JP2004085019A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2004085019A
JP2004085019A JP2002244508A JP2002244508A JP2004085019A JP 2004085019 A JP2004085019 A JP 2004085019A JP 2002244508 A JP2002244508 A JP 2002244508A JP 2002244508 A JP2002244508 A JP 2002244508A JP 2004085019 A JP2004085019 A JP 2004085019A
Authority
JP
Japan
Prior art keywords
receiver
refrigerant
compressor
liquid refrigerant
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002244508A
Other languages
Japanese (ja)
Other versions
JP4179595B2 (en
Inventor
Tomomi Umeda
梅田 知巳
Susumu Nakayama
中山 進
Yoshihiko Mochizuki
望月 佳彦
Kenji Matsumura
松村 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002244508A priority Critical patent/JP4179595B2/en
Publication of JP2004085019A publication Critical patent/JP2004085019A/en
Application granted granted Critical
Publication of JP4179595B2 publication Critical patent/JP4179595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of saving energy greatly and having high cycle efficiency (coefficient of performance:COP) irrespective of operation condition of cycle and cycle configuration. <P>SOLUTION: This air conditioner has a refrigeration cycle connecting a compressor 1, a heat exchanger 3 on heat source side, a receiver 5, a second pressure reducing device 7a, and a heat exchanger 8 on use side sequentially by pipes. It is provided with an injection circuit 107 connected to the compressor 1 from the receiver 5 and a liquid refrigerant extraction pipe 108 taking out liquid refrigerant in the receiver 5. The liquid refrigerant extraction pipe 108 is connected to the injection circuit 107, and liquid refrigerant is mixed with gas refrigerant in the receiver 5 to inject into the compressor 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気圧縮機式のヒートポンプサイクルを有する空気調和機に関し、特に運転効率を向上し、省エネルギ化を図るものに好適である。
【0002】
【従来の技術】
従来、空気調和機において、広い能力範囲で成績係数の高い運転を実現するため、インジェクション回路を設け、インジェクション運転または非インジェクション運転のうち成績係数の高い方の運転を選択することが知られ、例えば特開平10−176866号公報に記載されている。
また、ガスインジェクションをする際に、少量の液冷媒を混入させると圧縮機の冷却効果により、圧縮機の効率が向上し省エネ性が向上するので、ガスインジェクションサイクルにおいて、2つの膨張弁の開度を変えて、気液分離器内のインジェクション圧力を上昇させ、インジェクションガス冷媒に液冷媒を混入させることが知られ、例えば、特開2001−116373号公報に記載されている。
【特許文献1】
特開2001−116373号公報
【0003】
【発明が解決しようとする課題】
上記従来技術において、膨張弁制御によりガスインジェクション時に液冷媒を混入するものは、1台の室外機に複数台の室内機が接続されているマルチ式の場合や、室外機と室内機の接続配管長が長い場合には、配管内の圧力損失の影響が大きくなり、膨張弁の減圧調整代の尤度が小さくなり、必ずしも適正な液冷媒混入状態を作り出すことが難しい。
【0004】
本発明の目的は、サイクルの運転状態、サイクル構成に係わらず、省エネ性が高くサイクル効率(成績係数:COP)の良い運転が可能な空気調和機を提供することにある。
さらに、本発明の目的は、使用環境の実情に合わせて効率を向上し、年間を通じて高い成績係数(省エネ性の高い)の運転が可能な空気調和機を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続した冷凍サイクルを有する空気調和機において、レシーバから圧縮機へ接続するインジェクション回路と、レシーバ内の液冷媒を取出す液冷媒抽出管と、を備え、液冷媒抽出管をインジェクション回路に接続し、レシーバ内のガス冷媒に液冷媒を混入して圧縮機へインジェクションするものである。
また、さらに、上記のものにおいて、混入される液冷媒の量を制御することが望ましい。
【0006】
さらに、上記のものにおいて、インジェクション回路に設けられたエゼクタと、レシーバからエゼクタに接続された液冷媒抽出管と、を備えたことが望ましい。
さらに、上記のものにおいて、インジェクション回路及び液冷媒抽出管として、インジェクション回路にレシーバ内のガス冷媒を取出す開口部と、液冷媒を取出す開口部とを有したことが望ましい。
【0007】
さらに、本発明は、圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続した冷凍サイクルを有する空気調和機において、レシーバから圧縮機の圧縮室へ接続するインジェクション回路を備え、インジェクション回路に導かれたレシーバ内のガス冷媒とレシーバ下流側の冷媒とで熱交換をさせるものである。
【0008】
さらに、本発明は、圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続した冷凍サイクルを有する空気調和機において、レシーバから圧縮機へ接続するインジェクション回路を備え、圧縮機へインジェクションする冷媒をガス冷媒から液冷媒まで可変としたものである

【発明の実施の形態】
以下、図を参照して本発明の一実施の形態を説明する。
図1は本発明の一実施例の空気調和機のヒートポンプサイクルのシステム構成を示し、圧縮機1、四方弁2、熱源側熱交換器(室外熱交換器)3、第一膨張弁4、レシーバ5、阻止弁6、第二膨張弁7a、7b、利用側熱交換器(室内熱交換器)8a、8b、阻止弁9、そして圧縮機1を順に配管で接続している。また、レシーバ5と圧縮機1の圧縮過程の圧縮室とを結ぶインジェクション回路107を有し、インジェクション回路107には開閉弁(電磁弁11)を設ける。さらに、インジェクション回路107には、レシーバからの抽出管108が接続しており、抽出管108には流量調整弁10を設けている。流量調整弁10は、キャピラリーチューブで良い、閉め切りができる弁のものが望ましい。レシーバ5は余剰冷媒を溜めるための機能とガス冷媒と液冷媒とを分離する気液分離機能を有し、レシーバ機能と気液分離機能はレシーバと気液分離器を各々設けることで良いが、設置スペースを最小とすること、コストの面からレシーバに両方の機能を持たせる事が良い。
【0009】
図1は冷房運転時の冷媒の流れを示し、圧縮機1で高温高圧のガスとなった冷媒は、四方弁2により熱源側熱交換器(室外熱交換器)3に向かう。熱源側熱交換器3では、送風される空気に放熱し(送風系は図示省略)、冷媒は凝縮し、気液二相、飽和液もしくは過冷却液冷媒のいずれかの状態となる。状態の決定は、第一膨張弁4の絞り量により制御される。第一膨張弁4を通過した冷媒は、減圧され気液二相の状態となりレシーバ5に流入する。レシーバ5からは飽和液冷媒または気液二相冷媒が取り出され、その後、阻止弁6を通過し第二膨張弁7a、7bに至る。冷媒は第二膨張弁7a、7bで室内空気よりも低い温度の気液二相冷媒となり、利用側熱交換器(室内熱交換器)8a、8bに流入する。利用側熱交換器8a、8bにおいて、送風される室内空気から吸熱し(送風系は図示省略)、ガス冷媒となり圧縮機1に戻る。
【0010】
暖房運転時の冷媒の流れは、四方弁2を切り替えることで冷媒を逆に流して行われる。上記説明は、室外機21に対して2台の室内機が接続されているマルチ機の場合で行ったが、室外機21に対し、室内機22aもしくは室内機22bの何れか1台が接続しているシングル機の場合も同様である。
【0011】
インジェクション回路107はレシーバ5の上部に接続され、レシーバ内のガス冷媒を取り出す。インジェクションの方法には、レシーバ5から取り出す冷媒の状態により2種類あり、液または気液二相の冷媒を取り出し圧縮機1にインジェクションをした場合にはリキッドインジェクションとなり、飽和ガス冷媒を取り出し圧縮機1にインジェクションした場合はガスインジェクションとなる。
【0012】
以下、ガスインジェクションをするものとして説明する。ガスインジェクションの駆動力は、圧縮機1のインジェクションされる圧縮室の圧力とレシーバ5の圧力との圧力差である。従って、レシーバ5の圧力が圧縮機1の圧縮室内圧力よりも高い場合にガスインジェクションされる。抽出管108はレシーバ5の下部に接続され、レシーバ内の液冷媒を取り出すことができる。インジェクション回路107を流れるガス冷媒と抽出管を流れる液冷媒は合流点109で混合され、気液二相の状態で圧縮機1の圧縮過程にインジェクションされる。
【0013】
液冷媒の混入量は、流量調整弁10にて調整し、混入量ゼロから任意の液冷媒量まで可変として調整する。但し、液冷媒の混入量は少量であり、例えば乾き度(=ガス冷媒質量流量/(ガス冷媒質量流量+液冷媒質量流量))で0.95以上とする。流量調整弁10による液冷媒量の制御は、例えば第一膨張弁や第二膨張弁の制御に使用されているように、開度設定のテーブルを用意してプログラミングし、制御プログラムとすれば良い。開度設定に使用するサイクル状態等のパラメータとしては、例えば外気温度、圧縮機温度(圧縮機吐出温度に対応)、第一膨張弁、第二膨張弁の弁開度のいずれかを2つ以上用いる。また、インジェクション回路107の開閉弁11は、電磁弁の代わりに膨張弁とすればより木目細かい制御が可能となる。
【0014】
以上の空気調和機は、冷房運転、暖房運転時の各々について、また室外機21と室内機22a、22bとの間の接続配管104、105の長さが長く、圧力損失が大きい場合でも、第一膨張弁4、第二膨張弁7a、7bの開度に関係なく、レシーバ5から任意の量の液冷媒を取り出し、インジェクションガス冷媒に混入させることが可能である。そのためサイクルの運転状態に応じ、100%ガス冷媒のガスインジェクションから少量の液冷媒を含んだガスインジェクションまでの状態を作り出すことができる。さらに、液冷媒量を多くすれば実質的にリキッドインジェクションとすることも可能となる。つまり、サイクルの運転状態に応じ、圧縮機へインジェクションする冷媒をガス冷媒から液冷媒まで可変とすることが良い。
【0015】
図2は他の実施の形態による空気調和機のヒートポンプサイクルのシステム構成を示している。インジェクション回路107と抽出管108との合流部にエゼクタ12を設け、インジェクションガス冷媒がエゼクタの縮流部を通過する時の圧力とレシーバ5内の圧力差でレシーバ5内の液冷媒を抽出するものである。この場合、エゼクタ部の圧力は、インジェクションガス冷媒の流量の2乗に反比例するので、自動的にインジェクションガス冷媒の流量に応じた液冷媒量を抽出することが可能である。抽出する液冷媒量を調整するには、抽出管108の途中に流量調整弁を設けたり、キャピラリ−チューブを設けたりするれば良く、より厳密に液冷媒の流量を制御できる。
【0016】
図3はさらに他の実施の形態による空気調和機のヒートポンプサイクルのシステム構成を示している。本例では、レシーバ5内から液冷媒を抽出し、インジェクションガス冷媒に混入するのではなく、インジェクションガス冷媒そのものを冷却し、その一部を液化している。図3では、冷房運転時のガスインジェクションにおいて、液冷媒混入ができるようにした構成を示している。レシーバ5と阻止弁6の間にレシーバ側から第三膨張弁13、ガス液熱交換器14を配置し、レシーバ5を流出した冷媒は第三膨張弁13で減圧され冷媒温度がレシーバ内の冷媒温度よりも低くなる。この冷媒と、インジェクション回路107を流れるインジェクションガス冷媒とをガス液熱交換器14で熱交換し、インジェクションガス冷媒の一部を液化する。液化する冷媒量は、第3膨張弁の弁開度による減圧量に応じ変化する冷媒温度で制御する事ができる。第3膨張弁での減圧が無ければ、インジェクションガス冷媒とレシーバ後の冷媒との冷媒温度差が無いので熱交換はされず液化は生じない。この時、100%ガス冷媒のガスインジェクションとなる。図示はしていないが、暖房運転時にも使用するには、図3に示す冷媒流れ方向でレシーバ5の上流側に同様のものを設ければよい。またはレシーバ5をブリッジ回路内に設け、レシーバ5に流入する方向と流出する流れ方向を一方向に規定し、レシーバ下流側に同様な構成(第三膨張弁13、ガス液熱交換器14)を設ける。ブリッジ回路は、例えば4つの逆止弁を組み合わせる事で、レシーバ5に流れる冷媒方向を一方向に決めることができる。
【0017】
図4、図5はさらに他の実施の形態による空気調和機のヒートポンプサイクルのシステム構成を示している。本例では、インジェクション回路107にレシーバ5内のガス冷媒の取り出し口と液冷媒抽出口を独立して設けている。図5はレシーバ5内のインジェクション回路107の詳細を示し、インジェクション回路107には、その端部19がレシーバ5の下部まで達し、液冷媒30中にある。またインジェクション回路107のレシーバ上端32付近には、ガス冷媒取り出し口16を設けている。これによって、インジェクション回路107でガス冷媒31と液冷媒30の同時取り出しが可能になる。液冷媒30の抽出量は、インジェクション回路107の端部配管15の内径によって設定する。基本的に端部配管15の内径はインジェクション回路107の配管内径よりも小さいことが望ましい。液冷媒30の抽出量は最もガスインジェクションの効果を大きくしたい運転条件に合わせ、端部配管15の内径を決定する。
【0018】
図1〜図5に示したレシーバ内の液冷媒を抽出する管の口は、冷媒管口18a、18bとレシーバ底面33との間に位置する事が望ましく、少なくともレシーバから冷媒が流出する冷媒管口(冷媒流れ方向により18aまたは18b)とレシーバ底面33との間に位置していることが液冷媒30を安定して取り出すために必要である。一方、インジェクションガス冷媒32の取出しは、液冷媒が混入しないようにするために、レシーバの上端面32もしくは近傍に設ける。
【0019】
以上のように、インジェクション回路にレシーバ内の液冷媒を抽出する抽出管を合流、またはインジェクション回路内の冷媒を一部冷却し液化、あるいはインジェクション回路上に独立したガス冷媒取り出し口と液冷媒抽出口を設け、インジェクション回路でガス冷媒と液冷媒の同時抽出をさせている。これらにより、圧縮機の圧縮過程にインジェクションする冷媒状態を100%ガス冷媒の状態ではなく、少量の液冷媒を混入させる事で(例えば乾き度0.95以上)、液冷媒による圧縮機の冷却効果を得て、ガスインジェクション時の成績係数(サイクル効率)向上できる。また、冷房運転、暖房運転時の各々について、また室外機と室内機との間の接続配管の長さが長く圧力損失が大きい場合でも、さらに1台の室外機に複数台の室内機が接続するマルチ式の空気調和機においても、第一膨張弁、第二膨張弁の開度に関係なく、レシーバから任意の量の液冷媒を取り出し、インジェクションガス冷媒に混入させることが可能である。そのためサイクルの運転状態に応じ、100%ガス冷媒のガスインジェクションから少量の液冷媒を含んだガスインジェクションまでの状態を作り出すことができる。また液冷媒量を多くすればリキッドインジェクションも可能となる。さらに、以上のシステム構成は、圧縮機の種類にはこだわらず、例えばスクロール式、ロータリー式にも適用可能であり、インバータ制御の有無に係わらず適用可能である。
【0020】
さらに、インジェクション回路を搭載している場合、ガスインジェクションを行えば、インバータ駆動の圧縮機の場合、同一能力ならば、ガスインジェクションをしない場合に比べ、圧縮機の運転周波数を低減できるため、圧縮機の消費電力が低減され、省エネ運転(成績係数が高い)となる。一定速圧縮機では、同一行程容積とすると、能力アップができ、同一能力ならば行程容積を小さくできるので圧縮機運転の省エネ化、また小型化が可能となる。
【0021】
圧縮機にインジェクションする冷媒状態を、ガス冷媒から少量の液冷媒を含んだ気液二相状態(例えば、乾き度0.95以上)のガスインジェクション、また多量の液冷媒を含んだリキッドインジェクション(例えば、乾き度0.80〜0.95程度)の運転をすることができるので、条件に応じてインジェクションする冷媒状態を選択することで、広い運転範囲において成績係数の高い運転が可能となり、空気調和機の運転効率を向上させ、省エネルギとすることができる。
【0022】
また一定速で運転される圧縮機では、ガスインジェクションにより圧縮機の行程容積(理論吐出容積)を小さくすることができ、それに応じ圧縮機の負荷が小さくなるので電気入力が小さくなり、また必要トルクが小さくなるのでモータ容量を下げることができ、圧縮機のケーシング等が小さくできる。
さらに、冷媒はR22、R410A、R32、R407C、炭酸ガスやHC冷媒などの自然系冷媒等でも同様な効果が得られる。
【0023】
さらに、冷房運転、暖房運転時の各々について、また室外機と室内機との間の接続配管の長さが長く圧力損失が大きい場合でも、また1台の室外機に複数台の室内機が接続するマルチ式の空気調和機においても、第一膨張弁、第二膨張弁の開度に関係なく、レシーバから任意の量の液冷媒を取り出し、インジェクションガス冷媒に混入させることが可能である。よって、液冷媒による圧縮機の冷却効果を得て、ガスインジェクション後の圧縮開始の冷媒温度、圧縮機の吐出温度の低減により圧縮機の効率向上が図れ、また圧縮機の吐出温度が下がる事で、圧縮機のモータ冷却効果も大きくなりモータ効率も上がるため、圧縮機の入力が低減できる。また圧縮機と周囲空気の温度差も若干であるが小さくなり、圧縮機からの放熱量も低減される。また負荷に適応した最適な運転状態を作ることができ、広い運転範囲において成績係数の高い運転が可能となり、空気調和機の運転効率を向上させ、省エネルギ化を図ることができる。そして、同じ冷暖房能力を得るのに必要な消費電力量を低減でき、その分の電力製造に伴って発生する炭酸ガスの排出量を低減する事ができ、地球環境にやさしい空気調和機とすることができる。
【0024】
【発明の効果】
以上述べたように、本発明によれば、圧縮機の圧縮過程にインジェクションする冷媒状態を100%ガス冷媒の状態ではなく、少量の液冷媒を混入させることが容易となるので、成績係数(サイクル効率)向上を図ることができ、省エネ性の高い空気調和機を得ることができる。
【図面の簡単な説明】
【図1】一実施の形態による空気調和機のシステム構成図。
【図2】他の実施の形態による空気調和機のシステム構成図。
【図3】さらに、他の実施の形態による空気調和機のシステム構成図。
【図4】さらに、他の実施の形態による空気調和機のシステム構成図。
【図5】図4におけるレシーバ内の詳細を示す断面図。
【符号の説明】
1…圧縮機、2…四方弁、3…熱源側熱交換器(室外熱交換器)、4…第一膨張弁、5…レシーバ、6…阻止弁、7a、7b…第二膨張弁、8a、8b…利用側熱交換器(室内熱交換器)、9…阻止弁、10…流量調整弁、11…電磁弁(開閉弁)、12…エゼクタ、13…第三膨張弁、14…ガス液熱交換器、15…液冷媒抽出管、16…ガス冷媒取り出し口、17…レシーバ部、18a、18b…冷媒管口、19…インジェクション回路端口、21…室外機、22a、22b…室内機、30…液冷媒、31…ガス冷媒、32…レシーバ上端面、33…レシーバ底面、101〜106…配管、107…インジェクション回路、108…液冷媒抽出管、109…合流部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner having a steam compressor type heat pump cycle, and is particularly suitable for improving operation efficiency and saving energy.
[0002]
[Prior art]
Conventionally, in an air conditioner, it is known to provide an injection circuit in order to realize an operation with a high coefficient of performance over a wide capacity range, and to select an operation with a higher coefficient of performance from the injection operation or the non-injection operation. It is described in JP-A-10-176866.
In addition, when a small amount of liquid refrigerant is mixed during gas injection, the efficiency of the compressor is improved due to the cooling effect of the compressor and energy saving is improved. Therefore, the opening degree of the two expansion valves in the gas injection cycle is increased. It is known that the injection pressure in the gas-liquid separator is increased by changing the pressure, and the liquid refrigerant is mixed with the injection gas refrigerant, for example, as described in JP-A-2001-116373.
[Patent Document 1]
JP 2001-116373 A
[Problems to be solved by the invention]
In the above prior art, the liquid refrigerant mixed during gas injection by expansion valve control is a multi-type in which a plurality of indoor units are connected to one outdoor unit, or a connection pipe between the outdoor unit and the indoor unit. When the length is long, the influence of the pressure loss in the pipe becomes large, and the likelihood of the pressure reduction adjustment of the expansion valve becomes small, and it is difficult to always create an appropriate liquid refrigerant mixing state.
[0004]
An object of the present invention is to provide an air conditioner that can operate with high energy saving and good cycle efficiency (coefficient of performance: COP) regardless of the operation state and cycle configuration of the cycle.
A further object of the present invention is to provide an air conditioner that can be operated with a high coefficient of performance (high energy saving) throughout the year, with improved efficiency according to the actual conditions of the use environment.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an air conditioner having a refrigeration cycle in which a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger are sequentially connected by piping. In the machine, an injection circuit connected from the receiver to the compressor, and a liquid refrigerant extraction pipe for taking out the liquid refrigerant in the receiver, the liquid refrigerant extraction pipe is connected to the injection circuit, the liquid refrigerant to the gas refrigerant in the receiver It is mixed and injected into the compressor.
Further, in the above, it is desirable to control the amount of the mixed liquid refrigerant.
[0006]
Furthermore, in the above, it is desirable that the apparatus include an ejector provided in the injection circuit, and a liquid refrigerant extraction pipe connected from the receiver to the ejector.
Further, in the above-described configuration, it is desirable that the injection circuit and the liquid refrigerant extraction pipe have an opening for extracting the gas refrigerant in the receiver and an opening for extracting the liquid refrigerant in the injection circuit.
[0007]
Further, the present invention relates to an air conditioner having a refrigeration cycle in which a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger are sequentially connected by piping. An injection circuit connected to a compression chamber of the compressor, wherein heat is exchanged between gas refrigerant in the receiver guided to the injection circuit and refrigerant on the downstream side of the receiver.
[0008]
Further, the present invention relates to an air conditioner having a refrigeration cycle in which a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger are sequentially connected by piping. An injection circuit connected to the compressor is provided, and the refrigerant injected into the compressor is variable from a gas refrigerant to a liquid refrigerant.
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a system configuration of a heat pump cycle of an air conditioner according to an embodiment of the present invention, which includes a compressor 1, a four-way valve 2, a heat source side heat exchanger (outdoor heat exchanger) 3, a first expansion valve 4, and a receiver. 5, the blocking valve 6, the second expansion valves 7a and 7b, the use-side heat exchangers (indoor heat exchangers) 8a and 8b, the blocking valve 9, and the compressor 1 are sequentially connected by piping. In addition, an injection circuit 107 is provided for connecting the receiver 5 and a compression chamber of the compressor 1 during the compression process. The injection circuit 107 is provided with an on-off valve (electromagnetic valve 11). Further, an extraction pipe 108 from a receiver is connected to the injection circuit 107, and the extraction pipe 108 is provided with a flow control valve 10. The flow control valve 10 may be a capillary tube, and is preferably a valve that can be closed and closed. The receiver 5 has a function for storing excess refrigerant and a gas-liquid separation function for separating gas refrigerant and liquid refrigerant. The receiver function and gas-liquid separation function may be provided by providing a receiver and a gas-liquid separator, respectively. It is good to make the receiver have both functions from the viewpoint of minimizing the installation space and cost.
[0009]
FIG. 1 shows the flow of the refrigerant during the cooling operation. The refrigerant that has become a high-temperature and high-pressure gas in the compressor 1 is directed to the heat source side heat exchanger (outdoor heat exchanger) 3 by the four-way valve 2. In the heat source side heat exchanger 3, heat is radiated to the air to be blown (blowing system is not shown), and the refrigerant is condensed to be in a gas-liquid two-phase, saturated liquid or supercooled liquid refrigerant state. The determination of the state is controlled by the throttle amount of the first expansion valve 4. The refrigerant that has passed through the first expansion valve 4 is decompressed, enters a gas-liquid two-phase state, and flows into the receiver 5. Saturated liquid refrigerant or gas-liquid two-phase refrigerant is extracted from the receiver 5 and then passes through the check valve 6 to reach the second expansion valves 7a and 7b. The refrigerant becomes gas-liquid two-phase refrigerant having a lower temperature than the indoor air at the second expansion valves 7a and 7b, and flows into the use-side heat exchangers (indoor heat exchangers) 8a and 8b. In the use-side heat exchangers 8a and 8b, heat is absorbed from the blown indoor air (the blower system is not shown) and returns to the compressor 1 as a gas refrigerant.
[0010]
The flow of the refrigerant during the heating operation is performed by switching the four-way valve 2 so that the refrigerant flows backward. The above description has been made in the case of a multi-unit in which two indoor units are connected to the outdoor unit 21. However, one of the indoor units 22a or 22b is connected to the outdoor unit 21. The same is true for a single machine that does.
[0011]
The injection circuit 107 is connected to the upper part of the receiver 5, and takes out the gas refrigerant in the receiver. There are two types of injection methods, depending on the state of the refrigerant taken out of the receiver 5. When a liquid or gas-liquid two-phase refrigerant is taken out and injected into the compressor 1, liquid injection is performed, and a saturated gas refrigerant is taken out and the compressor 1 is taken out. If the injection is made at a gas injection, gas injection is performed.
[0012]
Hereinafter, description will be made assuming that gas injection is performed. The driving force of the gas injection is a pressure difference between the pressure of the compression chamber of the compressor 1 to be injected and the pressure of the receiver 5. Therefore, when the pressure of the receiver 5 is higher than the pressure in the compression chamber of the compressor 1, gas injection is performed. The extraction pipe 108 is connected to the lower part of the receiver 5 and can take out the liquid refrigerant in the receiver. The gas refrigerant flowing through the injection circuit 107 and the liquid refrigerant flowing through the extraction pipe are mixed at a junction 109 and are injected into the compression process of the compressor 1 in a gas-liquid two-phase state.
[0013]
The mixed amount of the liquid refrigerant is adjusted by the flow control valve 10, and is adjusted to be variable from zero mixed amount to an arbitrary liquid refrigerant amount. However, the mixing amount of the liquid refrigerant is small, and for example, the dryness (= gas refrigerant mass flow rate / (gas refrigerant mass flow rate + liquid refrigerant mass flow rate)) is set to 0.95 or more. The control of the amount of the liquid refrigerant by the flow control valve 10 may be performed by preparing and programming a table for setting the opening degree, for example, as used in the control of the first expansion valve and the second expansion valve, as a control program. . The parameters such as the cycle state used for setting the opening degree are, for example, two or more of the outside air temperature, the compressor temperature (corresponding to the compressor discharge temperature), and the opening degree of the first expansion valve and the second expansion valve. Used. Further, if the on-off valve 11 of the injection circuit 107 is an expansion valve instead of an electromagnetic valve, finer control is possible.
[0014]
The above-described air conditioner is configured to perform the cooling operation and the heating operation, and even if the connection pipes 104 and 105 between the outdoor unit 21 and the indoor units 22a and 22b are long and the pressure loss is large, Regardless of the degree of opening of the first expansion valve 4 and the second expansion valves 7a and 7b, an arbitrary amount of liquid refrigerant can be taken out of the receiver 5 and mixed with the injection gas refrigerant. Therefore, a state from gas injection of 100% gas refrigerant to gas injection containing a small amount of liquid refrigerant can be created according to the operation state of the cycle. Further, if the amount of the liquid refrigerant is increased, liquid injection can be substantially performed. That is, it is preferable that the refrigerant injected into the compressor be variable from a gas refrigerant to a liquid refrigerant in accordance with the operation state of the cycle.
[0015]
FIG. 2 shows a system configuration of a heat pump cycle of an air conditioner according to another embodiment. An ejector 12 is provided at the junction of the injection circuit 107 and the extraction pipe 108, and the liquid refrigerant in the receiver 5 is extracted by the difference between the pressure when the injection gas refrigerant passes through the contraction part of the ejector and the pressure in the receiver 5. It is. In this case, since the pressure of the ejector unit is inversely proportional to the square of the flow rate of the injection gas refrigerant, it is possible to automatically extract the liquid refrigerant amount according to the flow rate of the injection gas refrigerant. In order to adjust the amount of the liquid refrigerant to be extracted, a flow control valve or a capillary tube may be provided in the middle of the extraction pipe 108, and the flow rate of the liquid refrigerant can be more strictly controlled.
[0016]
FIG. 3 shows a system configuration of a heat pump cycle of an air conditioner according to still another embodiment. In the present embodiment, the liquid refrigerant is extracted from the inside of the receiver 5 and is not mixed with the injection gas refrigerant, but the injection gas refrigerant itself is cooled and a part of the refrigerant is liquefied. FIG. 3 shows a configuration in which liquid refrigerant can be mixed in gas injection during cooling operation. A third expansion valve 13 and a gas-liquid heat exchanger 14 are arranged between the receiver 5 and the blocking valve 6 from the receiver side, and the refrigerant flowing out of the receiver 5 is decompressed by the third expansion valve 13 and the refrigerant temperature is reduced by the refrigerant in the receiver. Lower than the temperature. The refrigerant and the injection gas refrigerant flowing through the injection circuit 107 exchange heat with the gas-liquid heat exchanger 14, and a part of the injection gas refrigerant is liquefied. The amount of refrigerant to be liquefied can be controlled by the refrigerant temperature that changes according to the amount of pressure reduction due to the valve opening of the third expansion valve. If there is no pressure reduction in the third expansion valve, there is no refrigerant temperature difference between the injection gas refrigerant and the refrigerant after the receiver, so that no heat exchange occurs and no liquefaction occurs. At this time, gas injection of 100% gas refrigerant is performed. Although not shown, in order to use it also during the heating operation, a similar device may be provided upstream of the receiver 5 in the refrigerant flow direction shown in FIG. Alternatively, the receiver 5 is provided in a bridge circuit, the flow direction into the receiver 5 and the flow direction out of the receiver 5 are defined in one direction, and the same configuration (the third expansion valve 13 and the gas-liquid heat exchanger 14) is provided downstream of the receiver. Provide. The bridge circuit can determine the direction of the refrigerant flowing to the receiver 5 in one direction by combining, for example, four check valves.
[0017]
4 and 5 show a system configuration of a heat pump cycle of an air conditioner according to still another embodiment. In this example, the injection circuit 107 is provided with a gas refrigerant outlet in the receiver 5 and a liquid refrigerant outlet independently. FIG. 5 shows details of the injection circuit 107 in the receiver 5, the end 19 of which extends to the lower part of the receiver 5 and is in the liquid refrigerant 30. A gas refrigerant outlet 16 is provided near the receiver upper end 32 of the injection circuit 107. As a result, the gas refrigerant 31 and the liquid refrigerant 30 can be simultaneously taken out by the injection circuit 107. The extraction amount of the liquid refrigerant 30 is set based on the inner diameter of the end pipe 15 of the injection circuit 107. Basically, it is desirable that the inner diameter of the end pipe 15 is smaller than the inner diameter of the injection circuit 107. The extraction amount of the liquid refrigerant 30 is determined in accordance with the operating condition in which the effect of the gas injection is to be maximized, and the inner diameter of the end pipe 15 is determined.
[0018]
The port of the pipe for extracting the liquid refrigerant in the receiver shown in FIGS. 1 to 5 is desirably located between the refrigerant pipe ports 18a and 18b and the receiver bottom face 33, and at least the refrigerant pipe from which the refrigerant flows out of the receiver. It is necessary to be located between the port (18a or 18b depending on the refrigerant flow direction) and the receiver bottom surface 33 in order to stably take out the liquid refrigerant 30. On the other hand, the injection gas refrigerant 32 is provided at or near the upper end surface 32 of the receiver in order to prevent the liquid refrigerant from being mixed.
[0019]
As described above, the extraction circuit that extracts the liquid refrigerant in the receiver is joined to the injection circuit, or the refrigerant in the injection circuit is partially cooled and liquefied, or the gas refrigerant outlet and the liquid refrigerant extraction port are independent on the injection circuit. Is provided, and the gas refrigerant and the liquid refrigerant are simultaneously extracted in the injection circuit. Thus, the refrigerant injected into the compression process of the compressor is not a 100% gas refrigerant but a small amount of liquid refrigerant (for example, a dryness of 0.95 or more). , The coefficient of performance (cycle efficiency) at the time of gas injection can be improved. In addition, for each of the cooling operation and the heating operation, and even when the length of the connection pipe between the outdoor unit and the indoor unit is long and the pressure loss is large, a plurality of indoor units are further connected to one outdoor unit. Also in the multi-type air conditioner described above, it is possible to take out an arbitrary amount of liquid refrigerant from the receiver and mix it with the injection gas refrigerant, regardless of the opening degree of the first expansion valve and the second expansion valve. Therefore, a state from gas injection of 100% gas refrigerant to gas injection containing a small amount of liquid refrigerant can be created according to the operation state of the cycle. Also, liquid injection becomes possible by increasing the amount of liquid refrigerant. Further, the above-described system configuration is applicable to, for example, a scroll type and a rotary type regardless of the type of the compressor, and is applicable regardless of the presence or absence of the inverter control.
[0020]
Furthermore, when an injection circuit is installed, if the gas injection is performed, the inverter-driven compressor can reduce the operating frequency of the compressor compared to the case without gas injection if the capacity is the same if the compressor is the same capacity. Power consumption is reduced, and energy saving operation (high coefficient of performance) is achieved. In the constant speed compressor, if the same stroke volume is used, the capacity can be increased, and if the same capacity is used, the stroke volume can be reduced, so that energy saving and downsizing of the compressor operation can be achieved.
[0021]
The refrigerant injected into the compressor may be a gas-liquid two-phase state (for example, a dryness of 0.95 or more) containing a small amount of liquid refrigerant from a gas refrigerant, or a liquid injection containing a large amount of liquid refrigerant (for example, (Dryness of about 0.80 to 0.95). By selecting the state of the refrigerant to be injected according to the conditions, it is possible to operate with a high coefficient of performance over a wide operating range. The operation efficiency of the machine can be improved and energy can be saved.
[0022]
In a compressor operated at a constant speed, the stroke volume (theoretical discharge volume) of the compressor can be reduced by gas injection, and accordingly the load on the compressor is reduced, so that the electric input is reduced and the required torque is reduced. Therefore, the motor capacity can be reduced, and the casing of the compressor can be reduced.
Further, similar effects can be obtained by using a refrigerant such as R22, R410A, R32, R407C, or a natural refrigerant such as carbon dioxide gas or HC refrigerant.
[0023]
Furthermore, for each of the cooling operation and the heating operation, and even when the connection pipe between the outdoor unit and the indoor unit is long and the pressure loss is large, a plurality of indoor units are connected to one outdoor unit. Also in the multi-type air conditioner described above, it is possible to take out an arbitrary amount of liquid refrigerant from the receiver and mix it with the injection gas refrigerant, regardless of the opening degree of the first expansion valve and the second expansion valve. Therefore, by obtaining the cooling effect of the compressor by the liquid refrigerant, the refrigerant temperature at the start of compression after gas injection and the discharge temperature of the compressor can be reduced to improve the efficiency of the compressor, and the discharge temperature of the compressor can be lowered. In addition, since the motor cooling effect of the compressor increases and the motor efficiency increases, the input of the compressor can be reduced. Also, the temperature difference between the compressor and the surrounding air is slightly reduced, but the amount of heat radiation from the compressor is also reduced. In addition, it is possible to create an optimum operation state adapted to the load, to perform an operation with a high coefficient of performance in a wide operation range, to improve the operation efficiency of the air conditioner, and to save energy. In addition, the power consumption required to obtain the same cooling and heating capacity can be reduced, and the amount of carbon dioxide generated due to the production of power can be reduced, making the air conditioner friendly to the global environment. Can be.
[0024]
【The invention's effect】
As described above, according to the present invention, it is easy to mix a small amount of liquid refrigerant instead of a 100% gas refrigerant state in a refrigerant state injected in a compression process of a compressor. Efficiency) and an air conditioner with high energy saving can be obtained.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of an air conditioner according to an embodiment.
FIG. 2 is a system configuration diagram of an air conditioner according to another embodiment.
FIG. 3 is a system configuration diagram of an air conditioner according to another embodiment.
FIG. 4 is a system configuration diagram of an air conditioner according to another embodiment.
FIG. 5 is a sectional view showing details in the receiver in FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Heat source side heat exchanger (outdoor heat exchanger), 4 ... First expansion valve, 5 ... Receiver, 6 ... Blocking valve, 7a, 7b ... Second expansion valve, 8a , 8b: use side heat exchanger (indoor heat exchanger), 9: check valve, 10: flow control valve, 11: solenoid valve (open / close valve), 12: ejector, 13: third expansion valve, 14: gas liquid Heat exchanger, 15: liquid refrigerant extraction pipe, 16: gas refrigerant outlet, 17: receiver, 18a, 18b: refrigerant pipe, 19: injection circuit end, 21: outdoor unit, 22a, 22b: indoor unit, 30 ... Liquid refrigerant, 31 ... Gas refrigerant, 32 ... Receiver upper end face, 33 ... Receiver bottom face, 101-106 ... Piping, 107 ... Injection circuit, 108 ... Liquid refrigerant extraction pipe, 109 ... Junction.

Claims (6)

圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続した冷凍サイクルを有する空気調和機において、
前記レシーバから前記圧縮機へ接続するインジェクション回路と、前記レシーバ内の液冷媒を取出す液冷媒抽出管と、を備え、前記液冷媒抽出管を前記インジェクション回路に接続し、前記レシーバ内のガス冷媒に液冷媒を混入して前記圧縮機へインジェクションしたことを特徴とする空気調和機。
In an air conditioner having a refrigeration cycle in which a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger are sequentially connected by piping,
An injection circuit connected from the receiver to the compressor, and a liquid refrigerant extraction pipe for taking out liquid refrigerant in the receiver, the liquid refrigerant extraction pipe is connected to the injection circuit, and the gas refrigerant in the receiver An air conditioner wherein a liquid refrigerant is mixed and injected into the compressor.
請求項1に記載のものにおいて、混入される前記液冷媒の量を制御することを特徴とする空気調和機。The air conditioner according to claim 1, wherein an amount of the mixed liquid refrigerant is controlled. 請求項1に記載のものにおいて、前記インジェクション回路に設けられたエゼクタと、前記レシーバから前記エゼクタに接続された前記液冷媒抽出管と、を備えたことを特徴とした空気調和機。2. The air conditioner according to claim 1, further comprising: an ejector provided in the injection circuit; and the liquid refrigerant extraction pipe connected from the receiver to the ejector. 請求項1に記載のものにおいて、前記インジェクション回路及び前記液冷媒抽出管として、前記インジェクション回路に前記レシーバ内のガス冷媒を取出す開口部と、液冷媒を取出す開口部とを有したことを特徴とする空気調和機。2. The injection circuit and the liquid refrigerant extraction pipe according to claim 1, wherein the injection circuit has an opening for taking out gas refrigerant in the receiver and an opening for taking out liquid refrigerant in the receiver. 3. Air conditioner. 圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続した冷凍サイクルを有する空気調和機において、
前記レシーバから前記圧縮機の圧縮室へ接続するインジェクション回路を備え、前記インジェクション回路に導かれた前記レシーバ内のガス冷媒と前記レシーバ下流側の冷媒とで熱交換をさせることを特徴とした空気調和機。
In an air conditioner having a refrigeration cycle in which a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger are sequentially connected by piping,
An air conditioner, comprising: an injection circuit connected from the receiver to a compression chamber of the compressor, wherein heat is exchanged between a gas refrigerant in the receiver guided to the injection circuit and a refrigerant downstream of the receiver. Machine.
圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続した冷凍サイクルを有する空気調和機において、
前記レシーバから前記圧縮機へ接続するインジェクション回路を備え、前記圧縮機へインジェクションする冷媒をガス冷媒から液冷媒まで可変としたことを特徴とする空気調和機。
In an air conditioner having a refrigeration cycle in which a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger are sequentially connected by piping,
An air conditioner, comprising: an injection circuit connected from the receiver to the compressor, wherein a refrigerant injected into the compressor is variable from a gas refrigerant to a liquid refrigerant.
JP2002244508A 2002-08-26 2002-08-26 Air conditioner Expired - Lifetime JP4179595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244508A JP4179595B2 (en) 2002-08-26 2002-08-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244508A JP4179595B2 (en) 2002-08-26 2002-08-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2004085019A true JP2004085019A (en) 2004-03-18
JP4179595B2 JP4179595B2 (en) 2008-11-12

Family

ID=32052946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244508A Expired - Lifetime JP4179595B2 (en) 2002-08-26 2002-08-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP4179595B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263443A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioner
JP2008002743A (en) * 2006-06-21 2008-01-10 Daikin Ind Ltd Refrigerating device
EP1975414A2 (en) 2007-03-30 2008-10-01 Fujitsu General Limited Injectible two-staged rotary compressor and heat pump system
CN101441006A (en) * 2007-11-21 2009-05-27 三菱电机株式会社 Cooling unit and compressor
JP2014119222A (en) * 2012-12-18 2014-06-30 Daikin Ind Ltd Refrigeration device
WO2014103407A1 (en) * 2012-12-28 2014-07-03 三菱電機株式会社 Air-conditioning device
WO2014129361A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioner
KR101513305B1 (en) * 2008-12-01 2015-04-17 (주)귀뚜라미 Injection type heat pump air-conditioner and the converting method for injection mode thereof
JP2015087020A (en) * 2013-10-28 2015-05-07 三菱電機株式会社 Refrigeration cycle device
JP2015209979A (en) * 2014-04-23 2015-11-24 ダイキン工業株式会社 Air conditioner
JPWO2014054120A1 (en) * 2012-10-02 2016-08-25 三菱電機株式会社 Air conditioner
JP2016223741A (en) * 2015-06-03 2016-12-28 東芝キヤリア株式会社 Refrigeration cycle device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675810B2 (en) * 2006-03-28 2011-04-27 三菱電機株式会社 Air conditioner
JP2007263443A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioner
JP2008002743A (en) * 2006-06-21 2008-01-10 Daikin Ind Ltd Refrigerating device
EP1975414A2 (en) 2007-03-30 2008-10-01 Fujitsu General Limited Injectible two-staged rotary compressor and heat pump system
US8857211B2 (en) 2007-03-30 2014-10-14 Fujitsu General Limited Injectable two-staged rotary compressor and heat pump system
CN101441006A (en) * 2007-11-21 2009-05-27 三菱电机株式会社 Cooling unit and compressor
JP2009127902A (en) * 2007-11-21 2009-06-11 Mitsubishi Electric Corp Refrigerating device and compressor
CZ307455B6 (en) * 2007-11-21 2018-09-12 Mitsubishi Electronic Corporation A cooling unit
KR101513305B1 (en) * 2008-12-01 2015-04-17 (주)귀뚜라미 Injection type heat pump air-conditioner and the converting method for injection mode thereof
JPWO2014054120A1 (en) * 2012-10-02 2016-08-25 三菱電機株式会社 Air conditioner
US10161647B2 (en) 2012-10-02 2018-12-25 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2014119222A (en) * 2012-12-18 2014-06-30 Daikin Ind Ltd Refrigeration device
WO2014103407A1 (en) * 2012-12-28 2014-07-03 三菱電機株式会社 Air-conditioning device
JP5855284B2 (en) * 2012-12-28 2016-02-09 三菱電機株式会社 Air conditioner
WO2014129361A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioner
JPWO2014129361A1 (en) * 2013-02-19 2017-02-02 三菱電機株式会社 Air conditioner
JP2015087020A (en) * 2013-10-28 2015-05-07 三菱電機株式会社 Refrigeration cycle device
JP2015209979A (en) * 2014-04-23 2015-11-24 ダイキン工業株式会社 Air conditioner
JP2016223741A (en) * 2015-06-03 2016-12-28 東芝キヤリア株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP4179595B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
KR101155494B1 (en) Heat pump
CN102538273B (en) Vapor-injected air-conditioning system, vapor-injected air-conditioning control method and air-conditioner
US9523520B2 (en) Air-conditioning apparatus
CN103175344B (en) Cold-region used multi-connected heat pump system and control method thereof
EP2728278B1 (en) Refrigeration cycle device and air conditioner
JP4375171B2 (en) Refrigeration equipment
CN115234993B (en) Air conditioner
KR101212681B1 (en) air conditioner
JP2009186121A (en) Heat pump water heater outdoor unit and heat pump water heater
KR20080086538A (en) Refrigeration system
US7802440B2 (en) Compression system and air conditioning system
US20160003499A1 (en) Regenerative air-conditioning apparatus and method of controlling the same
CN104220821B (en) Aircondition
CN104048366A (en) Air conditioner and outdoor unit thereof, heating air supply method and cooling air supply method
CN108800384A (en) Air-conditioning system and air conditioner
JP2004085019A (en) Air conditioner
KR20070082501A (en) Air-conditioning system and controlling method for the same
CN203731741U (en) Air conditioner water heater system
CN104879939A (en) Air-conditioning system
CN202432744U (en) Air-supply enthalpy-adding air conditioning system and air conditioner
CN108534386A (en) A kind of cold and hot multifunctional integrated Air-Cooled Heat Pump Unit of four-pipe system
Ceylan Review on the two-stage vapor injection heat pump with a flash tank
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
JP2003185286A (en) Air conditioner
JP2003269808A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4179595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term