15, the controller 25 considers the pressure relationship in order to reduce the pressure loss at the junction 64 (FIG. 1) and the like.
  • the opening degree of the supercooling heat exchange expansion valve 22 and the indoor heat exchanger expansion valve 23 is controlled so that the refrigerant pressure from the path 33 becomes substantially the same.
  • the controller 25 sets the clutch 43 for the auxiliary compressor to the disengaged state, transmits the driving force of the engine 4 to only the main compressor 2, and compresses the entire amount of the refrigerant in the main compressor 2. Further, in this case, when performing supercooling by the supercooling heat exchange 15, the controller 25 opens the on-off valve 35, and at the junction 63 (FIG. 1), the refrigerant pressure from the path 32 and the refrigerant pressure from the path 33. The opening degrees of the supercooling heat exchange expansion valve 22 and the indoor heat exchange expansion valve 23 are controlled so that the values are substantially the same.
  • the controller 25 turns on the clutch 42 for the main compressor and the clutch 43 for the auxiliary compressor, and closes the on-off valve 35. That is, while transmitting the driving force of the engine 4 to each of the compressors 2 and 3, The communication between the path 32 and the path 33 is cut off, the refrigerant having the flow rate Gm is compressed by the main compressor 2, and the subcooling refrigerant having the flow rate Gs is compressed by the auxiliary compressor 3.
  • the auxiliary compressor 3 When the air conditioning load is low, the auxiliary compressor 3 is operated independently. That is, in this case, the control mode by the controller 25 is the same as in the case of the low load in the operation during cooling described above.
  • the controller 25 turns off the auxiliary compressor clutch 43 and opens the on-off valve 35.
  • the driving force of the engine 4 is transmitted only to the main compressor 2 and heat is exchanged in the engine waste heat recovery unit 6, and the total amount of Go refrigerant that merges at the junction 63 is compressed by the main compressor 2. I do.
  • the controller 25 opens the on-off valve 35, and at the junction 63, the refrigerant pressure from the path 32 and the refrigerant pressure from the path 33 are substantially the same.
  • the opening degree of the expansion valve 22 for the supercooling heat exchanger and the expansion valve 21 for the outdoor heat exchanger are controlled so that
  • the operation is performed by both the main compressor 2 and the auxiliary compressor 3, and the supercooling in the supercooling heat exchange 15 and the heat in the engine waste heat recovery unit 6 are performed. Make a replacement.
  • the controller 25 turns on the clutch 42 for the main compressor and the clutch 43 for the auxiliary compressor, and closes the on-off valve 35.
  • the driving force of the engine 4 is transmitted to each of the compressors 2 and 3, the communication between the path 32 and the path 33 is cut off, the refrigerant having a flow rate of Gm is compressed by the main compressor 2, and the engine waste heat collector 6
  • the auxiliary compressor 3 compresses a subcooling refrigerant having a flow rate of Gs, which is heat-exchanged at.
  • the configuration in which the operation of the main compressor 2 and the auxiliary compressor 3 can be switched in accordance with the level of the required air conditioning load allows the partial load in which the combustion efficiency of the engine 4 is reduced. Therefore, the operation state (energy efficiency) can be improved.
  • the engine heat pump of the present invention is widely applied to an engine heat pump having a configuration in which a compressor is driven by an engine, thereby reducing the compression work without increasing the amount of electric power used.
  • the operation efficiency (energy efficiency) can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

An engine heat pump capable of increasing operating efficiency (energy efficiency) by reducing compression work without increasing the use amount of electric power. The engine heat pump comprises a main compressor (2) and an auxiliary compressor (3) driven by an engine (4), an indoor heat exchanger (8), an outdoor heat exchanger (5), an expansion valve (23) for the indoor heat exchanger, an expansion valve (21) for the outdoor heat exchanger, and a supercooling heat exchanger (15) installed in a liquid refrigerant passing route (main route (26)) among connection routes for the indoor heat exchanger (8) and the outdoor heat exchanger (5) and supercooling a liquid refrigerant before branching by a refrigerant for supercooling branched to a branched route (27) (27a, 27b). The refrigerant discharged from the auxiliary compressor (3) is merged to the refrigerant discharged from the main compressor (2). The liquid refrigerant for supercooling is compressed by the auxiliary compressor (3), and the capacity ratio (auxiliary compressor capacity ratio R) of the capacity of the auxiliary compressor (3) to the total capacity of the main compressor (2) and the auxiliary compressor (3) is set to 20 to 29%.

Description

明 細 書  Specification
エンジンヒ—トポンプ  Engine heat pump
技術分野  Technical field
[0001] 本発明は、エンジンヒートポンプの装置構成に関し、より詳しくは、電力の利用量を 新たに増加することなぐ全圧縮仕事の低減を図る技術に関する。  The present invention relates to a device configuration of an engine heat pump, and more particularly, to a technique for reducing total compression work without newly increasing the amount of electric power used.
背景技術  Background art
[0002] エンジンにて圧縮機を駆動する構成のエンジンヒートポンプに関しては、特許文献 1に示される構成のものが公知となっている。特許文献 1においては、エンジンヒート ポンプの圧縮仕事を主圧縮機による圧縮仕事及び補助圧縮機による圧縮仕事の二 系統に分け、一方の側 (補助圧縮機側)の蒸発圧を他方の側 (主圧縮機側)の蒸発 圧よりも高圧に保つことで、その一方の側での圧縮仕事を低減することにより、ェンジ ンヒートポンプにおける全圧縮仕事の低減を図る発明が開示されている。  [0002] Regarding an engine heat pump configured to drive a compressor by an engine, a configuration described in Patent Document 1 is known. In Patent Document 1, the compression work of an engine heat pump is divided into two systems: compression work by a main compressor and compression work by an auxiliary compressor, and the evaporation pressure on one side (the auxiliary compressor side) is An invention is disclosed in which the compression work on one side is reduced by keeping the pressure higher than the evaporation pressure on the compressor side), thereby reducing the total compression work in the engine heat pump.
[0003] 前記特許文献 1では、蒸発圧が高圧となる側 (補助圧縮機側)の圧縮仕事を電気 駆動式の圧縮機 (電動圧縮機)で行う構成が開示されているが、本構成では、新たに 電力を必要とする機器 (前記電動圧縮機)がエンジンヒートポンプに追加装備される こととなる。この場合、圧縮仕事の低減は図れるものの電力の利用量が増加し、「電 力利用量の低減」と 、うエンジンヒートポンプ本来のメリットを十分に生かせな 、と 、う 結果を招来していた。  [0003] Patent Document 1 discloses a configuration in which compression work on the side where the evaporation pressure becomes high (auxiliary compressor side) is performed by an electrically driven compressor (electric compressor). In addition, equipment that requires new electric power (the electric compressor) will be added to the engine heat pump. In this case, although the compression work can be reduced, the amount of electric power used increases, resulting in "reduction of the amount of electric power used" and the full advantage of the engine heat pump.
特許文献 1 :特開 2004— 20153号公報  Patent Document 1: JP 2004-20153
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明は、エンジンヒートポンプにおいて、電力の利用量を増加することなぐ圧縮 仕事の低減を図り、運転効率 (エネルギー効率)を向上することを課題とする。 [0004] It is an object of the present invention to reduce the compression work without increasing the amount of electric power used in an engine heat pump, and to improve operating efficiency (energy efficiency).
課題を解決するための手段  Means for solving the problem
[0005] 本発明のエンジンヒートポンプは、エンジンで駆動される主圧縮機及び補助圧縮機 、室内熱交換器、室外熱交換器、室内熱交換器用膨張弁、室外熱交換器用膨張弁 、並びに室内熱交^^と室外熱交^^の接続経路のうち液冷媒通過経路に設けら れ分岐経路に分岐される過冷却用液冷媒により分岐前の液冷媒を過冷却する過冷 却熱交換器を有し、前記補助圧縮機より吐出される冷媒を前記主圧縮機より吐出さ れる冷媒と合流させる構成としたエンジンヒートポンプにお 、て、前記過冷却用液冷 媒を補助圧縮機で圧縮する構成とすると共に、補助圧縮機の、主圧縮機と補助圧縮 機の合計容量に対する容量比を 20%から 29%に構成したものである。 [0005] The engine heat pump of the present invention includes a main compressor and an auxiliary compressor driven by an engine, an indoor heat exchanger, an outdoor heat exchanger, an expansion valve for an indoor heat exchanger, an expansion valve for an outdoor heat exchanger, and indoor heat. The connection route between the heat exchanger and the outdoor heat exchanger is installed in the liquid refrigerant passage. A subcooling heat exchanger for subcooling the liquid refrigerant before branching with a subcooling liquid refrigerant branched to a branch path, and the refrigerant discharged from the auxiliary compressor is discharged from the main compressor. In the engine heat pump configured to be combined with the refrigerant, the supercooling liquid coolant is compressed by the auxiliary compressor, and the capacity of the auxiliary compressor with respect to the total capacity of the main compressor and the auxiliary compressor. The ratio is configured from 20% to 29%.
[0006] また、本発明のエンジンヒートポンプにおいては、室外熱交換器と並列にエンジン 廃熱回収器を設け、前記過冷却用液冷媒を前記エンジン廃熱回収器で蒸発させる と共に補助圧縮機で圧縮する構成としたものである。 In the engine heat pump of the present invention, an engine waste heat recovery device is provided in parallel with the outdoor heat exchanger, and the supercooling liquid refrigerant is evaporated by the engine waste heat recovery device and compressed by an auxiliary compressor. The configuration is such that:
発明の効果  The invention's effect
[0007] 本発明のエンジンヒートポンプにおいては、主圧縮機で圧縮される冷媒よりも蒸発 圧 (冷媒吸入圧力)が高い過冷却用の冷媒を、エンジンで駆動される補助圧縮機に よって圧縮する構成とすることにより、従来は電気駆動式としていた補助圧縮機分の 電力の利用量を新たに増加することなぐ冷媒サイクルにおける全圧縮仕事の低減 が図れると共に、過冷却熱交^^による過冷却作用により、冷房能力の維持又は向 上も図れる。  [0007] In the engine heat pump of the present invention, the supercooling refrigerant having a higher evaporating pressure (refrigerant suction pressure) than the refrigerant compressed by the main compressor is compressed by the auxiliary compressor driven by the engine. By doing so, it is possible to reduce the total compression work in the refrigerant cycle without newly increasing the amount of power used by the auxiliary compressor, which was previously electrically driven, and to achieve the supercooling effect by supercooling heat exchange ^^ As a result, the cooling capacity can be maintained or improved.
また、補助圧縮機の、主圧縮機と補助圧縮機の合計容量に対する容量比が所定 の数値範囲となるように構成することにより、冷房時において冷房能力の維持又は向 上が図れると共に、暖房時において過冷却熱交^^の性能を確保することができる 。つまり、共通のエンジンで主圧縮機及び補助圧縮機を駆動する本発明の構成にお V、て、冷房時及び暖房時における運転効率 (エネルギー効率)の良 、運転が可能と なる。  In addition, by configuring the capacity ratio of the auxiliary compressor to the total capacity of the main compressor and the auxiliary compressor to be within a predetermined numerical range, the cooling capacity can be maintained or improved during cooling, and at the same time, heating can be performed. In this case, the performance of supercooling heat exchange can be secured. In other words, in the configuration of the present invention in which the main compressor and the auxiliary compressor are driven by the common engine, the operation efficiency (energy efficiency) during cooling and heating can be improved.
[0008] 本発明のエンジンヒートポンプにおいては、補助圧縮機の、主圧縮機と補助圧縮機 の合計容量に対する容量比が所定の数値範囲となるように構成することによる冷房 時の全圧縮仕事の低減が図れると共に、暖房時においても、電力の利用量を新たに 増加することなぐ全圧縮仕事の低減を図ることができる。  [0008] In the engine heat pump of the present invention, the total compression work during cooling is reduced by configuring the auxiliary compressor such that the capacity ratio of the auxiliary compressor to the total capacity of the main compressor and the auxiliary compressor is within a predetermined numerical range. In addition, it is possible to reduce the total compression work without newly increasing the power consumption even during heating.
また、暖房時においても液冷媒の過冷却を行うことにより、過冷却作用によって冷 媒の単位質量流量当たりの外気力 の吸熱能力が向上するので、冷媒サイクルを流 れる冷媒の全量を低減することができる。この結果、全圧縮仕事を低減させることが 可能となり、運転効率 (エネルギー効率)を向上することができる。 In addition, by supercooling the liquid refrigerant even during heating, the supercooling effect increases the heat absorption capacity of the external force per unit mass flow rate of the refrigerant, thereby reducing the total amount of refrigerant flowing through the refrigerant cycle. Can be. As a result, the total compression work can be reduced Operation efficiency (energy efficiency) can be improved.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は本発明に係るエンジンヒートポンプの冷媒回路図である。  FIG. 1 is a refrigerant circuit diagram of an engine heat pump according to the present invention.
[図 2]図 2は同じく制御機器類のブロック図である。  FIG. 2 is a block diagram of the control devices.
[図 3]図 3は同じく冷媒回路構成によるモリエル線図である。  FIG. 3 is a Mollier diagram similarly showing a refrigerant circuit configuration.
[図 4]図 4は補助圧縮機容量比と COPの関係を示すグラフである。  FIG. 4 is a graph showing the relationship between the auxiliary compressor capacity ratio and COP.
[図 5]図 5は補助圧縮機容量比と過冷却熱交換器冷媒温度の関係を示すグラフであ る。  FIG. 5 is a graph showing a relationship between a capacity ratio of an auxiliary compressor and a refrigerant temperature of a subcooling heat exchanger.
符号の説明  Explanation of symbols
2 主圧縮機  2 Main compressor
3 補助圧縮機  3 Auxiliary compressor
4 エンジン  4 Engine
5 室外熱交  5 Outdoor heat exchange
6 エンジン廃熱回収器  6 Engine waste heat recovery unit
8 室内熱交換器  8 Indoor heat exchanger
15 過冷却熱交換器  15 Subcooling heat exchanger
21 室外熱交換器用膨張弁  21 Expansion valve for outdoor heat exchanger
22 過冷却熱交換器用膨張弁  22 Expansion valve for subcooling heat exchanger
23 室内熱交換器用膨張弁  23 Expansion valve for indoor heat exchanger
26 主経路  26 main route
27a 分岐経路  27a Branch route
27b 分岐経路  27b Branch route
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] まず、本発明に係るエンジンヒートポンプの冷媒回路構成及び冷媒サイクルにつ!/ヽ て図 1を用いて説明する。  First, a refrigerant circuit configuration and a refrigerant cycle of an engine heat pump according to the present invention will be described with reference to FIG.
本発明に係るエンジンヒートポンプは、エンジン 4で駆動される主圧縮機 2及び補助 圧縮機 3、室内熱交換器 8、室外熱交換器 5、室内熱交換器用膨張弁 23、室外熱交 換器用膨張弁 21、並びに室内熱交換器 8と室外熱交換器 5の接続経路のうち液冷 媒通過経路である主経路 26に設けられ分岐経路 27 (27a、 27b)に分岐される過冷 却用液冷媒により分岐前の液冷媒を過冷却する過冷却熱交換器 15を有しており、こ れらで構成される冷媒サイクルを用いるものである。そして、過冷却熱交 は、 主経路 26との接続点 15a、 15b及び分岐経路 27との接続点 15c、 15dを有する。な お、本構成において、室内熱交翻 8は複数設ける構成としてもよい。 The engine heat pump according to the present invention includes a main compressor 2 and an auxiliary compressor 3 driven by an engine 4, an indoor heat exchanger 8, an outdoor heat exchanger 5, an expansion valve 23 for an indoor heat exchanger, and an expansion for an outdoor heat exchanger. The valve 21 and the connection path between the indoor heat exchanger 8 and the outdoor heat exchanger 5 It has a subcooling heat exchanger 15 that is provided in the main path 26, which is a medium passage path, and supercools the liquid refrigerant before branching with the subcooling liquid refrigerant branched to the branch path 27 (27a, 27b). And a refrigerant cycle composed of these. The supercooled heat exchanger has connection points 15a and 15b with the main path 26 and connection points 15c and 15d with the branch path 27. In this configuration, a plurality of indoor heat exchanges 8 may be provided.
[0012] 主圧縮機 2は、エンジン 4により駆動され、図示せぬアキュムレータにて液冷媒が分 離されたガス冷媒を吸引'圧縮し、高温高圧のガス冷媒を吐出する。主圧縮機 2から 吐出されるガス冷媒は、四方弁 24にて所定の方向に導かれる。また、主圧縮機 2に 吸引されるガス冷媒も四方弁 24にて導かれるため、主圧縮機 2の冷媒入口と四方弁 24とは主圧縮機 2の吸入ラインを構成する経路 32にて連通されている。 [0012] The main compressor 2 is driven by the engine 4, sucks and compresses the gas refrigerant from which the liquid refrigerant has been separated by an accumulator (not shown), and discharges the high-temperature and high-pressure gas refrigerant. The gas refrigerant discharged from the main compressor 2 is guided by the four-way valve 24 in a predetermined direction. Since the gas refrigerant sucked into the main compressor 2 is also guided by the four-way valve 24, the refrigerant inlet of the main compressor 2 and the four-way valve 24 communicate with each other through a path 32 forming a suction line of the main compressor 2. Have been.
補助圧縮機 3は、同じくエンジン 4により駆動され、前記分岐経路 27に分岐され前 記過冷却熱交^^ 15を通過する過冷却用液冷媒のうち、図示せぬアキュムレータ にて液冷媒が分離されたガス冷媒を吸引 '圧縮し、高温高圧のガス冷媒を吐出する  The auxiliary compressor 3 is also driven by the engine 4, and is separated by an accumulator (not shown) from the subcooling liquid refrigerant that branches into the branch path 27 and passes through the supercooling heat exchange ^ 15. Suction of compressed gas refrigerant and discharge of high temperature and high pressure gas refrigerant
[0013] 過冷却熱交 は、分岐経路 27に設けられる過冷却熱交 用膨張弁 22に て温度低下した過冷却用液冷媒によって分岐前の液冷媒を過冷却するものであり、 この過冷却熱交 にて熱交換した後の過冷却用液冷媒が、前記補助圧縮機 3 に吸引される。このため、過冷却熱交翻15と補助圧縮機 3の冷媒入口とは、補助 圧縮機 3の吸入ラインを構成する経路 33にて連通されている。 [0013] The subcooling heat exchange is for supercooling the liquid refrigerant before branching by the subcooling liquid refrigerant whose temperature has been lowered by the supercooling heat exchange expansion valve 22 provided in the branch path 27. The subcooling liquid refrigerant after heat exchange by heat exchange is sucked into the auxiliary compressor 3. For this reason, the supercooling heat exchange 15 and the refrigerant inlet of the auxiliary compressor 3 are communicated with each other through a path 33 constituting a suction line of the auxiliary compressor 3.
[0014] また、主経路 26において設けられる分岐経路 27は、室内熱交翻8と過冷却熱交 翻15との間に分岐経路 27aを構成すると共に、室外熱交翻5と過冷却熱交翻 15との間に分岐経路 27bを構成しており、各分岐経路 27a、 27bと過冷却熱交翻 用膨張弁 22との間には、それぞれ開閉弁 28a、 28bが設けられている。これら各開 閉弁 28a' 28bは、後述する冷房サイクル又は暖房サイクルにおいて主経路 26の分 岐前の液冷媒が過冷却されるようにその開閉が切り替えられる。  A branch path 27 provided in the main path 26 constitutes a branch path 27a between the indoor heat exchange 8 and the supercooled heat exchange 15, and a branch path 27a between the outdoor heat exchange 5 and the supercooled heat exchange. A branch path 27b is formed between the branch 15 and the inversion valve 15, and on-off valves 28a and 28b are provided between the branch paths 27a and 27b and the supercooled heat exchange expansion valve 22, respectively. The opening and closing of these opening / closing valves 28a 'and 28b is switched so that the liquid refrigerant before branching of the main path 26 is supercooled in a cooling cycle or a heating cycle described later.
[0015] そして、補助圧縮機 3より吐出される冷媒を、各圧縮機 2、 3から四方弁 24に至るま での経路に設けられる合流点 65にて主圧縮機 2より吐出される冷媒と合流させる構 成としている。ここで合流した冷媒が四方弁 24にて流れる方向を変更され、後述する 冷房サイクル又は暖房サイクルが行われる。なお、前記合流点 65と四方弁 24との間 にはオイルセパレータ(図示略)が設けられ、高温高圧のガス冷媒中に含まれる冷凍 機油を分離して主圧縮機 2及び補助圧縮機 3の吸入側に還流させ、両圧縮機 2、 3の 潤滑が良好に行われるようにして 、る。 [0015] The refrigerant discharged from the auxiliary compressor 3 is combined with the refrigerant discharged from the main compressor 2 at a junction 65 provided in a path from each of the compressors 2, 3 to the four-way valve 24. It is configured to join. Here, the flowing direction of the joined refrigerant is changed at the four-way valve 24, and will be described later. A cooling cycle or a heating cycle is performed. An oil separator (not shown) is provided between the junction 65 and the four-way valve 24 to separate the refrigerating machine oil contained in the high-temperature and high-pressure gas refrigerant to separate the main compressor 2 and the auxiliary compressor 3 from each other. It is recirculated to the suction side so that both compressors 2 and 3 can be lubricated well.
[0016] 以上のように構成される冷媒サイクルを用い、四方弁 24による冷媒の流れる方向の 切替えにより冷房サイクル又は暖房サイクルが行われる。 [0016] Using the refrigerant cycle configured as described above, the cooling cycle or the heating cycle is performed by switching the flow direction of the refrigerant by the four-way valve 24.
冷房サイクルでは、主圧縮機 2及び補助圧縮機 3にて圧縮された冷媒は、合流点 6 5にて合流し、四方弁 24を介して室外熱交換器 5に送られ、この室外熱交換器 5で放 熱して凝縮した後、過冷却熱交換器 15へと送られ、接続点 15bより流入して接続点 1 5aより流出する。過冷却熱交換器 15にて過冷却された液冷媒は、室内熱交換器用 膨張弁 23にて膨張し、室内熱交換器 8で吸熱して蒸発した後、四方弁 24を介して主 圧縮機 2に吸引される。そして、この吸引された冷媒が主圧縮機 2にて圧縮された後 、再び吐出される。  In the cooling cycle, the refrigerant compressed by the main compressor 2 and the auxiliary compressor 3 joins at the junction 65, is sent to the outdoor heat exchanger 5 through the four-way valve 24, and the outdoor heat exchanger After the heat is released at 5 and condensed, it is sent to the subcooling heat exchanger 15, flows in from the connection point 15b, and flows out from the connection point 15a. The liquid refrigerant supercooled in the subcooling heat exchanger 15 expands in the indoor heat exchanger expansion valve 23, absorbs heat in the indoor heat exchanger 8, evaporates, and then passes through the four-way valve 24 to the main compressor. Sucked in 2. After the drawn refrigerant is compressed by the main compressor 2, it is discharged again.
[0017] また、室外熱交翻5から送り出され主経路 26を通過する液冷媒の一部は、過冷 却用液冷媒として分岐経路 27aに分流され、過冷却熱交換器用膨張弁 22にて膨張 •温度低下して低温の湿り冷媒となり、過冷却熱交 へ接続点 15cより流入して 接続点 15dへ流出する過程で、主経路 26を流れる液冷媒を過冷却する。このとき、 開閉弁 28aは開いた状態、開閉弁 28bは閉じた状態となっており、主経路 26を通過 する液冷媒は分岐経路 27b側へは分流されることなく、分岐経路 27aに分岐される 過冷却用液冷媒によって分岐前の全量の液冷媒が過冷却されるようにして 、る。 このようにして主経路 26を通過する液冷媒の過冷却を行うことで、冷凍サイクル効 率の向上が図られている。そして、前記過冷却用液冷媒は補助圧縮機 3に吸引され 、この補助圧縮機 3にて圧縮された後に再び吐出される。  A part of the liquid refrigerant sent from the outdoor heat exchanger 5 and passing through the main path 26 is diverted to the branch path 27a as a liquid refrigerant for supercooling, and is divided by the expansion valve 22 for the subcooling heat exchanger. Expansion • The liquid refrigerant that flows through the main path 26 is supercooled in the process of flowing into the supercooled heat exchanger from the connection point 15c and flowing out to the connection point 15d to become a low-temperature wet refrigerant due to a decrease in temperature. At this time, the on-off valve 28a is in an open state and the on-off valve 28b is in a closed state, and the liquid refrigerant passing through the main path 26 is branched to the branch path 27a without being branched to the branch path 27b. The entire amount of liquid refrigerant before branching is supercooled by the subcooling liquid refrigerant. By supercooling the liquid refrigerant passing through the main path 26 in this way, the efficiency of the refrigeration cycle is improved. The subcooling liquid refrigerant is sucked into the auxiliary compressor 3, compressed by the auxiliary compressor 3, and discharged again.
[0018] 一方、暖房サイクルでは、主圧縮機 2及び補助圧縮機 3にて圧縮された冷媒は、合 流点 65にて合流し、四方弁 24を介して室内熱交 8に送られ、この室内熱交換 器 8で放熱して凝縮した後、過冷却熱交換器 15へと送られ、接続点 15aより流入して 接続点 15bより流出する。過冷却熱交換器 15にて過冷却された液冷媒は、室外熱 交換器用膨張弁 21にて膨張し、室外熱交換器 5で吸熱して蒸発した後、四方弁 24 を介して主圧縮機 2に吸引される。そして、この吸引された冷媒が主圧縮機 2にて圧 縮された後、再び吐出される。 [0018] On the other hand, in the heating cycle, the refrigerant compressed by the main compressor 2 and the auxiliary compressor 3 joins at a junction 65 and is sent to the indoor heat exchange 8 via the four-way valve 24. After being radiated and condensed in the indoor heat exchanger 8, it is sent to the supercooling heat exchanger 15, and flows in from the connection point 15a and flows out from the connection point 15b. The liquid refrigerant supercooled in the supercooling heat exchanger 15 expands in the outdoor heat exchanger expansion valve 21 and absorbs heat in the outdoor heat exchanger 5 to evaporate. Is sucked into the main compressor 2. Then, the drawn refrigerant is compressed by the main compressor 2 and then discharged again.
[0019] また、室内熱交翻8から送り出され主経路 26を通過する液冷媒の一部は、過冷 却用液冷媒として分岐経路 27bに分流され、過冷却熱交換器用膨張弁 22にて膨張 •温度低下して低温の湿り冷媒となり、過冷却熱交 へ接続点 15cより流入して 接続点 15dへ流出する過程で、主経路 26を流れる液冷媒を過冷却する。このとき、 開閉弁 28aは閉じた状態、開閉弁 28bは開いた状態となっており、主経路 26を通過 する液冷媒は分岐経路 27a側へは分流されることなぐ分岐経路 27bに分岐される 過冷却用液冷媒によって分岐前の全量の液冷媒が過冷却されるようにして 、る。 そして、過冷却熱交 5を通過した過冷却用液冷媒は、エンジン廃熱回収器 6 にて吸熱して蒸発し、補助圧縮機 3に吸引され、この補助圧縮機 3にて圧縮された後 に再び吐出される。 A part of the liquid refrigerant sent from the indoor heat exchange 8 and passing through the main path 26 is diverted to the branch path 27b as a liquid refrigerant for subcooling, and is divided by the expansion valve 22 for the subcooling heat exchanger. Expansion • The liquid refrigerant that flows through the main path 26 is supercooled in the process of flowing into the supercooled heat exchanger from the connection point 15c and flowing out to the connection point 15d to become a low-temperature wet refrigerant due to a decrease in temperature. At this time, the on-off valve 28a is in a closed state and the on-off valve 28b is in an open state, and the liquid refrigerant passing through the main path 26 is branched into a branch path 27b that is not diverted to the branch path 27a side. The entire amount of liquid refrigerant before branching is supercooled by the supercooling liquid refrigerant. The supercooling liquid refrigerant that has passed through the supercooling heat exchanger 5 absorbs heat in the engine waste heat recovery unit 6, evaporates, is sucked by the auxiliary compressor 3, and is compressed by the auxiliary compressor 3. Is discharged again.
[0020] 次に、本発明に係るエンジンヒートポンプの運転制御に関する装置構成について 図 2を用いて説明する。  Next, a device configuration relating to operation control of the engine heat pump according to the present invention will be described with reference to FIG.
本発明に係るエンジンヒートポンプに具備される制御装置であるコントローラ 25は、 室外熱交換器用膨張弁 21、過冷却熱交換器用膨張弁 22、及び室内熱交換器用膨 張弁 23と接続されており、コントローラ 25は各膨張弁の開度を制御する。  The controller 25, which is a control device provided in the engine heat pump according to the present invention, is connected to the outdoor heat exchanger expansion valve 21, the supercooling heat exchanger expansion valve 22, and the indoor heat exchanger expansion valve 23, The controller 25 controls the opening of each expansion valve.
[0021] また、同じくコントローラ 25は、前記分岐経路 27a、 27bにそれぞれ設けられる開閉 弁 28a、 28bと接続されており、それらの開閉を制御する。ここで、各開閉弁 28a、 28 bは具体的に次のように制御される。すなわち、開閉弁 28aは、前述した冷房サイクル における液冷媒の過冷却を行うときは開かれ、それ以外のときは閉じられる。また、開 閉弁 28bは、前述した暖房サイクルにおける液冷媒の過冷却を行うときは開かれ、そ れ以外のときは閉じられる。このように各開閉弁 28a、 28bを制御することにより、冷房 サイクル及び暖房サイクルそれぞれにお 、て、液冷媒が過冷却熱交換器 15の下流 側にて分岐されることとなり、分岐経路 27に分岐される前の全量の液冷媒が過冷却 熱交^^ 15にて過冷却されることとなる。  [0021] Similarly, the controller 25 is connected to on-off valves 28a and 28b provided in the branch paths 27a and 27b, respectively, and controls the opening and closing of these valves. Here, the on-off valves 28a and 28b are specifically controlled as follows. That is, the on-off valve 28a is opened when the liquid refrigerant is supercooled in the cooling cycle described above, and is closed otherwise. Further, the opening / closing valve 28b is opened when the liquid refrigerant is supercooled in the above-described heating cycle, and is closed otherwise. By controlling the on-off valves 28a and 28b in this manner, the liquid refrigerant is branched off downstream of the subcooling heat exchanger 15 in each of the cooling cycle and the heating cycle, and The entire amount of liquid refrigerant before branching is supercooled by supercooling heat exchange 15.
さらに、コントローラ 25は、エンジン 4 (の制御回路)と接続されており、エンジン 4の 発停'制御を行うことにより主圧縮機 2及び補助圧縮機 3の運転を制御する。 [0022] 以上の構成において、コントローラ 25は、過冷却熱交換器用膨張弁 22で膨張され た湿り冷媒が補助圧縮機 3の吸入ラインである経路 33で過熱度がつくように過冷却 熱交換器用膨張弁 22の開度を制御する。そして、後述の如ぐ補助圧縮機 3を選定 (構成)することで、補助圧縮機 3の冷媒吸入圧力が、主圧縮機 2の冷媒吸入圧力よ りも高くなり、図 3のモリエル線図で示す如ぐ補助圧縮機 3による圧縮仕事 AWsを、 主圧縮機 2による圧縮仕事 AWmと比較して小さくできるようにしている。こうして、全 量の冷媒を単一の圧縮仕事 AWmにて圧縮する場合と比較して、全圧縮仕事の低 減を図っている。 Further, the controller 25 is connected to (the control circuit of) the engine 4 and controls the operation of the main compressor 2 and the auxiliary compressor 3 by performing start / stop control of the engine 4. [0022] In the above configuration, the controller 25 controls the subcooling heat exchanger so that the wet refrigerant expanded by the subcooling heat exchanger expansion valve 22 has a degree of superheating in the path 33 that is the suction line of the auxiliary compressor 3. The opening of the expansion valve 22 is controlled. By selecting (composing) the auxiliary compressor 3 as described later, the refrigerant suction pressure of the auxiliary compressor 3 becomes higher than the refrigerant suction pressure of the main compressor 2, and the Mollier diagram in FIG. As shown, the compression work AWs by the auxiliary compressor 3 can be made smaller than the compression work AWm by the main compressor 2. Thus, the total compression work is reduced as compared with the case where all the refrigerant is compressed by a single compression work AWm.
[0023] 続いて、以上のような冷媒回路構成における冷凍サイクルのモリエル線図(図 3)に ついて、冷媒回路構成における冷媒の流れに従って説明する。なお、このモリエル 線図においては、単位質量流量当たりの冷媒の状態変化を表しており、横軸は冷媒 の質量 lkg当たりの持って 、るエネルギーである比ェンタルピー(kj/kg)を示し、縦 軸は(絶対)圧力(MPa abs)を示す。  Next, a Mollier diagram (FIG. 3) of the refrigeration cycle in the above-described refrigerant circuit configuration will be described according to the flow of the refrigerant in the refrigerant circuit configuration. In this Mollier diagram, the state change of the refrigerant per unit mass flow rate is shown, and the horizontal axis shows the specific enthalpy (kj / kg), which is the energy per 1 kg of the mass of the refrigerant. The axis indicates (absolute) pressure (MPa abs).
[0024] このモリエル線図上の冷凍サイクルに関し、冷房サイクルの場合について説明する このモリエル線図における点 Amは、冷媒が主圧縮機 2の吸入ラインを構成する経 路 32を流れて 、る状態を示し、この状態での比ェンタルピー及び圧力値をそれぞれ h2 (kj/kg)、 p2 (MPa abs)とする。そして、ここでの冷媒回路における冷媒の流 量を Gmとする。また、点 Asは、冷媒が補助圧縮機 3の吸入ラインを構成する経路 33 を流れている状態を示し、この状態での比ェンタルピー及び圧力値をそれぞれ hi (k j/kg)、 pi (MPa abs)とする。そして、ここでの冷媒回路における冷媒の流量を Gs とする。  With respect to the refrigeration cycle on the Mollier diagram, a description will be given of a case of a cooling cycle. A point Am in the Mollier diagram is a state where the refrigerant flows through the path 32 constituting the suction line of the main compressor 2. Where h2 (kj / kg) and p2 (MPa abs) are the specific enthalpy and pressure value in this state, respectively. Then, the flow rate of the refrigerant in the refrigerant circuit is Gm. The point As indicates the state in which the refrigerant is flowing through the path 33 constituting the suction line of the auxiliary compressor 3, and the specific enthalpy and the pressure value in this state are hi (kj / kg) and pi (MPa abs, respectively). ). Then, the flow rate of the refrigerant in the refrigerant circuit is set to Gs.
これらの状態の冷媒が、それぞれにおける吸入ライン力 各圧縮機 2、 3に吸入され 、各圧縮機 2、 3において圧縮仕事が行われる。この際、主圧縮機 2においては単位 質量流量当たりの冷媒に対して圧縮仕事 AWmが行われ (圧縮区間 AmB)、補助圧 縮機 3においては単位質量流量当たりの冷媒に対して圧縮仕事 AWsが行われる( 圧縮区間 AsB)。  The refrigerant in these states is sucked into the respective compressors 2 and 3 at the respective suction line forces, and the respective compressors 2 and 3 perform compression work. At this time, the compression work AWm is performed on the refrigerant per unit mass flow rate in the main compressor 2 (compression section AmB), and the compression work AWs on the refrigerant per unit mass flow rate is performed in the auxiliary compressor 3. (Compression section AsB).
[0025] 各圧縮機 2、 3にて圧縮され高圧となった冷媒 (ガス冷媒)は、合流点 65にて合流 する。ここで冷媒回路における合流した冷媒の流量を全量 Go ( = Gm+Gs)とする。 この合流した冷媒は室外熱交換器 5に送られる。室外熱交換器 5においては、高圧 ガスとなった冷媒の凝縮による放熱が行われ、冷却されて液冷媒となる (凝縮区間 B C)。つまり、点 Bの状態は、冷媒が合流点 65から室外熱交換器 5までの経路にある 状態を示し、この状態での比ェンタルピーの値を hO (kjZkg)とする。 [0025] The refrigerant (gas refrigerant) which has been compressed by each of the compressors 2 and 3 to have a high pressure joins at a junction 65. To do. Here, the total flow rate of the combined refrigerant in the refrigerant circuit is defined as Go (= Gm + Gs). The combined refrigerant is sent to the outdoor heat exchanger 5. In the outdoor heat exchanger 5, heat is released by condensation of the refrigerant that has become high-pressure gas, and is cooled to become a liquid refrigerant (condensation section BC). That is, the state at the point B indicates a state where the refrigerant is on the path from the junction 65 to the outdoor heat exchanger 5, and the value of the specific enthalpy in this state is defined as hO (kjZkg).
[0026] 室外熱交換器 5から液冷媒として送り出された冷媒は、過冷却熱交換器 15にて、 過冷却熱交換器 15の下流側にて分岐経路 27aに分岐された過冷却用液冷媒によ つて過冷却される(過冷却区間 CD)。ここで、図中 Tl、 Τ2及び Τ3は、それぞれ温度 tl (°C)、 t2 (°C)及び t3 (°C)の等温線 (tl >t2>t3)を示しており、主経路 26を流れ る液冷媒が過冷却熱交換器 15にて tl (°C)から t2 (°C)に過冷却されることを示して いる。この過冷却後の液冷媒の点 Dでの状態における圧力値を pO (MPa abs)とす る。 [0026] The refrigerant sent out as a liquid refrigerant from the outdoor heat exchanger 5 is supplied to the subcooling heat exchanger 15 at a downstream side of the subcooling heat exchanger 15 to a subcooling liquid refrigerant branched to a branch path 27a. Is supercooled (supercooling section CD). Here, Tl, Τ2, and Τ3 in the figure indicate isotherms (tl> t2> t3) of the temperatures tl (° C), t2 (° C), and t3 (° C), respectively, and indicate the main route 26. This indicates that the flowing liquid refrigerant is subcooled in the subcooling heat exchanger 15 from tl (° C) to t2 (° C). The pressure value of the liquid refrigerant after supercooling in the state at point D is defined as pO (MPa abs).
[0027] そして、過冷却された後の液冷媒は、主経路 26においてその一部が分岐された後 、室内熱交換器用膨張弁 23により膨張され、冷房を行う室内空気よりも低温,低圧の 液冷媒となる (膨張区間 DEm)。この低温'低圧となった液冷媒の点 Emでの状態に おける圧力値を P2 (MPa abs)とする。点 Emの状態となった液冷媒は室内熱交換 器 8へと送られ、室内熱交 8にて室内空気からの吸熱による冷媒の蒸発が行わ れる (蒸発区間 EmAm)。そして、ガス冷媒となった冷媒が主圧縮機 2の吸入ラインを 構成する経路 32を流れて主圧縮機 2へと再び吸入される。つまり、ここで蒸発区間 E mAmにおける冷媒圧力(値 p2)は、前述した主圧縮機 2の冷媒の冷媒吸入圧力 Pm と同等となり、冷媒回路において主圧縮機 2に吸入される冷媒の流量力 SGmとなる。 [0027] Then, the liquid refrigerant after being supercooled is partially branched in the main path 26 and then expanded by the indoor heat exchanger expansion valve 23 to have a lower temperature and a lower pressure than the indoor air for cooling. It becomes liquid refrigerant (expansion section DEm). Let P 2 (MPa abs) be the pressure value of the liquid refrigerant at the low temperature and low pressure at the point Em. The liquid refrigerant in the state of the point Em is sent to the indoor heat exchanger 8, and in the indoor heat exchange 8, the refrigerant is evaporated by absorbing heat from the indoor air (evaporation section EmAm). Then, the refrigerant that has become the gas refrigerant flows through the path 32 constituting the suction line of the main compressor 2 and is sucked into the main compressor 2 again. That is, the refrigerant pressure (value p2) in the evaporation section E mAm is equal to the refrigerant suction pressure Pm of the refrigerant of the main compressor 2 described above, and the flow force SGm of the refrigerant sucked into the main compressor 2 in the refrigerant circuit SGm It becomes.
[0028] 一方、分岐経路 27aに分岐される過冷却用液冷媒は、過冷却熱交換器用膨張弁 2 2にて膨張されて点 Cでの状態における液冷媒よりも圧力 *温度が低下する (膨張区 間 DEs)。このとき、過冷却用液冷媒は、過冷却熱交 用膨張弁 22によって前述 した過冷却された後の液冷媒の温度 t2 (°C)から t3 (°C)まで低下する。このように、過 冷却熱交換器 15にて過冷却された液冷媒のうち、分岐経路 27aに分岐される液冷 媒が過冷却用液冷媒となる。そして、分岐経路 27aに分岐される液冷媒の冷媒回路 における流量が Gsとなる。 ここで、過冷却熱交 用膨張弁 22による分岐した液冷媒の膨張 (膨張区間 DEs )が、室内熱交翻用膨張弁 23による液冷媒の膨張 (膨張区間 DEm)よりも抑えた ものとなっているのは、次のような理由力もである。すなわち、分岐経路 27aに分岐さ れる過冷却用液冷媒によって主経路 26を流れる液冷媒を過冷却するには、過冷却 用液冷媒が過冷却熱交換器 15に送り込まれる前の液冷媒 (点 Cの状態)よりも低温と なればよぐ過冷却熱交換器用膨張弁 22における過冷却用液冷媒の膨張を、点 D の状態での冷媒の圧力値 ρθが圧力値 piに降下するまでにとどめても過冷却を行う ことができるカゝらである。 On the other hand, the supercooling liquid refrigerant branched to the branch path 27a is expanded by the subcooling heat exchanger expansion valve 22 and has a pressure * temperature lower than that of the liquid refrigerant in the state at the point C ( Expansion zone DEs). At this time, the temperature of the liquid refrigerant for supercooling drops from the temperature t2 (° C) of the liquid refrigerant after supercooling described above by the supercooling heat exchange expansion valve 22 to t3 (° C). As described above, of the liquid refrigerant supercooled by the subcooling heat exchanger 15, the liquid refrigerant branched to the branch path 27a becomes the liquid refrigerant for supercooling. Then, the flow rate of the liquid refrigerant branched into the branch path 27a in the refrigerant circuit becomes Gs. Here, the expansion of the branched liquid refrigerant by the supercooling heat exchange expansion valve 22 (expansion section DEs) is suppressed more than the expansion of the liquid refrigerant by the indoor heat exchange expansion valve 23 (expansion section DEm). The reasons are as follows. That is, in order to supercool the liquid refrigerant flowing through the main path 26 by the subcooling liquid refrigerant branched to the branch path 27a, the liquid refrigerant (point) before the supercooling liquid refrigerant is sent to the subcooling heat exchanger 15 (State C), the expansion of the subcooling liquid refrigerant in the subcooling heat exchanger expansion valve 22 until the pressure value ρθ of the refrigerant at the state of point D drops to the pressure value pi. It is a cara that can perform supercooling even if stopped.
[0029] そして、点 Esの状態となった過冷却用液冷媒は、過冷却熱交換器 15にて主経路 2 6を流れる液冷媒から吸熱することにより、主経路 26を流れる液冷媒を過冷却する( 蒸発区間 EsAs)。この過冷却を終えた冷媒は、補助圧縮機 3の吸入ラインを構成す る経路 33を流れて補助圧縮機 3へと再び吸入される。  Then, the supercooling liquid refrigerant in the state at the point Es absorbs heat from the liquid refrigerant flowing through the main path 26 in the supercooling heat exchanger 15, thereby superposing the liquid refrigerant flowing through the main path 26. Cool (EsAs evaporation section). The refrigerant that has been supercooled flows through the path 33 constituting the suction line of the auxiliary compressor 3 and is sucked into the auxiliary compressor 3 again.
ここで、冷媒回路において、主経路 26を流れる液冷媒は分岐経路 27aに一部(流 量 Gs)分岐され、室内熱交換器 8に送り込まれる液冷媒の流量 Gmが全量 Goと比較 して減少することとなるが、分岐される前の液冷媒が過冷却熱交翻15において過 冷却されることにより、液冷媒の単位質量流量当たりの吸熱能力(冷房能力) (kj/k g)が高まるので、室内熱交換器 8における冷房能力は維持又は向上される。  Here, in the refrigerant circuit, a part (flow rate Gs) of the liquid refrigerant flowing through the main path 26 is branched to the branch path 27a, and the flow rate Gm of the liquid refrigerant sent to the indoor heat exchanger 8 is reduced compared to the total amount Go. However, since the liquid refrigerant before branching is supercooled in the supercooling heat exchange 15, the heat absorption capacity (cooling capacity) (kj / kg) per unit mass flow rate of the liquid refrigerant increases. In addition, the cooling capacity of the indoor heat exchanger 8 is maintained or improved.
[0030] このように、分岐経路 27aに分岐される流量 Gsの過冷却用液冷媒の過冷却熱交換 器用膨張弁 22による膨張を、分岐後の流量 Gmの液冷媒の室内熱交換器用膨張弁 23による膨張よりも抑え、過冷却用液冷媒の圧力降下を圧力値 ρθから圧力値 piに とどめることで、蒸発区間 EsAsにおける蒸発圧を高圧とすることができる。つまり、分 岐される流量 Gsの過冷却用冷媒の蒸発圧を、分岐後の残りの流量 Gmの冷媒の蒸 発圧と比較して高めることができるので、圧縮区間 AsBにおいて必要な圧縮仕事 Δ Wsを、圧縮区間 AmBにおいて必要な圧縮仕事 AWmと比較して大幅に低減するこ とができる。これにより、補助圧縮機 3における圧縮仕事を主圧縮機 2における圧縮 仕事と比較して大幅に低減することができ、エンジンヒートポンプにおける全圧縮仕 事の低減を図ることができる。  As described above, the expansion of the subcooling liquid refrigerant at the flow rate Gs branched to the branch path 27a by the expansion valve 22 for the subcooling heat exchanger is performed by the expansion valve for the indoor heat exchanger at the flow rate Gm of the branched refrigerant. By suppressing the pressure drop of the subcooling liquid refrigerant from the pressure value ρθ to the pressure value pi, the evaporation pressure in the evaporation section EsAs can be increased. In other words, the evaporating pressure of the subcooling refrigerant having the flow rate Gs to be branched can be increased as compared with the evaporating pressure of the refrigerant having the remaining flow rate Gm after branching. Ws can be significantly reduced compared to the required compression work AWm in the compression section AmB. As a result, the compression work in the auxiliary compressor 3 can be significantly reduced as compared with the compression work in the main compressor 2, and the total compression work in the engine heat pump can be reduced.
[0031] 具体的な圧縮仕事の低減量としては、次のように表される。なお、ここでの比較対 象は、全量 Goの冷媒を単一の圧縮仕事 AWmにて圧縮する場合の全圧縮仕事で ある。言い換えると、補助圧縮機を具備せずに単一の圧縮機を備える冷媒回路にお いて、全量 Goの冷媒を圧縮仕事 AWmにて圧縮する場合の全圧縮仕事である。こ れは、分岐経路 27aに分岐される流量 Gsの過冷却用液冷媒の、膨張区間 DEsにお ける圧力降下を圧力値 ρθから圧力値 p2とした場合の全圧縮仕事と同等となる。 まず、ここでの比較対象である全量 Goの冷媒を単一の圧縮仕事 AWmにて圧縮 する場合の全圧縮仕事は、 Go X AWm=Go X (hO— h2) (Go : Gm+Gs) · · · (1 )で表される。 [0031] A specific reduction amount of the compression work is expressed as follows. Note that the comparison here The elephant is the total compression work when all the Go refrigerant is compressed by a single compression work AWm. In other words, in a refrigerant circuit having a single compressor without an auxiliary compressor, it is the total compression work in the case where all the Go refrigerant is compressed by the compression work AWm. This is equivalent to the total compression work when the pressure drop in the expansion section DEs of the subcooling liquid refrigerant having the flow rate Gs branched into the branch path 27a is changed from the pressure value ρθ to the pressure value p2. First, the total compression work when compressing the entire amount of Go refrigerant to be compared with a single compression work AWm is Go X AWm = Go X (hO-h2) (Go: Gm + Gs) · · Represented by (1).
一方、本発明におけるエンジンヒートポンプ全体としての圧縮仕事は、前述したよう に、分岐経路 27aに分岐される流量 Gsの過冷却用液冷媒の圧力降下を ρθから piに とどめているため、全圧縮仕事は、(GmX AWm) + (Gs X AWs) = {Gm X (hO— h2) } + {Gs X (hO— 1ι1) } · · · (2)で表される。  On the other hand, the compression work of the engine heat pump as a whole according to the present invention is, as described above, because the pressure drop of the subcooling liquid refrigerant having the flow rate Gs branched to the branch path 27a is limited from ρθ to pi. Is represented by (GmX AWm) + (Gs X AWs) = {Gm X (hO—h2)} + {Gs X (hO—1ι1)}... (2)
つまり、分岐経路 27aに分岐される流量 Gsの過冷却用液冷媒の圧力降下を ρθか ら piにとどめ、この流量 Gsの冷媒の蒸発圧を高めることによる圧縮仕事の低減量は 、前記式(1)と式(2)の差分、即ち、 Gs X ( AWm— AWs) = (Gs X (hi— h2)分の 圧縮仕事が低減されることとなる。  In other words, the pressure drop of the subcooling liquid refrigerant having the flow rate Gs branched into the branch path 27a is limited from ρθ to pi, and the amount of reduction of the compression work by increasing the evaporation pressure of the refrigerant having the flow rate Gs is expressed by the above equation The difference between (1) and (2), that is, Gs X (AWm-AWs) = (GsX (hi-h2)) compression work is reduced.
[0032] このように、主圧縮機 2で圧縮される冷媒よりも蒸発圧 (前記冷媒吸入圧力)が高 、 過冷却用の冷媒を、エンジン 4で駆動される補助圧縮機 3によって圧縮する構成とす ることにより、従来は電気駆動式としていた補助圧縮機分の電力の利用量を新たに 増加することなぐ冷媒サイクルにおける全圧縮仕事の低減が図れると共に、過冷却 熱交換器 15による過冷却作用により、冷房能力の維持又は向上も図れる。 As described above, a configuration in which the subcooling refrigerant having a higher evaporation pressure (the refrigerant suction pressure) than the refrigerant compressed by the main compressor 2 is compressed by the auxiliary compressor 3 driven by the engine 4. As a result, it is possible to reduce the total compression work in the refrigerant cycle without newly increasing the amount of power used by the auxiliary compressor, which was previously electrically driven, and to supercool by the supercooling heat exchanger 15. By the action, the cooling capacity can be maintained or improved.
[0033] 次に、本発明に係るエンジンヒートポンプにおける主圧縮機 2と補助圧縮機 3の容 量比について説明する。 Next, the capacity ratio between the main compressor 2 and the auxiliary compressor 3 in the engine heat pump according to the present invention will be described.
ここでいう主圧縮機 2と補助圧縮機 3の容量比とは、各圧縮機 2、 3の吐出容量の比 であり、各圧縮機 2、 3の吐出容量は、それぞれについての体積容量及び回転数から 導かれる。体積容量とは、各圧縮機 2、 3が備える回転体の 1サイクル(1回転)当たり の冷媒の吸入体積 (ccZサイクル)である。また、各圧縮機 2、 3の回転数は、主圧縮 機 2及び補助圧縮機 3は前述したように共通のエンジン 4によって駆動されるため、主 圧縮機 2及び補助圧縮機 3それぞれのエンジン 4のエンジンプーリに対するプーリ比 (変速比)によってそれぞれ決まる。 The capacity ratio between the main compressor 2 and the auxiliary compressor 3 is the ratio of the discharge capacity of each of the compressors 2 and 3, and the discharge capacity of each of the compressors 2 and 3 is the volume capacity and rotation of each. Derived from numbers. The volume capacity is the suction volume (ccZ cycle) of the refrigerant per cycle (1 rotation) of the rotating body provided in each of the compressors 2 and 3. The rotation speed of each of the compressors 2 and 3 depends on the main compressor 2 and the auxiliary compressor 3, which are driven by the common engine 4 as described above. Each of the compressor 2 and the auxiliary compressor 3 is determined by a pulley ratio (speed ratio) of the engine 4 to the engine pulley.
これらのことから、各圧縮機 2、 3の吐出容量は、体積容量とプーリ比との積力 求 められ、主圧縮機 2の体積容量、プーリ比をそれぞれ Vm、 Umとし、補助圧縮機 3の 体積容量、プーリ比をそれぞれ Vs、 Usとすると、主圧縮機 2の吐出容量は VmX Um となり、補助圧縮機 3の吐出容量は Vs X Usとなる。すなわち、補助圧縮機 3の、主圧 縮機 2と補助圧縮機 3の合計容量 (合計吐出容量)に対する容量比 (以下「補助圧縮 機容量比 R (%)」と!ヽぅ。)は、次式、 R= (Vs X Us) / { (Vm X Um) + (Vs X Us) } で表される。このことから、補助圧縮機容量比 Rは、各圧縮機 2、 3の体積容量 Vm、 V sが同等の場合はそれぞれのエンジン 4に対するプーリ比 Um、 Usによって決まり、各 圧縮機 2、 3のエンジン 4に対するプーリ比 Um、 Usが同等のときは、それぞれの体積 容量 Vm、 Vsによって決まる。なお、本発明においては、補助圧縮機 3の吐出容量は 主圧縮機 2の吐出容量よりも小さ 、構成として 、る。  From these facts, the discharge capacity of each of the compressors 2 and 3 is determined by the product force of the volume capacity and the pulley ratio, and the volume capacity and the pulley ratio of the main compressor 2 are set to Vm and Um, respectively. Assuming that the volume capacity and the pulley ratio are Vs and Us, respectively, the discharge capacity of the main compressor 2 is VmX Um, and the discharge capacity of the auxiliary compressor 3 is Vs X Us. That is, the capacity ratio of the auxiliary compressor 3 to the total capacity (total discharge capacity) of the main compressor 2 and the auxiliary compressor 3 (hereinafter “auxiliary compressor capacity ratio R (%)” and! ヽ ぅ) is It is expressed by the following equation, R = (Vs X Us) / {(Vm X Um) + (Vs X Us)}. From this, the auxiliary compressor capacity ratio R is determined by the pulley ratio Um and Us for each engine 4 when the volume capacities Vm and Vs of the compressors 2 and 3 are equivalent, and the capacity of each compressor 2 and 3 When the pulley ratios Um and Us for the engine 4 are equal, they are determined by their respective volume capacities Vm and Vs. In the present invention, the discharge capacity of the auxiliary compressor 3 is smaller than the discharge capacity of the main compressor 2.
そして、本発明に係るエンジンヒートポンプにおいては、この補助圧縮機容量比 R ( %)を 20%から 29%に構成している。以下、補助圧縮機容量比 Rを前記数値範囲に 構成することについて説明する。  In the engine heat pump according to the present invention, the auxiliary compressor capacity ratio R (%) is configured to be 20% to 29%. Hereinafter, the configuration of the auxiliary compressor capacity ratio R within the above numerical range will be described.
[0034] エンジンヒートポンプの冷媒回路において、補助圧縮機容量比 Rが変わることによ る影響は、主経路 26において分岐経路 27a (冷房サイクル時)又は 27b (暖房サイク ル時)に分岐される流量 Gsの過冷却用液冷媒の全量 Goに対する割合が変化するこ とである。つまり、補助圧縮機容量比 Rが大きくなると分岐される流量 Gsの液冷媒の 全量 Goに対する割合が増加し、補助圧縮機容量比 Rが小さくなると分岐される流量 Gsの液冷媒の全量 Goに対する割合が減少する。 [0034] In the refrigerant circuit of the engine heat pump, the effect of the change in the auxiliary compressor capacity ratio R affects the flow rate of the main path 26 that is branched to the branch path 27a (during the cooling cycle) or 27b (during the heating cycle). This means that the ratio of Gs to the total amount of liquid refrigerant for supercooling, Go, changes. That is, when the auxiliary compressor capacity ratio R increases, the ratio of the branched flow rate Gs to the total amount of liquid refrigerant Go increases, and when the auxiliary compressor capacity ratio R decreases, the ratio of the branched flow rate Gs to the total amount of liquid refrigerant Go relative to Go Decrease.
こうしたことを踏まえ、本発明における補助圧縮機容量比 Rの数値範囲 20%〜29 %について説明する。なお、以下の説明においては、主経路 26において分岐経路 2 7a又は 27bに分岐される過冷却用の液冷媒 (流量 Gs)を「分岐液冷媒」、分岐後に 主経路 26を流れる液冷媒 (流量 Gm)を「主液冷媒」と定義して説明する。  Based on these facts, the numerical range of the auxiliary compressor capacity ratio R in the present invention in the range of 20% to 29% will be described. In the following description, the subcooling liquid refrigerant (flow rate Gs) branched to the branch path 27a or 27b in the main path 26 is referred to as a `` branch liquid refrigerant, '' and the liquid refrigerant flowing through the main path 26 after the branch (flow rate Gm) is defined and described as “main liquid refrigerant”.
[0035] まず、補助圧縮機容量比 Rの数値範囲 20%〜29%に関し、上限値を 29%とする ことについて説明する。 補助圧縮機容量比 Rの上限値 29%は、冷房サイクル時 (冷房時)における運転効 率 (エネルギー効率)の変化力も導かれる。つまり、冷房時において、補助圧縮機容 量比 Rを大きくすることにより、分岐経路 27aへの分岐液冷媒の流量 Gs、即ち主経路 26を流れる全量 Goの液冷媒を過冷却する過冷却用液冷媒の量が多くなるので、過 冷却熱交換器 15における過冷却作用が高まり、主液冷媒の単位質量流量当たりの 冷房能力も高まることとなる。しかし、分岐液冷媒の流量 Gsが多くなる分、主液冷媒 の流量 Gmが少なくなり、室内熱交換器 8においての十分な冷房能力を得ることがで きなくなる。こうした現象に基づく運転効率 (エネルギー効率)の変化から補助圧縮機 容量比 Rの上限値が定められる。 [0035] First, regarding the numerical range of the auxiliary compressor capacity ratio R of 20% to 29%, setting the upper limit to 29% will be described. The upper limit of 29% of the auxiliary compressor capacity ratio R is derived from the changing power of the operating efficiency (energy efficiency) during the cooling cycle (cooling). In other words, during cooling, by increasing the auxiliary compressor capacity ratio R, the flow rate Gs of the branch liquid refrigerant to the branch path 27a, that is, the supercooling liquid for supercooling the entire amount of liquid refrigerant flowing through the main path 26, Go. Since the amount of the refrigerant increases, the supercooling action in the supercooling heat exchanger 15 increases, and the cooling capacity per unit mass flow of the main liquid refrigerant also increases. However, as the flow rate Gs of the branch liquid refrigerant increases, the flow rate Gm of the main liquid refrigerant decreases, and it becomes impossible to obtain sufficient cooling capacity in the indoor heat exchanger 8. The upper limit of the auxiliary compressor capacity ratio R is determined from changes in operating efficiency (energy efficiency) based on these phenomena.
[0036] そして、本発明において、補助圧縮機容量比 Rの上限値を 29%とすることにつき、 その根拠となる具体的な測定データを示すのが図 4に示すグラフである。  [0036] Fig. 4 is a graph showing specific measurement data as a basis for setting the upper limit of the auxiliary compressor capacity ratio R to 29% in the present invention.
図 4に示すグラフにおいて、横軸は補助圧縮機容量比 R(%)、縦軸は冷媒サイク ルにおける成績係数(Coefficient of Performance : COP)である。この COPは 、冷'暖房能力 Z燃料消費量で表され、 COPの値が大きいほど運転効率 (エネルギ 一効率)が良いことを示す。また、破線で表すグラフは、補助圧縮機を具備せずに単 一の圧縮機を備える場合の冷媒回路構成における COPを示す。  In the graph shown in FIG. 4, the horizontal axis represents the auxiliary compressor capacity ratio R (%), and the vertical axis represents the coefficient of performance (COP) in the refrigerant cycle. This COP is represented by cooling / heating capacity Z fuel consumption, and the larger the value of COP, the higher the operating efficiency (energy-efficient). The graph indicated by the broken line shows the COP in the refrigerant circuit configuration when a single compressor is provided without the auxiliary compressor.
このグラフからわ力るように、冷房時における COPは、補助圧縮機容量比 Rが 10% 付近では単一圧縮機の場合より高 ヽ値で横ば ヽとなって!/ヽるが、補助圧縮機容量比 Rが 15%に近付く辺りから補助圧縮機容量比 Rが増加するにつれて COPは減少し ている。そして、補助圧縮機容量比 Rが約 30%となる時点力も冷房時における COP が単一圧縮機の場合の COPを下回っている。つまり、この時点での補助圧縮機容量 比 Rの値 (約 30%) 1S 前述した本発明における冷房時の全圧縮仕事の低減を図る ことによる運転効率 (COP)の向上を図れる臨界値 (上限値)であり、補助圧縮機容 量比 Rが約 30%未満であれば、冷房時における COPは、従来と比較して高い値を 保つことができる。このことから、本発明における補助圧縮機容量比 Rの上限値を 29 %としている。なお、グラフからわ力るように、暖房サイクル時における COPは、補助 圧縮機容量比 Rの値に関わらず常に従来よりも高い値を示す。  As can be seen from this graph, the COP during cooling becomes higher and flatter than the single compressor when the auxiliary compressor capacity ratio R is around 10%! From around the compressor capacity ratio R approaching 15%, the COP decreases as the auxiliary compressor capacity ratio R increases. Also, the instantaneous force at which the auxiliary compressor capacity ratio R becomes about 30% is lower than the COP for a single compressor during cooling. In other words, the value of the auxiliary compressor capacity ratio R at this point (approximately 30%) 1S The critical value (upper limit) at which the operation efficiency (COP) can be improved by reducing the total compression work during cooling in the present invention described above. If the auxiliary compressor capacity ratio R is less than about 30%, the COP during cooling can be maintained at a higher value than before. For this reason, the upper limit of the auxiliary compressor capacity ratio R in the present invention is set to 29%. As can be seen from the graph, the COP during the heating cycle always shows a higher value than before, regardless of the value of the auxiliary compressor capacity ratio R.
[0037] 次に、補助圧縮機容量比 Rの数値範囲 20%〜29%に関し、下限値を 20%とする ことについて説明する。 Next, regarding the numerical range of the auxiliary compressor capacity ratio R of 20% to 29%, the lower limit is set to 20%. This will be described.
補助圧縮機容量比 Rの下限値 20%は、暖房サイクル時 (暖房時)における過冷却 熱交^^ 15の主経路 26側の冷媒入口となる接続点 15aの冷媒温度(以下単に「入 口温度」という。)と、過冷却熱交翻15の主経路 26側の冷媒出口となる接続点 15b の冷媒温度(以下単に「出口温度」という。)との関係力も導かれる。つまり、暖房時に おいて、補助圧縮機容量比 Rを小さくすることにより、分岐経路 27bに分岐する分岐 液冷媒の流量 Gs、即ち主経路 26を流れる全量 Goの液冷媒を過冷却する過冷却用 液冷媒の量が少なくなるので、過冷却熱交 5における過冷却作用が低下し、 分岐液冷媒は蒸発し易くなる。しかし、分岐液冷媒の流量 Gsが少なくなる分、主液 冷媒の流量 Gmが多くなり、全量 Goの液冷媒が過冷却熱交換器 15で十分に過冷却 されな 、状態となって、過冷却熱交翻15にお 、て略一定となる入口温度に対して 出口温度が上昇してしまう。こうした過冷却熱交換器 15における入口温度に対する 出口温度の上昇は、暖房時において過冷却熱交換器 15で十分な過冷却度を得るこ との妨げとなる。つまり、暖房時に過冷却熱交翻15の性能を確保するためには、 過冷却される液冷媒の入口温度と、過冷却後の出口温度との間に一定以上の温度 差 (例えば、 5°C以上)、つまり、過冷却度が生じるよう、補助圧縮機 3の容量を選定( 構成)する必要がある。このようなことから、補助圧縮機容量比 Rの下限値が定められ る。  The lower limit of 20% of the auxiliary compressor capacity ratio R is the refrigerant temperature at the connection point 15a, which is the refrigerant inlet on the main path 26 side of the supercooling heat exchange 15 during the heating cycle (heating) (hereinafter simply referred to as “ Temperature)) and the refrigerant temperature at the connection point 15b, which is the refrigerant outlet on the main path 26 side of the supercooling heat exchange 15 (hereinafter simply referred to as "outlet temperature"). In other words, during heating, by reducing the auxiliary compressor capacity ratio R, the flow rate Gs of the branched liquid refrigerant branched into the branch path 27b, that is, the supercooling for supercooling the total amount of liquid refrigerant flowing through the main path 26, Go. Since the amount of the liquid refrigerant is reduced, the supercooling effect in the supercooling heat exchange 5 is reduced, and the branched liquid refrigerant is easily evaporated. However, as the flow rate Gs of the branch liquid refrigerant decreases, the flow rate Gm of the main liquid refrigerant increases, and the liquid refrigerant of the total amount Go is not sufficiently supercooled by the supercooling heat exchanger 15, and becomes supercooled. In heat exchange 15, the outlet temperature rises with respect to the inlet temperature that is substantially constant. Such an increase in the outlet temperature with respect to the inlet temperature in the subcooling heat exchanger 15 hinders obtaining a sufficient degree of subcooling in the subcooling heat exchanger 15 during heating. In other words, in order to ensure the performance of the subcooling heat exchange 15 during heating, a temperature difference between the inlet temperature of the supercooled liquid refrigerant and the outlet temperature after the supercooling exceeds a certain level (for example, 5 °). C or more), that is, the capacity of the auxiliary compressor 3 needs to be selected (configured) so that the degree of supercooling occurs. Therefore, the lower limit of the auxiliary compressor capacity ratio R is determined.
そして、本発明において、補助圧縮機容量比 Rの下限値を 20%とすることにつき、 その根拠となる具体的な測定データを示すのが図 5に示すグラフである。  FIG. 5 is a graph showing specific measurement data as a basis for setting the lower limit of the auxiliary compressor capacity ratio R to 20% in the present invention.
図 5に示すグラフにおいて、横軸は補助圧縮機容量比 R(%)、縦軸は過冷却熱交 換器 15の入口温度又は出口温度 (°C)であり、暖房時におけるそれぞれの値を示し ている。  In the graph shown in Fig. 5, the horizontal axis represents the auxiliary compressor capacity ratio R (%), and the vertical axis represents the inlet or outlet temperature (° C) of the subcooling heat exchanger 15, and the respective values during heating are shown. Is shown.
このグラフからわ力るように、過冷却熱交翻15の入口温度は、補助圧縮機容量 比 Rの値に関わらず略一定の温度(32〜33°C)となっている。一方、過冷却熱交換 器 15の出口温度は、補助圧縮機容量比 Rの減少にともなって入口温度よりも低い温 度から高い温度へと上昇している。つまり、補助圧縮機容量比 Rがある値となる時点 から出口温度の方が入口温度よりも高くなる。そして、本発明において、暖房時にお いて過冷却熱交翻15の性能を確保することができる入口温度と出口温度との関 係は、出口温度が入口温度に対して約 5°C以上低いことが好ましぐ出口温度が入 口温度よりも約 5°C以上低くなる補助圧縮機容量比 Rの臨界値 (下限値)が 20%とな つている。このことから、本発明における補助圧縮機容量比 Rの下限値を 20%として いる。 As can be seen from this graph, the inlet temperature of the subcooling heat exchanger 15 is a substantially constant temperature (32 to 33 ° C) regardless of the value of the auxiliary compressor capacity ratio R. On the other hand, the outlet temperature of the subcooling heat exchanger 15 increases from a temperature lower than the inlet temperature to a higher temperature as the auxiliary compressor capacity ratio R decreases. In other words, the outlet temperature becomes higher than the inlet temperature from the point in time when the auxiliary compressor capacity ratio R reaches a certain value. And, in the present invention, when heating The relationship between the inlet temperature and the outlet temperature that can ensure the performance of supercooling heat exchange 15 is that the outlet temperature is preferably about 5 ° C or more lower than the inlet temperature. The critical value (lower limit) of the auxiliary compressor capacity ratio R, which is lower than the temperature by about 5 ° C or more, is 20%. For this reason, the lower limit of the auxiliary compressor capacity ratio R in the present invention is set to 20%.
[0039] 以上説明したように、本発明に係るエンジンヒートポンプにおける補助圧縮機容量 比 Rについて、冷房時から定まる上限値及び暖房時力 定まる下限値から、その数 値範囲を 20%から 29%となるように構成することにより、冷房時において冷房能力の 維持又は向上が図れると共に、暖房時において過冷却熱交 の性能を確保す ることができる。つまり、共通のエンジン 4で主圧縮機 2及び補助圧縮機 3を駆動する 本発明の構成において、補助圧縮機容量比 Rを 20%から 29%の範囲内に構成する ことにより、冷房時及び暖房時における運転効率 (エネルギー効率)の良い運転が可 能となる。  As described above, the numerical value range of the auxiliary compressor capacity ratio R in the engine heat pump according to the present invention ranges from 20% to 29% from the upper limit determined from cooling and the lower limit determined from heating power. With this configuration, the cooling capacity can be maintained or improved during cooling, and the performance of supercooling heat exchange can be ensured during heating. That is, in the configuration of the present invention in which the main compressor 2 and the auxiliary compressor 3 are driven by the common engine 4, by setting the auxiliary compressor capacity ratio R within the range of 20% to 29%, cooling and heating are performed. Operation with good operation efficiency (energy efficiency) at the time is possible.
[0040] なお、本発明に係るエンジンヒートポンプの冷媒回路構成において、エンジン 4から 主圧縮機 2及び補助圧縮機 3への駆動力の伝達に無段変速機 (Continuously Va riable Transmission: CVT)を採用する構成とすることもできる。  [0040] In the refrigerant circuit configuration of the engine heat pump according to the present invention, a continuously variable transmission (CVT) is used to transmit the driving force from the engine 4 to the main compressor 2 and the auxiliary compressor 3. It can also be configured to be.
この場合、前述したような冷房時及び暖房時それぞれにおける補助圧縮機容量比 Rの臨界値を考慮して、 CVTにより主圧縮機 2及び補助圧縮機 3の変速比を変える。  In this case, the gear ratio of the main compressor 2 and the auxiliary compressor 3 is changed by CVT in consideration of the critical value of the auxiliary compressor capacity ratio R at the time of cooling and at the time of heating as described above.
[0041] 具体的に本発明に係るエンジンヒートポンプにお 、ては、冷房時では補助圧縮機 容量比 Rの値が前述した上限値よりも小さければよぐまた、暖房時では補助圧縮機 容量比 Rの値が前述した下限値よりも大きければよい。すなわち、冷房時においては 、補助圧縮機容量比 Rが約 30%未満、暖房時においては、補助圧縮機容量比尺が 20%以上となるように CVTを制御し、冷房時及び暖房時にぉ 、て変速比を変える構 成とする。  [0041] Specifically, in the engine heat pump according to the present invention, it is sufficient that the value of the auxiliary compressor capacity ratio R is smaller than the above-mentioned upper limit during cooling, and the auxiliary compressor capacity ratio during heating. It is sufficient that the value of R is larger than the lower limit described above. That is, during cooling, the CVT is controlled so that the auxiliary compressor capacity ratio R is less than about 30%, and during heating, the auxiliary compressor capacity ratio is 20% or more. To change the gear ratio.
このように、 CVTを用いる構成とすることにより、主圧縮機 2の体積容量 Vm及びプ ーリ比 Umに対して設定される補助圧縮機 3の体積容量 Vs及びプーリ比 Usの自由 度を向上させることができる。また、冷房サイクルにおいては上限値だけを定めれば よぐ暖房サイクルにおいては下限値だけを定めればよいこととなるので、冷房時及 び暖房時それぞれにお 、て、補助圧縮機容量比 Rをより好適な値とすることが可能と なり、各サイクルにおける運転効率 (エネルギー効率)の向上が図れる。 As described above, by using the CVT, the degree of freedom of the volume capacity Vs of the auxiliary compressor 3 and the pulley ratio Us set with respect to the volume capacity Vm of the main compressor 2 and the pulley ratio Um is improved. Can be done. In the cooling cycle, only the upper limit should be determined. In the heating cycle, only the lower limit needs to be determined. In each of heating and heating, the auxiliary compressor capacity ratio R can be set to a more suitable value, and the operation efficiency (energy efficiency) in each cycle can be improved.
[0042] ところで、本発明に係るエンジンヒートポンプにおいては、室外熱交^^ 5と並列に エンジン廃熱回収器 6を設けている。そして、主経路 26において分岐される過冷却 用液冷媒をこのエンジン廃熱回収器 6で蒸発すると共に補助圧縮機 3で圧縮する構 成としている。 Incidentally, in the engine heat pump according to the present invention, the engine waste heat recovery device 6 is provided in parallel with the outdoor heat exchange 5. The supercooling liquid refrigerant branched off in the main path 26 is evaporated by the engine waste heat recovery unit 6 and compressed by the auxiliary compressor 3.
[0043] エンジン廃熱回収器 6は、前述したように、暖房時において過冷却熱交換器 15を 通過した分岐液冷媒が吸熱して蒸発するためのものであり、このエンジン廃熱回収 器 6においては、分岐液冷媒と、この分岐液冷媒と比較して高温となるエンジン冷却 水 CWとの熱交換が行われることにより分岐液冷媒が吸熱して蒸発する。  As described above, the engine waste heat recovery device 6 is for absorbing and evaporating the branched liquid refrigerant that has passed through the supercooling heat exchanger 15 during heating. In, the branch liquid refrigerant absorbs heat and evaporates by heat exchange between the branch liquid refrigerant and the engine cooling water CW having a higher temperature than the branch liquid refrigerant.
[0044] 次に、モリエル線図(図 3)上の冷凍サイクルに関し、暖房サイクルの場合について 説明する。なお、前述した冷房サイクルの場合と重複する部分については、その説明 を省略する。  Next, the refrigeration cycle on the Mollier diagram (FIG. 3) will be described in the case of a heating cycle. The description of the same parts as those in the cooling cycle described above is omitted.
まず、主圧縮機 2及び補助圧縮機 3にて圧縮され高圧となった冷媒 (ガス冷媒)は、 合流点 65にて合流する。この合流した冷媒は室内熱交 8に送られる。室内熱交 8においては、高圧ガスとなった冷媒の凝縮による放熱が行われ、暖房を行う室 内に放熱すると共に冷却されて液冷媒となる (凝縮区間 BC)。つまり、点 Bの状態は 、冷媒が合流点 65から室内熱交換器 8までの経路にある状態を示す。  First, the refrigerant (gas refrigerant) compressed by the main compressor 2 and the auxiliary compressor 3 to have a high pressure joins at a junction 65. The combined refrigerant is sent to indoor heat exchange 8. In the indoor heat exchange 8, heat is dissipated by condensation of the refrigerant that has become high-pressure gas, and is dissipated in the room where heating is performed and cooled to become a liquid refrigerant (condensation section BC). That is, the state at the point B indicates a state where the refrigerant is on the path from the junction 65 to the indoor heat exchanger 8.
[0045] 室内熱交換器 8から液冷媒として送り出された冷媒は、過冷却熱交換器 15にて、 過冷却熱交換器 15の下流側にて分岐経路 27bに分岐された過冷却用液冷媒によ つて過冷却される(過冷却区間 CD)。  [0045] The refrigerant sent out as liquid refrigerant from the indoor heat exchanger 8 is supplied to the subcooling heat exchanger 15 at a downstream side of the subcooling heat exchanger 15 to a subcooling liquid refrigerant branched to a branch path 27b. Is supercooled (supercooling section CD).
[0046] そして、過冷却された後の液冷媒は、主経路 26においてその一部が分岐された後 、室外熱交 用膨張弁 21により膨張され、低温'低圧の液冷媒となる (膨張区間 D Em)。点 Emの状態となった液冷媒は室外熱交換器 5へと送られ、室外熱交換器 5に て外気からの吸熱による冷媒の蒸発が行われる (蒸発区間 EmAm)。そして、ガス冷 媒となった冷媒が主圧縮機 2の吸入ラインを構成する経路 32を流れて主圧縮機 2へ と再び吸入される。  Then, the liquid refrigerant after being supercooled is partially branched in the main path 26 and then expanded by the outdoor heat exchange expansion valve 21 to become a low-temperature and low-pressure liquid refrigerant (expansion section). D Em). The liquid refrigerant in the state of the point Em is sent to the outdoor heat exchanger 5, where the refrigerant is evaporated by absorbing heat from the outside air (evaporation section EmAm). Then, the refrigerant that has become the gas refrigerant flows through the path 32 constituting the suction line of the main compressor 2 and is sucked into the main compressor 2 again.
[0047] 一方、分岐経路 27bに分岐される過冷却用液冷媒は、過冷却熱交換器用膨張弁 2 2にて膨張されて点 Cの状態における液冷媒よりも圧力 *温度が低下する (膨張区間 DEs)。このように、過冷却熱交換器 15にて過冷却された液冷媒のうち、分岐経路 2 7bに分岐される液冷媒が過冷却用液冷媒となる。そして、分岐経路 27bに分岐され る液冷媒の冷媒回路における流量が Gsとなる。 On the other hand, the subcooling liquid refrigerant branched to the branch path 27b is the expansion valve 2 for the subcooling heat exchanger. The pressure * temperature is lower than that of the liquid refrigerant in the state at the point C when expanded at 2 (expansion section DEs). As described above, of the liquid refrigerant supercooled by the subcooling heat exchanger 15, the liquid refrigerant branched to the branch path 27b becomes the subcooling liquid refrigerant. Then, the flow rate of the liquid refrigerant branched in the branch path 27b in the refrigerant circuit becomes Gs.
[0048] そして、点 Esの状態となった過冷却用液冷媒は、過冷却熱交換器 15にて主経路 2 6を流れる液冷媒から吸熱することにより、主経路 26を流れる液冷媒を過冷却する。 過冷却熱交換器 15を通過した過冷却用液冷媒は、エンジン廃熱回収器 6に送り込 まれる。このエンジン廃熱回収器 6において、過冷却用液冷媒とエンジン冷却水 CW との熱交換が行われ、過冷却用液冷媒が吸熱して蒸発する (蒸発区間 EsAs)。この 蒸発した冷媒が、補助圧縮機 3の吸入ラインを構成する経路 33を流れて補助圧縮機 3へと再び吸入される。 [0048] Then, the subcooling liquid refrigerant in the state of point Es absorbs heat from the liquid refrigerant flowing through main path 26 in subcooling heat exchanger 15, thereby superposing the liquid refrigerant flowing through main path 26. Cooling. The subcooling liquid refrigerant that has passed through the subcooling heat exchanger 15 is sent to the engine waste heat recovery unit 6. In this engine waste heat recovery unit 6, heat exchange between the supercooling liquid refrigerant and the engine cooling water CW is performed, and the supercooling liquid refrigerant absorbs heat and evaporates (evaporation section EsAs). The evaporated refrigerant flows through the path 33 forming the suction line of the auxiliary compressor 3 and is sucked into the auxiliary compressor 3 again.
[0049] このようにして暖房時においても過冷却を行うことで、次のような作用により運転効 率(エネルギー効率)の向上が図られて 、る。  [0049] By performing supercooling even during heating in this manner, the operation efficiency (energy efficiency) is improved by the following operation.
主経路 26を流れる全量 Goの液冷媒は、前述したように過冷却熱交翻15にて過 冷却される。ここで液冷媒が過冷却されることにより、冷媒の単位質量流量当たりの 吸熱能力(kjZkg)が高まる。すなわち、過冷却された後の室外熱交換器 5において の、液冷媒の単位質量流量当たりの外気からの吸熱能力が高まることとなり、過冷却 されない場合の液冷媒と比較して少量の液冷媒で同等の熱量を吸熱することが可能 となる。これにより、暖房時において室外熱交換器 5に送り込まれる主液冷媒の流量 Gmを減少させることができ、冷媒サイクルを循環する冷媒の全量 Goを減少させるこ とができる。この結果、冷媒サイクルにおける全圧縮仕事を低減することが可能となり 、運転効率 (エネルギー効率)の向上が図れる。  The liquid refrigerant of the total amount Go flowing through the main path 26 is supercooled by the supercooling heat exchange 15 as described above. Here, the subcooling of the liquid refrigerant increases the heat absorption capacity (kjZkg) per unit mass flow rate of the refrigerant. That is, in the outdoor heat exchanger 5 after being supercooled, the heat absorption capacity from the outside air per unit mass flow rate of the liquid refrigerant is increased, and a smaller amount of the liquid refrigerant is used as compared with the liquid refrigerant that is not supercooled. It is possible to absorb the same amount of heat. Accordingly, the flow rate Gm of the main liquid refrigerant sent to the outdoor heat exchanger 5 during heating can be reduced, and the total amount Go of the refrigerant circulating in the refrigerant cycle can be reduced. As a result, the total compression work in the refrigerant cycle can be reduced, and the operation efficiency (energy efficiency) can be improved.
[0050] このように、室外熱交換器 5と並列にエンジン廃熱回収器 6を設け、過冷却用の分 岐液冷媒をエンジン廃熱回収器 6で蒸発させると共に補助圧縮機 3で圧縮する構成 とすることにより、補助圧縮機容量比 Rを前述した範囲内とすることによる冷房時の全 圧縮仕事の低減が図れると共に、暖房時においても、電力の利用量を新たに増加す ることなく、全圧縮仕事の低減を図ることができる。 As described above, the engine waste heat recovery unit 6 is provided in parallel with the outdoor heat exchanger 5, and the branch liquid refrigerant for supercooling is evaporated by the engine waste heat recovery unit 6 and compressed by the auxiliary compressor 3. With this configuration, by setting the auxiliary compressor capacity ratio R within the above range, it is possible to reduce the total compression work during cooling, and also to increase the amount of electric power used during heating without newly increasing Thus, the total compression work can be reduced.
さらに、暖房時においても液冷媒の過冷却を行うことにより、過冷却作用によって冷 媒の単位質量流量当たりの外気力 の吸熱能力が向上するので、冷媒サイクルを流 れる冷媒の全量を低減することができる。この結果、全圧縮仕事を低減させることが 可能となり、運転効率 (エネルギー効率)を向上することができる。 Furthermore, even during heating, by supercooling the liquid refrigerant, Since the heat absorbing capacity of the external force per unit mass flow rate of the medium is improved, the total amount of the refrigerant flowing through the refrigerant cycle can be reduced. As a result, the total compression work can be reduced, and the operation efficiency (energy efficiency) can be improved.
[0051] ところで、以上説明したエンジンヒートポンプにおいては、エンジン 4で駆動される主 圧縮機 2及び補助圧縮機 3を、それぞれ単独で駆動する構成とすることもできる。この ような構成とすることによって、空調負荷の大小に応じた主圧縮機 2及び補助圧縮機 3の運転'停止を行うことが可能となり、運転効率 (エネルギー効率)の向上を図ること ができる。  Meanwhile, in the engine heat pump described above, the main compressor 2 and the auxiliary compressor 3 driven by the engine 4 may be configured to be driven independently. With such a configuration, the main compressor 2 and the auxiliary compressor 3 can be operated and stopped according to the magnitude of the air conditioning load, and operation efficiency (energy efficiency) can be improved.
[0052] この場合、具体的な構成としては、図 1に示すように、エンジン 4と主圧縮機 2及び 補助圧縮機 3との間に、それぞれエンジン 4の駆動力の断接 (連結 ·非連結の切替え )を行う主圧縮機用クラッチ 42及び補助圧縮機用クラッチ 43を設ける。  In this case, as a specific configuration, as shown in FIG. 1, connection and disconnection (connection / non-connection) of the driving force of the engine 4 between the engine 4 and the main compressor 2 and the auxiliary compressor 3 respectively. A clutch 42 for the main compressor and a clutch 43 for the auxiliary compressor for switching the connection) are provided.
そして、主圧縮機 2の吸入ラインを構成する経路 32と、補助圧縮機 3の吸入ライン を構成する経路 33とを連絡経路 34により連通すると共に、この連絡経路 34に開閉 弁 35を設ける。つまり、開閉弁 35を開閉することで連絡経路 34の開通 '非開通を切 り替えることにより、経路 32と経路 33との連通 ·非連通を切り替えることができる構成 とし、冷媒回路を空調負荷の低 ·中'高負荷状態に対応させて各負荷状態での運転 を行う。  Then, a path 32 forming a suction line of the main compressor 2 and a path 33 forming a suction line of the auxiliary compressor 3 are connected by a communication path 34, and an on-off valve 35 is provided in the communication path 34. In other words, by opening / closing the on-off valve 35 to switch the communication path 34 between open and non-open, the communication between the paths 32 and 33 can be switched between open and closed, and the refrigerant circuit is connected to the air conditioning load. Operate at each load condition corresponding to low, medium and high load conditions.
ここで、図 2に示すように、前述したコントローラ 25は、主圧縮機用クラッチ 42及び 補助圧縮機用クラッチ 43と接続されており、コントローラ 25は、各負荷状態に応じて エンジン 4力も各クラッチへの駆動力の断接を制御する。また、同じくコントローラ 25 は開閉弁 35と接続されており、開閉弁 35の開閉を制御する。  Here, as shown in FIG. 2, the controller 25 described above is connected to the main compressor clutch 42 and the auxiliary compressor clutch 43. Control the connection and disconnection of the driving force to the motor. Similarly, the controller 25 is connected to the on-off valve 35 and controls opening and closing of the on-off valve 35.
[0053] このような構成により、各負荷状態に応じた制御を冷房時及び暖房時それぞれに おいて例えば次のように行う。すなわち、冷房時においては、空調負荷が低負荷の 場合は補助圧縮機 3の単独運転とし、中負荷の場合は主圧縮機 2の単独運転とする 。そして、高負荷の場合は、前述したように主圧縮機 2及び補助圧縮機 3双方による 運転とすると共に、過冷却熱交換器 15にて過冷却を行う。一方、暖房時においては 、空調負荷が低負荷の場合は補助圧縮機 3の単独運転とし、中負荷の場合は主圧 縮機 2の単独運転とすると共にエンジン廃熱回収器 6にて熱交換を行う。そして、高 負荷の場合は、前述したように主圧縮機 2及び補助圧縮機 3双方による運転とすると 共に、過冷却熱交翻15における過冷却及びエンジン廃熱回収器 6における熱交 換を行う。 With such a configuration, control according to each load state is performed, for example, as follows in each of cooling and heating. That is, during cooling, the auxiliary compressor 3 is operated independently when the air conditioning load is low, and the main compressor 2 is operated independently when the air conditioning load is medium. When the load is high, the operation is performed by both the main compressor 2 and the auxiliary compressor 3 as described above, and the supercooling heat exchanger 15 performs supercooling. On the other hand, during heating, when the air conditioning load is low, the auxiliary compressor 3 is operated independently, and when the air conditioning load is medium, the main compressor 2 is operated independently, and heat is exchanged by the engine waste heat recovery unit 6. I do. And high In the case of a load, the operation is performed by both the main compressor 2 and the auxiliary compressor 3 as described above, and the supercooling in the supercooling heat exchange 15 and the heat exchange in the engine waste heat recovery unit 6 are performed.
なお、ここでいう空調負荷の高低は、エンジンヒートポンプの空調負荷(%)が、概ね 、 0%〜15%となる範囲を低負荷、 15%〜60%となる範囲を中負荷、 60%〜100% となる範囲を高負荷とする。  The level of the air-conditioning load referred to here means that the air-conditioning load (%) of the engine heat pump is approximately 0% to 15%, low load, 15% to 60%, medium load, and 60% to 60%. High load is set in the range of 100%.
[0054] まず、冷房時の運転について説明する。  First, the operation during cooling will be described.
空調負荷が低負荷の場合は、補助圧縮機 3の単独運転とする。この場合、コント口 ーラ 25は、主圧縮機用クラッチ 42を切状態とすると共に開閉弁 35を開く。つまり、ェ ンジン 4の駆動力を補助圧縮機 3のみに伝達させると共に、主圧縮機 2の吸入ライン である経路 32を補助圧縮機 3の吸入ラインである経路 33と連通させることにより、全 量 Goの冷媒を補助圧縮機 3にて圧縮する。また、この場合、過冷却熱交換器用膨張 弁 22の開閉を制御することによって、過冷却熱交換器 15による過冷却を行うか否か を制御する。そして、過冷却熱交換器 15による過冷却を行う際は、合流点 64 (図 1) での圧力損失などを低減するため圧力関係を考慮し、コントローラ 25は、経路 32か らの冷媒圧力と経路 33から冷媒圧力とが略同一となるように過冷却熱交 用膨張 弁 22及び室内熱交換器用膨張弁 23の開度を制御する。  When the air conditioning load is low, the auxiliary compressor 3 is operated independently. In this case, the controller 25 sets the clutch 42 for the main compressor to the disengaged state and opens the on-off valve 35. In other words, by transmitting the driving force of the engine 4 only to the auxiliary compressor 3, and by connecting the path 32, which is the suction line of the main compressor 2, with the path 33, which is the suction line of the auxiliary compressor 3, the total amount is reduced. The Go refrigerant is compressed by the auxiliary compressor 3. Further, in this case, by controlling the opening and closing of the expansion valve 22 for the supercooling heat exchanger, it is controlled whether or not the supercooling heat exchanger 15 performs the supercooling. When supercooling is performed by the supercooling heat exchanger 15, the controller 25 considers the pressure relationship in order to reduce the pressure loss at the junction 64 (FIG. 1) and the like. The opening degree of the supercooling heat exchange expansion valve 22 and the indoor heat exchanger expansion valve 23 is controlled so that the refrigerant pressure from the path 33 becomes substantially the same.
[0055] また、空調負荷が中負荷の場合は、主圧縮機 2の単独運転とする。この場合、コント ローラ 25は、補助圧縮機用クラッチ 43を切状態とし、エンジン 4の駆動力を主圧縮機 2のみに伝達させて全量 Goの冷媒を主圧縮機 2にて圧縮する。また、この場合、過 冷却熱交翻 15による過冷却を行う際は、コントローラ 25は、開閉弁 35を開くと共に 、合流点 63 (図 1)において経路 32からの冷媒圧力と経路 33から冷媒圧力とが略同 一となるように過冷却熱交 用膨張弁 22及び室内熱交 用膨張弁 23の開度 を制御する。  When the air-conditioning load is a medium load, the main compressor 2 is operated independently. In this case, the controller 25 sets the clutch 43 for the auxiliary compressor to the disengaged state, transmits the driving force of the engine 4 to only the main compressor 2, and compresses the entire amount of the refrigerant in the main compressor 2. Further, in this case, when performing supercooling by the supercooling heat exchange 15, the controller 25 opens the on-off valve 35, and at the junction 63 (FIG. 1), the refrigerant pressure from the path 32 and the refrigerant pressure from the path 33. The opening degrees of the supercooling heat exchange expansion valve 22 and the indoor heat exchange expansion valve 23 are controlled so that the values are substantially the same.
[0056] また、空調負荷が高負荷の場合は、主圧縮機 2及び補助圧縮機 3双方による運転 とすると共に、過冷却熱交 5にて過冷却を行う。この場合、コントローラ 25は、 主圧縮機用クラッチ 42及び補助圧縮機用クラッチ 43を双方とも入状態とすると共に 開閉弁 35を閉じる。つまり、エンジン 4の駆動力を各圧縮機 2、 3に伝達させると共に 経路 32と経路 33との連通を断ち、流量 Gmの冷媒を主圧縮機 2にて圧縮させ、流量 Gsの過冷却用の冷媒を補助圧縮機 3にて圧縮させる。 When the air conditioning load is high, the operation is performed by both the main compressor 2 and the auxiliary compressor 3, and the supercooling is performed by the supercooling heat exchange 5. In this case, the controller 25 turns on the clutch 42 for the main compressor and the clutch 43 for the auxiliary compressor, and closes the on-off valve 35. That is, while transmitting the driving force of the engine 4 to each of the compressors 2 and 3, The communication between the path 32 and the path 33 is cut off, the refrigerant having the flow rate Gm is compressed by the main compressor 2, and the subcooling refrigerant having the flow rate Gs is compressed by the auxiliary compressor 3.
[0057] 次に、暖房時の運転について説明する。 Next, the operation during heating will be described.
空調負荷が低負荷の場合は、補助圧縮機 3の単独運転とする。つまりこの場合、コ ントローラ 25による制御態様は、前述した冷房時の運転における低負荷の場合と同 様となる。  When the air conditioning load is low, the auxiliary compressor 3 is operated independently. That is, in this case, the control mode by the controller 25 is the same as in the case of the low load in the operation during cooling described above.
[0058] また、空調負荷が中負荷の場合は、主圧縮機 2の単独運転とすると共にエンジン廃 熱回収器 6にて熱交換を行う。この場合、コントローラ 25は、補助圧縮機用クラッチ 4 3を切状態とすると共に開閉弁 35を開く。つまり、エンジン 4の駆動力を主圧縮機 2の みに伝達させると共にエンジン廃熱回収器 6にて熱交換を行い、合流点 63にて合流 する全量 Goの冷媒を主圧縮機 2にて圧縮する。この場合、過冷却熱交換器 15によ る過冷却を行う際は、コントローラ 25は、開閉弁 35を開くと共に、合流点 63において 経路 32からの冷媒圧力と経路 33から冷媒圧力とが略同一となるように過冷却熱交換 器用膨張弁 22及び室外熱交換器用膨張弁 21の開度を制御する。  When the air conditioning load is a medium load, the main compressor 2 is operated independently, and heat is exchanged in the engine waste heat recovery unit 6. In this case, the controller 25 turns off the auxiliary compressor clutch 43 and opens the on-off valve 35. In other words, the driving force of the engine 4 is transmitted only to the main compressor 2 and heat is exchanged in the engine waste heat recovery unit 6, and the total amount of Go refrigerant that merges at the junction 63 is compressed by the main compressor 2. I do. In this case, when performing supercooling by the supercooling heat exchanger 15, the controller 25 opens the on-off valve 35, and at the junction 63, the refrigerant pressure from the path 32 and the refrigerant pressure from the path 33 are substantially the same. The opening degree of the expansion valve 22 for the supercooling heat exchanger and the expansion valve 21 for the outdoor heat exchanger are controlled so that
[0059] また、空調負荷が高負荷の場合は、主圧縮機 2及び補助圧縮機 3双方による運転 とすると共に、過冷却熱交翻15における過冷却及びエンジン廃熱回収器 6におけ る熱交換を行う。この場合、コントローラ 25は、主圧縮機用クラッチ 42及び補助圧縮 機用クラッチ 43を双方とも入状態とすると共に開閉弁 35を閉じる。つまり、エンジン 4 の駆動力を各圧縮機 2、 3に伝達させると共に経路 32と経路 33との連通を断ち、流 量 Gmの冷媒を主圧縮機 2にて圧縮させ、エンジン廃熱回収器 6にて熱交換される流 量 Gsの過冷却用の冷媒を補助圧縮機 3にて圧縮させる。  [0059] When the air conditioning load is high, the operation is performed by both the main compressor 2 and the auxiliary compressor 3, and the supercooling in the supercooling heat exchange 15 and the heat in the engine waste heat recovery unit 6 are performed. Make a replacement. In this case, the controller 25 turns on the clutch 42 for the main compressor and the clutch 43 for the auxiliary compressor, and closes the on-off valve 35. In other words, the driving force of the engine 4 is transmitted to each of the compressors 2 and 3, the communication between the path 32 and the path 33 is cut off, the refrigerant having a flow rate of Gm is compressed by the main compressor 2, and the engine waste heat collector 6 The auxiliary compressor 3 compresses a subcooling refrigerant having a flow rate of Gs, which is heat-exchanged at.
[0060] このように、所要の空調負荷の高低に応じて、主圧縮機 2及び補助圧縮機 3の運転 を切り替えることができる構成とすることにより、エンジン 4の燃焼効率が低下する部 分負荷での運転状態を低減することができるので、運転効率 (エネルギー効率)の向 上を図ることができる。  [0060] As described above, the configuration in which the operation of the main compressor 2 and the auxiliary compressor 3 can be switched in accordance with the level of the required air conditioning load allows the partial load in which the combustion efficiency of the engine 4 is reduced. Therefore, the operation state (energy efficiency) can be improved.
産業上の利用可能性  Industrial applicability
[0061] 本発明のエンジンヒートポンプは、広くエンジンにて圧縮機を駆動する構成のェン ジンヒートポンプに適用することで、電力の利用量を増加することなぐ圧縮仕事の低 減を図り、運転効率 (エネルギー効率)を向上することができる。 [0061] The engine heat pump of the present invention is widely applied to an engine heat pump having a configuration in which a compressor is driven by an engine, thereby reducing the compression work without increasing the amount of electric power used. The operation efficiency (energy efficiency) can be improved.

Claims

請求の範囲 The scope of the claims
[1] エンジンで駆動される主圧縮機及び補助圧縮機、室内熱交換器、室外熱交換器、 室内熱交換器用膨張弁、室外熱交換器用膨張弁、並びに室内熱交換器と室外熱 交換器の接続経路のうち液冷媒通過経路に設けられ分岐経路に分岐される過冷却 用液冷媒により分岐前の液冷媒を過冷却する過冷却熱交換器を有し、前記補助圧 縮機より吐出される冷媒を前記主圧縮機より吐出される冷媒と合流させる構成とした エンジンヒートポンプにお 、て、  [1] main and auxiliary compressors driven by the engine, indoor heat exchangers, outdoor heat exchangers, expansion valves for indoor heat exchangers, expansion valves for outdoor heat exchangers, and indoor and outdoor heat exchangers A supercooling heat exchanger that is provided in the liquid refrigerant passage path of the connection path, and that supercools the liquid refrigerant before branching with the subcooling liquid refrigerant branched into the branch path, and is discharged from the auxiliary compressor. An engine heat pump configured to combine the refrigerant discharged from the main compressor with the refrigerant discharged from the main compressor.
前記過冷却用液冷媒を補助圧縮機で圧縮する構成とすると共に、補助圧縮機の、 主圧縮機と補助圧縮機の合計容量に対する容量比を 20%から 29%に構成したこと を特徴とするエンジンヒートポンプ。  The supercooling liquid refrigerant is compressed by an auxiliary compressor, and the capacity ratio of the auxiliary compressor to the total capacity of the main compressor and the auxiliary compressor is set to 20% to 29%. Engine heat pump.
[2] 請求項 1記載のエンジンヒートポンプにお!/、て、 [2] The engine heat pump according to claim 1!
室外熱交換器と並列にエンジン廃熱回収器を設け、前記過冷却用液冷媒を前記 エンジン廃熱回収器で蒸発させると共に補助圧縮機で圧縮する構成としたことを特 徴とするエンジンヒートポンプ。  An engine heat pump characterized in that an engine waste heat recovery device is provided in parallel with an outdoor heat exchanger, and the supercooling liquid refrigerant is evaporated by the engine waste heat recovery device and compressed by an auxiliary compressor.
PCT/JP2005/007411 2004-05-20 2005-04-18 Engine heat pump WO2005114064A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/569,429 US20070295025A1 (en) 2004-05-20 2005-04-18 Engine Heat Pump
EP05730684A EP1762792A4 (en) 2004-05-20 2005-04-18 Engine heat pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004150371A JP4336619B2 (en) 2004-05-20 2004-05-20 Engine heat pump
JP2004-150371 2004-05-20

Publications (1)

Publication Number Publication Date
WO2005114064A1 true WO2005114064A1 (en) 2005-12-01

Family

ID=35428465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007411 WO2005114064A1 (en) 2004-05-20 2005-04-18 Engine heat pump

Country Status (5)

Country Link
US (1) US20070295025A1 (en)
EP (1) EP1762792A4 (en)
JP (1) JP4336619B2 (en)
CN (1) CN100470165C (en)
WO (1) WO2005114064A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096179A1 (en) * 2008-02-01 2009-08-06 Daikin Industries, Ltd. Auxiliary unit for heating and air conditioner
US20210033315A1 (en) * 2018-04-16 2021-02-04 Carrier Corporation Dual Compressor Heat Pump

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145002A (en) * 2006-12-07 2008-06-26 Sanyo Electric Co Ltd Air conditioning device
JP5149663B2 (en) * 2008-03-24 2013-02-20 ヤンマー株式会社 Engine driven heat pump
FR2956190B1 (en) * 2010-02-08 2012-04-13 Muller & Cie Soc HEAT PUMP WITH POWER STAGES
KR101212681B1 (en) * 2010-11-08 2012-12-17 엘지전자 주식회사 air conditioner
JP6134477B2 (en) * 2012-01-10 2017-05-24 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration equipment and refrigerator unit
KR101497813B1 (en) * 2013-06-27 2015-03-04 한국교통대학교산학협력단 Vapor injection heat pump system
CN105899891B (en) * 2013-12-12 2018-12-07 江森自控科技公司 The centrifugal heat pump of steam turbine driving
CN105588357B (en) * 2015-12-16 2019-04-16 珠海格力电器股份有限公司 A kind of heat pump system
CN105466063A (en) * 2015-12-16 2016-04-06 珠海格力电器股份有限公司 Heat pump system
CN106766327A (en) * 2016-11-29 2017-05-31 珠海格力电器股份有限公司 Air-conditioner
CN106801953A (en) * 2016-11-29 2017-06-06 珠海格力电器股份有限公司 Air-conditioner
KR102105706B1 (en) * 2017-12-12 2020-04-28 브이피케이 주식회사 Heat pump system, bidiectional injection operation method of the heat pump
CN110173912B (en) * 2019-04-29 2020-10-02 同济大学 Mixed working medium compression circulation system with mechanical heat recovery function and working method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226669A (en) * 1984-04-24 1985-11-11 三洋電機株式会社 Refrigerator
JPH0618121A (en) * 1992-06-30 1994-01-25 Nippondenso Co Ltd Engine driven heat pump type air conditioner
JPH11193966A (en) * 1997-12-28 1999-07-21 Tokyo Gas Co Ltd Gas heat pump apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2242588A (en) * 1938-02-07 1941-05-20 Honeywell Regulator Co Heating system
US2273281A (en) * 1938-07-11 1942-02-17 Honeywell Regulator Co Control system
JPS62293066A (en) * 1986-06-12 1987-12-19 ヤンマーディーゼル株式会社 Engine drive type heat pump type air conditioner
CN1205073A (en) * 1996-08-14 1999-01-13 大金工业株式会社 Air conditioner
JPH11248264A (en) * 1998-03-04 1999-09-14 Hitachi Ltd Refrigerating machine
JP4214021B2 (en) * 2003-08-20 2009-01-28 ヤンマー株式会社 Engine heat pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226669A (en) * 1984-04-24 1985-11-11 三洋電機株式会社 Refrigerator
JPH0618121A (en) * 1992-06-30 1994-01-25 Nippondenso Co Ltd Engine driven heat pump type air conditioner
JPH11193966A (en) * 1997-12-28 1999-07-21 Tokyo Gas Co Ltd Gas heat pump apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1762792A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096179A1 (en) * 2008-02-01 2009-08-06 Daikin Industries, Ltd. Auxiliary unit for heating and air conditioner
JP2009180493A (en) * 2008-02-01 2009-08-13 Daikin Ind Ltd Heating auxiliary unit and air conditioner
US20210033315A1 (en) * 2018-04-16 2021-02-04 Carrier Corporation Dual Compressor Heat Pump
US11906226B2 (en) * 2018-04-16 2024-02-20 Carrier Corporation Dual compressor heat pump

Also Published As

Publication number Publication date
EP1762792A4 (en) 2008-05-07
CN1957211A (en) 2007-05-02
EP1762792A1 (en) 2007-03-14
US20070295025A1 (en) 2007-12-27
CN100470165C (en) 2009-03-18
JP4336619B2 (en) 2009-09-30
JP2005331177A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
WO2005114064A1 (en) Engine heat pump
JP3861912B2 (en) Refrigeration equipment
JP6678332B2 (en) Outdoor unit and control method for air conditioner
WO2006025397A1 (en) Freezing apparatus
KR20090082236A (en) Air conditioner
WO2008032645A1 (en) Refrigeration device
WO2004008048A1 (en) Refrigeration equipment
WO2006013861A1 (en) Refrigeration unit
WO2018097154A1 (en) Refrigeration device
WO2009139187A1 (en) Refrigeration device
EP2034255B1 (en) Refrigeration device
JP2014156143A (en) Vehicular air-conditioning device
JP4889714B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
WO2006019074A1 (en) Freezing apparatus
JP6653443B2 (en) Outdoor unit of air conditioner
JP4023386B2 (en) Refrigeration equipment
JP2008032337A (en) Refrigerating apparatus
KR100821729B1 (en) Air conditioning system
WO2006028147A1 (en) Freezing apparatus
JP4258425B2 (en) Refrigeration and air conditioning equipment
JP6398363B2 (en) Refrigeration equipment
JP2009156491A (en) Refrigerating device
WO2023139701A1 (en) Air conditioner
EP3217122B1 (en) Outdoor unit for air conditioner
KR20070017177A (en) Engine heat pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005730684

Country of ref document: EP

Ref document number: 200580016138.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067024356

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067024356

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005730684

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11569429

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11569429

Country of ref document: US