JP2001296067A - Refrigerating system using co2 refrigerant - Google Patents
Refrigerating system using co2 refrigerantInfo
- Publication number
- JP2001296067A JP2001296067A JP2000111622A JP2000111622A JP2001296067A JP 2001296067 A JP2001296067 A JP 2001296067A JP 2000111622 A JP2000111622 A JP 2000111622A JP 2000111622 A JP2000111622 A JP 2000111622A JP 2001296067 A JP2001296067 A JP 2001296067A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- gas
- evaporator
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/05—Refrigerant levels
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本願発明は、CO2冷媒を用
いた冷凍システムに関するものである。TECHNICAL FIELD The present invention relates to a refrigeration system using a CO 2 refrigerant.
【0002】[0002]
【従来の技術】CO2冷媒を用いた遷臨界冷凍サイクル
は、CO2冷媒の特性としてその作動圧が高いことか
ら、フロン系冷媒を用いた冷凍サイクルに比べて効率
(成績係数:COP)が悪いという欠点があり、これを
改善する一つの方法として、例えば図6に示すように、
圧縮機1と四方切換弁5と室外熱交換器2と室内熱交換
器3と膨張弁11とで構成される基本的な冷媒回路に、
内部熱交換器8を組み込み、該内部熱交換器8の高圧側
伝熱部8aと低圧側伝熱部8bとを四方切換弁6を介し
て上記室外熱交換器2と室内熱交換器3とに択一的に接
続可能とし、該内部熱交換器8における内部熱交換によ
って冷凍サイクル全体としての効率を高めるようにした
内部熱交換器組込方式が提案されている。 2. Description of the Related Art A transcritical refrigeration cycle using a CO 2 refrigerant has a higher efficiency (coefficient of performance: COP) than a refrigeration cycle using a chlorofluorocarbon-based refrigerant because of its high operating pressure as a characteristic of the CO 2 refrigerant. There is a disadvantage that it is bad, and as one method of improving this, for example, as shown in FIG.
A basic refrigerant circuit including the compressor 1, the four-way switching valve 5, the outdoor heat exchanger 2, the indoor heat exchanger 3, and the expansion valve 11,
The internal heat exchanger 8 is incorporated, and the high-pressure side heat transfer portion 8a and the low-pressure side heat transfer portion 8b of the internal heat exchanger 8 are connected via the four-way switching valve 6 to the outdoor heat exchanger 2 and the indoor heat exchanger 3. An internal heat exchanger built-in system has been proposed in which the internal heat exchanger 8 can be connected to the internal heat exchanger 8 to increase the efficiency of the entire refrigeration cycle.
【0003】[0003]
【発明が解決しようとする課題】ところが、このように
CO2冷媒を用いた冷凍サイクルの効率改善を目的とし
て冷媒回路に内部熱交換器を組み込んだ場合、効率改善
という目的は達成されるものの、内部熱交換に伴う圧縮
機の吸込温度の上昇に伴ってその吐出温度も上昇するこ
とから、例えば圧縮機に用いられている樹脂絶縁材料の
劣化が早くなり、冷凍システムとして長期稼働時におけ
る信頼性が損なわれるという欠点があった。However, when an internal heat exchanger is incorporated in a refrigerant circuit for the purpose of improving the efficiency of a refrigeration cycle using a CO 2 refrigerant, although the purpose of improving the efficiency is achieved, Since the discharge temperature of the compressor rises as the suction temperature of the compressor rises due to internal heat exchange, for example, the deterioration of the resin insulation material used in the compressor accelerates, and the reliability of the refrigeration system during long-term operation However, there is a drawback that is deteriorated.
【0004】そこで本願発明では、CO2冷媒を用いた
冷凍システムにおいて、冷媒回路への内部熱交換器の組
み込みによる効率の改善効果を、該内部熱交換器の組み
込みに伴う欠点(即ち、圧縮機吐出温度の上昇に起因す
る信頼性の低下)を防止しつつ実現し、高効率化と高信
頼性との両立を図ることを目的としてなされたものであ
る。Therefore, in the present invention, in a refrigeration system using a CO 2 refrigerant, the effect of improving the efficiency by incorporating an internal heat exchanger into the refrigerant circuit is improved by the disadvantages associated with the incorporation of the internal heat exchanger (ie, the compressor). It is intended to achieve both high efficiency and high reliability while preventing the reliability from being lowered due to the rise of the discharge temperature.
【0005】[0005]
【発明の技術的背景】本願発明者らは上記課題を解決す
るための手段を研究する過程において、冷媒回路におけ
るガスインジェクション機構に着目した。即ち、このガ
スインジェクション機構は、上記の如き冷媒回路への内
部熱交換器の組み込み手法と同様に、フロン系冷媒とか
CO2冷媒を用いた冷凍サイクルに対する効率改善策と
して提案されているものであって、図7にCO2冷媒を
用いた遷臨界冷凍サイクルにガスインジェクション機構
を組み込んだ冷媒回路の一例を示している。この冷媒回
路は、四方切換弁5の切換操作によって圧縮機1の吐出
口を室外熱交換器2と室内熱交換器3とに、また該圧縮
機1の吸入口を上記室内熱交換器3と室外熱交換器2
に、それぞれ択一的に接続可能とする一方、該室外熱交
換器2と室内熱交換器3とを接続する冷媒路31中に膨
張弁11とレシーバ7と膨張弁12とを順次配置すると
ともに、該レシーバ7の気室と上記圧縮機1の圧縮室と
を制御弁10を備えた冷媒路32により接続することで
回路が構成されている。BACKGROUND OF THE INVENTION In the course of studying means for solving the above problems, the present inventors paid attention to a gas injection mechanism in a refrigerant circuit. That is, this gas injection mechanism has been proposed as an efficiency improvement measure for a refrigeration cycle using a chlorofluorocarbon-based refrigerant or a CO 2 refrigerant, similarly to the above-described method of incorporating an internal heat exchanger into a refrigerant circuit. FIG. 7 shows an example of a refrigerant circuit in which a gas injection mechanism is incorporated in a transcritical refrigeration cycle using a CO 2 refrigerant. The refrigerant circuit is configured such that the discharge port of the compressor 1 is connected to the outdoor heat exchanger 2 and the indoor heat exchanger 3 and the suction port of the compressor 1 is connected to the indoor heat exchanger 3 by the switching operation of the four-way switching valve 5. Outdoor heat exchanger 2
The expansion valve 11, the receiver 7, and the expansion valve 12 are sequentially arranged in a refrigerant path 31 connecting the outdoor heat exchanger 2 and the indoor heat exchanger 3 while being selectively connectable. A circuit is configured by connecting the air chamber of the receiver 7 and the compression chamber of the compressor 1 by a refrigerant path 32 having a control valve 10.
【0006】また、図8には、ガスインジェクション機
構を組み込んだ遷臨界冷凍サイクルのP−H線図を示し
ている。これを簡単に説明すると、例えば冷房運転時に
は、ガス冷却器として機能する上記室外熱交換器2の出
口点Eにおける超臨界状態のCO2冷媒を、上記膨張弁
11において一次膨張させて気液二相のCO2冷媒とす
るとともに、この気液二相のCO2冷媒を上記レシーバ
7に導入してここで気液分離する(点F)。そして、分
離された液冷媒は、飽和液冷媒(点H)としてさらに上
記膨張弁12において二次膨張された後、蒸発器として
機能する上記室内熱交換器3に送られる。一方、上記レ
シーバ7において分離されたガス冷媒は、飽和ガス冷媒
(点G)として、上記冷媒路32を通して上記圧縮機1
の圧縮行程途中にある圧縮室内にインジェクションされ
る。FIG. 8 shows a PH diagram of a transcritical refrigeration cycle incorporating a gas injection mechanism. In brief, for example, during the cooling operation, the CO 2 refrigerant in the supercritical state at the outlet point E of the outdoor heat exchanger 2 functioning as a gas cooler is primarily expanded in the expansion valve 11 to perform gas-liquid cooling. with the CO 2 refrigerant phases, the CO 2 refrigerant in the gas-liquid two-phase to gas-liquid separation here is introduced into the receiver 7 (point F). Then, the separated liquid refrigerant is secondarily expanded in the expansion valve 12 as a saturated liquid refrigerant (point H), and then sent to the indoor heat exchanger 3 functioning as an evaporator. On the other hand, the gas refrigerant separated in the receiver 7 is passed through the refrigerant path 32 as a saturated gas refrigerant (point G).
Is injected into the compression chamber in the middle of the compression stroke.
【0007】このように、レシーバ7において分離され
たガス冷媒を圧縮行程途中にある圧縮機1の圧縮室にイ
ンジェクションすることで、該圧縮室内においてCO2
冷媒とインジェクションされたガス冷媒とが混合し冷媒
温度が点Bに対応する温度から点Cに対応するまで低下
することから、圧縮機1の出口における冷媒温度(即
ち、「吐出温度」)は、ガスインジェクションが行われ
ない場合における吐出温度(点D0に対応する温度)よ
りも低い温度(点Dに対応する温度)まで低下すること
になる。As described above, by injecting the gas refrigerant separated in the receiver 7 into the compression chamber of the compressor 1 in the middle of the compression stroke, CO 2 in the compression chamber is reduced.
Since the refrigerant and the injected gas refrigerant are mixed and the refrigerant temperature decreases from the temperature corresponding to the point B to the temperature corresponding to the point C, the refrigerant temperature at the outlet of the compressor 1 (that is, the “discharge temperature”) is: The temperature drops to a temperature (a temperature corresponding to the point D) lower than a discharge temperature (a temperature corresponding to the point D 0 ) when the gas injection is not performed.
【0008】また、気液分離されたガス冷媒を圧縮機1
側へインジェクションすることで、このインジェクショ
ン量だけ、蒸発器(室内熱交換器3)側における冷媒循
環量はガス冷却器(室外熱交換器2)側における冷媒循
環量よりも少なくなっており、しかも気液分離された後
の液冷媒を膨張弁12において二次膨張させて蒸発器に
導入することから、該蒸発器における単位重量当たりの
蒸発エンタルピーが増加し(図8に「h1」で示すエン
タルピー量)、それだけ冷却能力が大きくなる。これら
の結果、より少ない冷媒循環量で、冷媒循環量減少前に
おける場合と同等の冷凍能力が得られるものである。[0008] The gas refrigerant separated from the gas is separated into a compressor 1
By injecting into the side, the amount of refrigerant circulating on the side of the evaporator (indoor heat exchanger 3) is smaller than the amount of refrigerant circulating on the side of the gas cooler (outdoor heat exchanger 2) by this amount of injection, and Since the liquid refrigerant after the gas-liquid separation is secondarily expanded in the expansion valve 12 and introduced into the evaporator, the enthalpy of evaporation per unit weight in the evaporator increases (shown by “h 1 ” in FIG. 8). Enthalpy amount), the cooling capacity increases accordingly. As a result, the same refrigeration capacity as before the decrease in the amount of circulating refrigerant can be obtained with a smaller amount of circulating refrigerant.
【0009】本願発明者らは、このように冷媒回路にガ
スインジェクション機構を組み込むことに基づく利点、
特に圧縮機吐出温度の低下作用、を有効に利用すること
で、内部熱交換器の組み込みによる欠点(即ち、圧縮機
吐出温度の上昇)を可及的に解消することに想到したも
のである。[0009] The inventors of the present invention have the advantages based on incorporating the gas injection mechanism into the refrigerant circuit as described above,
In particular, the present inventors have conceived to solve the drawback (i.e., increase in compressor discharge temperature) caused by the incorporation of the internal heat exchanger as much as possible by effectively utilizing the effect of lowering the compressor discharge temperature.
【0010】[0010]
【課題を解決するための手段】本願発明では、かかる技
術背景に立脚し、上記課題を解決するための具体的手段
として次のような構成を採用している。The present invention is based on such technical background, and employs the following configuration as specific means for solving the above-mentioned problems.
【0011】本願の第1の発明にかかるCO2冷媒を用
いた冷凍システムでは、CO2冷媒を圧縮する圧縮機1
と、上記圧縮機1から吐出される冷媒を超臨界領域にお
いて放熱させるガス冷却器Aと、上記ガス冷却器Aから
のを一次膨張させる一次膨張機構Cと、上記一次膨張機
構Cからの冷媒を気液分離するレシーバ7と、上記レシ
ーバ7で分離された液冷媒を二次膨張させる二次膨張機
構Dと、上記二次膨張機構Dからの液冷媒を蒸発させる
蒸発器Bと、上記レシーバ7で分離されたガス冷媒を上
記圧縮機1の圧縮室内にインジェクションするガスイン
ジェクション機構Eと、上記圧縮機1に吸入される上記
蒸発器Bからのガス冷媒と系内の液冷媒との間で熱交換
を行わせる内部熱交換器8とを備えたことを特徴として
いる。In the refrigeration system using the CO 2 refrigerant according to the first invention of the present application, the compressor 1 for compressing the CO 2 refrigerant
A gas cooler A for releasing the refrigerant discharged from the compressor 1 in a supercritical region, a primary expansion mechanism C for primary expansion of the gas from the gas cooler A, and a refrigerant from the primary expansion mechanism C. A receiver 7 for gas-liquid separation, a secondary expansion mechanism D for secondary-expanding the liquid refrigerant separated by the receiver 7, an evaporator B for evaporating the liquid refrigerant from the secondary expansion mechanism D, and the receiver 7 A gas injection mechanism E for injecting the gas refrigerant separated in the compressor 1 into the compression chamber of the compressor 1 and heat between the gas refrigerant from the evaporator B sucked into the compressor 1 and the liquid refrigerant in the system. An internal heat exchanger 8 for performing exchange is provided.
【0012】本願の第2の発明では、上記第1の発明に
かかるCO2冷媒を用いた冷凍システムにおいて、上記
内部熱交換器8を、上記ガス冷却器Aが利用側熱交換器
として機能し上記蒸発器Bが熱源側熱交換器として機能
する運転時と、上記ガス冷却器Aが熱源側熱交換器とし
て機能し上記蒸発器Bが利用側熱交換器として機能する
運転時の双方で、上記蒸発器Bからのガス冷媒と上記レ
シーバ7で気液分離された後の液冷媒との間で熱交換を
行うように構成したことを特徴としている。According to a second invention of the present application, in the refrigeration system using the CO 2 refrigerant according to the first invention, the internal heat exchanger 8 functions as the use side heat exchanger with the gas cooler A functioning. In both the operation in which the evaporator B functions as a heat source side heat exchanger and the operation in which the gas cooler A functions as a heat source side heat exchanger and the evaporator B functions as a use side heat exchanger, The heat exchanger is characterized in that heat exchange is performed between the gas refrigerant from the evaporator B and the liquid refrigerant after gas-liquid separation in the receiver 7.
【0013】本願の第3の発明では、上記第1の発明に
かかるCO2冷媒を用いた冷凍システムにおいて、上記
内部熱交換器8を、上記ガス冷却器Aが利用側熱交換器
として機能し上記蒸発器Bが熱源側熱交換器として機能
する運転時には該蒸発器Bからのガス冷媒と上記ガス冷
却器Aの出口側の液冷媒との間で、上記ガス冷却器Aが
熱源側熱交換器として機能し上記蒸発器Bが利用側熱交
換器として機能する運転時には該蒸発器Bからのガス冷
媒と上記レシーバ7で気液分離された後の液冷媒との間
で、それぞれ熱交換を行うように構成したことを特徴と
している。According to a third aspect of the present invention, in the refrigeration system using the CO 2 refrigerant according to the first aspect, the internal heat exchanger 8 functions as the gas-side cooler A as a use-side heat exchanger. During the operation in which the evaporator B functions as a heat source side heat exchanger, the gas cooler A operates between the gas refrigerant from the evaporator B and the liquid refrigerant at the outlet side of the gas cooler A. During operation in which the evaporator B functions as a heat exchanger and the evaporator B functions as a use side heat exchanger, heat exchange is performed between the gas refrigerant from the evaporator B and the liquid refrigerant after gas-liquid separation by the receiver 7. It is characterized in that it is configured to do so.
【0014】[0014]
【発明の効果】本願発明ではかかる構成とすることによ
り次のような効果が得られる。According to the present invention, the following effects can be obtained by adopting such a configuration.
【0015】 本願の第1の発明にかかるCO2冷媒
を用いた冷凍システムによれば、CO2冷媒を圧縮する
圧縮機1と、上記圧縮機1から吐出される冷媒を超臨界
領域において放熱させるガス冷却器Aと、上記ガス冷却
器Aからの冷媒を一次膨張させる一次膨張機構Cと、上
記一次膨張機構Cからの冷媒を気液分離するレシーバ7
と、上記レシーバ7で分離された液冷媒を二次膨張させ
る二次膨張機構Dと、上記二次膨張機構Dからの液冷媒
を蒸発させる蒸発器Bと、上記レシーバ7で分離された
ガス冷媒を上記圧縮機1の圧縮室内にインジェクション
するガスインジェクション機構Eと、上記圧縮機1に吸
入される上記蒸発器Bからのガス冷媒と系内の液冷媒と
の間で熱交換を行わせる内部熱交換器8とを備えている
ので、上記内部熱交換器8での内部熱交換によって冷凍
効率の向上が図られる一方、上記ガスインジェクション
機構Eによる圧縮機側へのガス冷媒のインジェクション
によって上記内部熱交換器8における内部熱交換に基づ
く圧縮機吐出温度の上昇が抑制されるとともに、気液分
離後の液冷媒を上記蒸発器Bに導入することで単位重量
当たりの蒸発エンタルピーが増大し、冷凍能力が向上す
るものであり、これらの相乗効果として、圧縮機の信頼
性を損なうことなく、高効率を実現することができるも
のである。According to the refrigeration system using the CO 2 refrigerant according to the first invention of the present application, the compressor 1 for compressing the CO 2 refrigerant and the refrigerant discharged from the compressor 1 are radiated in the supercritical region. A gas cooler A, a primary expansion mechanism C for temporarily expanding the refrigerant from the gas cooler A, and a receiver 7 for gas-liquid separation of the refrigerant from the primary expansion mechanism C
A secondary expansion mechanism D for secondary-expanding the liquid refrigerant separated by the receiver 7, an evaporator B for evaporating the liquid refrigerant from the secondary expansion mechanism D, and a gas refrigerant separated by the receiver 7 A gas injection mechanism E for injecting the gas into the compression chamber of the compressor 1 and an internal heat for performing heat exchange between the gas refrigerant from the evaporator B sucked into the compressor 1 and the liquid refrigerant in the system. Since the internal heat exchanger 8 includes the heat exchanger 8, the internal heat exchange in the internal heat exchanger 8 improves the refrigeration efficiency. On the other hand, the gas injection mechanism E injects the gas refrigerant to the compressor side, thereby improving the internal heat. The increase in the compressor discharge temperature due to the internal heat exchange in the exchanger 8 is suppressed, and the liquid refrigerant after the gas-liquid separation is introduced into the evaporator B, whereby the evaporative energy per unit weight is increased. Rs is increased, which improves the refrigerating capacity, as these synergistic effects, without compromising the reliability of the compressor, in which it is possible to realize a high efficiency.
