JPH0618121A - Engine driven heat pump type air conditioner - Google Patents

Engine driven heat pump type air conditioner

Info

Publication number
JPH0618121A
JPH0618121A JP17269292A JP17269292A JPH0618121A JP H0618121 A JPH0618121 A JP H0618121A JP 17269292 A JP17269292 A JP 17269292A JP 17269292 A JP17269292 A JP 17269292A JP H0618121 A JPH0618121 A JP H0618121A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
outdoor heat
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17269292A
Other languages
Japanese (ja)
Inventor
Kenji Nakajima
謙司 中島
Akira Yanagida
昭 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP17269292A priority Critical patent/JPH0618121A/en
Publication of JPH0618121A publication Critical patent/JPH0618121A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To perform a continuous sucking of refrigerant from both a refrigerant heater and an outdoor heat exchanger to a compressor in an air conditioner having a heat pump driven by an engine. CONSTITUTION:A heat pump 29 is comprised of a compressor 21, an indoor heat exchanger 23, a pressure reducing valve 24, an outdoor heat exchanger 25 and an accumulator 28 and the like. There is provided a refrigerant heater 30 for heating a part of the refrigerant sent from the indoor heat exchanger 23 under utilization of waste heat of an engine. There is provided an ejector 27 for mixing refrigerant sent from the refrigerant heater 30 with refrigerant sent from the outdoor heat exchanger 25 and returning the mixed refrigerant to the compressor 21 under the same pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジン駆動によるヒ
ートポンプを用いた空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using a heat pump driven by an engine.

【0002】[0002]

【従来の技術】エンジン駆動によるヒートポンプを用い
た空調装置の従来の一例を図4に示す。即ち、エンジン
1によって駆動されるコンプレッサ2からの冷媒は、矢
印で示すように、四方弁3を経て室内側熱交換器4に送
られて液化され、その液化された冷媒は、減圧弁5を経
て室外側熱交換器6に送られて気化され、そして、その
気化された冷媒は、四方弁3,逆止弁7及びアキューム
レータ8を経てコンプレッサ2に戻されるようになって
おり、室内側熱交換器4の放熱によって室内の暖房を行
なうものである。
2. Description of the Related Art FIG. 4 shows a conventional example of an air conditioner using a heat pump driven by an engine. That is, the refrigerant from the compressor 2 driven by the engine 1 is sent to the indoor heat exchanger 4 via the four-way valve 3 to be liquefied as shown by the arrow, and the liquefied refrigerant is fed to the pressure reducing valve 5. Then, it is sent to the outdoor heat exchanger 6 to be vaporized, and the vaporized refrigerant is returned to the compressor 2 via the four-way valve 3, the check valve 7 and the accumulator 8 so that the indoor heat The heat of the exchanger 4 is used to heat the room.

【0003】又、室内側熱交換器4を経た冷媒は、電磁
弁9の開放時には、減圧弁10を経て冷媒加熱器11に
供給されるようになっており、この冷媒加熱器11には
エンジン1を冷却する冷却水が流通されていて、この冷
却水により冷媒が加熱気化されるようになっており、そ
の気化された冷媒は、電磁弁9及びアキュームレータ8
を経てコンプレッサ2に戻されるようになっており、以
て、エンジン1の廃熱を利用して暖房能力の向上を図る
ものである。
The refrigerant that has passed through the indoor heat exchanger 4 is supplied to the refrigerant heater 11 through the pressure reducing valve 10 when the solenoid valve 9 is opened. Cooling water for cooling 1 is circulated, and the refrigerant is heated and vaporized by this cooling water, and the vaporized refrigerant is the solenoid valve 9 and the accumulator 8
After that, the waste heat of the engine 1 is utilized to improve the heating capacity.

【0004】而して、上記構成では、図5のモリエル線
図で示すように、点C−F間で示す冷媒加熱器11によ
る冷媒加熱行程と点D−E間で示す室外側熱交換器6に
よる蒸発行程とでは、冷媒に圧力差が生ずるので、これ
らからの冷媒を同時にコンプレッサ2に吸引させること
は困難である。
Thus, in the above configuration, as shown in the Mollier diagram of FIG. 5, the refrigerant heating process by the refrigerant heater 11 shown between points C and F and the outdoor heat exchanger shown between points D and E. Since there is a pressure difference between the refrigerant and the evaporation process of 6, it is difficult to simultaneously suck the refrigerant from these into the compressor 2.

【0005】このため、従来では、電磁弁9を周期的に
開閉させて、電磁弁9の閉塞時には室外側熱交換器6か
らの冷媒をコンプレッサ2に吸引させ、電磁弁9の開放
時には冷媒加熱器11からの冷媒をコンプレッサ2に吸
引させるようにしている。尚、電磁弁9の開放時には、
冷媒加熱器11からの冷媒の圧力が室外側熱交換器6か
らの冷媒の圧力よりも大であるので、室外側熱交換器6
からの冷媒がコンプレッサ2によって吸引されることは
ない。
Therefore, conventionally, the solenoid valve 9 is periodically opened and closed so that the refrigerant from the outdoor heat exchanger 6 is sucked into the compressor 2 when the solenoid valve 9 is closed, and the refrigerant heating is performed when the solenoid valve 9 is opened. The refrigerant from the container 11 is sucked into the compressor 2. When opening the solenoid valve 9,
Since the pressure of the refrigerant from the refrigerant heater 11 is greater than the pressure of the refrigerant from the outdoor heat exchanger 6, the outdoor heat exchanger 6
The refrigerant from is not sucked by the compressor 2.

【0006】[0006]

【発明が解決しようとする課題】従来の構成では、電磁
弁9を周期的に開閉して冷媒加熱器11からの冷媒と室
外側熱交換器6からの冷媒とを交互にコンプレッサ2に
吸引させるので、電磁弁9の開閉による運転ロスが生じ
て、性能が低下し、効率が低下するという問題がある。
In the conventional structure, the solenoid valve 9 is periodically opened and closed to alternately suck the refrigerant from the refrigerant heater 11 and the refrigerant from the outdoor heat exchanger 6 into the compressor 2. Therefore, there is a problem that an operating loss occurs due to opening / closing of the solenoid valve 9, performance is reduced, and efficiency is reduced.

【0007】尚、コンプレッサ2に吸引される冷媒の圧
力を一定にするためには、室外側熱交換器6と冷媒加熱
器11とを直列に接続する構成とすることも考えられる
が、これでは、冷媒の流通抵抗が大になって、やはり効
率が低くなる問題がある。
Incidentally, in order to make the pressure of the refrigerant sucked into the compressor 2 constant, it is conceivable to connect the outdoor heat exchanger 6 and the refrigerant heater 11 in series, but this is the case. However, there is a problem that the flow resistance of the refrigerant becomes large and the efficiency also becomes low.

【0008】本発明は上記事情に鑑がみてなされたもの
で、その目的は、ヒートポンプにおける室外側熱交換器
及び冷媒加熱器の双方からの冷媒をコンプレッサに連続
的に吸引させることができるエンジン駆動ヒートポンプ
空調装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to drive an engine capable of causing a compressor to continuously suck refrigerant from both an outdoor heat exchanger and a refrigerant heater in a heat pump. To provide a heat pump air conditioner.

【0009】[0009]

【課題を解決するための手段】本発明のエンジン駆動ヒ
ートポンプ空調装置は、コンプレッサからの冷媒を室内
側熱交換器及び室外側熱交換器等を順次経て前記コンプ
レッサ側に戻すヒートポンプを設け、前記室内側熱交換
器を経た冷媒の一部を加熱して前記コンプレッサ側に戻
す冷媒加熱器を設け、この冷媒加熱器及び前記室外側熱
交換器からの冷媒を混合してこれらの圧力を同一にして
前記コンプレッサに戻すエジュクタを設ける構成に特徴
を有する。
An engine driven heat pump air conditioner according to the present invention is provided with a heat pump for returning refrigerant from a compressor to the compressor side through an indoor heat exchanger, an outdoor heat exchanger, etc. Providing a refrigerant heater that heats a part of the refrigerant that has passed through the inner heat exchanger and returns it to the compressor side, and mix the refrigerant from this refrigerant heater and the outdoor heat exchanger to make these pressures the same. It is characterized in that an ejector for returning to the compressor is provided.

【0010】[0010]

【作用】本発明のエンジン駆動ヒートポンプ空調装置に
よれば、室外側熱交換器からの冷媒と冷媒加熱器からの
冷媒とは、エジェクタにより混合されて、その圧力が同
一にされるので、コンプレッサは双方の冷媒を連続的に
吸引することが可能になる。
According to the engine-driven heat pump air conditioner of the present invention, the refrigerant from the outdoor heat exchanger and the refrigerant from the refrigerant heater are mixed by the ejector so that their pressures are equalized. Both refrigerants can be continuously sucked.

【0011】[0011]

【実施例】以下、本発明の一実施例につき図1乃至図3
を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
Will be described with reference to.

【0012】先ず、図1に従って、全体の構成につき述
べる。エンジン例えば空調用エンジン20によって駆動
されるコンプレッサ21の吐出口部は、四方弁22を介
して室内側熱交換器23の一端部に連結され、室内側熱
交換器23の他端部は減圧弁24を介して室外側熱交換
器25の一端部に連結され、室外側熱交換器25の他端
部は逆止弁26,後述するエジェクタ27及び四方弁2
2を介してアキュームレータ28の流入端部に連結さ
れ、アキュームレータ28の流出端部はコンプレッサ2
1の吸入口部に連結されており、以て、ヒートボンブ2
9が構成されている。
First, the overall structure will be described with reference to FIG. The discharge port of a compressor 21 driven by an engine, for example, an air conditioning engine 20, is connected to one end of an indoor heat exchanger 23 via a four-way valve 22, and the other end of the indoor heat exchanger 23 is a pressure reducing valve. 24 is connected to one end of the outdoor heat exchanger 25, and the other end of the outdoor heat exchanger 25 has a check valve 26, an ejector 27 described later, and a four-way valve 2
2 is connected to the inflow end of the accumulator 28, and the outflow end of the accumulator 28 is connected to the compressor 2
1 is connected to the suction port, and thus the heat bomb 2
9 are configured.

【0013】又、冷媒を加熱するための冷媒加熱器30
は、内部に熱交換器31を備えている。そして、この冷
媒加熱器30の流入端部は、減圧弁32を介して室内側
熱交換器23の他端部に連結され、流出端部は、逆止弁
33を介して前記エジェクタ27に後述するように連結
されている。更に、熱交換器31の流入端部及び流出端
部は、エンジン20を冷却する冷却水が流通す管路34
及び35に連結されている。
A refrigerant heater 30 for heating the refrigerant
Has a heat exchanger 31 inside. The inflow end of the refrigerant heater 30 is connected to the other end of the indoor heat exchanger 23 via the pressure reducing valve 32, and the outflow end is connected to the ejector 27 via the check valve 33. Are connected to each other. Further, the inflow end and the outflow end of the heat exchanger 31 are provided with a pipe line 34 through which cooling water for cooling the engine 20 flows.
And 35.

【0014】尚、管路34及び35は、室外側熱交換器
25と並置されたラジエータ36の流入端部及び流出端
部に流調弁37及び38を介して連結されている。そし
て、室外側送風機39は、ラジエータ36及び室外側熱
交換器25を経て室外の空気を吸入するようになってお
り、又、室内側送風機40は、室内側熱交換器23を経
て室内に送風するようになっている。
The pipes 34 and 35 are connected to the inflow end and the outflow end of a radiator 36 juxtaposed with the outdoor heat exchanger 25 via flow control valves 37 and 38. The outdoor blower 39 sucks the outdoor air through the radiator 36 and the outdoor heat exchanger 25, and the indoor blower 40 blows air indoors through the indoor heat exchanger 23. It is supposed to do.

【0015】さて、図2に従って、エジェクタ27の構
成につき述べる。即ち、吸引流口部41aを有する吸引
部41には、駆動流口部42aを有するノズル部42が
内部に突出するようにして一体に形成され、その吸引部
41の順次径小となる先端部には一様な径の混合部43
が一体に形成され、この混合部43の先端部には先端部
の吐出口部44aに向って順次径大となるディフューザ
部44が一体に形成されている。
Now, the structure of the ejector 27 will be described with reference to FIG. That is, the suction portion 41 having the suction outlet portion 41a is integrally formed with the nozzle portion 42 having the drive outlet portion 42a so as to project inward, and the tip portion of the suction portion 41 having a successively smaller diameter. The mixing section 43 has a uniform diameter.
Is integrally formed, and a diffuser portion 44 having a diameter gradually increasing toward a discharge port portion 44a of the tip portion is integrally formed at a tip portion of the mixing portion 43.

【0016】そして、図1に示すように、このエジェク
タ27の駆動流口部42aは、逆止弁33を介して冷媒
加熱器30の他端部に連結され、吸引流口部41aは、
逆止弁26を介して室外側熱交換器25の他端部に接続
され、吐出口部44aは、四方弁22を介してアキュー
ムレータ28の流入端部に連結されているとともに逆止
弁45を介して室外側熱交換器25の他端部に連結され
ている。
As shown in FIG. 1, the drive outlet 42a of the ejector 27 is connected to the other end of the refrigerant heater 30 via the check valve 33, and the suction outlet 41a is
It is connected to the other end of the outdoor heat exchanger 25 via the check valve 26, and the discharge port 44 a is connected to the inflow end of the accumulator 28 via the four-way valve 22 and the check valve 45. It is connected to the other end of the outdoor heat exchanger 25 via.

【0017】次に、本実施例の作用につき、図3をも参
照しながら説明する。
Next, the operation of this embodiment will be described with reference to FIG.

【0018】(1)暖房モードの場合 この場合には、四方弁22は図1に実線で示すように流
路が切換えられる。従って、エンジン20によりコンプ
レッサ21が駆動されると、コンプレッサ21により圧
縮された気体の冷媒は、実線矢印で示すように、四方弁
22を経て室内側熱交換器23に供給されて凝縮され、
液体の冷媒となる。そして、室内側熱交換器23からの
液体の冷媒は、減圧弁24により減圧された後に室外側
熱交換器25に供給されて蒸発し、気体の冷媒となる。
(1) Heating Mode In this case, the flow path of the four-way valve 22 is switched as shown by the solid line in FIG. Therefore, when the compressor 21 is driven by the engine 20, the gaseous refrigerant compressed by the compressor 21 is supplied to the indoor heat exchanger 23 via the four-way valve 22 and condensed, as shown by the solid arrow.
It becomes a liquid refrigerant. Then, the liquid refrigerant from the indoor heat exchanger 23 is supplied to the outdoor heat exchanger 25 after being decompressed by the decompression valve 24 and evaporated to become a gaseous refrigerant.

【0019】一方、室内側熱交換器23からの液体の冷
媒の一部は、減圧弁32で減圧された後に冷媒加熱器3
0に供給され、ここでエンジン20を冷却する冷却水が
循環する熱交換器31により加熱されて気体の冷媒とな
る。
On the other hand, a part of the liquid refrigerant from the indoor heat exchanger 23 is decompressed by the decompression valve 32, and then the refrigerant heater 3
0, where the cooling water for cooling the engine 20 is heated by the circulating heat exchanger 31 to become a gaseous refrigerant.

【0020】ここで、図3のモリエル線図を参照する
と、点A−B間は室内側熱交換器23による凝縮行程の
冷媒、点D−E間は室外側熱交換器25による蒸発行程
の冷媒、点C−F間は冷媒加熱器30による加熱行程の
冷媒の夫々挙動である。即ち、冷媒加熱器30から流出
される気体の冷媒の圧力は、室外側熱交換器25から流
出される気体の冷媒の圧力よりも大となる。
Referring to the Mollier diagram of FIG. 3, the refrigerant in the condensation process by the indoor heat exchanger 23 is between points A and B, and the evaporation process by the outdoor heat exchanger 25 is between points D and E. The behavior of the refrigerant in the heating process by the refrigerant heater 30 is between the refrigerant and points C-F. That is, the pressure of the gaseous refrigerant flowing out of the refrigerant heater 30 is higher than the pressure of the gaseous refrigerant flowing out of the outdoor heat exchanger 25.

【0021】而して、冷媒加熱器30からの気体の冷媒
は、図2に示すように、逆止弁33を経て駆動流F30
としてエジェクタ27のノズル部42に供給されてその
先端部から噴出され、又、室外側熱交換器25からの気
体の冷媒は、逆止弁26を経て吸引部41内に吸引流F
25としてその駆動流F30との差圧によって吸引され
る。その後、駆動流F30と吸引流F25は、混合部4
3において混合されて圧力が同一とされ、更に、その混
合された気体の冷媒は、ディフューザ部44で昇圧され
る。そして、このエジェクタ27からの気体の冷媒は、
四方弁22及びアキュームレータ28を経てコンプレッ
サ21の吸入口部に吸引される。
Thus, the gaseous refrigerant from the refrigerant heater 30 passes through the check valve 33 and the driving flow F30, as shown in FIG.
Is supplied to the nozzle portion 42 of the ejector 27 and is ejected from the tip portion thereof, and the gaseous refrigerant from the outdoor heat exchanger 25 is sucked into the suction portion 41 through the check valve 26.
25 is sucked by the pressure difference with the driving flow F30. After that, the driving flow F30 and the suction flow F25 are mixed with each other by the mixing unit 4
The pressure of the mixed gas refrigerant is increased by the diffuser portion 44. The gaseous refrigerant from the ejector 27 is
It is sucked into the suction port of the compressor 21 via the four-way valve 22 and the accumulator 28.

【0022】この場合の冷媒の挙動をみると、図3に示
すように、点F−G間はノズル部42による噴出行程,
点G−H間は混合部43による混合行程,点H−I間は
ディフューザ部44による昇圧行程,点I−J間は四方
弁22及びアキュームレータ28による帰還行程であ
る。尚、点J−A間はコンプレッサ21による冷媒の圧
縮行程を示す。
Looking at the behavior of the refrigerant in this case, as shown in FIG. 3, between the points F and G, the ejection stroke by the nozzle portion 42,
Between points G and H is a mixing stroke by the mixing section 43, between points H and I is a boost stroke by the diffuser section 44, and between points I and J is a return stroke by the four-way valve 22 and the accumulator 28. The point J-A shows the compression stroke of the refrigerant by the compressor 21.

【0023】このようにして、室内側熱交換器23の冷
媒凝縮により発生した熱は、送風機40の送風作用によ
って室内に送られるようになり、室内の暖房が行なわれ
るのである。
In this way, the heat generated by the refrigerant condensation in the indoor heat exchanger 23 is sent to the room by the blowing action of the blower 40, and the room is heated.

【0024】(2)冷房モードの場合 この場合には、四方弁22は図1に破線で示すように流
路が切換えられる。従って、コンプレッサ21によって
圧縮された気体の冷媒は、破線矢印で示すように、四方
弁22及び逆止弁45を経て室外側熱交換器25に供給
されて凝縮され、液体の冷媒となる。この室外側熱交換
器25からの液体の冷媒は、減圧弁24により減圧され
た後室内側熱交換器23に供給され、ここで蒸発して気
体の冷媒となる。そして、室内側熱交換器23からの気
体の冷媒は、四方弁22及びアキュームレータ28を経
てコンプレッサ21に吸入されるようになる。
(2) Cooling Mode In this case, the flow path of the four-way valve 22 is switched as shown by the broken line in FIG. Therefore, the gaseous refrigerant compressed by the compressor 21 is supplied to the outdoor heat exchanger 25 via the four-way valve 22 and the check valve 45 and condensed as shown by the broken line arrow to become a liquid refrigerant. The liquid refrigerant from the outdoor heat exchanger 25 is decompressed by the pressure reducing valve 24 and then supplied to the indoor heat exchanger 23, where it is evaporated and becomes a gaseous refrigerant. Then, the gaseous refrigerant from the indoor heat exchanger 23 is sucked into the compressor 21 via the four-way valve 22 and the accumulator 28.

【0025】そして、室内側熱交換器23からの冷気は
送風機40の送風作用によって室内に送られるようにな
り、以て、室内の冷房が行なわれるようになる。
The cool air from the indoor heat exchanger 23 is blown into the room by the blowing action of the blower 40, so that the room is cooled.

【0026】このように、本実施例によれば、ヒートポ
ンプ29において、冷媒加熱器30からの気体の冷媒と
室外側熱交換器25からの気体の冷媒とをエジェクタ2
7によって混合して同一圧力とし且つ昇圧してコンプレ
ッサ21に戻すようにした。従って、冷媒加熱器30及
び室外側熱交換器25の双方からの冷媒をコンプレッサ
21に連続的に吸引させることができ、従来のような電
磁弁の開閉による運転ロスはなくなり、性能が向上し、
効率がよくなる。
As described above, according to this embodiment, in the heat pump 29, the ejector 2 ejects the gaseous refrigerant from the refrigerant heater 30 and the gaseous refrigerant from the outdoor heat exchanger 25.
The mixture was mixed by 7 to obtain the same pressure and the pressure was increased to be returned to the compressor 21. Therefore, the refrigerant from both the refrigerant heater 30 and the outdoor heat exchanger 25 can be continuously sucked into the compressor 21, the operating loss due to the opening and closing of the solenoid valve as in the conventional case is eliminated, and the performance is improved,
Efficiency is improved.

【0027】又、エジェクタ27においては、冷媒加熱
器30からの冷媒の駆動流F30により室外側熱交換器
25からの冷媒の吸引流F25を吸引するので、駆動流
F30と吸引流F25とを円滑に混合することができる
とともに、その駆動流F30の吸引作用により室外側熱
交換器25内の圧力を低く保つことができ、従って、冷
媒加熱器と室外側熱交換器とを直列に接続する場合とは
異なり、室外側熱交換器25の冷媒の蒸発温度を低くで
き、外気との温度差を大にすることができて、吸熱量を
増大させることができ、暖房能力を増大させることがで
きる。
In the ejector 27, since the refrigerant driving flow F30 from the refrigerant heater 30 sucks the refrigerant suction flow F25 from the outdoor heat exchanger 25, the driving flow F30 and the suction flow F25 are smoothly performed. When the refrigerant heater and the outdoor heat exchanger are connected in series, the pressure in the outdoor heat exchanger 25 can be kept low by the suction action of the driving flow F30. Unlike the above, the evaporation temperature of the refrigerant in the outdoor heat exchanger 25 can be lowered, the temperature difference from the outside air can be increased, the amount of heat absorbed can be increased, and the heating capacity can be increased. .

【0028】尚、本発明は上記実施例にのみ限定される
ものではなく、例えば、冷媒加熱器30の加熱源として
はエンジン20を冷却する冷却水以外の加熱源を利用し
てもよい等、要旨を逸脱しない範囲内で適宜変形して実
施し得る。
The present invention is not limited to the above embodiment, and for example, as the heating source of the refrigerant heater 30, a heating source other than the cooling water for cooling the engine 20 may be used. The invention can be appropriately modified and implemented without departing from the spirit of the invention.

【0029】[0029]

【発明の効果】本発明のエンジン駆動ヒートポンプ空調
装置は、以上説明した通り、冷媒加熱器からの冷媒と室
外側熱交換器からの冷媒とをエジェクタにより混合して
同一の圧力としてコンプレッサに吸引させるようにした
ので、冷媒加熱器及び室外側熱交換器の双方からの冷媒
をコンプレッサに連続的に吸引させることができ、従っ
て、性能が向上して、効率をよくすることができ、以
て、暖房能力の向上を図ることができるという優れた効
果を奏するものである。
As described above, in the engine-driven heat pump air conditioner of the present invention, the refrigerant from the refrigerant heater and the refrigerant from the outdoor heat exchanger are mixed by the ejector and sucked into the compressor at the same pressure. As a result, the refrigerant from both the refrigerant heater and the outdoor heat exchanger can be continuously sucked into the compressor, and therefore the performance can be improved and the efficiency can be improved. It has an excellent effect that the heating capacity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すヒートポンプの構成図FIG. 1 is a configuration diagram of a heat pump showing an embodiment of the present invention.

【図2】エジェクタの縦断面図FIG. 2 is a vertical sectional view of an ejector.

【図3】モリエル線図[Figure 3] Mollier diagram

【図4】従来例を示す図1相当図FIG. 4 is a view corresponding to FIG. 1 showing a conventional example.

【図5】図3相当図FIG. 5 is a view corresponding to FIG.

【符号の説明】[Explanation of symbols]

図面中、20はエンジン、21はコンプレッサ、23は
室内側熱交換器、25は室外側熱交換器、27はエジェ
クタ、28はアキュームレータ、29はヒートポンプ、
30は冷媒加熱器、41は吸引部、42はノズル部、4
3は混合部、44はディフューザ部を示す。
In the drawings, 20 is an engine, 21 is a compressor, 23 is an indoor heat exchanger, 25 is an outdoor heat exchanger, 27 is an ejector, 28 is an accumulator, 29 is a heat pump,
30 is a refrigerant heater, 41 is a suction part, 42 is a nozzle part, 4
Reference numeral 3 indicates a mixing portion, and 44 indicates a diffuser portion.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コンプレッサからの冷媒を室内側熱交換
器及び室外側熱交換器等を順次経て前記コンプレッサ側
に戻すヒートポンプと、 前記室内側熱交換器を経た冷媒の一部を加熱して前記コ
ンプレッサ側に戻す冷媒加熱器と、 この冷媒加熱器及び前記室外側熱交換器からの冷媒を混
合しこれらの圧力を同一にして前記コンプレッサに戻す
エジェクタとを具備してなるエンジン駆動ヒートポンプ
空調装置。
1. A heat pump for returning refrigerant from a compressor to the compressor side through an indoor heat exchanger, an outdoor heat exchanger, etc., and a part of the refrigerant passing through the indoor heat exchanger to heat the refrigerant. An engine driven heat pump air conditioner comprising: a refrigerant heater for returning to the compressor side; and an ejector for mixing the refrigerant heater and the refrigerant from the outdoor heat exchanger and making the pressures of these refrigerants the same and returning them to the compressor.
JP17269292A 1992-06-30 1992-06-30 Engine driven heat pump type air conditioner Pending JPH0618121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17269292A JPH0618121A (en) 1992-06-30 1992-06-30 Engine driven heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17269292A JPH0618121A (en) 1992-06-30 1992-06-30 Engine driven heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPH0618121A true JPH0618121A (en) 1994-01-25

Family

ID=15946590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17269292A Pending JPH0618121A (en) 1992-06-30 1992-06-30 Engine driven heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH0618121A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114064A1 (en) * 2004-05-20 2005-12-01 Yanmar Co., Ltd. Engine heat pump
US7059147B2 (en) 2002-10-15 2006-06-13 Denso Corporation Cooling system for a vehicle
JP2007003166A (en) * 2005-05-24 2007-01-11 Denso Corp Vapor compression type refrigerating cycle using ejector
US7178359B2 (en) 2004-02-18 2007-02-20 Denso Corporation Ejector cycle having multiple evaporators
JP2007051812A (en) * 2005-08-17 2007-03-01 Denso Corp Ejector type refrigerating cycle
US7254961B2 (en) 2004-02-18 2007-08-14 Denso Corporation Vapor compression cycle having ejector
JP2008032244A (en) * 2006-07-26 2008-02-14 Denso Corp Ejector type refrigerating cycle
US7779647B2 (en) 2005-05-24 2010-08-24 Denso Corporation Ejector and ejector cycle device
JP2010281567A (en) * 2000-06-01 2010-12-16 Denso Corp Ejector type refrigerating cycle
EP1628105A3 (en) * 2004-08-17 2011-06-08 LG Electronics, Inc. Electricity generating and air conditioning system
US8104308B2 (en) 2007-10-03 2012-01-31 Denso Corporation Refrigerant cycle device with ejector
JP2013527369A (en) * 2010-04-26 2013-06-27 スカニア シーブイ アクチボラグ Device for cooling compressed air and / or recirculated exhaust gas sent to an internal combustion engine
JP2014190562A (en) * 2013-03-26 2014-10-06 Sanden Corp Refrigeration cycle and cooling device
JP2016153714A (en) * 2015-02-20 2016-08-25 大阪瓦斯株式会社 Ejector cycle
JP2016153713A (en) * 2015-02-20 2016-08-25 大阪瓦斯株式会社 Ejector cycle
WO2021065186A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Air conditioner

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281567A (en) * 2000-06-01 2010-12-16 Denso Corp Ejector type refrigerating cycle
US7059147B2 (en) 2002-10-15 2006-06-13 Denso Corporation Cooling system for a vehicle
US7254961B2 (en) 2004-02-18 2007-08-14 Denso Corporation Vapor compression cycle having ejector
US7178359B2 (en) 2004-02-18 2007-02-20 Denso Corporation Ejector cycle having multiple evaporators
WO2005114064A1 (en) * 2004-05-20 2005-12-01 Yanmar Co., Ltd. Engine heat pump
EP1628105A3 (en) * 2004-08-17 2011-06-08 LG Electronics, Inc. Electricity generating and air conditioning system
US7779647B2 (en) 2005-05-24 2010-08-24 Denso Corporation Ejector and ejector cycle device
JP4595717B2 (en) * 2005-05-24 2010-12-08 株式会社デンソー Vapor compression refrigeration cycle using ejector
JP2007003166A (en) * 2005-05-24 2007-01-11 Denso Corp Vapor compression type refrigerating cycle using ejector
JP2007051812A (en) * 2005-08-17 2007-03-01 Denso Corp Ejector type refrigerating cycle
JP2008032244A (en) * 2006-07-26 2008-02-14 Denso Corp Ejector type refrigerating cycle
JP4725449B2 (en) * 2006-07-26 2011-07-13 株式会社デンソー Ejector refrigeration cycle
US8104308B2 (en) 2007-10-03 2012-01-31 Denso Corporation Refrigerant cycle device with ejector
JP2013527369A (en) * 2010-04-26 2013-06-27 スカニア シーブイ アクチボラグ Device for cooling compressed air and / or recirculated exhaust gas sent to an internal combustion engine
JP2014190562A (en) * 2013-03-26 2014-10-06 Sanden Corp Refrigeration cycle and cooling device
JP2016153714A (en) * 2015-02-20 2016-08-25 大阪瓦斯株式会社 Ejector cycle
JP2016153713A (en) * 2015-02-20 2016-08-25 大阪瓦斯株式会社 Ejector cycle
WO2021065186A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Air conditioner
CN114450527A (en) * 2019-09-30 2022-05-06 大金工业株式会社 Air conditioner
CN114450527B (en) * 2019-09-30 2023-09-19 大金工业株式会社 air conditioner

Similar Documents

Publication Publication Date Title
JP4639541B2 (en) Cycle using ejector
US6904766B2 (en) Heater with two different heat sources and air conditioner using the same
JP4016659B2 (en) Air conditioner
US6857286B2 (en) Vapor-compression refrigerant cycle system
JPH0618121A (en) Engine driven heat pump type air conditioner
CN104704301A (en) Refrigeration cycle device
JP2004177027A (en) Ejector cycle
JP2003083622A (en) Ejector cycle
US20070039337A1 (en) Ejector cycle device
CN103597296A (en) Freezing cycle
US20060037354A1 (en) Indoor unit of air conditioner
JP2004101053A (en) Air conditioner
CN1573258A (en) Ejector cycle
CN109564070A (en) Heat exchanger and the refrigeration system for using it
CN102472534A (en) Air conditioner
JP4023320B2 (en) Heater for air conditioner
JP2010085022A (en) Refrigerating device
CN109312960A (en) Ejector-type refrigerating circulatory device
CN106931675B (en) The injecting type circulatory system and air-conditioning
JP4626380B2 (en) Internal combustion engine driven heat pump air conditioner
JP2001296067A (en) Refrigerating system using co2 refrigerant
JP2008116167A (en) Refrigerating cycle device
CN109631171A (en) A kind of more heat exchanger window air conditioners having fresh air function
KR20100006350U (en) refrigeration system
JP2015143597A (en) water heater