JP4407000B2 - Refrigeration system using CO2 refrigerant - Google Patents

Refrigeration system using CO2 refrigerant Download PDF

Info

Publication number
JP4407000B2
JP4407000B2 JP2000111622A JP2000111622A JP4407000B2 JP 4407000 B2 JP4407000 B2 JP 4407000B2 JP 2000111622 A JP2000111622 A JP 2000111622A JP 2000111622 A JP2000111622 A JP 2000111622A JP 4407000 B2 JP4407000 B2 JP 4407000B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
gas
evaporator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000111622A
Other languages
Japanese (ja)
Other versions
JP2001296067A (en
Inventor
智 石田
武史 桧皮
和幸 西川
克己 鉾谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000111622A priority Critical patent/JP4407000B2/en
Publication of JP2001296067A publication Critical patent/JP2001296067A/en
Application granted granted Critical
Publication of JP4407000B2 publication Critical patent/JP4407000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、CO2冷媒を用いた冷凍システムに関するものである。
【0002】
【従来の技術】
CO2冷媒を用いた遷臨界冷凍サイクルは、CO2冷媒の特性としてその作動圧が高いことから、フロン系冷媒を用いた冷凍サイクルに比べて効率(成績係数:COP)が悪いという欠点があり、これを改善する一つの方法として、例えば図6に示すように、圧縮機1と四方切換弁5と室外熱交換器2と室内熱交換器3と膨張弁11とで構成される基本的な冷媒回路に、内部熱交換器8を組み込み、該内部熱交換器8の高圧側伝熱部8aと低圧側伝熱部8bとを四方切換弁6を介して上記室外熱交換器2と室内熱交換器3とに択一的に接続可能とし、該内部熱交換器8における内部熱交換によって冷凍サイクル全体としての効率を高めるようにした内部熱交換器組込方式が提案されている。
【0003】
【発明が解決しようとする課題】
ところが、このようにCO2冷媒を用いた冷凍サイクルの効率改善を目的として冷媒回路に内部熱交換器を組み込んだ場合、効率改善という目的は達成されるものの、内部熱交換に伴う圧縮機の吸込温度の上昇に伴ってその吐出温度も上昇することから、例えば圧縮機に用いられている樹脂絶縁材料の劣化が早くなり、冷凍システムとして長期稼働時における信頼性が損なわれるという欠点があった。
【0004】
そこで本願発明では、CO2冷媒を用いた冷凍システムにおいて、冷媒回路への内部熱交換器の組み込みによる効率の改善効果を、該内部熱交換器の組み込みに伴う欠点(即ち、圧縮機吐出温度の上昇に起因する信頼性の低下)を防止しつつ実現し、高効率化と高信頼性との両立を図ることを目的としてなされたものである。
【0005】
【発明の技術的背景】
本願発明者らは上記課題を解決するための手段を研究する過程において、冷媒回路におけるガスインジェクション機構に着目した。即ち、このガスインジェクション機構は、上記の如き冷媒回路への内部熱交換器の組み込み手法と同様に、フロン系冷媒とかCO2冷媒を用いた冷凍サイクルに対する効率改善策として提案されているものであって、図7にCO2冷媒を用いた遷臨界冷凍サイクルにガスインジェクション機構を組み込んだ冷媒回路の一例を示している。この冷媒回路は、四方切換弁5の切換操作によって圧縮機1の吐出口を室外熱交換器2と室内熱交換器3とに、また該圧縮機1の吸入口を上記室内熱交換器3と室外熱交換器2に、それぞれ択一的に接続可能とする一方、該室外熱交換器2と室内熱交換器3とを接続する冷媒路31中に膨張弁11とレシーバ7と膨張弁12とを順次配置するとともに、該レシーバ7の気室と上記圧縮機1の圧縮室とを制御弁10を備えた冷媒路32により接続することで回路が構成されている。
【0006】
また、図8には、ガスインジェクション機構を組み込んだ遷臨界冷凍サイクルのP−H線図を示している。これを簡単に説明すると、例えば冷房運転時には、ガス冷却器として機能する上記室外熱交換器2の出口点Eにおける超臨界状態のCO2冷媒を、上記膨張弁11において一次膨張させて気液二相のCO2冷媒とするとともに、この気液二相のCO2冷媒を上記レシーバ7に導入してここで気液分離する(点F)。そして、分離された液冷媒は、飽和液冷媒(点H)としてさらに上記膨張弁12において二次膨張された後、蒸発器として機能する上記室内熱交換器3に送られる。一方、上記レシーバ7において分離されたガス冷媒は、飽和ガス冷媒(点G)として、上記冷媒路32を通して上記圧縮機1の圧縮行程途中にある圧縮室内にインジェクションされる。
【0007】
このように、レシーバ7において分離されたガス冷媒を圧縮行程途中にある圧縮機1の圧縮室にインジェクションすることで、該圧縮室内においてCO2冷媒とインジェクションされたガス冷媒とが混合し冷媒温度が点Bに対応する温度から点Cに対応するまで低下することから、圧縮機1の出口における冷媒温度(即ち、「吐出温度」)は、ガスインジェクションが行われない場合における吐出温度(点D0に対応する温度)よりも低い温度(点Dに対応する温度)まで低下することになる。
【0008】
また、気液分離されたガス冷媒を圧縮機1側へインジェクションすることで、このインジェクション量だけ、蒸発器(室内熱交換器3)側における冷媒循環量はガス冷却器(室外熱交換器2)側における冷媒循環量よりも少なくなっており、しかも気液分離された後の液冷媒を膨張弁12において二次膨張させて蒸発器に導入することから、該蒸発器における単位重量当たりの蒸発エンタルピーが増加し(図8に「h1」で示すエンタルピー量)、それだけ冷却能力が大きくなる。これらの結果、より少ない冷媒循環量で、冷媒循環量減少前における場合と同等の冷凍能力が得られるものである。
【0009】
本願発明者らは、このように冷媒回路にガスインジェクション機構を組み込むことに基づく利点、特に圧縮機吐出温度の低下作用、を有効に利用することで、内部熱交換器の組み込みによる欠点(即ち、圧縮機吐出温度の上昇)を可及的に解消することに想到したものである。
【0010】
【課題を解決するための手段】
本願発明では、かかる技術背景に立脚し、上記課題を解決するための具体的手段として次のような構成を採用している。
【0011】
本願の第1の発明にかかるCO2冷媒を用いた冷凍システムでは、CO2冷媒を圧縮する圧縮機1と、上記圧縮機1から吐出される冷媒を超臨界領域において放熱させるガス冷却器Aと、上記ガス冷却器Aからのを一次膨張させる一次膨張機構Cと、上記一次膨張機構Cからの冷媒を気液分離するレシーバ7と、上記レシーバ7で分離された液冷媒を二次膨張させる二次膨張機構Dと、上記二次膨張機構Dからの液冷媒を蒸発させる蒸発器Bと、上記レシーバ7で分離されたガス冷媒を上記圧縮機1の圧縮室内にインジェクションするガスインジェクション機構Eと、上記圧縮機1に吸入される上記蒸発器Bからのガス冷媒と系内の液冷媒との間で熱交換を行わせる内部熱交換器8とを備えたことを特徴としている。
【0012】
本願の第2の発明では、上記第1の発明にかかるCO2冷媒を用いた冷凍システムにおいて、上記内部熱交換器8を、上記ガス冷却器Aが利用側熱交換器として機能し上記蒸発器Bが熱源側熱交換器として機能する運転時と、上記ガス冷却器Aが熱源側熱交換器として機能し上記蒸発器Bが利用側熱交換器として機能する運転時の双方で、上記蒸発器Bからのガス冷媒と上記レシーバ7で気液分離された後の液冷媒との間で熱交換を行うように構成したことを特徴としている。
【0013】
本願の第3の発明では、上記第1の発明にかかるCO2冷媒を用いた冷凍システムにおいて、上記内部熱交換器8を、上記ガス冷却器Aが利用側熱交換器として機能し上記蒸発器Bが熱源側熱交換器として機能する運転時には該蒸発器Bからのガス冷媒と上記ガス冷却器Aの出口側の液冷媒との間で、上記ガス冷却器Aが熱源側熱交換器として機能し上記蒸発器Bが利用側熱交換器として機能する運転時には該蒸発器Bからのガス冷媒と上記レシーバ7で気液分離された後の液冷媒との間で、それぞれ熱交換を行うように構成したことを特徴としている。
【0014】
【発明の効果】
本願発明ではかかる構成とすることにより次のような効果が得られる。
【0015】
▲1▼ 本願の第1の発明にかかるCO2冷媒を用いた冷凍システムによれば、CO2冷媒を圧縮する圧縮機1と、上記圧縮機1から吐出される冷媒を超臨界領域において放熱させるガス冷却器Aと、上記ガス冷却器Aからの冷媒を一次膨張させる一次膨張機構Cと、上記一次膨張機構Cからの冷媒を気液分離するレシーバ7と、上記レシーバ7で分離された液冷媒を二次膨張させる二次膨張機構Dと、上記二次膨張機構Dからの液冷媒を蒸発させる蒸発器Bと、上記レシーバ7で分離されたガス冷媒を上記圧縮機1の圧縮室内にインジェクションするガスインジェクション機構Eと、上記圧縮機1に吸入される上記蒸発器Bからのガス冷媒と系内の液冷媒との間で熱交換を行わせる内部熱交換器8とを備えているので、上記内部熱交換器8での内部熱交換によって冷凍効率の向上が図られる一方、上記ガスインジェクション機構Eによる圧縮機側へのガス冷媒のインジェクションによって上記内部熱交換器8における内部熱交換に基づく圧縮機吐出温度の上昇が抑制されるとともに、気液分離後の液冷媒を上記蒸発器Bに導入することで単位重量当たりの蒸発エンタルピーが増大し、冷凍能力が向上するものであり、これらの相乗効果として、圧縮機の信頼性を損なうことなく、高効率を実現することができるものである。
【0016】
また、基本的な冷媒回路に、内部熱交換器8とガスインジェクション機構Eとを組み込むという比較的簡単な回路変更によって効率を高めることができることから、冷凍システムの低コスト化と高効率化の両立が容易である。
【0017】
さらに、気液分離後の液冷媒を蒸発器Bに導入することで、該蒸発器Bを流れるCO2冷媒の単位重量当たりの蒸発エンタルピーが大きくとれることから、同一冷凍能力下においては冷媒流量が少なくなり冷媒流速が低下する。この結果、上記蒸発器Bでの圧力損失による効率低下が抑制され高い冷凍効率が確保されるとともに、蒸発器Bにおける冷媒流量が少ない分だけ該蒸発器Bのコンパクト化が促進される。
【0018】
▲2▼ 本願の第2の発明にかかるCO2冷媒を用いた冷凍システムによれば、上記▲1▼に記載の効果に加えて次のような特有の効果が奏せられる。即ち、この発明では、上記内部熱交換器8を、上記ガス冷却器Aが利用側熱交換器として機能し上記蒸発器Bが熱源側熱交換器として機能する運転時と、上記ガス冷却器Aが熱源側熱交換器として機能し上記蒸発器Bが利用側熱交換器として機能する運転時の双方で、上記蒸発器Bからのガス冷媒と上記レシーバ7で気液分離された後の液冷媒との間で熱交換を行うように構成しているので、例えば上記内部熱交換器8において気液分離前のCO2冷媒と熱交換させる場合に比して、該内部熱交換器8を流れる冷媒量が少なくなり、それだけ該内部熱交換器8のコンパクト化が促進されることになる。
【0019】
▲3▼ 本願の第3の発明にかかるCO2冷媒を用いた冷凍システムによれば、上記▲1▼に記載の効果に加えて次のような特有の効果が奏せられる。即ち、この発明では、上記内部熱交換器8を、上記ガス冷却器Aが利用側熱交換器として機能し上記蒸発器Bが熱源側熱交換器として機能する運転時には該蒸発器Bからのガス冷媒と上記ガス冷却器Aの出口側の液冷媒との間で、上記ガス冷却器Aが熱源側熱交換器として機能し上記蒸発器Bが利用側熱交換器として機能する運転時には該蒸発器Bからのガス冷媒と上記レシーバ7で気液分離された後の液冷媒との間で、それぞれ熱交換を行うように構成している。
【0020】
従って、特に後者の運転時には、上記レシーバ7で気液分離された後の液冷媒との間で熱交換を行うように構成していることで、例えば上記内部熱交換器8において気液分離前のCO2冷媒と熱交換させる場合に比して、該内部熱交換器8を流れる冷媒量が少なく、それだけ該内部熱交換器8のコンパクト化が促進されることになる。
【0021】
【発明の実施の形態】
以下、本願発明にかかるCO2冷媒を用いた冷凍システムを好適な実施形態に基づいて具体的に説明する。
【0022】
第1の実施形態
図1には、本願発明にかかるCO2冷媒を用いた冷凍システムを空気調和機に適用した第1の実施形態における冷媒回路を示しており、同図において符号1は圧縮機、2は室外熱交換器(特許請求の範囲の「熱源側熱交換器」に該当する)、3は室内熱交換器(特許請求の範囲の「利用側熱交換器」に該当する)、4は上記圧縮機1の吸入口に接続される冷媒路24に設けられたアキュームレータ、5は上記室外熱交換器2と室内熱交換器3とを上記圧縮機1と冷媒路23に択一的に接続する第1の四方切換弁、6は上記室外熱交換器2と室内熱交換器3とを冷媒路23と冷媒路24に択一的に接続する第2の四方切換弁である。尚、図1においては、上記各四方切換弁5,6の弁位置を、冷房運転時には実線で、暖房運転時には破線で、それぞれ示している。
【0023】
また、符号7は、第1の膨張弁11と第2の膨張弁12とを直列に設けた冷媒路23の該各膨張弁11,12の中間位置に設けられた気液分離用のレシーバであり、該レシーバ7の気相部は制御弁10を備えた冷媒路26を介して上記圧縮機1の圧縮室に接続されている。尚、このレシーバ7と冷媒路26と制御弁10によって特許請求の範囲の「ガスインジェクション機構E」が構成されている。
【0024】
さらに、符号8は、高圧側伝熱部8aと低圧側伝熱部8bを備えた内部熱交換器であり、該高圧側伝熱部8aは上記冷媒路23の上記レシーバ7と第2の膨張弁12の中間位置に介設され、また低圧側伝熱部8bは上記冷媒路24に介設されている。
【0025】
続いて、上記空気調和機の冷媒回路の作動を、冷房運転時(即ち、室外熱交換器2が特許請求の範囲の「ガス冷却器A」として機能し、室内熱交換器3が特許請求の範囲の「蒸発器B」として機能する運転状態)を例にとって、図2に示す「P−H線図」を併用しつつ説明する。
【0026】
冷房運転時には、圧縮機1から吐出されたCO2冷媒(ガス冷媒)は、第1の四方切換弁5を介して室外熱交換器2に導入され、該室外熱交換器2において超臨界領域で放熱される(図2の点D〜点Eの領域)。室外熱交換器2から流出する超臨界状態のCO2冷媒は、第2の四方切換弁6から第1の膨張弁11(特許請求の範囲の「一次膨張機構C」に該当する)に至り、該第1の膨張弁11において一次膨張され(図2の点E〜点Fの領域)、気液二相状態でレシーバ7に導入されてここで気液分離される(図2の点G及び点H)。
【0027】
そして、レシーバ7で分離された液冷媒は、内部熱交換器8の高圧側伝熱部8aに流入し、その入口(図2の点H)から出口(図2の点I)へ向かって流れる間に、その低圧側伝熱部8bをその入口(図2の点K)から出口(図2の点A)へ向かって流れるガス冷媒との間で内部熱交換を行った後、第2の膨張弁12(特許請求の範囲の「二次膨張機構D」に該当する)に流入し、ここで二次膨張(図2の点I〜点Jの領域)された後、室内熱交換器3に送られ、その入口(図2の点J)から出口(図2の点K)を流れる間に蒸発しガス冷媒とされる。尚、このガス冷媒は再度圧縮機1に吸入されて圧縮されるが、その吸入温度は、室内熱交換器3の出口温度(図2の点Kに対応する温度)よりも、内部熱交換器8における内部熱交換による昇温分(図2に「d」で示す)だけ高い温度(即ち、図2の点Aに対応する温度)とされる。
【0028】
一方、レシーバ7で分離されたガス冷媒は、冷媒路26を介して圧縮機1の圧縮行程途中にある圧縮室にインジェクションされる(図2の点G参照)。このように圧縮機1の圧縮室にガス冷媒がインジェクションされこれが該圧縮室内のガス冷媒に混合することで、該圧縮室内におけるガス冷媒の冷却と高密度化が促進されることから、上述のように、内部熱交換によって圧縮機1の吸入温度が上昇しており、この高い吸入温度から圧縮が開始されるにも拘わらず、圧縮室内のガス冷媒の温度は、ガスインジェクション時点の点Bに対応する温度から点Cに対応する温度まで一旦低下し、この低下した温度から再度昇圧昇温され、最終的には点Dに対応する温度が吐出温度となる。従って、この吐出温度は、ガスインジェクションに伴う温度低下の影響を受けることから、ガスインジェクションが行われずに点Aから点D0まで圧縮される場合の温度(点D0に対応する温度)よりも低温とされる。
【0029】
尚、暖房運転時においては、冷房運転時とは逆に、室外熱交換器2が蒸発器として機能し、室内熱交換器3がガス冷却器として機能するが、上記内部熱交換器8における冷媒の流れ方向は冷房運転時も暖房運転時も同じとされる。即ち、内部熱交換器8は、常にレシーバ7で気液分離された後の液冷媒と熱交換を行う。
【0030】
以上のように、CO2冷媒を用いた遷臨界冷凍サイクルの冷媒回路に内部熱交換器8とガスインジェクション機構Eとを組み込むことで、該内部熱交換器8における内部熱交換に伴う圧縮機吐出温度の上昇が、ガスインジェクションによる冷却作用によって抑制されることから、内部熱交換による冷凍能力の増加(図2のエンタルピー量「c1」)による効率向上効果を、圧縮機1の信頼性を確保しつつ実現できる。さらに、レシーバ7で気液分離したガス冷媒を圧縮機1側にインジェクションさせた結果、インジェクション量に対応する分だけ、蒸発器(即ち、冷房運転時における室内熱交換器3)の冷媒循環量がガス冷却器(即ち、冷房運転時における室外熱交換器2)側における冷媒循環量が少なくなっているが、その分だけ単位重量当たりの蒸発エンタルピーが増大することから(図2のエンタルピー量「c2」)、冷凍能力は変わらない。これらの相乗効果として、圧縮機1の信頼性を損なうことなく、高い効率を実現することができ、高効率化と高信頼性との両立が可能となるものである。
【0031】
また、上記レシーバ7で気液分離された後の液冷媒を蒸発器(即ち、冷房運転時における室内熱交換器3と暖房運転時における室外熱交換器2)に導入するものであることから、該蒸発器を流れるCO2冷媒の単位重量当たりの蒸発エンタルピーが大きくとれ、同一冷凍能力下においては冷媒流量が少なくなり冷媒流速が低下する。この結果、蒸発器での圧力損失による効率低下が抑制され、高い冷凍効率が確保されるとともに、冷媒流量が少ない分だけ蒸発器のコンパクト化が促進されることになる。
【0032】
さらに、この実施形態のように、冷房運転時と暖房運転時の双方で、共に蒸発器から出たガス冷媒と上記レシーバ7で気液分離された後の液冷媒との間で熱交換を行うように構成することで、例えば上記内部熱交換器8において気液分離前のCO2冷媒と熱交換させる場合に比して、該内部熱交換器8を流れる冷媒量が少なくなり、それだけ該内部熱交換器8のコンパクト化が促進されることになる。
【0033】
一方、上記膨張弁10及び膨張弁11の開度制御を適正に行って上記圧縮機1側へのガスインジェクション量を調整することで、圧縮機入力を低下させて省エネ運転を実現することができる。
【0034】
第2の実施形態
図3には、本願発明にかかるCO2冷媒を用いた冷凍システムを空気調和機に適用した第2の実施形態における冷媒回路を示しており、また図4及び図5には冷房運転時及び暖房運転時の「P−H線図」をそれぞれ示している。
【0035】
先ず、図3の冷媒回路について説明すると、同図において、符号1は圧縮機、2は室外熱交換器(特許請求の範囲の「熱源側熱交換器」に該当する)、3は室内熱交換器(特許請求の範囲の「利用側熱交換器」に該当する)、4は上記圧縮機1の吸入口に接続される冷媒路25に設けられたアキュームレータ、5は上記室外熱交換器2と室内熱交換器3とを上記圧縮機1と冷媒路24に択一的に接続する四方切換弁である。また、上記室外熱交換器2と室内熱交換器3とは冷媒路21を介して接続されているが、この冷媒路21には第1の膨張弁11と第2の膨張弁12と第3の膨張弁13とが直列に介設されるとともに、該第1の膨張弁11と第2の膨張弁12の中間位置には気液分離用のレシーバ7が、また第2の膨張弁12と第3の膨張弁13との中間位置には高圧側伝熱部8aと低圧側伝熱部8bを備えた内部熱交換器8の高圧側伝熱部8aが介設されている。さらに、この内部熱交換器8の低圧側伝熱部8bは、その一端が上記冷媒路24に、その他端が上記冷媒路25にそれぞれ接続されている。また、上記レシーバ7の気相部は、制御弁10を備えた冷媒路26を介して上記圧縮機1の圧縮室に接続されている。この実施形態においては、上記レシーバ7と冷媒路26と制御弁10によって特許請求の範囲の「ガスインジェクション機構E」が構成されている。
【0036】
尚、上記第1〜第3の膨張弁11〜13は、冷房運転時と暖房運転時とでその作動形態が異なる。即ち、上記室外熱交換器2がガス冷却器として機能する冷房運転時には、上記第1の膨張弁11は特許請求の範囲の「一次膨張機構C」として機能し冷媒の一次膨張を行い、第2の膨張弁12は全開とされ膨張作用を行わず、第3の膨張弁13は特許請求の範囲の「二次膨張機構D」として機能し冷媒の二次膨張を行う。一方、暖房運転時には、上記第1の膨張弁11は特許請求の範囲の「二次膨張機構D」として機能し冷媒の二次膨張を行い、第2の膨張弁12は特許請求の範囲の「一次膨張機構C」として機能し冷媒の一次膨張を行い、第3の膨張弁13は全開とされ膨張作用を行わない。
【0037】
また、図3においては、上記四方切換弁5の弁位置を、冷房運転時には実線で、暖房運転時には破線で、それぞれ示している。
【0038】
続いて、上記空気調和機の冷媒回路の冷房運転時と暖房運転時の作動を、図4に示す冷房運転時の「P−H線図」と図5に示す暖房運転時の「P−H線図」を併用しつつ説明する。
【0039】
冷房運転時の作動
冷房運転時(即ち、室外熱交換器2が特許請求の範囲の「ガス冷却器A」として機能し、室内熱交換器3が特許請求の範囲の「蒸発器B」として機能する運転状態)には、圧縮機1から吐出されたCO2冷媒(ガス冷媒)は、四方切換弁5を介して室外熱交換器2に導入され、該室外熱交換器2において超臨界領域で放熱される(図4の点D〜点Eの領域)。室外熱交換器2から流出する超臨界状態のCO2冷媒は、第1の膨張弁11において一次膨張され(図4の点E〜点Fの領域)、気液二相状態でレシーバ7に導入され、ここで気液分離される(図4の点G及び点H)。
【0040】
そして、レシーバ7で分離された液冷媒は、全開状態にある第2の膨張弁12を通って内部熱交換器8の高圧側伝熱部8aに流入し、その入口(図4の点H)から出口(図4の点I)へ向かって流れる間に、その低圧側伝熱部8bをその入口(図4の点K)から出口(図4の点A)へ向かって流れるガス冷媒との間で内部熱交換を行った後、第3の膨張弁13において二次膨張(図4の点I〜点Jの領域)された後、室内熱交換器3に送られ、その入口(図4の点J)から出口(図4の点K)を流れる間に蒸発しガス冷媒とされる。尚、このガス冷媒は再度圧縮機1に吸入されて圧縮されるが、その吸入温度は、室内熱交換器3の出口温度(図4の点Kに対応する温度)よりも、内部熱交換器8における内部熱交換による昇温分(図4に「d」で示す)だけ高い温度(即ち、図4の点Aに対応する温度)とされる。
【0041】
一方、レシーバ7で分離されたガス冷媒は、冷媒路26を介して圧縮機1の圧縮行程途中にある圧縮室にインジェクションされる(図4の点G参照)。このように圧縮機1の圧縮室にガス冷媒がインジェクションされこれが該圧縮室内のガス冷媒に混合することで、該圧縮室内におけるガス冷媒の冷却と高密度化が促進されることから、上述のように、内部熱交換によって圧縮機1の吸入温度が上昇しており、この高い吸入温度から圧縮が開始されるにも拘わらず、圧縮室内のガス冷媒の温度は、ガスインジェクション時点の点Bに対応する温度から点Cに対応する温度まで一旦低下し、この低下した温度から再度昇圧昇温され、点Dに対応する温度が吐出温度となる。従って、この吐出温度は、ガスインジェクションに伴う温度低下の影響を受けて、ガスインジェクションが行われず点Aから点D0まで圧縮される場合の温度(点D0に対応する温度)よりも低温とされる。
【0042】
暖房運転時の作動
暖房運転時(即ち、室外熱交換器2が特許請求の範囲の「蒸発器B」として機能し、室内熱交換器3が特許請求の範囲の「ガス冷却器A」として機能する運転状態)には、圧縮機1から吐出されたCO2冷媒(ガス冷媒)は、四方切換弁5を介して室内熱交換器3に導入され、該室内熱交換器3において超臨界領域で放熱される(図5の点D〜点Eの領域)。室内熱交換器3から流出する超臨界状態のCO2冷媒は、全開状態の第3の膨張弁13を通って内部熱交換器8の高圧側伝熱部8aに流入し、その入口(図5の点E)から出口(図5の点F)へ向かって流れる間に、その低圧側伝熱部8bをその入口(図5の点K)から出口(図5の点A)へ向かって流れるガス冷媒との間で内部熱交換を行う。さらに、内部熱交換器8の高圧側伝熱部8aから出る冷媒は、第2の膨張弁12において一次次膨張(図5の点F〜点Gの領域)された後、気液二相状態でレシーバ7に導入され、ここで気液分離される(図4の点H及び点I)。
【0043】
そして、レシーバ7で分離された液冷媒は、第1の膨張弁11に流入し、ここで二次膨張(図5の点I〜点Jの領域)された後、室外熱交換器2に送られ、その入口(図5の点J)から出口(図5の点K)を流れる間に蒸発しガス冷媒とされる。尚、このガス冷媒は再度圧縮機1に吸入されて圧縮されるが、その吸入温度は、室外熱交換器2の出口温度(図5の点Kに対応する温度)よりも、内部熱交換器8における内部熱交換による昇温分(図5に「d」で示す)だけ高い温度(即ち、図5の点Aに対応する温度)とされる。
【0044】
一方、レシーバ7で分離されたガス冷媒は、冷媒路26を介して圧縮機1の圧縮行程途中にある圧縮室にインジェクションされる(図5の点H参照)。このように圧縮機1の圧縮室にガス冷媒がインジェクションされこれが該圧縮室内のガス冷媒に混合することで、該圧縮室内におけるガス冷媒の冷却と高密度化が促進されることから、上述のように、内部熱交換によって圧縮機1の吸入温度が上昇しており、この高い吸入温度から圧縮が開始されるにも拘わらず、圧縮室内のガス冷媒の温度は、ガスインジェクション時点の点Bに対応する温度から点Cに対応する温度まで一旦低下し、この低下した温度から再度昇温され、点Dに対応する温度が吐出温度となる。従って、この吐出温度は、ガスインジェクションに伴う温度低下の影響を受けて、ガスインジェクションが行われず点Aから点D0まで圧縮される場合の温度(点D0に対応する温度)よりも低温とされる。
【0045】
以上のように、CO2冷媒を用いた遷臨界冷凍サイクルの冷媒回路に内部熱交換器8とガスインジェクション機構Eとを組み込むことで、該内部熱交換器8における内部熱交換に伴う圧縮機吐出温度の上昇が、ガスインジェクションによる冷却作用によって抑制されることから、内部熱交換による冷凍能力の増加(図4及び図5のエンタルピー量「c1」)による効率向上効果を、圧縮機1の信頼性を確保しつつ実現できる。さらに、レシーバ7で気液分離したガス冷媒を圧縮機1側にインジェクションさせた結果、インジェクション量に対応する分だけ、蒸発器(即ち、冷房運転時の室内熱交換器3と暖房運転時の室外熱交換器2)の冷媒循環量がガス冷却器(即ち、冷房運転時の室外熱交換器2と暖房運転時の室内熱交換器3)側における冷媒循環量が少なくなっているが、その分だけ単位重量当たりの蒸発エンタルピーが増大しているので(図4及び図5ののエンタルピー量「c2」)、冷凍能力は変わらない。これらの相乗効果として、圧縮機1の信頼性を損なうことなく、高い効率を実現することができ、高効率化と高信頼性との両立が可能となるものである。
【0046】
また、上記レシーバ7で気液分離した後の液冷媒を蒸発器(即ち、冷房運転時における室内熱交換器3と暖房運転時における室外熱交換器2)に導入するものであることから、該蒸発器を流れるCO2冷媒の単位重量当たりの蒸発エンタルピーが大きくとれ、同一冷凍能力下においては冷媒流量が少なくなり冷媒流速が低下する。この結果、蒸発器での圧力損失による効率低下が抑制され、高い冷凍効率が確保されるとともに、冷媒流量が少ない分だけ蒸発器のコンパクト化が促進されることになる。
【0047】
さらに、この実施形態のように、冷房運転時には蒸発器から出たガス冷媒と上記レシーバ7で気液分離された後の液冷媒との間で熱交換を行うように構成することで、例えば上記内部熱交換器8において気液分離前のCO2冷媒と熱交換させる場合に比して、該内部熱交換器8を流れる冷媒量が少なくなり、それだけ該内部熱交換器8のコンパクト化が促進されることになる。
【0048】
一方、上記膨張弁10及び膨張弁11の開度制御を適正に行って上記圧縮機1側へのガスインジェクション量を調整することで、圧縮機入力を低下させて省エネ運転を実現することができる。
【図面の簡単な説明】
【図1】本願発明にかかる冷凍システムの第1の実施形態である空気調和機の冷媒回路図である。
【図2】図1に示した空気調和機における冷暖房時のP−H線図である。
【図3】本願発明にかかる冷凍システムの第2の実施形態である空気調和機の冷媒回路図である。
【図4】図3に示した空気調和機における冷房運転時のP−H線図である。
【図5】図3に示した空気調和機における暖房運転時のP−H線図である。
【図6】内部熱交換器を備えた従来の空気調和機の冷媒回路図である。
【図7】インジェクション機構を備えた従来の空気調和機の冷媒回路図である。
【図8】図7に示した従来の空気調和機におけるP−H線図である。
【符号の説明】
1は圧縮機、2は室外熱交換器、3は室内熱交換器、4はアキュームレータ、5及び6は四方切換弁、7はレシーバ、8は内部熱交換器、10は制御弁、11〜13は膨張弁、21〜26は冷媒路、Z1及びZ2は空気調和機である。
[0001]
BACKGROUND OF THE INVENTION
The present invention is CO2The present invention relates to a refrigeration system using a refrigerant.
[0002]
[Prior art]
CO2Transcritical refrigeration cycle using refrigerant is CO2Since the operating pressure is high as a characteristic of the refrigerant, there is a disadvantage that the efficiency (coefficient of performance: COP) is worse than that of a refrigeration cycle using a fluorocarbon refrigerant. As one method for improving this, FIG. As shown, an internal heat exchanger 8 is incorporated in a basic refrigerant circuit composed of a compressor 1, a four-way switching valve 5, an outdoor heat exchanger 2, an indoor heat exchanger 3, and an expansion valve 11. The high pressure side heat transfer section 8a and the low pressure side heat transfer section 8b of the heat exchanger 8 can be selectively connected to the outdoor heat exchanger 2 and the indoor heat exchanger 3 via the four-way switching valve 6, An internal heat exchanger built-in system has been proposed in which the efficiency of the entire refrigeration cycle is enhanced by internal heat exchange in the internal heat exchanger 8.
[0003]
[Problems to be solved by the invention]
However, in this way CO2When an internal heat exchanger is incorporated in the refrigerant circuit for the purpose of improving the efficiency of the refrigeration cycle using refrigerant, the efficiency improvement objective is achieved, but as the compressor suction temperature rises due to internal heat exchange, Since the discharge temperature also rises, for example, the resin insulating material used in the compressor is rapidly deteriorated, and there is a disadvantage that reliability during long-term operation as a refrigeration system is impaired.
[0004]
Therefore, in the present invention, CO2In a refrigeration system using a refrigerant, the efficiency improvement effect due to the incorporation of the internal heat exchanger in the refrigerant circuit is less than the drawbacks associated with the incorporation of the internal heat exchanger (that is, the reliability caused by the rise in the compressor discharge temperature). This was achieved for the purpose of achieving both high efficiency and high reliability.
[0005]
TECHNICAL BACKGROUND OF THE INVENTION
The inventors of the present application paid attention to the gas injection mechanism in the refrigerant circuit in the course of studying the means for solving the above problems. That is, this gas injection mechanism is similar to the above-described method of incorporating the internal heat exchanger into the refrigerant circuit, such as a fluorocarbon refrigerant or CO 2.27 has been proposed as an efficiency improvement measure for a refrigeration cycle using a refrigerant.2An example of a refrigerant circuit in which a gas injection mechanism is incorporated in a transcritical refrigeration cycle using a refrigerant is shown. In this refrigerant circuit, the discharge port of the compressor 1 is switched to the outdoor heat exchanger 2 and the indoor heat exchanger 3 by the switching operation of the four-way switching valve 5, and the suction port of the compressor 1 is connected to the indoor heat exchanger 3. While being selectively connectable to the outdoor heat exchanger 2, the expansion valve 11, the receiver 7, and the expansion valve 12 are provided in the refrigerant path 31 that connects the outdoor heat exchanger 2 and the indoor heat exchanger 3. Are sequentially arranged, and the circuit is configured by connecting the air chamber of the receiver 7 and the compression chamber of the compressor 1 by the refrigerant path 32 provided with the control valve 10.
[0006]
FIG. 8 shows a PH diagram of a transcritical refrigeration cycle incorporating a gas injection mechanism. This will be briefly explained. For example, during cooling operation, CO in a supercritical state at the outlet point E of the outdoor heat exchanger 2 functioning as a gas cooler.2The refrigerant is primarily expanded in the expansion valve 11 to produce gas-liquid two-phase CO.2As a refrigerant, this gas-liquid two-phase CO2The refrigerant is introduced into the receiver 7 and gas-liquid separation is performed here (point F). The separated liquid refrigerant is secondarily expanded in the expansion valve 12 as a saturated liquid refrigerant (point H), and then sent to the indoor heat exchanger 3 functioning as an evaporator. On the other hand, the gas refrigerant separated in the receiver 7 is injected as a saturated gas refrigerant (point G) through the refrigerant path 32 into the compression chamber in the middle of the compression stroke of the compressor 1.
[0007]
Thus, by injecting the gas refrigerant separated in the receiver 7 into the compression chamber of the compressor 1 in the middle of the compression process,2Since the refrigerant and the injected gas refrigerant are mixed and the refrigerant temperature decreases from the temperature corresponding to the point B to the point C, the refrigerant temperature at the outlet of the compressor 1 (ie, “discharge temperature”) is Discharge temperature when gas injection is not performed (point D0) (Temperature corresponding to point D).
[0008]
Further, by injecting the gas refrigerant separated into the gas and liquid into the compressor 1, the refrigerant circulation amount on the evaporator (indoor heat exchanger 3) side is the gas cooler (outdoor heat exchanger 2) by this injection amount. The refrigerant is less than the refrigerant circulation amount on the side, and the liquid refrigerant after gas-liquid separation is secondarily expanded in the expansion valve 12 and introduced into the evaporator, so that the evaporation enthalpy per unit weight in the evaporator (Fig. 8 shows "h1The amount of enthalpy indicated by “)”, the cooling capacity increases accordingly. As a result, a refrigerating capacity equivalent to that before the refrigerant circulation amount is reduced can be obtained with a smaller refrigerant circulation amount.
[0009]
Inventors of the present application effectively use the advantages based on the incorporation of the gas injection mechanism in the refrigerant circuit, particularly the action of lowering the discharge temperature of the compressor. The idea is to eliminate as much as possible the rise in compressor discharge temperature.
[0010]
[Means for Solving the Problems]
In the present invention, based on such a technical background, the following configuration is adopted as specific means for solving the above-described problems.
[0011]
CO according to the first invention of the present application2In refrigeration systems using refrigerants, CO2A compressor 1 that compresses the refrigerant; a gas cooler A that dissipates heat in the supercritical region of the refrigerant discharged from the compressor 1; a primary expansion mechanism C that primarily expands the gas cooler A; and the primary A receiver 7 for gas-liquid separation of the refrigerant from the expansion mechanism C, a secondary expansion mechanism D for secondary expansion of the liquid refrigerant separated by the receiver 7, and an evaporation for evaporating the liquid refrigerant from the secondary expansion mechanism D A gas injection mechanism E for injecting the gas refrigerant separated by the receiver 7 into the compression chamber of the compressor 1, and the gas refrigerant from the evaporator B sucked into the compressor 1 and the system An internal heat exchanger 8 that exchanges heat with the liquid refrigerant is provided.
[0012]
In the second invention of the present application, the CO according to the first invention is provided.2In the refrigeration system using the refrigerant, the internal heat exchanger 8 is operated during the operation in which the gas cooler A functions as a use side heat exchanger and the evaporator B functions as a heat source side heat exchanger, and the gas cooling After the gas refrigerant is separated from the gas refrigerant from the evaporator B and the receiver 7 in both the operation when the evaporator A functions as a heat source side heat exchanger and the evaporator B functions as a utilization side heat exchanger. The heat exchanger is configured to exchange heat with the liquid refrigerant.
[0013]
In the third invention of the present application, the CO according to the first invention is provided.2In the refrigeration system using the refrigerant, the internal heat exchanger 8 is separated from the evaporator B during operation in which the gas cooler A functions as a use side heat exchanger and the evaporator B functions as a heat source side heat exchanger. During the operation in which the gas cooler A functions as a heat source side heat exchanger and the evaporator B functions as a use side heat exchanger, between the gas refrigerant and the liquid refrigerant on the outlet side of the gas cooler A It is characterized in that heat exchange is performed between the gas refrigerant from the evaporator B and the liquid refrigerant after gas-liquid separation by the receiver 7.
[0014]
【The invention's effect】
In the present invention, the following effects can be obtained by adopting such a configuration.
[0015]
(1) CO according to the first invention of the present application2According to the refrigeration system using refrigerant, CO2A compressor 1 that compresses the refrigerant, a gas cooler A that dissipates heat in the supercritical region of the refrigerant discharged from the compressor 1, a primary expansion mechanism C that primarily expands the refrigerant from the gas cooler A, and A receiver 7 for gas-liquid separation of the refrigerant from the primary expansion mechanism C, a secondary expansion mechanism D for secondary expansion of the liquid refrigerant separated by the receiver 7, and a liquid refrigerant from the secondary expansion mechanism D are evaporated. An evaporator B, a gas injection mechanism E for injecting the gas refrigerant separated by the receiver 7 into the compression chamber of the compressor 1, and a gas refrigerant from the evaporator B sucked into the compressor 1 and the system The internal heat exchanger 8 that exchanges heat with the liquid refrigerant of the liquid refrigerant, the internal heat exchange in the internal heat exchanger 8 can improve the refrigeration efficiency, while the gas injection machine The rise of the discharge temperature of the compressor based on the internal heat exchange in the internal heat exchanger 8 is suppressed by the injection of the gas refrigerant to the compressor side by E, and the liquid refrigerant after gas-liquid separation is introduced into the evaporator B This increases the enthalpy of evaporation per unit weight and improves the refrigerating capacity. As a synergistic effect, high efficiency can be realized without impairing the reliability of the compressor.
[0016]
Moreover, since the efficiency can be increased by a relatively simple circuit change in which the internal heat exchanger 8 and the gas injection mechanism E are incorporated in the basic refrigerant circuit, both cost reduction and high efficiency of the refrigeration system can be achieved. Is easy.
[0017]
Furthermore, by introducing the liquid refrigerant after gas-liquid separation into the evaporator B, the CO flowing through the evaporator B2Since the evaporation enthalpy per unit weight of the refrigerant can be increased, the refrigerant flow rate decreases and the refrigerant flow rate decreases under the same refrigeration capacity. As a result, a reduction in efficiency due to pressure loss in the evaporator B is suppressed and high refrigeration efficiency is ensured, and downsizing of the evaporator B is promoted by a smaller amount of refrigerant flow in the evaporator B.
[0018]
(2) CO according to the second invention of the present application2According to the refrigeration system using the refrigerant, in addition to the effect described in the above item (1), the following specific effect can be obtained. That is, in the present invention, the internal heat exchanger 8 is operated during the operation in which the gas cooler A functions as a use side heat exchanger and the evaporator B functions as a heat source side heat exchanger, and the gas cooler A Functions as a heat source side heat exchanger and the evaporator B functions as a use side heat exchanger during operation, the gas refrigerant from the evaporator B and the liquid refrigerant after gas-liquid separation by the receiver 7 For example, in the internal heat exchanger 8, the CO before gas-liquid separation is used.2Compared to the case where heat is exchanged with the refrigerant, the amount of refrigerant flowing through the internal heat exchanger 8 is reduced, and the internal heat exchanger 8 is thus made more compact.
[0019]
(3) CO according to the third invention of the present application2According to the refrigeration system using the refrigerant, in addition to the effect described in the above item (1), the following specific effect can be obtained. That is, according to the present invention, the internal heat exchanger 8 is operated with the gas from the evaporator B during operation in which the gas cooler A functions as a use side heat exchanger and the evaporator B functions as a heat source side heat exchanger. During the operation in which the gas cooler A functions as a heat source side heat exchanger and the evaporator B functions as a utilization side heat exchanger between the refrigerant and the liquid refrigerant on the outlet side of the gas cooler A, the evaporator Heat exchange is performed between the gas refrigerant from B and the liquid refrigerant after gas-liquid separation by the receiver 7.
[0020]
Accordingly, particularly during the latter operation, heat exchange is performed with the liquid refrigerant after the gas-liquid separation by the receiver 7, so that, for example, before the gas-liquid separation in the internal heat exchanger 8. CO2Compared with the case where heat is exchanged with the refrigerant, the amount of the refrigerant flowing through the internal heat exchanger 8 is small, and the downsizing of the internal heat exchanger 8 is promoted accordingly.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the CO according to the present invention2A refrigeration system using a refrigerant will be specifically described based on a preferred embodiment.
[0022]
First embodiment
FIG. 1 shows CO according to the present invention.2The refrigerant circuit in 1st Embodiment which applied the refrigeration system using a refrigerant | coolant to the air conditioner is shown, In the same figure, the code | symbol 1 is a compressor, 2 is an outdoor heat exchanger (the "heat source side of a claim" 3 corresponds to an indoor heat exchanger (corresponds to the “use side heat exchanger” in the claims), and 4 denotes a refrigerant path 24 connected to the suction port of the compressor 1. The accumulator 5 provided is a first four-way switching valve that selectively connects the outdoor heat exchanger 2 and the indoor heat exchanger 3 to the compressor 1 and the refrigerant path 23, and 6 is the outdoor heat exchanger. 2 is a second four-way switching valve that alternatively connects the indoor heat exchanger 3 to the refrigerant path 23 and the refrigerant path 24. In FIG. 1, the valve positions of the four-way switching valves 5 and 6 are indicated by a solid line during cooling operation and by a broken line during heating operation.
[0023]
Reference numeral 7 denotes a gas-liquid separation receiver provided at an intermediate position between the expansion valves 11 and 12 of the refrigerant passage 23 in which the first expansion valve 11 and the second expansion valve 12 are provided in series. Yes, the gas phase part of the receiver 7 is connected to the compression chamber of the compressor 1 via a refrigerant path 26 provided with a control valve 10. The receiver 7, the refrigerant path 26, and the control valve 10 constitute a “gas injection mechanism E” recited in the claims.
[0024]
Reference numeral 8 denotes an internal heat exchanger including a high-pressure side heat transfer unit 8a and a low-pressure side heat transfer unit 8b. The high-pressure side heat transfer unit 8a is connected to the receiver 7 and the second expansion of the refrigerant path 23. The intermediate position of the valve 12 is interposed, and the low-pressure side heat transfer section 8 b is interposed in the refrigerant path 24.
[0025]
Subsequently, the operation of the refrigerant circuit of the air conditioner is performed during a cooling operation (that is, the outdoor heat exchanger 2 functions as the “gas cooler A” in the claims, and the indoor heat exchanger 3 is in the claims). A description will be given with reference to the “PH diagram” shown in FIG.
[0026]
During cooling operation, the CO discharged from the compressor 12The refrigerant (gas refrigerant) is introduced into the outdoor heat exchanger 2 through the first four-way switching valve 5, and is radiated in the supercritical region in the outdoor heat exchanger 2 (from point D to point E in FIG. 2). region). CO in supercritical state flowing out of the outdoor heat exchanger 22The refrigerant reaches the first expansion valve 11 (corresponding to “primary expansion mechanism C” in the claims) from the second four-way switching valve 6, and is primarily expanded in the first expansion valve 11 (FIG. 2). In the gas-liquid two-phase state, it is introduced into the receiver 7 where it is gas-liquid separated (points G and H in FIG. 2).
[0027]
The liquid refrigerant separated by the receiver 7 flows into the high-pressure side heat transfer section 8a of the internal heat exchanger 8 and flows from the inlet (point H in FIG. 2) toward the outlet (point I in FIG. 2). In the meantime, after the internal heat exchange between the low-pressure side heat transfer section 8b and the gas refrigerant flowing from the inlet (point K in FIG. 2) toward the outlet (point A in FIG. 2), After flowing into the expansion valve 12 (corresponding to “secondary expansion mechanism D” in the scope of claims) and subjected to secondary expansion (region of points I to J in FIG. 2), the indoor heat exchanger 3 And evaporates while flowing from the inlet (point J in FIG. 2) to the outlet (point K in FIG. 2) to be a gas refrigerant. This gas refrigerant is again sucked into the compressor 1 and compressed, but the suction temperature is higher than the outlet temperature of the indoor heat exchanger 3 (the temperature corresponding to the point K in FIG. 2). 8, the temperature is increased by the temperature rise (indicated by “d” in FIG. 2) due to the internal heat exchange (that is, the temperature corresponding to the point A in FIG. 2).
[0028]
On the other hand, the gas refrigerant separated by the receiver 7 is injected into the compression chamber in the middle of the compression stroke of the compressor 1 via the refrigerant path 26 (see point G in FIG. 2). As described above, since the gas refrigerant is injected into the compression chamber of the compressor 1 and mixed with the gas refrigerant in the compression chamber, cooling and densification of the gas refrigerant in the compression chamber are promoted. In addition, the suction temperature of the compressor 1 has increased due to the internal heat exchange, and the temperature of the gas refrigerant in the compression chamber corresponds to the point B at the time of gas injection, although the compression starts from this high suction temperature. The temperature is once lowered from the temperature to the temperature corresponding to the point C, and the pressure is raised again from the lowered temperature. Finally, the temperature corresponding to the point D becomes the discharge temperature. Therefore, since this discharge temperature is affected by the temperature drop caused by the gas injection, the point A to the point D without performing the gas injection.0Temperature when compressed to (point D0Temperature).
[0029]
In the heating operation, contrary to the cooling operation, the outdoor heat exchanger 2 functions as an evaporator and the indoor heat exchanger 3 functions as a gas cooler, but the refrigerant in the internal heat exchanger 8 The flow direction is the same during cooling operation and heating operation. That is, the internal heat exchanger 8 always exchanges heat with the liquid refrigerant after the gas-liquid separation by the receiver 7.
[0030]
As mentioned above, CO2By incorporating the internal heat exchanger 8 and the gas injection mechanism E in the refrigerant circuit of the transcritical refrigeration cycle using the refrigerant, the rise in the compressor discharge temperature accompanying the internal heat exchange in the internal heat exchanger 8 is increased by the gas injection. Therefore, the increase in refrigeration capacity due to internal heat exchange (enthalpy amount “c” in FIG. 2)1)) Can be achieved while ensuring the reliability of the compressor 1. Furthermore, as a result of the gas refrigerant separated by the receiver 7 being injected into the compressor 1, the refrigerant circulation amount of the evaporator (that is, the indoor heat exchanger 3 during the cooling operation) is increased by an amount corresponding to the injection amount. Although the refrigerant circulation amount on the side of the gas cooler (that is, the outdoor heat exchanger 2 during the cooling operation) decreases, the enthalpy of evaporation per unit weight increases by that amount (the enthalpy amount “c” in FIG. 2).2"), Refrigeration capacity does not change. As a synergistic effect, high efficiency can be realized without impairing the reliability of the compressor 1, and both high efficiency and high reliability can be achieved.
[0031]
Further, since the liquid refrigerant after the gas-liquid separation by the receiver 7 is introduced into the evaporator (that is, the indoor heat exchanger 3 during the cooling operation and the outdoor heat exchanger 2 during the heating operation), CO flowing through the evaporator2The enthalpy of evaporation per unit weight of the refrigerant is large, and the refrigerant flow rate decreases and the refrigerant flow rate decreases under the same refrigeration capacity. As a result, a reduction in efficiency due to pressure loss in the evaporator is suppressed, high refrigeration efficiency is ensured, and downsizing of the evaporator is promoted by a smaller refrigerant flow rate.
[0032]
Further, as in this embodiment, heat exchange is performed between the gas refrigerant that has exited the evaporator and the liquid refrigerant that has been gas-liquid separated by the receiver 7 during both the cooling operation and the heating operation. By configuring in this way, for example, the CO before gas-liquid separation in the internal heat exchanger 82Compared to the case where heat is exchanged with the refrigerant, the amount of refrigerant flowing through the internal heat exchanger 8 is reduced, and the internal heat exchanger 8 is thus made more compact.
[0033]
On the other hand, by appropriately controlling the opening degree of the expansion valve 10 and the expansion valve 11 and adjusting the gas injection amount to the compressor 1, the compressor input can be reduced to realize an energy saving operation. .
[0034]
Second embodiment
FIG. 3 shows CO according to the present invention.2The refrigerant circuit in 2nd Embodiment which applied the refrigeration system using a refrigerant | coolant to the air conditioner is shown, and also the "PH diagram" at the time of air_conditionaing | cooling operation and heating operation is shown in FIG.4 and FIG.5. Each is shown.
[0035]
First, the refrigerant circuit of FIG. 3 will be described. In FIG. 3, reference numeral 1 is a compressor, 2 is an outdoor heat exchanger (corresponding to the “heat source side heat exchanger” in the claims), and 3 is indoor heat exchange. 4 (according to the “use side heat exchanger” in the claims), 4 is an accumulator provided in the refrigerant passage 25 connected to the suction port of the compressor 1, and 5 is the outdoor heat exchanger 2 This is a four-way switching valve that alternatively connects the indoor heat exchanger 3 to the compressor 1 and the refrigerant path 24. The outdoor heat exchanger 2 and the indoor heat exchanger 3 are connected via a refrigerant path 21, and the refrigerant path 21 includes a first expansion valve 11, a second expansion valve 12, and a third one. The expansion valve 13 is connected in series, and a receiver 7 for gas-liquid separation is provided at an intermediate position between the first expansion valve 11 and the second expansion valve 12, and the second expansion valve 12. A high pressure side heat transfer portion 8a of the internal heat exchanger 8 having a high pressure side heat transfer portion 8a and a low pressure side heat transfer portion 8b is interposed at an intermediate position with respect to the third expansion valve 13. Further, one end of the low-pressure side heat transfer section 8b of the internal heat exchanger 8 is connected to the refrigerant path 24 and the other end is connected to the refrigerant path 25. The gas phase portion of the receiver 7 is connected to the compression chamber of the compressor 1 through a refrigerant path 26 provided with a control valve 10. In this embodiment, the receiver 7, the refrigerant path 26, and the control valve 10 constitute a “gas injection mechanism E” in the claims.
[0036]
The operation modes of the first to third expansion valves 11 to 13 are different between the cooling operation and the heating operation. That is, during the cooling operation in which the outdoor heat exchanger 2 functions as a gas cooler, the first expansion valve 11 functions as a “primary expansion mechanism C” in the claims to perform primary expansion of the refrigerant, The expansion valve 12 is fully opened and does not perform the expansion action, and the third expansion valve 13 functions as the “secondary expansion mechanism D” in the claims and performs the secondary expansion of the refrigerant. On the other hand, during the heating operation, the first expansion valve 11 functions as the “secondary expansion mechanism D” in the claims to perform secondary expansion of the refrigerant, and the second expansion valve 12 is in the claims “ It functions as a primary expansion mechanism C ”to perform primary expansion of the refrigerant, and the third expansion valve 13 is fully opened and does not perform expansion.
[0037]
In FIG. 3, the valve position of the four-way switching valve 5 is indicated by a solid line during the cooling operation and by a broken line during the heating operation.
[0038]
Subsequently, the operation during the cooling operation and the heating operation of the refrigerant circuit of the air conditioner is described as “PH diagram” during the cooling operation shown in FIG. 4 and “PH” during the heating operation shown in FIG. The explanation will be made with reference to the “line diagram”.
[0039]
Operation during cooling operation
During the cooling operation (that is, the outdoor heat exchanger 2 functions as the “gas cooler A” in the claims, and the indoor heat exchanger 3 functions as the “evaporator B” in the claims). Is the CO discharged from the compressor 12The refrigerant (gas refrigerant) is introduced into the outdoor heat exchanger 2 through the four-way switching valve 5, and is radiated in the supercritical region in the outdoor heat exchanger 2 (regions from point D to point E in FIG. 4). CO in supercritical state flowing out of the outdoor heat exchanger 22The refrigerant is primarily expanded in the first expansion valve 11 (region from point E to point F in FIG. 4), introduced into the receiver 7 in a gas-liquid two-phase state, and gas-liquid separation is performed here (point in FIG. 4). G and point H).
[0040]
Then, the liquid refrigerant separated by the receiver 7 flows into the high-pressure side heat transfer section 8a of the internal heat exchanger 8 through the second expansion valve 12 in the fully opened state, and the inlet (point H in FIG. 4). Gas refrigerant flowing through the low pressure side heat transfer section 8b from the inlet (point K in FIG. 4) to the outlet (point A in FIG. 4) while flowing from the outlet to the outlet (point I in FIG. 4). After the internal heat exchange between them, the secondary expansion is performed in the third expansion valve 13 (the region from the point I to the point J in FIG. 4), and then sent to the indoor heat exchanger 3 and the inlet (FIG. 4). Evaporates while flowing from the point J) to the outlet (point K in FIG. 4) to be a gas refrigerant. This gas refrigerant is again sucked into the compressor 1 and compressed, but the suction temperature is higher than the outlet temperature of the indoor heat exchanger 3 (the temperature corresponding to the point K in FIG. 4). 8, the temperature is increased by the temperature rise (indicated by “d” in FIG. 4) due to internal heat exchange (that is, the temperature corresponding to point A in FIG. 4).
[0041]
On the other hand, the gas refrigerant separated by the receiver 7 is injected into the compression chamber in the middle of the compression stroke of the compressor 1 through the refrigerant path 26 (see point G in FIG. 4). As described above, since the gas refrigerant is injected into the compression chamber of the compressor 1 and mixed with the gas refrigerant in the compression chamber, cooling and densification of the gas refrigerant in the compression chamber are promoted. In addition, the suction temperature of the compressor 1 has increased due to the internal heat exchange, and the temperature of the gas refrigerant in the compression chamber corresponds to the point B at the time of gas injection, although the compression starts from this high suction temperature. The temperature is once lowered from the temperature to the temperature corresponding to the point C, and the pressure is raised again from the lowered temperature, and the temperature corresponding to the point D becomes the discharge temperature. Therefore, this discharge temperature is affected by the temperature drop caused by gas injection, and gas injection is not performed.0Temperature when compressed to (point D0Temperature).
[0042]
Operation during heating operation
During heating operation (that is, the outdoor heat exchanger 2 functions as the “evaporator B” in the claims, and the indoor heat exchanger 3 functions as the “gas cooler A” in the claims). Is the CO discharged from the compressor 12The refrigerant (gas refrigerant) is introduced into the indoor heat exchanger 3 through the four-way switching valve 5, and is radiated in the supercritical region in the indoor heat exchanger 3 (regions from point D to point E in FIG. 5). CO in supercritical state flowing out of the indoor heat exchanger 32The refrigerant flows into the high-pressure side heat transfer section 8a of the internal heat exchanger 8 through the fully opened third expansion valve 13, and from the inlet (point E in FIG. 5) to the outlet (point F in FIG. 5). While flowing in the direction, internal heat exchange is performed between the low-pressure side heat transfer section 8b and the gas refrigerant flowing from the inlet (point K in FIG. 5) toward the outlet (point A in FIG. 5). Furthermore, after the refrigerant | coolant which exits from the high pressure side heat-transfer part 8a of the internal heat exchanger 8 is primary-expanded in the 2nd expansion valve 12 (area | region of the point F-point G of FIG. 5), a gas-liquid two-phase state Then, it is introduced into the receiver 7 where it is gas-liquid separated (point H and point I in FIG. 4).
[0043]
Then, the liquid refrigerant separated by the receiver 7 flows into the first expansion valve 11, where it is subjected to secondary expansion (regions from point I to point J in FIG. 5) and then sent to the outdoor heat exchanger 2. Then, it evaporates while flowing from the inlet (point J in FIG. 5) to the outlet (point K in FIG. 5), and becomes a gas refrigerant. This gas refrigerant is again sucked into the compressor 1 and compressed, but the suction temperature is higher than the outlet temperature of the outdoor heat exchanger 2 (the temperature corresponding to the point K in FIG. 5). 8, the temperature is increased by the temperature rise (indicated by “d” in FIG. 5) due to the internal heat exchange (that is, the temperature corresponding to the point A in FIG. 5).
[0044]
On the other hand, the gas refrigerant separated by the receiver 7 is injected into the compression chamber in the middle of the compression stroke of the compressor 1 via the refrigerant path 26 (see point H in FIG. 5). As described above, since the gas refrigerant is injected into the compression chamber of the compressor 1 and mixed with the gas refrigerant in the compression chamber, cooling and densification of the gas refrigerant in the compression chamber are promoted. In addition, the suction temperature of the compressor 1 has increased due to the internal heat exchange, and the temperature of the gas refrigerant in the compression chamber corresponds to the point B at the time of gas injection, although the compression starts from this high suction temperature. The temperature is once lowered from the temperature to the temperature corresponding to the point C, and the temperature is raised again from the lowered temperature, and the temperature corresponding to the point D becomes the discharge temperature. Therefore, this discharge temperature is affected by the temperature drop caused by gas injection, and gas injection is not performed.0Temperature when compressed to (point D0Temperature).
[0045]
As mentioned above, CO2By incorporating the internal heat exchanger 8 and the gas injection mechanism E in the refrigerant circuit of the transcritical refrigeration cycle using the refrigerant, the rise in the compressor discharge temperature accompanying the internal heat exchange in the internal heat exchanger 8 is increased by the gas injection. Therefore, the increase in the refrigeration capacity due to the internal heat exchange (the enthalpy amount “c” in FIGS. 4 and 5).1)) Can be achieved while ensuring the reliability of the compressor 1. Furthermore, as a result of injecting the gas refrigerant separated into gas and liquid by the receiver 7 to the compressor 1 side, the evaporator (that is, the indoor heat exchanger 3 during the cooling operation and the outdoor during the heating operation) corresponding to the injection amount. Although the refrigerant circulation amount of the heat exchanger 2) is smaller in the gas cooler (that is, the outdoor heat exchanger 2 during the cooling operation and the indoor heat exchanger 3 during the heating operation), the refrigerant circulation amount is reduced. As the evaporation enthalpy per unit weight increases only (the enthalpy amount “c” in FIGS. 4 and 5).2"), Refrigeration capacity does not change. As a synergistic effect, high efficiency can be realized without impairing the reliability of the compressor 1, and both high efficiency and high reliability can be achieved.
[0046]
Further, since the liquid refrigerant after the gas-liquid separation by the receiver 7 is introduced into the evaporator (that is, the indoor heat exchanger 3 during the cooling operation and the outdoor heat exchanger 2 during the heating operation) CO flowing through the evaporator2The enthalpy of evaporation per unit weight of the refrigerant is large, and the refrigerant flow rate decreases and the refrigerant flow rate decreases under the same refrigeration capacity. As a result, a reduction in efficiency due to pressure loss in the evaporator is suppressed, high refrigeration efficiency is ensured, and downsizing of the evaporator is promoted by a smaller refrigerant flow rate.
[0047]
Further, as in this embodiment, during the cooling operation, by configuring the heat exchange between the gas refrigerant that has come out of the evaporator and the liquid refrigerant that has been gas-liquid separated by the receiver 7, for example, CO before gas-liquid separation in the internal heat exchanger 82Compared to the case where heat is exchanged with the refrigerant, the amount of refrigerant flowing through the internal heat exchanger 8 is reduced, and the internal heat exchanger 8 is thus made more compact.
[0048]
On the other hand, by appropriately controlling the opening degree of the expansion valve 10 and the expansion valve 11 and adjusting the gas injection amount to the compressor 1, the compressor input can be reduced to realize an energy saving operation. .
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of an air conditioner that is a first embodiment of a refrigeration system according to the present invention.
FIG. 2 is a PH diagram at the time of cooling and heating in the air conditioner shown in FIG.
FIG. 3 is a refrigerant circuit diagram of an air conditioner that is a second embodiment of the refrigeration system according to the present invention.
4 is a PH diagram at the time of cooling operation in the air conditioner shown in FIG. 3; FIG.
5 is a PH diagram at the time of heating operation in the air conditioner shown in FIG. 3. FIG.
FIG. 6 is a refrigerant circuit diagram of a conventional air conditioner including an internal heat exchanger.
FIG. 7 is a refrigerant circuit diagram of a conventional air conditioner provided with an injection mechanism.
8 is a PH diagram of the conventional air conditioner shown in FIG.
[Explanation of symbols]
1 is a compressor, 2 is an outdoor heat exchanger, 3 is an indoor heat exchanger, 4 is an accumulator, 5 and 6 are four-way switching valves, 7 is a receiver, 8 is an internal heat exchanger, 10 is a control valve, 11-13 Is an expansion valve, 21 to 26 are refrigerant passages, Z1And Z2Is an air conditioner.

Claims (3)

CO2冷媒を圧縮する圧縮機(1)と、
上記圧縮機(1)から吐出される冷媒を超臨界領域において放熱させるガス冷却器(A)と、
上記ガス冷却器(A)からの冷媒を一次膨張させる一次膨張機構(C)と、
上記一次膨張機構(C)からの冷媒を気液分離するレシーバ(7)と、
上記レシーバ(7)で分離された液冷媒を二次膨張させる二次膨張機構(D)と、
上記二次膨張機構(D)からの液冷媒を蒸発させる蒸発器(B)と、
上記レシーバ(7)で分離されたガス冷媒を上記圧縮機(1)の圧縮室内にインジェクションするガスインジェクション機構(E)と、
上記圧縮機(1)に吸入される上記蒸発器(B)からのガス冷媒と系内の液冷媒との間で熱交換を行わせる内部熱交換器(8)とを備えたことを特徴とするCO2冷媒を用いた冷凍システム。
A compressor (1) for compressing the CO 2 refrigerant;
A gas cooler (A) that dissipates heat in the supercritical region of the refrigerant discharged from the compressor (1);
A primary expansion mechanism (C) for primarily expanding the refrigerant from the gas cooler (A);
A receiver (7) for gas-liquid separation of the refrigerant from the primary expansion mechanism (C);
A secondary expansion mechanism (D) for secondary expansion of the liquid refrigerant separated by the receiver (7);
An evaporator (B) for evaporating liquid refrigerant from the secondary expansion mechanism (D);
A gas injection mechanism (E) for injecting the gas refrigerant separated by the receiver (7) into the compression chamber of the compressor (1);
An internal heat exchanger (8) for exchanging heat between the gas refrigerant from the evaporator (B) sucked into the compressor (1) and the liquid refrigerant in the system. A refrigeration system using CO 2 refrigerant.
請求項1において、
上記内部熱交換器(8)が、上記ガス冷却器(A)が利用側熱交換器として機能し上記蒸発器(B)が熱源側熱交換器として機能する運転時と、上記ガス冷却器(A)が熱源側熱交換器として機能し上記蒸発器(B)が利用側熱交換器として機能する運転時の双方で、上記蒸発器(B)からのガス冷媒と上記レシーバ(7)で気液分離された後の液冷媒との間で熱交換を行うように構成されていることを特徴とするCO2冷媒を用いた冷凍システム。
In claim 1,
The internal heat exchanger (8) is operated during the operation in which the gas cooler (A) functions as a use side heat exchanger and the evaporator (B) functions as a heat source side heat exchanger, and the gas cooler ( A) functions as a heat source side heat exchanger and the evaporator (B) functions as a use side heat exchanger, and the gas refrigerant from the evaporator (B) and the receiver (7) A refrigeration system using a CO 2 refrigerant, wherein heat exchange is performed with the liquid refrigerant after liquid separation.
請求項1において、
上記内部熱交換器(8)が、上記ガス冷却器(A)が利用側熱交換器として機能し上記蒸発器(B)が熱源側熱交換器として機能する運転時には該蒸発器(B)からのガス冷媒と上記ガス冷却器(A)の出口側の液冷媒との間で、上記ガス冷却器(A)が熱源側熱交換器として機能し上記蒸発器(B)が利用側熱交換器として機能する運転時には該蒸発器(B)からのガス冷媒と上記レシーバ(7)で気液分離された後の液冷媒との間で、それぞれ熱交換を行うように構成されていることを特徴とするCO2冷媒を用いた冷凍システム。
In claim 1,
The internal heat exchanger (8) is operated from the evaporator (B) during operation in which the gas cooler (A) functions as a use side heat exchanger and the evaporator (B) functions as a heat source side heat exchanger. The gas cooler (A) functions as a heat source side heat exchanger and the evaporator (B) is a use side heat exchanger between the gas refrigerant of the gas cooler and the liquid refrigerant on the outlet side of the gas cooler (A). In the operation that functions as, the gas refrigerant from the evaporator (B) and the liquid refrigerant after gas-liquid separation by the receiver (7) are each configured to perform heat exchange. A refrigeration system using CO 2 refrigerant.
JP2000111622A 2000-04-13 2000-04-13 Refrigeration system using CO2 refrigerant Expired - Fee Related JP4407000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000111622A JP4407000B2 (en) 2000-04-13 2000-04-13 Refrigeration system using CO2 refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000111622A JP4407000B2 (en) 2000-04-13 2000-04-13 Refrigeration system using CO2 refrigerant

Publications (2)

Publication Number Publication Date
JP2001296067A JP2001296067A (en) 2001-10-26
JP4407000B2 true JP4407000B2 (en) 2010-02-03

Family

ID=18623922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000111622A Expired - Fee Related JP4407000B2 (en) 2000-04-13 2000-04-13 Refrigeration system using CO2 refrigerant

Country Status (1)

Country Link
JP (1) JP4407000B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184022A (en) * 2002-12-05 2004-07-02 Sanyo Electric Co Ltd Cooling medium cycle device
JP2004218964A (en) 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd Refrigerating plant
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator
US7137270B2 (en) * 2004-07-14 2006-11-21 Carrier Corporation Flash tank for heat pump in heating and cooling modes of operation
JP2006053390A (en) 2004-08-12 2006-02-23 Fuji Photo Film Co Ltd Production line of photosensitive film
JP4459776B2 (en) 2004-10-18 2010-04-28 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
US7178362B2 (en) 2005-01-24 2007-02-20 Tecumseh Products Cormpany Expansion device arrangement for vapor compression system
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
JP4767340B2 (en) * 2009-07-30 2011-09-07 三菱電機株式会社 Heat pump control device
JP4550153B2 (en) * 2009-07-30 2010-09-22 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
CN101650075A (en) * 2009-09-07 2010-02-17 浙江正理生能科技有限公司 Air source low-temperature heat pump water heater

Also Published As

Publication number Publication date
JP2001296067A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP4321095B2 (en) Refrigeration cycle equipment
WO2006028218A1 (en) Refrigerating apparatus
JP4538892B2 (en) Air conditioner using CO2 refrigerant
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
JP2007263383A (en) Refrigerating device
JP2005147456A (en) Air conditioner
JP2002106995A (en) Air conditioner
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
US7574872B2 (en) Capacity-variable air conditioner
KR100728341B1 (en) Heat pump air-conditioner of injection type
JP2001235245A (en) Freezer
JP3324420B2 (en) Refrigeration equipment
JP2012207843A (en) Heat pump apparatus
KR20120053381A (en) Refrigerant cycle apparatus
JP4380834B2 (en) Gas heat pump air conditioner
JP4273588B2 (en) Air conditioner refrigerant circuit
JP2007232280A (en) Refrigeration unit
KR100505238B1 (en) Air-conditioner
KR100626756B1 (en) Heat pump air-conditioner
KR100963433B1 (en) A heat pump system
KR100526105B1 (en) Heat pump air-conditioner
KR20050043089A (en) Heat pump
KR100304583B1 (en) Heat pump unit with injection cycle
KR100588846B1 (en) Heat pump air-conditioner
JP2003042585A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees