JP4179595B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4179595B2
JP4179595B2 JP2002244508A JP2002244508A JP4179595B2 JP 4179595 B2 JP4179595 B2 JP 4179595B2 JP 2002244508 A JP2002244508 A JP 2002244508A JP 2002244508 A JP2002244508 A JP 2002244508A JP 4179595 B2 JP4179595 B2 JP 4179595B2
Authority
JP
Japan
Prior art keywords
refrigerant
receiver
gas
compressor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002244508A
Other languages
Japanese (ja)
Other versions
JP2004085019A (en
Inventor
知巳 梅田
進 中山
佳彦 望月
賢治 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2002244508A priority Critical patent/JP4179595B2/en
Publication of JP2004085019A publication Critical patent/JP2004085019A/en
Application granted granted Critical
Publication of JP4179595B2 publication Critical patent/JP4179595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気圧縮機式のヒートポンプサイクルを有する空気調和機に関し、特に運転効率を向上し、省エネルギ化を図るものに好適である。
【0002】
【従来の技術】
従来、空気調和機において、広い能力範囲で成績係数の高い運転を実現するため、インジェクション回路を設け、インジェクション運転または非インジェクション運転のうち成績係数の高い方の運転を選択することが知られ、例えば特開平10−176866号公報に記載されている。
また、ガスインジェクションをする際に、少量の液冷媒を混入させると圧縮機の冷却効果により、圧縮機の効率が向上し省エネ性が向上するので、ガスインジェクションサイクルにおいて、2つの膨張弁の開度を変えて、気液分離器内のインジェクション圧力を上昇させ、インジェクションガス冷媒に液冷媒を混入させることが知られ、例えば、特開2001−116373号公報に記載されている。
【特許文献1】
特開2001−116373号公報
【0003】
【発明が解決しようとする課題】
上記従来技術において、膨張弁制御によりガスインジェクション時に液冷媒を混入するものは、1台の室外機に複数台の室内機が接続されているマルチ式の場合や、室外機と室内機の接続配管長が長い場合には、配管内の圧力損失の影響が大きくなり、膨張弁の減圧調整代の裕度が小さくなり、必ずしも適正な液冷媒混入状態を作り出すことが難しい。
【0004】
本発明の目的は、サイクルの運転状態、サイクル構成に係わらず、省エネ性が高くサイクル効率(成績係数:COP)の良い運転が可能な空気調和機を提供することにある。
さらに、本発明の目的は、使用環境の実情に合わせて効率を向上し、年間を通じて高い成績係数(省エネ性の高い)の運転が可能な空気調和機を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続した冷凍サイクルを有する空気調和機において、前記レシーバ内のガス冷媒を取り出すように該レシーバの上部に接続されると共に前記圧縮機へ接続するインジェクション回路と、前記レシーバ内の液冷媒を取り出すように設けられ且つ前記インジェクション回路に接続される液冷媒抽出管と、この液冷媒抽出管に設けられた流量調整弁とを備え、
この流量調整弁を調整することで前記インジェクション回路のガス冷媒に前記レシーバ内の液冷媒を任意の量混入させて前記圧縮機へインジェクション可能に構成したことを特徴とするものである。
本発明の他の特徴は、圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続した冷凍サイクルを有する空気調和機において、前記レシーバ内のガス冷媒を取り出すように該レシーバの上部に接続されると共に前記圧縮機の圧縮室へ接続するインジェクション回路と、前記レシーバと前記第二減圧装置とを接続する前記配管の途中に設けられ開度調整可能な膨張弁で構成された第三減圧装置と、前記レシーバから流出し前記第三減圧装置で減圧されて温度の低下した冷媒と前記インジェクション回路に導かれたガス冷媒とを熱交換させるためのガス液熱交換器とを備えていることにある。
【0008】
発明の実施の形態】
以下、図を参照して本発明の一実施の形態を説明する。
図1は本発明の一実施例の空気調和機のヒートポンプサイクルのシステム構成を示し、圧縮機1、四方弁2、熱源側熱交換器(室外熱交換器)3、第一膨張弁4、レシーバ5、阻止弁6、第二膨張弁7a、7b、利用側熱交換器(室内熱交換器)8a、8b、阻止弁9、そして圧縮機1を順に配管で接続している。また、レシーバ5と圧縮機1の圧縮過程の圧縮室とを結ぶインジェクション回路107を有し、インジェクション回路107には開閉弁(電磁弁11)を設ける。さらに、インジェクション回路107には、レシーバからの液冷媒抽出管108が接続しており、液冷媒抽出管108には流量調整弁10を設けている。流量調整弁10は閉め切りができる弁のものが望ましい。レシーバ5は余剰冷媒を溜めるための機能とガス冷媒と液冷媒とを分離する気液分離機能を有し、レシーバ機能と気液分離機能はレシーバと気液分離器を各々設けることで良いが、設置スペースを最小とすること及びコストの面からレシーバに両方の機能を持たせる事が良い。
【0009】
図1は冷房運転時の冷媒の流れを示し、圧縮機1で高温高圧のガスとなった冷媒は、四方弁2により熱源側熱交換器(室外熱交換器)3に向かう。熱源側熱交換器3では、送風される空気に放熱し(送風系は図示省略)、冷媒は凝縮し、気液二相、飽和液もしくは過冷却液冷媒のいずれかの状態となる。状態の決定は、第一膨張弁4の絞り量により制御される。第一膨張弁4を通過した冷媒は、減圧され気液二相の状態となりレシーバ5に流入する。レシーバ5からは飽和液冷媒または気液二相冷媒が取り出され、その後、阻止弁6を通過し第二膨張弁7a、7bに至る。冷媒は第二膨張弁7a、7bで室内空気よりも低い温度の気液二相冷媒となり、利用側熱交換器(室内熱交換器)8a、8bに流入する。利用側熱交換器8a、8bにおいて、送風される室内空気から吸熱し(送風系は図示省略)、ガス冷媒となり圧縮機1に戻る。
【0010】
暖房運転時の冷媒の流れは、四方弁2を切り替えることで冷媒を逆に流して行われる。上記説明は、室外機21に対して2台の室内機が接続されているマルチ機の場合で行ったが、室外機21に対し、室内機22aもしくは室内機22bの何れか1台が接続しているシングル機の場合も同様である。
【0011】
インジェクション回路107はレシーバ5の上部に接続され、レシーバ内のガス冷媒を取り出す。インジェクションの方法には、レシーバ5から取り出す冷媒の状態により2種類あり、液または気液二相の冷媒を取り出し圧縮機1にインジェクションをした場合にはリキッドインジェクションとなり、飽和ガス冷媒を取り出し圧縮機1にインジェクションした場合はガスインジェクションとなる。
【0012】
以下、ガスインジェクションをするものとして説明する。ガスインジェクションの駆動力は、圧縮機1のインジェクションされる圧縮室の圧力とレシーバ5の圧力との圧力差である。従って、レシーバ5の圧力が圧縮機1の圧縮室内圧力よりも高い場合にガスインジェクションされる。抽出管108はレシーバ5の下部に接続され、レシーバ内の液冷媒を取り出すことができる。インジェクション回路107を流れるガス冷媒と抽出管を流れる液冷媒は合流点109で混合され、気液二相の状態で圧縮機1の圧縮過程にインジェクションされる。
【0013】
液冷媒の混入量は、流量調整弁10にて調整し、混入量ゼロから任意の液冷媒量まで可変として調整する。但し、液冷媒の混入量は少量であり、例えば乾き度(=ガス冷媒質量流量/(ガス冷媒質量流量+液冷媒質量流量))で0.95以上とする。流量調整弁10による液冷媒量の制御は、例えば第一膨張弁や第二膨張弁の制御に使用されているように、開度設定のテーブルを用意してプログラミングし、制御プログラムとすれば良い。開度設定に使用するサイクル状態等のパラメータとしては、例えば外気温度、圧縮機温度(圧縮機吐出温度に対応)、第一膨張弁、第二膨張弁の弁開度のいずれかを2つ以上用いる。また、インジェクション回路107の開閉弁11は、電磁弁の代わりに膨張弁とすればより木目細かい制御が可能となる。
【0014】
以上の空気調和機は、冷房運転、暖房運転時の各々について、また室外機21と室内機22a、22bとの間の接続配管104、105の長さが長く、圧力損失が大きい場合でも、第一膨張弁4、第二膨張弁7a、7bの開度に関係なく、レシーバ5から任意の量の液冷媒を取り出し、インジェクションガス冷媒に混入させることが可能である。そのためサイクルの運転状態に応じ、100%ガス冷媒のガスインジェクションから少量の液冷媒を含んだガスインジェクションまでの状態を作り出すことができる。さらに、液冷媒量を多くすれば実質的にリキッドインジェクションとすることも可能となる。つまり、サイクルの運転状態に応じ、圧縮機へインジェクションする冷媒をガス冷媒から液冷媒まで可変とすることが良い。
【0015】
図2は本発明に対する参考例としての空気調和機のヒートポンプサイクルのシステム構成を示している。インジェクション回路107と液冷媒抽出管108との合流部にエゼクタ12を設け、インジェクションガス冷媒がエゼクタの縮流部を通過する時の圧力とレシーバ5内の圧力差でレシーバ5内の液冷媒を抽出するものである。この場合、エゼクタ部の圧力は、インジェクションガス冷媒の流量の2乗に反比例するので、自動的にインジェクションガス冷媒の流量に応じた液冷媒量を抽出することが可能である。抽出する液冷媒量を調整するには、液冷媒抽出管108の途中に流量調整弁を設けたり、キャピラリ−チューブを設けたりすれば良く、より厳密に液冷媒の流量を制御できる。
【0016】
図3は本発明の他の実施形態による空気調和機のヒートポンプサイクルのシステム構成を示している。本例では、レシーバ5内から液冷媒を抽出し、インジェクションガス冷媒に混入するのではなく、インジェクションガス冷媒そのものを冷却し、その一部を液化している。図3では、冷房運転時のガスインジェクションにおいて、液冷媒混入ができるようにした構成を示している。レシーバ5と阻止弁6の間にレシーバ側から第三膨張弁13、ガス液熱交換器14を配置し、レシーバ5を流出した冷媒は第三膨張弁13で減圧され冷媒温度がレシーバ内の冷媒温度よりも低くなる。この冷媒と、インジェクション回路107を流れるインジェクションガス冷媒とをガス液熱交換器14で熱交換し、インジェクションガス冷媒の一部を液化する。液化する冷媒量は、第膨張弁の弁開度による減圧量に応じ変化する冷媒温度で制御する事ができる。第膨張弁での減圧が無ければ、インジェクションガス冷媒とレシーバ後の冷媒との冷媒温度差が無いので熱交換はされず液化は生じない。この時、100%ガス冷媒のガスインジェクションとなる。図示はしていないが、暖房運転時にも使用するには、図3に示す冷媒流れ方向でレシーバ5の上流側に同様のものを設ければよい。またはレシーバ5をブリッジ回路内に設け、レシーバ5に流入する方向と流出する流れ方向を一方向に規定し、レシーバ下流側に同様な構成(第三膨張弁13、ガス液熱交換器14)を設ける。ブリッジ回路は、例えば4つの逆止弁を組み合わせる事で、レシーバ5に流れる冷媒方向を一方向に決めることができる。
【0017】
図4、図5は本発明に対する他の参考例としての空気調和機のヒートポンプサイクルのシステム構成を示している。本例では、インジェクション回路107にレシーバ5内のガス冷媒の取り出し口と液冷媒抽出口を独立して設けている。図5はレシーバ5内のインジェクション回路107の詳細を示し、インジェクション回路107には、その端部19がレシーバ5の下部まで達し、液冷媒30中にある。またインジェクション回路107のレシーバ上端32付近には、ガス冷媒取り出し口16を設けている。これによって、インジェクション回路107でガス冷媒31と液冷媒30の同時取り出しが可能になる。液冷媒30の抽出量は、インジェクション回路107の端部配管15の内径によって設定する。基本的に端部配管15の内径はインジェクション回路107の配管内径よりも小さいことが望ましい。液冷媒30の抽出量は最もガスインジェクションの効果を大きくしたい運転条件に合わせ、端部配管15の内径を決定する。
【0018】
図1〜図5に示したレシーバ内の液冷媒を抽出する管の口は、冷媒管口18a、18bとレシーバ底面33との間に位置する事が望ましく、少なくともレシーバから冷媒が流出する冷媒管口(冷媒流れ方向により18aまたは18b)とレシーバ底面33との間に位置していることが液冷媒30を安定して取り出すために必要である。一方、インジェクションガス冷媒32の取出しは、液冷媒が混入しないようにするために、レシーバの上端面32もしくは近傍に設ける。
【0019】
以上のように、インジェクション回路にレシーバ内の液冷媒を抽出する抽出管を合流、またはインジェクション回路内の冷媒を一部冷却し液化、あるいはインジェクション回路上に独立したガス冷媒取り出し口と液冷媒抽出口を設け、インジェクション回路でガス冷媒と液冷媒の同時抽出をさせている。これらにより、圧縮機の圧縮過程にインジェクションする冷媒状態を100%ガス冷媒の状態ではなく、少量の液冷媒を混入させる事で(例えば乾き度0.95以上)、液冷媒による圧縮機の冷却効果を得て、ガスインジェクション時の成績係数(サイクル効率)向上できる。また、冷房運転、暖房運転時の各々について、また室外機と室内機との間の接続配管の長さが長く圧力損失が大きい場合でも、さらに1台の室外機に複数台の室内機が接続するマルチ式の空気調和機においても、第一膨張弁、第二膨張弁の開度に関係なく、レシーバから任意の量の液冷媒を取り出し、インジェクションガス冷媒に混入させることが可能である。そのためサイクルの運転状態に応じ、100%ガス冷媒のガスインジェクションから少量の液冷媒を含んだガスインジェクションまでの状態を作り出すことができる。また液冷媒量を多くすればリキッドインジェクションも可能となる。さらに、以上のシステム構成は、圧縮機の種類にはこだわらず、例えばスクロール式、ロータリー式にも適用可能であり、インバータ制御の有無に係わらず適用可能である。
【0020】
さらに、インジェクション回路を搭載している場合、ガスインジェクションを行えば、インバータ駆動の圧縮機の場合、同一能力ならば、ガスインジェクションをしない場合に比べ、圧縮機の運転周波数を低減できるため、圧縮機の消費電力が低減され、省エネ運転(成績係数が高い)となる。一定速圧縮機では、同一行程容積とすると、能力アップができ、同一能力ならば行程容積を小さくできるので圧縮機運転の省エネ化、また小型化が可能となる。
【0021】
圧縮機にインジェクションする冷媒状態を、ガス冷媒から少量の液冷媒を含んだ気液二相状態(例えば、乾き度0.95以上)のガスインジェクション、また多量の液冷媒を含んだリキッドインジェクション(例えば、乾き度0.80〜0.95程度)の運転をすることができるので、条件に応じてインジェクションする冷媒状態を選択することで、広い運転範囲において成績係数の高い運転が可能となり、空気調和機の運転効率を向上させ、省エネルギとすることができる。
【0022】
また一定速で運転される圧縮機では、ガスインジェクションにより圧縮機の行程容積(理論吐出容積)を小さくすることができ、それに応じ圧縮機の負荷が小さくなるので電気入力が小さくなり、また必要トルクが小さくなるのでモータ容量を下げることができ、圧縮機のケーシング等が小さくできる。
さらに、冷媒はR22、R410A、R32、R407C、炭酸ガスやHC冷媒などの自然系冷媒等でも同様な効果が得られる。
【0023】
さらに、冷房運転、暖房運転時の各々について、また室外機と室内機との間の接続配管の長さが長く圧力損失が大きい場合でも、また1台の室外機に複数台の室内機が接続するマルチ式の空気調和機においても、第一膨張弁、第二膨張弁の開度に関係なく、レシーバから任意の量の液冷媒を取り出し、インジェクションガス冷媒に混入させることが可能である。よって、液冷媒による圧縮機の冷却効果を得て、ガスインジェクション後の圧縮開始の冷媒温度、圧縮機の吐出温度の低減により圧縮機の効率向上が図れ、また圧縮機の吐出温度が下がる事で、圧縮機のモータ冷却効果も大きくなりモータ効率も上がるため、圧縮機の入力が低減できる。また圧縮機と周囲空気の温度差も若干であるが小さくなり、圧縮機からの放熱量も低減される。また負荷に適応した最適な運転状態を作ることができ、広い運転範囲において成績係数の高い運転が可能となり、空気調和機の運転効率を向上させ、省エネルギ化を図ることができる。そして、同じ冷暖房能力を得るのに必要な消費電力量を低減でき、その分の電力製造に伴って発生する炭酸ガスの排出量を低減する事ができ、地球環境にやさしい空気調和機とすることができる。
【0024】
【発明の効果】
以上述べたように、請求項1記載の本発明によれば、レシーバから任意の量の液冷媒を取り出し、インジェクションガス冷媒に混入させることが可能である。そのためサイクルの運転状態に応じ、100%ガス冷媒のガスインジェクションから少量の液冷媒を含んだガスインジェクションまでの状態を作り出すことができる。さらに、液冷媒量を多くすれば実質的にリキッドインジェクションとすることも可能となる。
また、圧縮機の圧縮過程にインジェクションする冷媒状態を100%ガス冷媒の状態ではなく、少量の液冷媒を混入させることが容易となるので、液冷媒による圧縮機の冷却効果を得て、ガスインジェクション時の成績係数(サイクル効率)向上を図ることができ、省エネ性の高い空気調和機を得ることができる。
請求項2記載の本発明によっても請求項1記載の発明とほぼ同様の効果を奏することができる。
【図面の簡単な説明】
【図1】 一実施の形態による空気調和機のシステム構成図。
【図2】 他の実施の形態による空気調和機のシステム構成図。
【図3】 さらに、他の実施の形態による空気調和機のシステム構成図。
【図4】 さらに、他の実施の形態による空気調和機のシステム構成図。
【図5】 図4におけるレシーバ内の詳細を示す断面図。
【符号の説明】
1…圧縮機、2…四方弁、3…熱源側熱交換器(室外熱交換器)、4…第一膨張弁、5…レシーバ、6…阻止弁、7a、7b…第二膨張弁、8a、8b…利用側熱交換器(室内熱交換器)、9…阻止弁、10…流量調整弁、11…電磁弁(開閉弁)、12…エゼクタ、13…第三膨張弁、14…ガス液熱交換器、15…液冷媒抽出管、16…ガス冷媒取り出し口、17…レシーバ部、18a、18b…冷媒管口、19…インジェクション回路端口、21…室外機、22a、22b…室内機、30…液冷媒、31…ガス冷媒、32…レシーバ上端面、33…レシーバ底面、101〜106…配管、107…インジェクション回路、108…液冷媒抽出管、109…合流部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner having a vapor compressor type heat pump cycle, and is particularly suitable for improving operating efficiency and saving energy.
[0002]
[Prior art]
Conventionally, in an air conditioner, in order to realize a high performance coefficient operation in a wide capacity range, it is known to provide an injection circuit and select an operation with a higher performance coefficient among injection operation or non-injection operation, for example, This is described in JP-A-10-176866.
In addition, when a small amount of liquid refrigerant is mixed during gas injection, the efficiency of the compressor is improved due to the cooling effect of the compressor, and energy saving is improved. Therefore, the opening of the two expansion valves in the gas injection cycle It is known that the injection pressure in the gas-liquid separator is increased to mix the liquid refrigerant with the injection gas refrigerant, which is described in, for example, Japanese Patent Application Laid-Open No. 2001-116373.
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-116373
[Problems to be solved by the invention]
In the above-described prior art, liquid refrigerant is mixed at the time of gas injection by expansion valve control in the case of a multi-type in which a plurality of indoor units are connected to one outdoor unit, or a connection pipe between the outdoor unit and the indoor unit When the length is long, the influence of pressure loss in the pipe becomes large, the margin of pressure reduction adjustment of the expansion valve becomes small, and it is not always easy to create an appropriate liquid refrigerant mixed state.
[0004]
An object of the present invention is to provide an air conditioner that can be operated with high energy efficiency and good cycle efficiency (coefficient of performance: COP) regardless of the cycle operation state and cycle configuration.
Furthermore, an object of the present invention is to provide an air conditioner that improves the efficiency in accordance with the actual conditions of use environment and can operate with a high coefficient of performance (high energy saving performance) throughout the year.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an air conditioner having a refrigeration cycle in which a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger are sequentially connected by piping. An injection circuit connected to the upper part of the receiver for taking out the gas refrigerant in the receiver and connected to the compressor, and connected to the injection circuit for taking out the liquid refrigerant in the receiver. A liquid refrigerant extraction pipe, and a flow rate adjusting valve provided in the liquid refrigerant extraction pipe ,
By adjusting the flow rate adjusting valve, an arbitrary amount of the liquid refrigerant in the receiver is mixed with the gas refrigerant in the injection circuit so that it can be injected into the compressor.
Another feature of the present invention is an air conditioner having a refrigeration cycle in which a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger are sequentially connected by piping, An injection circuit connected to an upper part of the receiver so as to take out the gas refrigerant in the receiver and connected to the compression chamber of the compressor, and provided in the middle of the pipe connecting the receiver and the second pressure reducing device. Heat exchange between a third pressure reducing device configured of an expansion valve capable of adjusting an opening degree, a refrigerant that has flowed out of the receiver and has been depressurized by the third pressure reducing device, and has been reduced in temperature, and a gas refrigerant guided to the injection circuit And a gas-liquid heat exchanger.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a system configuration of a heat pump cycle of an air conditioner according to an embodiment of the present invention, which includes a compressor 1, a four-way valve 2, a heat source side heat exchanger (outdoor heat exchanger) 3, a first expansion valve 4, and a receiver. 5, the blocking valve 6, the second expansion valves 7a and 7b, the use side heat exchangers (indoor heat exchangers) 8a and 8b, the blocking valve 9, and the compressor 1 are connected in order by piping. The injection circuit 107 is connected to the receiver 5 and a compression chamber in the compression process of the compressor 1. The injection circuit 107 is provided with an opening / closing valve (electromagnetic valve 11). Further, a liquid refrigerant extraction pipe 108 from a receiver is connected to the injection circuit 107, and the flow rate adjustment valve 10 is provided in the liquid refrigerant extraction pipe 108. Flow control valve 10 is desirably those of a valve which can close Me cutting. The receiver 5 has a function for accumulating excess refrigerant and a gas-liquid separation function for separating the gas refrigerant and the liquid refrigerant. The receiver function and the gas-liquid separation function may be provided with a receiver and a gas-liquid separator, The receiver should have both functions from the viewpoint of minimizing the installation space and cost.
[0009]
FIG. 1 shows the flow of refrigerant during cooling operation. The refrigerant that has become high-temperature and high-pressure gas in the compressor 1 is directed to the heat source side heat exchanger (outdoor heat exchanger) 3 by the four-way valve 2. In the heat source side heat exchanger 3, heat is radiated to the blown air (the blower system is not shown), and the refrigerant is condensed to be in a gas-liquid two-phase, saturated liquid or supercooled liquid refrigerant state. The determination of the state is controlled by the throttle amount of the first expansion valve 4. The refrigerant that has passed through the first expansion valve 4 is decompressed and enters a gas-liquid two-phase state and flows into the receiver 5. A saturated liquid refrigerant or a gas-liquid two-phase refrigerant is taken out from the receiver 5, and then passes through the blocking valve 6 to reach the second expansion valves 7a and 7b. The refrigerant becomes a gas-liquid two-phase refrigerant having a temperature lower than that of the room air at the second expansion valves 7a and 7b, and flows into the use side heat exchangers (indoor heat exchangers) 8a and 8b. In the use-side heat exchangers 8a and 8b, heat is absorbed from the blown room air (the blower system is not shown), and the gas refrigerant is returned to the compressor 1.
[0010]
The flow of the refrigerant during the heating operation is performed by switching the four-way valve 2 to flow the refrigerant in the reverse direction. The above description has been made in the case of a multi-unit in which two indoor units are connected to the outdoor unit 21, but either one of the indoor unit 22a or the indoor unit 22b is connected to the outdoor unit 21. The same applies to the single machine.
[0011]
The injection circuit 107 is connected to the upper part of the receiver 5 and takes out the gas refrigerant in the receiver. There are two types of injection methods depending on the state of the refrigerant taken out from the receiver 5. When the liquid or gas-liquid two-phase refrigerant is taken out and injected into the compressor 1, it becomes liquid injection, and the saturated gas refrigerant is taken out from the compressor 1. When it is injected, gas injection is performed.
[0012]
Hereinafter, it demonstrates as what performs gas injection. The driving force of gas injection is a pressure difference between the pressure of the compression chamber into which the compressor 1 is injected and the pressure of the receiver 5. Therefore, gas injection is performed when the pressure of the receiver 5 is higher than the pressure in the compression chamber of the compressor 1. The extraction pipe 108 is connected to the lower part of the receiver 5 and can take out the liquid refrigerant in the receiver. The gas refrigerant flowing through the injection circuit 107 and the liquid refrigerant flowing through the extraction pipe are mixed at a confluence 109 and injected into the compression process of the compressor 1 in a gas-liquid two-phase state.
[0013]
The mixing amount of the liquid refrigerant is adjusted by the flow rate adjusting valve 10, and is adjusted as variable from zero mixing amount to an arbitrary liquid refrigerant amount. However, the amount of liquid refrigerant mixed is small, for example, 0.95 or more in terms of dryness (= gas refrigerant mass flow rate / (gas refrigerant mass flow rate + liquid refrigerant mass flow rate)). Control of the amount of liquid refrigerant by the flow rate adjusting valve 10 may be performed by preparing and programming an opening setting table, for example, as used for controlling the first expansion valve and the second expansion valve. . As the parameters such as the cycle state used for opening setting, for example, two or more of any of the outside air temperature, the compressor temperature (corresponding to the compressor discharge temperature), the first expansion valve, and the second expansion valve are opened. Use. Further, if the on-off valve 11 of the injection circuit 107 is an expansion valve instead of an electromagnetic valve, finer control can be performed.
[0014]
The above air conditioners are used for each of the cooling operation and the heating operation, and even when the connection pipes 104 and 105 between the outdoor unit 21 and the indoor units 22a and 22b are long and the pressure loss is large. Regardless of the opening degree of the first expansion valve 4 and the second expansion valves 7a and 7b, it is possible to take out an arbitrary amount of liquid refrigerant from the receiver 5 and mix it with the injection gas refrigerant. Therefore, depending on the operation state of the cycle, a state from gas injection of 100% gas refrigerant to gas injection containing a small amount of liquid refrigerant can be created. Furthermore, if the amount of liquid refrigerant is increased, it is possible to substantially perform liquid injection. That is, it is preferable that the refrigerant injected into the compressor is variable from the gas refrigerant to the liquid refrigerant in accordance with the operation state of the cycle.
[0015]
FIG. 2 shows a system configuration of a heat pump cycle of an air conditioner as a reference example for the present invention . An ejector 12 is provided at the junction between the injection circuit 107 and the liquid refrigerant extraction pipe 108, and the liquid refrigerant in the receiver 5 is extracted by the pressure difference between the pressure when the injection gas refrigerant passes through the ejector and the pressure reduction in the receiver 5. To do. In this case, since the pressure in the ejector section is inversely proportional to the square of the flow rate of the injection gas refrigerant, it is possible to automatically extract the amount of liquid refrigerant corresponding to the flow rate of the injection gas refrigerant. To adjust the liquid refrigerant amount to be extracted, may be provided flow regulating valve in the middle of the liquid refrigerant extraction pipe 108, the capillary - may be or is provided the tubes can be more precisely control the flow rate of the liquid refrigerant.
[0016]
FIG. 3 shows a system configuration of a heat pump cycle of an air conditioner according to another embodiment of the present invention . In this example, the liquid refrigerant is not extracted from the receiver 5 and mixed into the injection gas refrigerant, but the injection gas refrigerant itself is cooled and a part thereof is liquefied. FIG. 3 shows a configuration in which liquid refrigerant can be mixed in gas injection during cooling operation. A third expansion valve 13 and a gas-liquid heat exchanger 14 are arranged between the receiver 5 and the blocking valve 6 from the receiver side, and the refrigerant flowing out of the receiver 5 is decompressed by the third expansion valve 13 so that the refrigerant temperature is the refrigerant in the receiver. It becomes lower than the temperature. This refrigerant and the injection gas refrigerant flowing through the injection circuit 107 are heat-exchanged by the gas-liquid heat exchanger 14 to liquefy a part of the injection gas refrigerant. The amount of refrigerant to be liquefied can be controlled by the refrigerant temperature that changes according to the amount of pressure reduction caused by the valve opening of the third expansion valve. If there is no pressure reduction at the third expansion valve, there is no refrigerant temperature difference between the injection gas refrigerant and the refrigerant after the receiver, so heat exchange is not performed and liquefaction does not occur. At this time, gas injection of 100% gas refrigerant is performed. Although not shown, in order to use it also during heating operation, a similar one may be provided upstream of the receiver 5 in the refrigerant flow direction shown in FIG. Alternatively, the receiver 5 is provided in the bridge circuit, the flow direction into and out of the receiver 5 is defined as one direction, and the same configuration (third expansion valve 13 and gas-liquid heat exchanger 14) is provided downstream of the receiver. Provide. The bridge circuit can determine the direction of the refrigerant flowing through the receiver 5 in one direction by combining, for example, four check valves.
[0017]
4 and 5 show a system configuration of a heat pump cycle of an air conditioner as another reference example for the present invention . In this example, the injection circuit 107 is provided with a gas refrigerant extraction port and a liquid refrigerant extraction port in the receiver 5 independently. FIG. 5 shows details of the injection circuit 107 in the receiver 5, and the end 19 of the injection circuit 107 reaches the lower part of the receiver 5 and is in the liquid refrigerant 30. A gas refrigerant outlet 16 is provided near the receiver upper end 32 of the injection circuit 107. As a result, the gas refrigerant 31 and the liquid refrigerant 30 can be taken out simultaneously by the injection circuit 107. The extraction amount of the liquid refrigerant 30 is set according to the inner diameter of the end pipe 15 of the injection circuit 107. Basically, the inner diameter of the end pipe 15 is preferably smaller than the inner diameter of the injection circuit 107. The extraction amount of the liquid refrigerant 30 determines the inner diameter of the end pipe 15 in accordance with the operating condition for which the effect of gas injection is to be maximized.
[0018]
1 to 5 is preferably located between the refrigerant pipe ports 18a and 18b and the receiver bottom face 33, and at least the refrigerant pipe from which the refrigerant flows out from the receiver. It is necessary for the liquid refrigerant 30 to be stably taken out that it is located between the mouth (18a or 18b depending on the refrigerant flow direction) and the receiver bottom surface 33. On the other hand, the extraction of the injection gas refrigerant 32 is provided on or near the upper end surface 32 of the receiver in order to prevent liquid refrigerant from entering.
[0019]
As described above, the extraction pipe for extracting the liquid refrigerant in the receiver is joined to the injection circuit, or the refrigerant in the injection circuit is partially cooled and liquefied, or the gas refrigerant extraction port and the liquid refrigerant extraction port that are independent on the injection circuit The gas refrigerant and the liquid refrigerant are simultaneously extracted by the injection circuit. By these, the refrigerant | coolant state injected into the compression process of a compressor is not the state of a 100% gas refrigerant, but mixes a small amount of liquid refrigerant (for example, dryness 0.95 or more), The cooling effect of the compressor by liquid refrigerant The coefficient of performance (cycle efficiency) at the time of gas injection can be improved. In addition, for each of the cooling operation and the heating operation, and even when the length of the connection pipe between the outdoor unit and the indoor unit is long and the pressure loss is large, a plurality of indoor units are connected to one outdoor unit. Even in the multi-type air conditioner, it is possible to take out an arbitrary amount of liquid refrigerant from the receiver and mix it with the injection gas refrigerant regardless of the opening degree of the first expansion valve and the second expansion valve. Therefore, depending on the operation state of the cycle, a state from gas injection of 100% gas refrigerant to gas injection containing a small amount of liquid refrigerant can be created. Further, if the amount of liquid refrigerant is increased, liquid injection can be performed. Furthermore, the above system configuration is applicable not only to the type of compressor but also to, for example, a scroll type and a rotary type, and can be applied regardless of the presence or absence of inverter control.
[0020]
In addition, if an injection circuit is installed, if the gas injection is performed, in the case of an inverter-driven compressor, if the capacity is the same, the operating frequency of the compressor can be reduced compared to the case without gas injection. Power consumption is reduced and energy saving operation (high coefficient of performance) is achieved. In the constant speed compressor, if the same stroke volume is used, the capacity can be increased, and if the same capacity is used, the stroke volume can be reduced. Therefore, energy saving and downsizing of the compressor operation can be achieved.
[0021]
The refrigerant state to be injected into the compressor is a gas-liquid two-phase state (for example, a dryness of 0.95 or more) containing a small amount of liquid refrigerant from a gas refrigerant, or a liquid injection containing a large amount of liquid refrigerant (for example, Therefore, it is possible to operate with a high coefficient of performance in a wide operating range by selecting the refrigerant state to be injected according to the conditions, and air conditioning. The operating efficiency of the machine can be improved and energy can be saved.
[0022]
In a compressor that operates at a constant speed, the stroke volume (theoretical discharge volume) of the compressor can be reduced by gas injection, and the load on the compressor is reduced accordingly. Therefore, the motor capacity can be reduced, and the compressor casing and the like can be reduced.
Further, the same effect can be obtained with R22, R410A, R32, R407C, natural refrigerants such as carbon dioxide and HC refrigerant, and the like.
[0023]
Furthermore, for each of the cooling operation and heating operation, and even when the length of the connecting pipe between the outdoor unit and the indoor unit is long and the pressure loss is large, a plurality of indoor units are connected to one outdoor unit. Even in the multi-type air conditioner, it is possible to take out an arbitrary amount of liquid refrigerant from the receiver and mix it with the injection gas refrigerant regardless of the opening degree of the first expansion valve and the second expansion valve. Therefore, by obtaining the cooling effect of the compressor by liquid refrigerant, the efficiency of the compressor can be improved by reducing the refrigerant temperature at the start of compression after gas injection and the discharge temperature of the compressor, and the discharge temperature of the compressor is lowered. Since the compressor motor cooling effect is increased and the motor efficiency is increased, the input of the compressor can be reduced. In addition, the temperature difference between the compressor and the ambient air is slightly small, but the amount of heat released from the compressor is also reduced. In addition, it is possible to create an optimum operating state adapted to the load, and it is possible to operate with a high coefficient of performance in a wide operating range, improve the operating efficiency of the air conditioner, and save energy. And, it is possible to reduce the amount of power consumption required to obtain the same cooling and heating capacity, and to reduce the amount of carbon dioxide emissions generated by the power production, and to make the air conditioner friendly to the global environment Can do.
[0024]
【The invention's effect】
As described above , according to the first aspect of the present invention, it is possible to take out an arbitrary amount of liquid refrigerant from the receiver and mix it with the injection gas refrigerant. Therefore, depending on the operation state of the cycle, a state from gas injection of 100% gas refrigerant to gas injection containing a small amount of liquid refrigerant can be created. Furthermore, if the amount of liquid refrigerant is increased, it is possible to substantially perform liquid injection.
Also, rather than the state of the compressor 100% gas refrigerant of the refrigerant state is injected in the compression process of, since it is mixed a small amount of liquid refrigerant becomes easy to obtain a cooling effect of the compressor by liquid refrigerant, the gas injection The coefficient of performance at the time (cycle efficiency) can be improved, and an air conditioner with high energy saving can be obtained.
According to the second aspect of the present invention, the same effect as that of the first aspect of the invention can be obtained.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of an air conditioner according to an embodiment.
FIG. 2 is a system configuration diagram of an air conditioner according to another embodiment.
FIG. 3 is a system configuration diagram of an air conditioner according to another embodiment.
FIG. 4 is a system configuration diagram of an air conditioner according to another embodiment.
FIG. 5 is a cross-sectional view showing details in the receiver in FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Heat source side heat exchanger (outdoor heat exchanger), 4 ... 1st expansion valve, 5 ... Receiver, 6 ... Stop valve, 7a, 7b ... 2nd expansion valve, 8a 8b ... use side heat exchanger (indoor heat exchanger), 9 ... blocking valve, 10 ... flow rate adjusting valve, 11 ... electromagnetic valve (open / close valve), 12 ... ejector, 13 ... third expansion valve, 14 ... gas liquid Heat exchanger, 15 ... Liquid refrigerant extraction pipe, 16 ... Gas refrigerant outlet, 17 ... Receiver part, 18a, 18b ... Refrigerant pipe opening, 19 ... Injection circuit end, 21 ... Outdoor unit, 22a, 22b ... Indoor unit, 30 DESCRIPTION OF SYMBOLS ... Liquid refrigerant, 31 ... Gas refrigerant, 32 ... Receiver upper end surface, 33 ... Receiver bottom surface, 101-106 ... Pipe, 107 ... Injection circuit, 108 ... Liquid refrigerant extraction pipe, 109 ... Merging part.

Claims (2)

圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続した冷凍サイクルを有する空気調和機において、
前記レシーバ内のガス冷媒を取り出すように該レシーバの上部に接続されると共に前記圧縮機へ接続するインジェクション回路と、
前記レシーバ内の液冷媒を取り出すように設けられ且つ前記インジェクション回路に接続される液冷媒抽出管と、
この液冷媒抽出管に設けられた流量調整弁とを備え、
この流量調整弁を調整することで前記インジェクション回路のガス冷媒に前記レシーバ内の液冷媒を任意の量混入させて前記圧縮機へインジェクション可能に構成した
ことを特徴とする空気調和機。
In an air conditioner having a refrigeration cycle in which a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger are connected by piping in sequence,
An injection circuit connected to the upper part of the receiver and connected to the compressor so as to take out the gas refrigerant in the receiver;
A liquid refrigerant extraction pipe provided to take out the liquid refrigerant in the receiver and connected to the injection circuit ;
A flow rate adjusting valve provided in the liquid refrigerant extraction pipe ,
An air conditioner characterized in that an arbitrary amount of liquid refrigerant in the receiver is mixed into the gas refrigerant of the injection circuit by adjusting the flow rate adjustment valve so that the refrigerant can be injected into the compressor .
圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続した冷凍サイクルを有する空気調和機において、
前記レシーバ内のガス冷媒を取り出すように該レシーバの上部に接続されると共に前記圧縮機の圧縮室へ接続するインジェクション回路と、
前記レシーバと前記第二減圧装置とを接続する前記配管の途中に設けられ開度調整可能な膨張弁で構成された第三減圧装置と、
前記レシーバから流出し前記第三減圧装置で減圧されて温度の低下した冷媒と前記インジェクション回路に導かれたガス冷媒とを熱交換させるためのガス液熱交換器と
を備えていることを特徴とする空気調和機。
In an air conditioner having a refrigeration cycle in which a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger are connected by piping in sequence,
An injection circuit connected to the upper part of the receiver to take out the gas refrigerant in the receiver and connected to the compression chamber of the compressor;
A third pressure reducing device constituted by an expansion valve provided in the middle of the pipe connecting the receiver and the second pressure reducing device, the opening degree of which can be adjusted;
A gas-liquid heat exchanger for exchanging heat between the refrigerant that has flowed out of the receiver and has been decompressed by the third decompression device and whose temperature has been reduced, and the gas refrigerant that has been guided to the injection circuit;
An air conditioner characterized in that it comprises.
JP2002244508A 2002-08-26 2002-08-26 Air conditioner Expired - Lifetime JP4179595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244508A JP4179595B2 (en) 2002-08-26 2002-08-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244508A JP4179595B2 (en) 2002-08-26 2002-08-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2004085019A JP2004085019A (en) 2004-03-18
JP4179595B2 true JP4179595B2 (en) 2008-11-12

Family

ID=32052946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244508A Expired - Lifetime JP4179595B2 (en) 2002-08-26 2002-08-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP4179595B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675810B2 (en) * 2006-03-28 2011-04-27 三菱電機株式会社 Air conditioner
JP4887929B2 (en) * 2006-06-21 2012-02-29 ダイキン工業株式会社 Refrigeration equipment
JP2008248865A (en) 2007-03-30 2008-10-16 Fujitsu General Ltd Injectible two-stage compression rotary compressor and heat pump system
JP2009127902A (en) * 2007-11-21 2009-06-11 Mitsubishi Electric Corp Refrigerating device and compressor
KR101513305B1 (en) * 2008-12-01 2015-04-17 (주)귀뚜라미 Injection type heat pump air-conditioner and the converting method for injection mode thereof
CN104685304B (en) * 2012-10-02 2016-11-16 三菱电机株式会社 Air-conditioning device
JP6003616B2 (en) * 2012-12-18 2016-10-05 ダイキン工業株式会社 Refrigeration equipment
WO2014103407A1 (en) * 2012-12-28 2014-07-03 三菱電機株式会社 Air-conditioning device
JP6080939B2 (en) * 2013-02-19 2017-02-15 三菱電機株式会社 Air conditioner
JP2015087020A (en) * 2013-10-28 2015-05-07 三菱電機株式会社 Refrigeration cycle device
JP6361263B2 (en) * 2014-04-23 2018-07-25 ダイキン工業株式会社 Air conditioner
JP6514964B2 (en) * 2015-06-03 2019-05-15 東芝キヤリア株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP2004085019A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
KR101212681B1 (en) air conditioner
US7802440B2 (en) Compression system and air conditioning system
JP4375171B2 (en) Refrigeration equipment
WO2014128830A1 (en) Air conditioning device
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
CN107024031B (en) Three-pressure high-efficiency air-cooled heat pump unit suitable for large temperature difference
JP4179595B2 (en) Air conditioner
EP2568232A2 (en) Air conditioner
US7908878B2 (en) Refrigerating apparatus
JP4214021B2 (en) Engine heat pump
JPWO2004013549A1 (en) Refrigeration equipment
US9874383B2 (en) Air conditioner
CN105485949A (en) Refrigerating system and control method thereof
CN202432744U (en) Air-supply enthalpy-adding air conditioning system and air conditioner
JP2006023073A (en) Air conditioner
WO2021098552A1 (en) Heat pump type air-conditioning system and control method therefor
EP1541938A1 (en) Refrigeration equipment
CN203798004U (en) Refrigerating device
JP2001235245A (en) Freezer
JP2007032857A (en) Refrigerating device
JP2003185286A (en) Air conditioner
JP4277354B2 (en) Air conditioner
EP3578898A1 (en) Outdoor unit for air conditioner
JP4661561B2 (en) Refrigeration equipment
JP2003042585A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4179595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term