【0016】また、基本的な冷媒回路に、内部熱交換器
8とガスインジェクション機構Eとを組み込むという比
較的簡単な回路変更によって効率を高めることができる
ことから、冷凍システムの低コスト化と高効率化の両立
が容易である。Further, since the efficiency can be increased by a relatively simple circuit change of incorporating the internal heat exchanger 8 and the gas injection mechanism E into the basic refrigerant circuit, the cost of the refrigeration system can be reduced and the efficiency can be increased. It is easy to achieve both.
【0017】さらに、気液分離後の液冷媒を蒸発器Bに
導入することで、該蒸発器Bを流れるCO2冷媒の単位
重量当たりの蒸発エンタルピーが大きくとれることか
ら、同一冷凍能力下においては冷媒流量が少なくなり冷
媒流速が低下する。この結果、上記蒸発器Bでの圧力損
失による効率低下が抑制され高い冷凍効率が確保される
とともに、蒸発器Bにおける冷媒流量が少ない分だけ該
蒸発器Bのコンパクト化が促進される。Furthermore, by introducing the liquid refrigerant after gas-liquid separation into the evaporator B, the enthalpy of vaporization per unit weight of the CO 2 refrigerant flowing through the evaporator B can be increased. The flow rate of the refrigerant decreases, and the flow velocity of the refrigerant decreases. As a result, a decrease in efficiency due to the pressure loss in the evaporator B is suppressed, a high refrigerating efficiency is secured, and the evaporator B is promoted to be more compact because the refrigerant flow rate in the evaporator B is small.
【0018】 本願の第2の発明にかかるCO2冷媒
を用いた冷凍システムによれば、上記に記載の効果に
加えて次のような特有の効果が奏せられる。即ち、この
発明では、上記内部熱交換器8を、上記ガス冷却器Aが
利用側熱交換器として機能し上記蒸発器Bが熱源側熱交
換器として機能する運転時と、上記ガス冷却器Aが熱源
側熱交換器として機能し上記蒸発器Bが利用側熱交換器
として機能する運転時の双方で、上記蒸発器Bからのガ
ス冷媒と上記レシーバ7で気液分離された後の液冷媒と
の間で熱交換を行うように構成しているので、例えば上
記内部熱交換器8において気液分離前のCO2冷媒と熱
交換させる場合に比して、該内部熱交換器8を流れる冷
媒量が少なくなり、それだけ該内部熱交換器8のコンパ
クト化が促進されることになる。According to the refrigeration system using a CO 2 refrigerant according to the second aspect of the present invention, the following specific effects can be obtained in addition to the effects described above. That is, according to the present invention, the internal heat exchanger 8 is operated during the operation in which the gas cooler A functions as a use side heat exchanger and the evaporator B functions as a heat source side heat exchanger. Functions as a heat source side heat exchanger and the evaporator B functions as a use side heat exchanger, both during operation and the gas refrigerant from the evaporator B and the liquid refrigerant after being gas-liquid separated by the receiver 7. And heat exchange with the CO 2 refrigerant before gas-liquid separation in the internal heat exchanger 8, for example. The amount of the refrigerant is reduced, and the size of the internal heat exchanger 8 is reduced accordingly.
【0019】 本願の第3の発明にかかるCO2冷媒
を用いた冷凍システムによれば、上記に記載の効果に
加えて次のような特有の効果が奏せられる。即ち、この
発明では、上記内部熱交換器8を、上記ガス冷却器Aが
利用側熱交換器として機能し上記蒸発器Bが熱源側熱交
換器として機能する運転時には該蒸発器Bからのガス冷
媒と上記ガス冷却器Aの出口側の液冷媒との間で、上記
ガス冷却器Aが熱源側熱交換器として機能し上記蒸発器
Bが利用側熱交換器として機能する運転時には該蒸発器
Bからのガス冷媒と上記レシーバ7で気液分離された後
の液冷媒との間で、それぞれ熱交換を行うように構成し
ている。According to the refrigeration system using a CO 2 refrigerant according to the third invention of the present application, the following specific effects can be obtained in addition to the effects described above. That is, according to the present invention, the gas from the evaporator B is used during the operation in which the gas cooler A functions as the use side heat exchanger and the evaporator B functions as the heat source side heat exchanger. During operation in which the gas cooler A functions as a heat source side heat exchanger and the evaporator B functions as a use side heat exchanger between the refrigerant and the liquid refrigerant at the outlet side of the gas cooler A, The heat exchange is performed between the gas refrigerant from B and the liquid refrigerant after gas-liquid separation by the receiver 7.
【0020】従って、特に後者の運転時には、上記レシ
ーバ7で気液分離された後の液冷媒との間で熱交換を行
うように構成していることで、例えば上記内部熱交換器
8において気液分離前のCO2冷媒と熱交換させる場合
に比して、該内部熱交換器8を流れる冷媒量が少なく、
それだけ該内部熱交換器8のコンパクト化が促進される
ことになる。Therefore, particularly in the latter operation, the heat exchange is performed between the liquid refrigerant after the gas-liquid separation by the receiver 7, so that, for example, the gas exchange in the internal heat exchanger 8 is performed. The amount of refrigerant flowing through the internal heat exchanger 8 is smaller than when heat is exchanged with the CO 2 refrigerant before liquid separation,
As a result, downsizing of the internal heat exchanger 8 is promoted.
【0021】[0021]
【発明の実施の形態】以下、本願発明にかかるCO2冷
媒を用いた冷凍システムを好適な実施形態に基づいて具
体的に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a refrigeration system using a CO 2 refrigerant according to the present invention will be described in detail based on a preferred embodiment.
【0022】第1の実施形態 図1には、本願発明にかかるCO2冷媒を用いた冷凍シ
ステムを空気調和機に適用した第1の実施形態における
冷媒回路を示しており、同図において符号1は圧縮機、
2は室外熱交換器(特許請求の範囲の「熱源側熱交換
器」に該当する)、3は室内熱交換器(特許請求の範囲
の「利用側熱交換器」に該当する)、4は上記圧縮機1
の吸入口に接続される冷媒路24に設けられたアキュー
ムレータ、5は上記室外熱交換器2と室内熱交換器3と
を上記圧縮機1と冷媒路23に択一的に接続する第1の
四方切換弁、6は上記室外熱交換器2と室内熱交換器3
とを冷媒路23と冷媒路24に択一的に接続する第2の
四方切換弁である。尚、図1においては、上記各四方切
換弁5,6の弁位置を、冷房運転時には実線で、暖房運
転時には破線で、それぞれ示している。 First Embodiment FIG. 1 shows a refrigerant circuit according to a first embodiment in which a refrigeration system using a CO 2 refrigerant according to the present invention is applied to an air conditioner. Is a compressor,
2 is an outdoor heat exchanger (corresponding to the “heat source side heat exchanger” in the claims), 3 is an indoor heat exchanger (corresponds to the “use side heat exchanger” in the claims), 4 is The above compressor 1
The accumulator 5 provided in the refrigerant passage 24 connected to the suction port of the first unit selectively connects the outdoor heat exchanger 2 and the indoor heat exchanger 3 to the compressor 1 and the refrigerant passage 23. The four-way switching valve 6 includes the outdoor heat exchanger 2 and the indoor heat exchanger 3
And a second four-way switching valve for alternatively connecting the refrigerant passage 23 and the refrigerant passage 24 to each other. In FIG. 1, the positions of the four-way switching valves 5 and 6 are indicated by solid lines during the cooling operation and by broken lines during the heating operation.
【0023】また、符号7は、第1の膨張弁11と第2
の膨張弁12とを直列に設けた冷媒路23の該各膨張弁
11,12の中間位置に設けられた気液分離用のレシー
バであり、該レシーバ7の気相部は制御弁10を備えた
冷媒路26を介して上記圧縮機1の圧縮室に接続されて
いる。尚、このレシーバ7と冷媒路26と制御弁10に
よって特許請求の範囲の「ガスインジェクション機構
E」が構成されている。Reference numeral 7 denotes a first expansion valve 11 and a second expansion valve 11.
And a gas-liquid separation receiver provided at an intermediate position between the expansion valves 11 and 12 in the refrigerant path 23 in which the expansion valve 12 is provided in series. The compressor 1 is connected to a compression chamber of the compressor 1 through a refrigerant passage 26. The receiver 7, the refrigerant passage 26, and the control valve 10 constitute a "gas injection mechanism E" in the claims.
【0024】さらに、符号8は、高圧側伝熱部8aと低
圧側伝熱部8bを備えた内部熱交換器であり、該高圧側
伝熱部8aは上記冷媒路23の上記レシーバ7と第2の
膨張弁12の中間位置に介設され、また低圧側伝熱部8
bは上記冷媒路24に介設されている。Further, reference numeral 8 denotes an internal heat exchanger provided with a high-pressure side heat transfer section 8a and a low-pressure side heat transfer section 8b. 2 is provided at an intermediate position of the expansion valve 12 and the low-pressure side heat transfer section 8.
b is provided in the refrigerant passage 24.
【0025】続いて、上記空気調和機の冷媒回路の作動
を、冷房運転時(即ち、室外熱交換器2が特許請求の範
囲の「ガス冷却器A」として機能し、室内熱交換器3が
特許請求の範囲の「蒸発器B」として機能する運転状
態)を例にとって、図2に示す「P−H線図」を併用し
つつ説明する。Subsequently, the operation of the refrigerant circuit of the air conditioner is performed during a cooling operation (ie, the outdoor heat exchanger 2 functions as a "gas cooler A" in the claims, and the indoor heat exchanger 3 An operation state that functions as the “evaporator B” in the claims will be described as an example, together with the “PH diagram” shown in FIG. 2.
【0026】冷房運転時には、圧縮機1から吐出された
CO2冷媒(ガス冷媒)は、第1の四方切換弁5を介し
て室外熱交換器2に導入され、該室外熱交換器2におい
て超臨界領域で放熱される(図2の点D〜点Eの領
域)。室外熱交換器2から流出する超臨界状態のCO2
冷媒は、第2の四方切換弁6から第1の膨張弁11(特
許請求の範囲の「一次膨張機構C」に該当する)に至
り、該第1の膨張弁11において一次膨張され(図2の
点E〜点Fの領域)、気液二相状態でレシーバ7に導入
されてここで気液分離される(図2の点G及び点H)。During the cooling operation, the CO 2 refrigerant (gas refrigerant) discharged from the compressor 1 is introduced into the outdoor heat exchanger 2 via the first four-way switching valve 5, The heat is dissipated in the critical region (the region between points D and E in FIG. 2). Supercritical CO 2 flowing out of the outdoor heat exchanger 2
The refrigerant reaches the first expansion valve 11 (corresponding to the “primary expansion mechanism C” in the claims) from the second four-way switching valve 6 and is primarily expanded in the first expansion valve 11 (FIG. 2). (Areas from point E to point F), the gas is introduced into the receiver 7 in a gas-liquid two-phase state, where it is separated into gas and liquid (points G and H in FIG. 2).
【0027】そして、レシーバ7で分離された液冷媒
は、内部熱交換器8の高圧側伝熱部8aに流入し、その
入口(図2の点H)から出口(図2の点I)へ向かって
流れる間に、その低圧側伝熱部8bをその入口(図2の
点K)から出口(図2の点A)へ向かって流れるガス冷
媒との間で内部熱交換を行った後、第2の膨張弁12
(特許請求の範囲の「二次膨張機構D」に該当する)に
流入し、ここで二次膨張(図2の点I〜点Jの領域)さ
れた後、室内熱交換器3に送られ、その入口(図2の点
J)から出口(図2の点K)を流れる間に蒸発しガス冷
媒とされる。尚、このガス冷媒は再度圧縮機1に吸入さ
れて圧縮されるが、その吸入温度は、室内熱交換器3の
出口温度(図2の点Kに対応する温度)よりも、内部熱
交換器8における内部熱交換による昇温分(図2に
「d」で示す)だけ高い温度(即ち、図2の点Aに対応
する温度)とされる。The liquid refrigerant separated by the receiver 7 flows into the high-pressure heat transfer section 8a of the internal heat exchanger 8, and from its inlet (point H in FIG. 2) to its outlet (point I in FIG. 2). During the flow, the internal heat exchange between the low-pressure side heat transfer portion 8b and the gas refrigerant flowing from the inlet (point K in FIG. 2) to the outlet (point A in FIG. 2) is performed. Second expansion valve 12
(Corresponding to the “secondary expansion mechanism D” in the claims), where it is secondarily expanded (in the region of points I to J in FIG. 2) and then sent to the indoor heat exchanger 3. The gas evaporates while flowing from the inlet (point J in FIG. 2) to the outlet (point K in FIG. 2) to be a gas refrigerant. The gas refrigerant is sucked into the compressor 1 again and compressed. The suction temperature of the refrigerant is higher than the outlet temperature of the indoor heat exchanger 3 (the temperature corresponding to the point K in FIG. 2). The temperature is set to be higher (that is, the temperature corresponding to the point A in FIG. 2) by the temperature rise (indicated by “d” in FIG. 2) due to the internal heat exchange in FIG.
【0028】一方、レシーバ7で分離されたガス冷媒
は、冷媒路26を介して圧縮機1の圧縮行程途中にある
圧縮室にインジェクションされる(図2の点G参照)。
このように圧縮機1の圧縮室にガス冷媒がインジェクシ
ョンされこれが該圧縮室内のガス冷媒に混合すること
で、該圧縮室内におけるガス冷媒の冷却と高密度化が促
進されることから、上述のように、内部熱交換によって
圧縮機1の吸入温度が上昇しており、この高い吸入温度
から圧縮が開始されるにも拘わらず、圧縮室内のガス冷
媒の温度は、ガスインジェクション時点の点Bに対応す
る温度から点Cに対応する温度まで一旦低下し、この低
下した温度から再度昇圧昇温され、最終的には点Dに対
応する温度が吐出温度となる。従って、この吐出温度
は、ガスインジェクションに伴う温度低下の影響を受け
ることから、ガスインジェクションが行われずに点Aか
ら点D0まで圧縮される場合の温度(点D0に対応する温
度)よりも低温とされる。On the other hand, the gas refrigerant separated by the receiver 7 is injected via the refrigerant passage 26 into the compression chamber in the middle of the compression stroke of the compressor 1 (see point G in FIG. 2).
As described above, since the gas refrigerant is injected into the compression chamber of the compressor 1 and mixed with the gas refrigerant in the compression chamber, the cooling and the densification of the gas refrigerant in the compression chamber are promoted. Meanwhile, the temperature of the gas refrigerant in the compression chamber corresponds to the point B at the time of the gas injection, despite the fact that the suction temperature of the compressor 1 has risen due to internal heat exchange, and the compression is started from this high suction temperature. The temperature temporarily decreases from the temperature corresponding to the point C to the temperature corresponding to the point C, and the temperature is increased again from the lowered temperature, and finally, the temperature corresponding to the point D becomes the discharge temperature. Therefore, since the discharge temperature is affected by the temperature drop accompanying the gas injection, the discharge temperature is lower than the temperature when the gas is compressed from the point A to the point D 0 without performing the gas injection (the temperature corresponding to the point D 0 ). Low temperature.
【0029】尚、暖房運転時においては、冷房運転時と
は逆に、室外熱交換器2が蒸発器として機能し、室内熱
交換器3がガス冷却器として機能するが、上記内部熱交
換器8における冷媒の流れ方向は冷房運転時も暖房運転
時も同じとされる。即ち、内部熱交換器8は、常にレシ
ーバ7で気液分離された後の液冷媒と熱交換を行う。In the heating operation, contrary to the cooling operation, the outdoor heat exchanger 2 functions as an evaporator and the indoor heat exchanger 3 functions as a gas cooler. The flow direction of the refrigerant at 8 is the same in both the cooling operation and the heating operation. That is, the internal heat exchanger 8 always exchanges heat with the liquid refrigerant that has been gas-liquid separated by the receiver 7.
【0030】以上のように、CO2冷媒を用いた遷臨界
冷凍サイクルの冷媒回路に内部熱交換器8とガスインジ
ェクション機構Eとを組み込むことで、該内部熱交換器
8における内部熱交換に伴う圧縮機吐出温度の上昇が、
ガスインジェクションによる冷却作用によって抑制され
ることから、内部熱交換による冷凍能力の増加(図2の
エンタルピー量「c1」)による効率向上効果を、圧縮
機1の信頼性を確保しつつ実現できる。さらに、レシー
バ7で気液分離したガス冷媒を圧縮機1側にインジェク
ションさせた結果、インジェクション量に対応する分だ
け、蒸発器(即ち、冷房運転時における室内熱交換器
3)の冷媒循環量がガス冷却器(即ち、冷房運転時にお
ける室外熱交換器2)側における冷媒循環量が少なくな
っているが、その分だけ単位重量当たりの蒸発エンタル
ピーが増大することから(図2のエンタルピー量
「c2」)、冷凍能力は変わらない。これらの相乗効果
として、圧縮機1の信頼性を損なうことなく、高い効率
を実現することができ、高効率化と高信頼性との両立が
可能となるものである。As described above, by incorporating the internal heat exchanger 8 and the gas injection mechanism E into the refrigerant circuit of the transcritical refrigeration cycle using the CO 2 refrigerant, the internal heat exchange in the internal heat exchanger 8 The rise in compressor discharge temperature
Since the cooling effect is suppressed by the gas injection, the effect of improving the efficiency by increasing the refrigerating capacity by the internal heat exchange (the enthalpy amount “c 1 ” in FIG. 2) can be realized while securing the reliability of the compressor 1. Furthermore, as a result of injecting the gas refrigerant separated into gas and liquid by the receiver 7 into the compressor 1, the refrigerant circulation amount of the evaporator (that is, the indoor heat exchanger 3 during the cooling operation) is reduced by an amount corresponding to the injection amount. Although the amount of refrigerant circulating on the gas cooler (ie, the outdoor heat exchanger 2 during the cooling operation) side is reduced, the enthalpy of evaporation per unit weight is increased by that amount (the enthalpy amount “c” in FIG. 2 )), refrigeration capacity does not change. As these synergistic effects, high efficiency can be realized without impairing the reliability of the compressor 1, and both high efficiency and high reliability can be achieved.
【0031】また、上記レシーバ7で気液分離された後
の液冷媒を蒸発器(即ち、冷房運転時における室内熱交
換器3と暖房運転時における室外熱交換器2)に導入す
るものであることから、該蒸発器を流れるCO2冷媒の
単位重量当たりの蒸発エンタルピーが大きくとれ、同一
冷凍能力下においては冷媒流量が少なくなり冷媒流速が
低下する。この結果、蒸発器での圧力損失による効率低
下が抑制され、高い冷凍効率が確保されるとともに、冷
媒流量が少ない分だけ蒸発器のコンパクト化が促進され
ることになる。The liquid refrigerant after gas-liquid separation by the receiver 7 is introduced into an evaporator (ie, the indoor heat exchanger 3 during the cooling operation and the outdoor heat exchanger 2 during the heating operation). Accordingly, the enthalpy of evaporation per unit weight of the CO 2 refrigerant flowing through the evaporator can be increased, and the refrigerant flow rate decreases and the refrigerant flow rate decreases under the same refrigeration capacity. As a result, a decrease in efficiency due to a pressure loss in the evaporator is suppressed, a high refrigerating efficiency is ensured, and the evaporator is downsized by the small amount of the refrigerant flow.
【0032】さらに、この実施形態のように、冷房運転
時と暖房運転時の双方で、共に蒸発器から出たガス冷媒
と上記レシーバ7で気液分離された後の液冷媒との間で
熱交換を行うように構成することで、例えば上記内部熱
交換器8において気液分離前のCO2冷媒と熱交換させ
る場合に比して、該内部熱交換器8を流れる冷媒量が少
なくなり、それだけ該内部熱交換器8のコンパクト化が
促進されることになる。Further, as in this embodiment, during both the cooling operation and the heating operation, heat is generated between the gas refrigerant discharged from the evaporator and the liquid refrigerant after gas-liquid separation by the receiver 7. By performing the exchange, the amount of refrigerant flowing through the internal heat exchanger 8 is reduced, for example, as compared with the case where the internal heat exchanger 8 exchanges heat with the CO 2 refrigerant before gas-liquid separation, As a result, downsizing of the internal heat exchanger 8 is promoted.
【0033】一方、上記膨張弁10及び膨張弁11の開
度制御を適正に行って上記圧縮機1側へのガスインジェ
クション量を調整することで、圧縮機入力を低下させて
省エネ運転を実現することができる。On the other hand, by appropriately controlling the degree of opening of the expansion valves 10 and 11 and adjusting the amount of gas injection to the compressor 1 side, the compressor input is reduced and energy saving operation is realized. be able to.
【0034】第2の実施形態 図3には、本願発明にかかるCO2冷媒を用いた冷凍シ
ステムを空気調和機に適用した第2の実施形態における
冷媒回路を示しており、また図4及び図5には冷房運転
時及び暖房運転時の「P−H線図」をそれぞれ示してい
る。 Second Embodiment FIG. 3 shows a refrigerant circuit in a second embodiment in which a refrigeration system using a CO 2 refrigerant according to the present invention is applied to an air conditioner, and FIGS. 5 shows a “PH diagram” during the cooling operation and the heating operation, respectively.
【0035】先ず、図3の冷媒回路について説明する
と、同図において、符号1は圧縮機、2は室外熱交換器
(特許請求の範囲の「熱源側熱交換器」に該当する)、
3は室内熱交換器(特許請求の範囲の「利用側熱交換
器」に該当する)、4は上記圧縮機1の吸入口に接続さ
れる冷媒路25に設けられたアキュームレータ、5は上
記室外熱交換器2と室内熱交換器3とを上記圧縮機1と
冷媒路24に択一的に接続する四方切換弁である。ま
た、上記室外熱交換器2と室内熱交換器3とは冷媒路2
1を介して接続されているが、この冷媒路21には第1
の膨張弁11と第2の膨張弁12と第3の膨張弁13と
が直列に介設されるとともに、該第1の膨張弁11と第
2の膨張弁12の中間位置には気液分離用のレシーバ7
が、また第2の膨張弁12と第3の膨張弁13との中間
位置には高圧側伝熱部8aと低圧側伝熱部8bを備えた
内部熱交換器8の高圧側伝熱部8aが介設されている。
さらに、この内部熱交換器8の低圧側伝熱部8bは、そ
の一端が上記冷媒路24に、その他端が上記冷媒路25
にそれぞれ接続されている。また、上記レシーバ7の気
相部は、制御弁10を備えた冷媒路26を介して上記圧
縮機1の圧縮室に接続されている。この実施形態におい
ては、上記レシーバ7と冷媒路26と制御弁10によっ
て特許請求の範囲の「ガスインジェクション機構E」が
構成されている。First, the refrigerant circuit of FIG. 3 will be described. In FIG. 3, reference numeral 1 denotes a compressor, 2 denotes an outdoor heat exchanger (corresponding to a “heat source side heat exchanger” in the claims),
Reference numeral 3 denotes an indoor heat exchanger (corresponding to the "use-side heat exchanger" in the claims). Reference numeral 4 denotes an accumulator provided in a refrigerant passage 25 connected to a suction port of the compressor 1. Reference numeral 5 denotes an outdoor heat exchanger. This is a four-way switching valve that selectively connects the heat exchanger 2 and the indoor heat exchanger 3 to the compressor 1 and the refrigerant passage 24. The outdoor heat exchanger 2 and the indoor heat exchanger 3 are connected to the refrigerant passage 2
1, the refrigerant passage 21 is connected to the first
An expansion valve 11, a second expansion valve 12, and a third expansion valve 13 are interposed in series, and a gas-liquid separation is provided at an intermediate position between the first expansion valve 11 and the second expansion valve 12. Receiver 7 for
However, at the intermediate position between the second expansion valve 12 and the third expansion valve 13, the high pressure side heat transfer portion 8a of the internal heat exchanger 8 having the high pressure side heat transfer portion 8a and the low pressure side heat transfer portion 8b. Is interposed.
Further, one end of the low-pressure side heat transfer portion 8b of the internal heat exchanger 8 is connected to the refrigerant passage 24, and the other end is connected to the refrigerant passage 25.
Connected to each other. Further, the gas phase portion of the receiver 7 is connected to a compression chamber of the compressor 1 via a refrigerant passage 26 having a control valve 10. In this embodiment, the "gas injection mechanism E" in the claims is constituted by the receiver 7, the refrigerant passage 26, and the control valve 10.
【0036】尚、上記第1〜第3の膨張弁11〜13
は、冷房運転時と暖房運転時とでその作動形態が異な
る。即ち、上記室外熱交換器2がガス冷却器として機能
する冷房運転時には、上記第1の膨張弁11は特許請求
の範囲の「一次膨張機構C」として機能し冷媒の一次膨
張を行い、第2の膨張弁12は全開とされ膨張作用を行
わず、第3の膨張弁13は特許請求の範囲の「二次膨張
機構D」として機能し冷媒の二次膨張を行う。一方、暖
房運転時には、上記第1の膨張弁11は特許請求の範囲
の「二次膨張機構D」として機能し冷媒の二次膨張を行
い、第2の膨張弁12は特許請求の範囲の「一次膨張機
構C」として機能し冷媒の一次膨張を行い、第3の膨張
弁13は全開とされ膨張作用を行わない。The first to third expansion valves 11 to 13 are used.
Is different in the operation mode between the cooling operation and the heating operation. That is, during the cooling operation in which the outdoor heat exchanger 2 functions as a gas cooler, the first expansion valve 11 functions as a “primary expansion mechanism C” in claims to perform primary expansion of the refrigerant, and The third expansion valve 13 functions as a “secondary expansion mechanism D” in the claims to perform secondary expansion of the refrigerant. On the other hand, during the heating operation, the first expansion valve 11 functions as a “secondary expansion mechanism D” in the claims to perform secondary expansion of the refrigerant, and the second expansion valve 12 is a “secondary expansion mechanism” in the claims. The third expansion valve 13 functions as a “primary expansion mechanism C” to perform a primary expansion of the refrigerant, and the third expansion valve 13 is fully opened and does not perform an expansion action.
【0037】また、図3においては、上記四方切換弁5
の弁位置を、冷房運転時には実線で、暖房運転時には破
線で、それぞれ示している。In FIG. 3, the four-way switching valve 5
Are indicated by a solid line during the cooling operation and by a broken line during the heating operation.
【0038】続いて、上記空気調和機の冷媒回路の冷房
運転時と暖房運転時の作動を、図4に示す冷房運転時の
「P−H線図」と図5に示す暖房運転時の「P−H線
図」を併用しつつ説明する。Next, the operation of the refrigerant circuit of the air conditioner during the cooling operation and the heating operation will be described with reference to the “PH diagram” during the cooling operation shown in FIG. 4 and the “PH diagram” during the heating operation shown in FIG. The description will be made using the “PH diagram” together.
【0039】冷房運転時の作動 冷房運転時(即ち、室外熱交換器2が特許請求の範囲の
「ガス冷却器A」として機能し、室内熱交換器3が特許
請求の範囲の「蒸発器B」として機能する運転状態)に
は、圧縮機1から吐出されたCO2冷媒(ガス冷媒)
は、四方切換弁5を介して室外熱交換器2に導入され、
該室外熱交換器2において超臨界領域で放熱される(図
4の点D〜点Eの領域)。室外熱交換器2から流出する
超臨界状態のCO2冷媒は、第1の膨張弁11において
一次膨張され(図4の点E〜点Fの領域)、気液二相状
態でレシーバ7に導入され、ここで気液分離される(図
4の点G及び点H)。Operation During Cooling Operation During cooling operation (ie, the outdoor heat exchanger 2 functions as the "gas cooler A" in the claims, and the indoor heat exchanger 3 operates in the "evaporator B" in the claims. ), The CO 2 refrigerant (gas refrigerant) discharged from the compressor 1
Is introduced into the outdoor heat exchanger 2 via the four-way switching valve 5,
The heat is radiated in the supercritical region in the outdoor heat exchanger 2 (regions D to E in FIG. 4). The supercritical CO 2 refrigerant flowing out of the outdoor heat exchanger 2 is primarily expanded in the first expansion valve 11 (the area between points E to F in FIG. 4) and introduced into the receiver 7 in a gas-liquid two-phase state. Here, gas-liquid separation is performed (points G and H in FIG. 4).
【0040】そして、レシーバ7で分離された液冷媒
は、全開状態にある第2の膨張弁12を通って内部熱交
換器8の高圧側伝熱部8aに流入し、その入口(図4の
点H)から出口(図4の点I)へ向かって流れる間に、
その低圧側伝熱部8bをその入口(図4の点K)から出
口(図4の点A)へ向かって流れるガス冷媒との間で内
部熱交換を行った後、第3の膨張弁13において二次膨
張(図4の点I〜点Jの領域)された後、室内熱交換器
3に送られ、その入口(図4の点J)から出口(図4の
点K)を流れる間に蒸発しガス冷媒とされる。尚、この
ガス冷媒は再度圧縮機1に吸入されて圧縮されるが、そ
の吸入温度は、室内熱交換器3の出口温度(図4の点K
に対応する温度)よりも、内部熱交換器8における内部
熱交換による昇温分(図4に「d」で示す)だけ高い温
度(即ち、図4の点Aに対応する温度)とされる。Then, the liquid refrigerant separated by the receiver 7 flows into the high-pressure side heat transfer portion 8a of the internal heat exchanger 8 through the second expansion valve 12 which is in a fully opened state, and its inlet (see FIG. 4). While flowing from point H) to the exit (point I in FIG. 4),
After performing internal heat exchange between the low pressure side heat transfer portion 8b and the gas refrigerant flowing from the inlet (point K in FIG. 4) to the outlet (point A in FIG. 4), the third expansion valve 13 Is subjected to secondary expansion (regions I to J in FIG. 4), and then sent to the indoor heat exchanger 3 while flowing from the inlet (point J in FIG. 4) to the outlet (point K in FIG. 4). And evaporates into gas refrigerant. This gas refrigerant is sucked into the compressor 1 again and compressed. The suction temperature is determined by the outlet temperature of the indoor heat exchanger 3 (point K in FIG. 4).
(A temperature corresponding to the point A in FIG. 4) higher than the temperature corresponding to the point A in FIG. .
【0041】一方、レシーバ7で分離されたガス冷媒
は、冷媒路26を介して圧縮機1の圧縮行程途中にある
圧縮室にインジェクションされる(図4の点G参照)。
このように圧縮機1の圧縮室にガス冷媒がインジェクシ
ョンされこれが該圧縮室内のガス冷媒に混合すること
で、該圧縮室内におけるガス冷媒の冷却と高密度化が促
進されることから、上述のように、内部熱交換によって
圧縮機1の吸入温度が上昇しており、この高い吸入温度
から圧縮が開始されるにも拘わらず、圧縮室内のガス冷
媒の温度は、ガスインジェクション時点の点Bに対応す
る温度から点Cに対応する温度まで一旦低下し、この低
下した温度から再度昇圧昇温され、点Dに対応する温度
が吐出温度となる。従って、この吐出温度は、ガスイン
ジェクションに伴う温度低下の影響を受けて、ガスイン
ジェクションが行われず点Aから点D 0まで圧縮される
場合の温度(点D0に対応する温度)よりも低温とされ
る。On the other hand, the gas refrigerant separated by the receiver 7
Is in the middle of the compression stroke of the compressor 1 via the refrigerant passage 26.
It is injected into the compression chamber (see point G in FIG. 4).
Thus, the gas refrigerant is injected into the compression chamber of the compressor 1 by injection.
This is mixed with the gas refrigerant in the compression chamber.
As a result, cooling and densification of the gas refrigerant in the compression chamber are promoted.
As described above, the internal heat exchange
The suction temperature of the compressor 1 is rising, and this high suction temperature
Gas compression inside the compression chamber
The temperature of the medium corresponds to point B at the time of gas injection.
Once lowers to the temperature corresponding to point C,
The temperature is raised again from the lowered temperature, and the temperature corresponding to point D
Is the discharge temperature. Therefore, this discharge temperature is
Gas injection is affected by the temperature drop accompanying the injection.
Point A to point D without injection 0Compressed to
Case temperature (point D0Lower than the temperature corresponding to
You.
【0042】暖房運転時の作動 暖房運転時(即ち、室外熱交換器2が特許請求の範囲の
「蒸発器B」として機能し、室内熱交換器3が特許請求
の範囲の「ガス冷却器A」として機能する運転状態)に
は、圧縮機1から吐出されたCO2冷媒(ガス冷媒)
は、四方切換弁5を介して室内熱交換器3に導入され、
該室内熱交換器3において超臨界領域で放熱される(図
5の点D〜点Eの領域)。室内熱交換器3から流出する
超臨界状態のCO2冷媒は、全開状態の第3の膨張弁1
3を通って内部熱交換器8の高圧側伝熱部8aに流入
し、その入口(図5の点E)から出口(図5の点F)へ
向かって流れる間に、その低圧側伝熱部8bをその入口
(図5の点K)から出口(図5の点A)へ向かって流れ
るガス冷媒との間で内部熱交換を行う。さらに、内部熱
交換器8の高圧側伝熱部8aから出る冷媒は、第2の膨
張弁12において一次次膨張(図5の点F〜点Gの領
域)された後、気液二相状態でレシーバ7に導入され、
ここで気液分離される(図4の点H及び点I)。Operation During Heating Operation During the heating operation (ie, the outdoor heat exchanger 2 functions as the "evaporator B" in the claims, and the indoor heat exchanger 3 operates in the "gas cooler A" in the claims. ), The CO 2 refrigerant (gas refrigerant) discharged from the compressor 1
Is introduced into the indoor heat exchanger 3 via the four-way switching valve 5,
The heat is radiated in the supercritical region in the indoor heat exchanger 3 (regions D to E in FIG. 5). The supercritical CO 2 refrigerant flowing out of the indoor heat exchanger 3 is supplied to the third expansion valve 1 in the fully opened state.
3, flows into the high-pressure side heat transfer portion 8a of the internal heat exchanger 8 and flows from the inlet (point E in FIG. 5) to the outlet (point F in FIG. 5). The internal heat exchange is performed between the portion 8b and the gas refrigerant flowing from the inlet (point K in FIG. 5) to the outlet (point A in FIG. 5). Further, the refrigerant flowing out of the high-pressure side heat transfer portion 8a of the internal heat exchanger 8 undergoes primary expansion (the area between points F and G in FIG. 5) in the second expansion valve 12, and then has a gas-liquid two-phase state. Is introduced into the receiver 7,
Here, gas-liquid separation is performed (points H and I in FIG. 4).
【0043】そして、レシーバ7で分離された液冷媒
は、第1の膨張弁11に流入し、ここで二次膨張(図5
の点I〜点Jの領域)された後、室外熱交換器2に送ら
れ、その入口(図5の点J)から出口(図5の点K)を
流れる間に蒸発しガス冷媒とされる。尚、このガス冷媒
は再度圧縮機1に吸入されて圧縮されるが、その吸入温
度は、室外熱交換器2の出口温度(図5の点Kに対応す
る温度)よりも、内部熱交換器8における内部熱交換に
よる昇温分(図5に「d」で示す)だけ高い温度(即
ち、図5の点Aに対応する温度)とされる。The liquid refrigerant separated by the receiver 7 flows into the first expansion valve 11, where it undergoes secondary expansion (FIG. 5).
After that, it is sent to the outdoor heat exchanger 2 and evaporates while flowing from the inlet (point J in FIG. 5) to the outlet (point K in FIG. 5) to be a gas refrigerant. You. The gas refrigerant is sucked into the compressor 1 again and compressed. The suction temperature of the gas refrigerant is higher than the outlet temperature of the outdoor heat exchanger 2 (the temperature corresponding to the point K in FIG. 5). The temperature is set to be higher (that is, the temperature corresponding to the point A in FIG. 5) by the temperature rise (indicated by “d” in FIG. 5) due to the internal heat exchange in FIG.
【0044】一方、レシーバ7で分離されたガス冷媒
は、冷媒路26を介して圧縮機1の圧縮行程途中にある
圧縮室にインジェクションされる(図5の点H参照)。
このように圧縮機1の圧縮室にガス冷媒がインジェクシ
ョンされこれが該圧縮室内のガス冷媒に混合すること
で、該圧縮室内におけるガス冷媒の冷却と高密度化が促
進されることから、上述のように、内部熱交換によって
圧縮機1の吸入温度が上昇しており、この高い吸入温度
から圧縮が開始されるにも拘わらず、圧縮室内のガス冷
媒の温度は、ガスインジェクション時点の点Bに対応す
る温度から点Cに対応する温度まで一旦低下し、この低
下した温度から再度昇温され、点Dに対応する温度が吐
出温度となる。従って、この吐出温度は、ガスインジェ
クションに伴う温度低下の影響を受けて、ガスインジェ
クションが行われず点Aから点D0まで圧縮される場合
の温度(点D0に対応する温度)よりも低温とされる。On the other hand, the gas refrigerant separated by the receiver 7 is injected into the compression chamber in the middle of the compression stroke of the compressor 1 via the refrigerant passage 26 (see point H in FIG. 5).
As described above, since the gas refrigerant is injected into the compression chamber of the compressor 1 and mixed with the gas refrigerant in the compression chamber, the cooling and the densification of the gas refrigerant in the compression chamber are promoted. Meanwhile, the temperature of the gas refrigerant in the compression chamber corresponds to the point B at the time of the gas injection, despite the fact that the suction temperature of the compressor 1 has risen due to internal heat exchange, and the compression is started from this high suction temperature. The temperature once decreases from the temperature to the temperature corresponding to the point C, and the temperature is increased again from the lowered temperature, and the temperature corresponding to the point D becomes the discharge temperature. Accordingly, the discharge temperature is lower than the temperature (the temperature corresponding to the point D 0 ) when the gas is not injected and is compressed from the point A to the point D 0 due to the influence of the temperature drop accompanying the gas injection. Is done.
【0045】以上のように、CO2冷媒を用いた遷臨界
冷凍サイクルの冷媒回路に内部熱交換器8とガスインジ
ェクション機構Eとを組み込むことで、該内部熱交換器
8における内部熱交換に伴う圧縮機吐出温度の上昇が、
ガスインジェクションによる冷却作用によって抑制され
ることから、内部熱交換による冷凍能力の増加(図4及
び図5のエンタルピー量「c1」)による効率向上効果
を、圧縮機1の信頼性を確保しつつ実現できる。さら
に、レシーバ7で気液分離したガス冷媒を圧縮機1側に
インジェクションさせた結果、インジェクション量に対
応する分だけ、蒸発器(即ち、冷房運転時の室内熱交換
器3と暖房運転時の室外熱交換器2)の冷媒循環量がガ
ス冷却器(即ち、冷房運転時の室外熱交換器2と暖房運
転時の室内熱交換器3)側における冷媒循環量が少なく
なっているが、その分だけ単位重量当たりの蒸発エンタ
ルピーが増大しているので(図4及び図5ののエンタル
ピー量「c2」)、冷凍能力は変わらない。これらの相
乗効果として、圧縮機1の信頼性を損なうことなく、高
い効率を実現することができ、高効率化と高信頼性との
両立が可能となるものである。As described above, by incorporating the internal heat exchanger 8 and the gas injection mechanism E into the refrigerant circuit of the transcritical refrigeration cycle using the CO 2 refrigerant, the internal heat exchanger 8 The rise in compressor discharge temperature
Since the cooling effect by the gas injection is suppressed, the effect of improving the efficiency due to the increase in the refrigerating capacity due to the internal heat exchange (the enthalpy amount “c 1 ” in FIGS. 4 and 5) is obtained while securing the reliability of the compressor 1. realizable. Further, as a result of injecting the gas refrigerant separated into gas and liquid by the receiver 7 into the compressor 1 side, the evaporator (that is, the indoor heat exchanger 3 during the cooling operation and the outdoor The amount of circulating refrigerant in the heat exchanger 2) is smaller on the gas cooler side (that is, the outdoor heat exchanger 2 during the cooling operation and the indoor heat exchanger 3 during the heating operation), but the refrigerant circulation amount is correspondingly smaller. However, since the enthalpy of evaporation per unit weight is increased only (the enthalpy amount “c 2 ” in FIGS. 4 and 5), the refrigerating capacity does not change. As these synergistic effects, high efficiency can be realized without impairing the reliability of the compressor 1, and both high efficiency and high reliability can be achieved.
【0046】また、上記レシーバ7で気液分離した後の
液冷媒を蒸発器(即ち、冷房運転時における室内熱交換
器3と暖房運転時における室外熱交換器2)に導入する
ものであることから、該蒸発器を流れるCO2冷媒の単
位重量当たりの蒸発エンタルピーが大きくとれ、同一冷
凍能力下においては冷媒流量が少なくなり冷媒流速が低
下する。この結果、蒸発器での圧力損失による効率低下
が抑制され、高い冷凍効率が確保されるとともに、冷媒
流量が少ない分だけ蒸発器のコンパクト化が促進される
ことになる。The liquid refrigerant after gas-liquid separation by the receiver 7 is introduced into an evaporator (that is, the indoor heat exchanger 3 during the cooling operation and the outdoor heat exchanger 2 during the heating operation). Therefore, the enthalpy of evaporation per unit weight of the CO 2 refrigerant flowing through the evaporator can be increased, and the flow rate of the refrigerant decreases and the flow velocity of the refrigerant decreases under the same refrigeration capacity. As a result, a decrease in efficiency due to a pressure loss in the evaporator is suppressed, a high refrigerating efficiency is ensured, and the evaporator is downsized by the small amount of the refrigerant flow.
【0047】さらに、この実施形態のように、冷房運転
時には蒸発器から出たガス冷媒と上記レシーバ7で気液
分離された後の液冷媒との間で熱交換を行うように構成
することで、例えば上記内部熱交換器8において気液分
離前のCO2冷媒と熱交換させる場合に比して、該内部
熱交換器8を流れる冷媒量が少なくなり、それだけ該内
部熱交換器8のコンパクト化が促進されることになる。Further, as in this embodiment, during the cooling operation, heat exchange is performed between the gas refrigerant discharged from the evaporator and the liquid refrigerant after gas-liquid separation by the receiver 7. For example, the amount of refrigerant flowing through the internal heat exchanger 8 is smaller than in the case where heat is exchanged with the CO 2 refrigerant before gas-liquid separation in the internal heat exchanger 8, and the internal heat exchanger 8 is more compact. Will be promoted.
【0048】一方、上記膨張弁10及び膨張弁11の開
度制御を適正に行って上記圧縮機1側へのガスインジェ
クション量を調整することで、圧縮機入力を低下させて
省エネ運転を実現することができる。On the other hand, by appropriately controlling the degree of opening of the expansion valves 10 and 11 and adjusting the amount of gas injection to the compressor 1 side, the compressor input is reduced and energy saving operation is realized. be able to.
【図1】本願発明にかかる冷凍システムの第1の実施形
態である空気調和機の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of an air conditioner that is a first embodiment of a refrigeration system according to the present invention.
【図2】図1に示した空気調和機における冷暖房時のP
−H線図である。FIG. 2 is a graph showing P during cooling and heating in the air conditioner shown in FIG. 1;
FIG.
【図3】本願発明にかかる冷凍システムの第2の実施形
態である空気調和機の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of an air conditioner that is a second embodiment of the refrigeration system according to the present invention.
【図4】図3に示した空気調和機における冷房運転時の
P−H線図である。FIG. 4 is a PH diagram of the air conditioner shown in FIG. 3 during a cooling operation.
【図5】図3に示した空気調和機における暖房運転時の
P−H線図である。FIG. 5 is a PH diagram during a heating operation of the air conditioner shown in FIG. 3;
【図6】内部熱交換器を備えた従来の空気調和機の冷媒
回路図である。FIG. 6 is a refrigerant circuit diagram of a conventional air conditioner including an internal heat exchanger.
【図7】インジェクション機構を備えた従来の空気調和
機の冷媒回路図である。FIG. 7 is a refrigerant circuit diagram of a conventional air conditioner provided with an injection mechanism.
【図8】図7に示した従来の空気調和機におけるP−H
線図である。FIG. 8 is a diagram showing a PH of the conventional air conditioner shown in FIG. 7;
FIG.
1は圧縮機、2は室外熱交換器、3は室内熱交換器、4
はアキュームレータ、5及び6は四方切換弁、7はレシ
ーバ、8は内部熱交換器、10は制御弁、11〜13は
膨張弁、21〜26は冷媒路、Z1及びZ2は空気調和機
である。1 is a compressor, 2 is an outdoor heat exchanger, 3 is an indoor heat exchanger, 4
The accumulator 5 and 6 the four-way switching valve, 7 a receiver, 8 internal heat exchanger, 10 a control valve, 11 to 13 expansion valve, 21 to 26 refrigerant passages, Z 1 and Z 2 are an air conditioner It is.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西川 和幸 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 鉾谷 克己 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 ──────────────────────────────────────────────────の Continuing on the front page (72) Kazuyuki Nishikawa, 1304 Kanaokacho, Sakai-shi, Osaka Daikin Industries Inside the Kanaoka Plant of Sakai Seisakusho Co., Ltd. (72) Katsumi Hokoya 1304, Kanaokacho, Sakai-shi, Osaka Daikin Industries Sakai Factory Kanaoka Factory
Claims (3)
いて放熱させるガス冷却器(A)と、 上記ガス冷却器(A)からの冷媒を一次膨張させる一次
膨張機構(C)と、 上記一次膨張機構(C)からの冷媒を気液分離するレシ
ーバ(7)と、 上記レシーバ(7)で分離された液冷媒を二次膨張させ
る二次膨張機構(D)と、 上記二次膨張機構(D)からの液冷媒を蒸発させる蒸発
器(B)と、 上記レシーバ(7)で分離されたガス冷媒を上記圧縮機
(1)の圧縮室内にインジェクションするガスインジェ
クション機構(E)と、 上記圧縮機(1)に吸入される上記蒸発器(B)からの
ガス冷媒と系内の液冷媒との間で熱交換を行わせる内部
熱交換器(8)とを備えたことを特徴とするCO2冷媒
を用いた冷凍システム。1. A compressor (1) for compressing a CO 2 refrigerant, a gas cooler (A) for radiating a refrigerant discharged from the compressor (1) in a supercritical region, and a gas cooler (A) ), A primary expansion mechanism (C) for primary expansion of the refrigerant from the above, a receiver (7) for gas-liquid separation of the refrigerant from the primary expansion mechanism (C), and a liquid refrigerant separated by the receiver (7). A secondary expansion mechanism (D) for performing secondary expansion, an evaporator (B) for evaporating the liquid refrigerant from the secondary expansion mechanism (D), and a gas refrigerant separated by the receiver (7). 1) heat exchange between a gas injection mechanism (E) for injecting into the compression chamber and a gas refrigerant from the evaporator (B) sucked into the compressor (1) and a liquid refrigerant in the system. And an internal heat exchanger (8) Refrigeration system using CO 2 refrigerant.
用側熱交換器として機能し上記蒸発器(B)が熱源側熱
交換器として機能する運転時と、上記ガス冷却器(A)
が熱源側熱交換器として機能し上記蒸発器(B)が利用
側熱交換器として機能する運転時の双方で、上記蒸発器
(B)からのガス冷媒と上記レシーバ(7)で気液分離
された後の液冷媒との間で熱交換を行うように構成され
ていることを特徴とするCO2冷媒を用いた冷凍システ
ム。2. The heat exchanger according to claim 1, wherein the internal heat exchanger (8) has the gas cooler (A) functioning as a use side heat exchanger, and the evaporator (B) functions as a heat source side heat exchanger. Operation and the above gas cooler (A)
Functions as a heat-source-side heat exchanger and the evaporator (B) functions as a use-side heat exchanger, during both operation, the gas refrigerant from the evaporator (B) and the gas-liquid separation by the receiver (7). A refrigeration system using a CO 2 refrigerant, wherein the refrigeration system is configured to perform heat exchange with the liquid refrigerant after the cooling.
用側熱交換器として機能し上記蒸発器(B)が熱源側熱
交換器として機能する運転時には該蒸発器(B)からの
ガス冷媒と上記ガス冷却器(A)の出口側の液冷媒との
間で、上記ガス冷却器(A)が熱源側熱交換器として機
能し上記蒸発器(B)が利用側熱交換器として機能する
運転時には該蒸発器(B)からのガス冷媒と上記レシー
バ(7)で気液分離された後の液冷媒との間で、それぞ
れ熱交換を行うように構成されていることを特徴とする
CO2冷媒を用いた冷凍システム。3. The internal heat exchanger (8) according to claim 1, wherein the gas cooler (A) functions as a use side heat exchanger, and the evaporator (B) functions as a heat source side heat exchanger. During operation, between the gas refrigerant from the evaporator (B) and the liquid refrigerant at the outlet side of the gas cooler (A), the gas cooler (A) functions as a heat source side heat exchanger to perform the evaporation. During operation in which the heat exchanger (B) functions as a use side heat exchanger, heat exchange is performed between the gas refrigerant from the evaporator (B) and the liquid refrigerant after gas-liquid separation by the receiver (7). And a refrigeration system using a CO 2 refrigerant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000111622A JP4407000B2 (en) | 2000-04-13 | 2000-04-13 | Refrigeration system using CO2 refrigerant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000111622A JP4407000B2 (en) | 2000-04-13 | 2000-04-13 | Refrigeration system using CO2 refrigerant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001296067A true JP2001296067A (en) | 2001-10-26 |
JP4407000B2 JP4407000B2 (en) | 2010-02-03 |
Family
ID=18623922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000111622A Expired - Fee Related JP4407000B2 (en) | 2000-04-13 | 2000-04-13 | Refrigeration system using CO2 refrigerant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4407000B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1426710A1 (en) * | 2002-12-05 | 2004-06-09 | Sanyo Electric Co., Ltd. | Refrigerant cycling device |
EP1441185A2 (en) | 2003-01-16 | 2004-07-28 | Matsushita Electric Industrial Co., Ltd. | Refrigerator |
JP2005214444A (en) * | 2004-01-27 | 2005-08-11 | Sanyo Electric Co Ltd | Refrigerator |
US7178362B2 (en) | 2005-01-24 | 2007-02-20 | Tecumseh Products Cormpany | Expansion device arrangement for vapor compression system |
EP1781999A2 (en) * | 2004-07-14 | 2007-05-09 | Carrier Corporation | Flash tank for heat pump in heating and cooling modes of operation |
US7320228B2 (en) | 2004-08-12 | 2008-01-22 | Sanyo Electric Co., Ltd. | Refrigerant cycle apparatus |
JP2009243880A (en) * | 2009-07-30 | 2009-10-22 | Mitsubishi Electric Corp | Heat pump device and outdoor unit of heat pump device |
JP2009257756A (en) * | 2009-07-30 | 2009-11-05 | Mitsubishi Electric Corp | Heat pump apparatus, and outdoor unit for heat pump apparatus |
CN101650075A (en) * | 2009-09-07 | 2010-02-17 | 浙江正理生能科技有限公司 | Air source low-temperature heat pump water heater |
USRE43805E1 (en) | 2004-10-18 | 2012-11-20 | Mitsubishi Electric Corporation | Refrigeration/air conditioning equipment |
US8899058B2 (en) | 2006-03-27 | 2014-12-02 | Mitsubishi Electric Corporation | Air conditioner heat pump with injection circuit and automatic control thereof |
-
2000
- 2000-04-13 JP JP2000111622A patent/JP4407000B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1426710A1 (en) * | 2002-12-05 | 2004-06-09 | Sanyo Electric Co., Ltd. | Refrigerant cycling device |
EP1441185A2 (en) | 2003-01-16 | 2004-07-28 | Matsushita Electric Industrial Co., Ltd. | Refrigerator |
EP1441185A3 (en) * | 2003-01-16 | 2004-10-06 | Matsushita Electric Industrial Co., Ltd. | Refrigerator |
US7024879B2 (en) | 2003-01-16 | 2006-04-11 | Matsushita Electric Industrial Co., Ltd. | Refrigerator |
JP2005214444A (en) * | 2004-01-27 | 2005-08-11 | Sanyo Electric Co Ltd | Refrigerator |
EP1781999A4 (en) * | 2004-07-14 | 2008-08-27 | Carrier Corp | Flash tank for heat pump in heating and cooling modes of operation |
EP1781999A2 (en) * | 2004-07-14 | 2007-05-09 | Carrier Corporation | Flash tank for heat pump in heating and cooling modes of operation |
US7320228B2 (en) | 2004-08-12 | 2008-01-22 | Sanyo Electric Co., Ltd. | Refrigerant cycle apparatus |
USRE43805E1 (en) | 2004-10-18 | 2012-11-20 | Mitsubishi Electric Corporation | Refrigeration/air conditioning equipment |
USRE43998E1 (en) | 2004-10-18 | 2013-02-19 | Mitsubishi Electric Corporation | Refrigeration/air conditioning equipment |
US7178362B2 (en) | 2005-01-24 | 2007-02-20 | Tecumseh Products Cormpany | Expansion device arrangement for vapor compression system |
US8899058B2 (en) | 2006-03-27 | 2014-12-02 | Mitsubishi Electric Corporation | Air conditioner heat pump with injection circuit and automatic control thereof |
JP2009243880A (en) * | 2009-07-30 | 2009-10-22 | Mitsubishi Electric Corp | Heat pump device and outdoor unit of heat pump device |
JP2009257756A (en) * | 2009-07-30 | 2009-11-05 | Mitsubishi Electric Corp | Heat pump apparatus, and outdoor unit for heat pump apparatus |
JP4550153B2 (en) * | 2009-07-30 | 2010-09-22 | 三菱電機株式会社 | Heat pump device and outdoor unit of heat pump device |
CN101650075A (en) * | 2009-09-07 | 2010-02-17 | 浙江正理生能科技有限公司 | Air source low-temperature heat pump water heater |
Also Published As
Publication number | Publication date |
---|---|
JP4407000B2 (en) | 2010-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4899489B2 (en) | Refrigeration equipment | |
JP4538892B2 (en) | Air conditioner using CO2 refrigerant | |
JP2005147456A (en) | Air conditioner | |
JP2001296067A (en) | Refrigerating system using co2 refrigerant | |
US11353249B2 (en) | Two-pipe enhanced-vapor-injection outdoor unit and multi-split system | |
JP2011133133A (en) | Refrigerating device | |
JP4179595B2 (en) | Air conditioner | |
US20230101537A1 (en) | Heat pump | |
JP2001235245A (en) | Freezer | |
JP3324420B2 (en) | Refrigeration equipment | |
JP2001056156A (en) | Air conditioning apparatus | |
JP2000346474A (en) | Refrigerator | |
JP2007232280A (en) | Refrigeration unit | |
JPH10205933A (en) | Air conditioner | |
JP2956584B2 (en) | Heat recovery type air conditioner | |
JP2004332961A (en) | Air conditioner | |
KR100626756B1 (en) | Heat pump air-conditioner | |
CN110234938B (en) | Outdoor system of air conditioner | |
JP2012127520A (en) | Refrigeration cycle device | |
JP4661725B2 (en) | Refrigeration equipment | |
KR100588846B1 (en) | Heat pump air-conditioner | |
JP7216258B1 (en) | air conditioner | |
JP7343764B2 (en) | air conditioner | |
JP2010112618A (en) | Air conditioning device | |
KR20180123270A (en) | An air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091020 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091102 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |