JP2012207843A - Heat pump apparatus - Google Patents

Heat pump apparatus Download PDF

Info

Publication number
JP2012207843A
JP2012207843A JP2011073435A JP2011073435A JP2012207843A JP 2012207843 A JP2012207843 A JP 2012207843A JP 2011073435 A JP2011073435 A JP 2011073435A JP 2011073435 A JP2011073435 A JP 2011073435A JP 2012207843 A JP2012207843 A JP 2012207843A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
bypass
compressor
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011073435A
Other languages
Japanese (ja)
Other versions
JP5659908B2 (en
Inventor
Hideki Sotozono
英樹 外園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2011073435A priority Critical patent/JP5659908B2/en
Publication of JP2012207843A publication Critical patent/JP2012207843A/en
Application granted granted Critical
Publication of JP5659908B2 publication Critical patent/JP5659908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump apparatus capable of increasing the amount of circulation using an indoor heat exchanger (evaporator) on the utilization side during cooling operation, for a high efficient operation.SOLUTION: During a cooling operation, a bypass expansion valve 43 is controlled to be opened to form a bypass path. A part of the coolant compressed to an intermediate pressure is bypassed to flow through the bypass path from a point 31d of intermediate pressure of a compressor 31, for heat exchanging by a first internal heat exchanger 41. After being expanded by a bypass expansion valve 43, it is joined to a main coolant circuit at a connection point 43d.

Description

本発明は、インジェクション可能な圧縮機を備えたヒートポンプ装置に関する。   The present invention relates to a heat pump apparatus including a compressor capable of injection.

従来のヒートポンプ装置として、例えば特許第3858276号公報に開示の「冷凍装置」がある。これは、低騒音かつ低コストでもって過冷却回路とインジェクション回路を制御し、冷凍効率の向上を図っている。この冷凍装置では、インジェクション回路が実質的に作動停止のときに電動式膨張弁を全閉に近いわずかな開度に設定することで圧縮機の効率低下を回避し、また、該電動式膨張弁の開度を所望の開度に制御して過冷却回路による過冷却度及びインジェクション回路による注入量を所望の値に設定可能としている。さらに、暖房運転時における逆サイクルデフロスト運転の際の冷媒循環量の増大を図ることも可能としている。   As a conventional heat pump device, for example, there is a “refrigeration device” disclosed in Japanese Patent No. 3858276. This controls the supercooling circuit and the injection circuit with low noise and low cost to improve the refrigeration efficiency. In this refrigeration system, when the injection circuit is substantially stopped, the electric expansion valve is set to a slight opening degree close to full closing to avoid a reduction in the efficiency of the compressor, and the electric expansion valve Is controlled to a desired degree of opening so that the degree of supercooling by the supercooling circuit and the injection amount by the injection circuit can be set to desired values. Further, it is possible to increase the refrigerant circulation amount during the reverse cycle defrost operation during the heating operation.

特許第3858276号公報Japanese Patent No. 3858276

ところで、上述した特許文献1に開示された技術を含めて、インジェクション可能な圧縮機を備えたヒートポンプ装置におけるインジェクション冷凍サイクルでは、暖房運転時には利用側の室内熱交換器(凝縮器)で効率良く冷媒循環量の増加を図ることができるが、冷房運転時には利用側の室内熱交換器(蒸発器)で循環量の増加を図ることができず、暖房運転時に比べて冷房運転時の性能向上に不向きであるという問題があった。   By the way, in the injection refrigeration cycle in the heat pump apparatus including the compressor capable of injection including the technique disclosed in Patent Document 1 described above, the refrigerant is efficiently used in the use-side indoor heat exchanger (condenser) during heating operation. Although the amount of circulation can be increased, the amount of circulation cannot be increased by the indoor heat exchanger (evaporator) on the use side during cooling operation, which is not suitable for improving the performance during cooling operation compared to during heating operation. There was a problem of being.

本発明は、上記従来の問題に鑑みてなされたものであって、インジェクション冷凍サイクルにおいて、冷房運転時に利用側の室内熱交換器(蒸発器)で循環量の増加を図ることができ、高効率運転を行い得るヒートポンプ装置を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and in an injection refrigeration cycle, the amount of circulation can be increased by a use-side indoor heat exchanger (evaporator) during cooling operation, and high efficiency is achieved. It aims at providing the heat pump apparatus which can be drive | operated.

上記課題を解決するために、本発明に係るヒートポンプ装置は、冷媒に熱を吸収させる蒸発器と、中間圧にインジェクション可能な圧縮機と、冷媒の熱を放熱させる凝縮器と、冷媒の圧力を下げる第1膨張弁と、が冷媒を循環させるように接続された主冷媒回路と、主冷媒回路の前記凝縮機と前記蒸発器の間と前記圧縮機の中間圧部とをつなぐバイパス経路と、前記蒸発器出口と前記圧縮機の吸入との間の主冷媒と中間圧に圧縮されたバイパス冷媒が熱交換する第1内部熱交換器と、前記バイパス経路に設けられ、前記第1内部熱交換器と主冷媒回路との間の前記バイパス経路に設けられた第2膨張弁とから構成されたインジェクション回路と、を備えるヒートポンプ装置であって、前記第1膨張弁及び前記第2膨張弁の開度を制御する制御手段を有し、利用側の熱交換器が蒸発器の時、前記インジェクション回路を用いて、前記凝縮器から前記第1膨張弁で減圧後の前記蒸発器に向かって流れる冷媒に、前記圧縮機で中間圧に圧縮された冷媒の一部をバイパスして合流させることを特徴とする。   In order to solve the above problems, a heat pump device according to the present invention includes an evaporator that absorbs heat into a refrigerant, a compressor that can be injected into an intermediate pressure, a condenser that dissipates heat from the refrigerant, and a pressure of the refrigerant. A first expansion valve to be lowered, a main refrigerant circuit connected to circulate the refrigerant, a bypass path connecting between the condenser and the evaporator of the main refrigerant circuit and an intermediate pressure part of the compressor, A first internal heat exchanger that exchanges heat between the main refrigerant between the outlet of the evaporator and the suction of the compressor and a bypass refrigerant compressed to an intermediate pressure, and the first internal heat exchange provided in the bypass path An injection circuit comprising a second expansion valve provided in the bypass path between the condenser and the main refrigerant circuit, wherein the first expansion valve and the second expansion valve are opened. Control to control the degree When the heat exchanger on the use side is an evaporator, the compressor uses the injection circuit to convert the refrigerant from the condenser toward the evaporator after being depressurized by the first expansion valve. And a part of the refrigerant compressed to the intermediate pressure is bypassed and merged.

また、上記発明において、四方弁を備え、前記バイパス経路に設けられ、前記第1内部熱交換器を迂回して、前記第2膨張弁から前記圧縮機に向かって冷媒を流す第1迂回回路、をさらに備え、冷房運転時に前記第1迂回回路を介さずに上記バイパスを行い、暖房運転時に、前記バイパス経路及び前記第1迂回回路を介してバイパス冷媒(インジェクション冷媒)が前記第1内部熱交換器で熱交換することなく前記圧縮機へのインジェクションを行うことを特徴とする。   Further, in the above invention, a first bypass circuit comprising a four-way valve, provided in the bypass path, bypassing the first internal heat exchanger, and flowing a refrigerant from the second expansion valve toward the compressor, The bypass is performed without passing through the first bypass circuit during the cooling operation, and the bypass refrigerant (injection refrigerant) is exchanged with the first internal heat exchange through the bypass path and the first bypass circuit during the heating operation. Injecting into the compressor is performed without heat exchange in a vessel.

また、上記発明において、前記凝縮器出口の主冷媒と前記第2膨張弁で減圧されたバイパス冷媒と熱交換する第2内部熱交換器と、前記バイパス経路に設けられ、前記第2内部熱交換器を迂回して、前記圧縮機から前記第1内部熱交換器に向かって冷媒を流す第2迂回回路、をさらに備え、冷房運転時に、前記バイパス経路及び前記第2迂回回路を介してバイパスを行い、暖房運転時に、前記バイパス経路を介して前記第2内部熱交換器で熱交換を行って前記圧縮機へのインジェクションを行うことを特徴とする。   In the above invention, the second internal heat exchanger provided in the bypass path, the second internal heat exchanger for exchanging heat with the main refrigerant at the outlet of the condenser and the bypass refrigerant decompressed by the second expansion valve. A second bypass circuit that bypasses the compressor and flows the refrigerant from the compressor toward the first internal heat exchanger, and bypasses the bypass path and the second bypass circuit during cooling operation. And performing the heat exchange with the second internal heat exchanger via the bypass path during the heating operation, and performing the injection into the compressor.

本発明に係るヒートポンプ装置によれば、冷房運転時に、利用側である室内熱交換器(蒸発器)での冷媒循環量を増加させ、高圧側となる室外熱交換器(凝縮器)での冷媒循環量を相対的に減少させるので、高圧が抑制され、圧縮機動力を低減することができ、結果として、高い冷房効率を得ることができ、高効率運転を行い得るヒートポンプ装置を提供することができる。   According to the heat pump device of the present invention, during the cooling operation, the refrigerant circulation amount in the indoor heat exchanger (evaporator) on the usage side is increased, and the refrigerant in the outdoor heat exchanger (condenser) on the high pressure side is increased. Since the circulation amount is relatively reduced, a high pressure is suppressed, the compressor power can be reduced, and as a result, a high cooling efficiency can be obtained and a heat pump device capable of performing a high efficiency operation is provided. it can.

本発明の実施例1に係るヒートポンプ装置の構成を説明する冷媒回路図である。It is a refrigerant circuit figure explaining the structure of the heat pump apparatus which concerns on Example 1 of this invention. 実施例1のヒートポンプ装置におけるモリエル線図である。It is a Mollier diagram in the heat pump device of Example 1. 本発明の実施例2に係るヒートポンプ装置の構成を説明する冷媒回路図である。It is a refrigerant circuit figure explaining the structure of the heat pump apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係るヒートポンプ装置の構成を説明する冷媒回路図である。It is a refrigerant circuit figure explaining the structure of the heat pump apparatus which concerns on Example 3 of this invention. 実施例3のヒートポンプ装置におけるモリエル線図である。It is a Mollier diagram in the heat pump apparatus of Example 3. FIG. 従来のヒートポンプ装置におけるモリエル線図である。It is a Mollier diagram in the conventional heat pump apparatus.

以下、本発明に係る好適な実施の形態について、実施例1、実施例2、実施例3の順に図面を参照しながら詳細に説明する。   Hereinafter, preferred embodiments according to the present invention will be described in detail in the order of Example 1, Example 2, and Example 3 with reference to the drawings.

図1は本発明の実施例1に係るヒートポンプ装置の構成を説明する冷媒回路図である。(冷房運転状態を示す。)同図において、本実施例のヒートポンプ装置は、主冷媒回路として、圧縮中間圧にインジェクション可能な圧縮機31、四方弁35、凝縮器、メイン膨張弁42(第1膨張弁)及び蒸発器が、冷媒を循環させるように接続されている。なお、凝縮器は、冷房運転時には室外熱交換器11が、暖房運転時には室内熱交換器21がそれぞれ該当する。また、蒸発器は、冷房運転時には室内熱交換器21が、暖房運転時には室外熱交換器11がそれぞれ該当する。また、蒸発器は、四方弁35及びアキュムレータ32を経由して圧縮機31の吸入側に接続されている。さらに、圧縮機31において、図中の31dが中間圧の箇所となる。   FIG. 1 is a refrigerant circuit diagram illustrating the configuration of the heat pump device according to the first embodiment of the present invention. In the same figure, the heat pump device of this embodiment is a main refrigerant circuit, which includes a compressor 31, a four-way valve 35, a condenser, and a main expansion valve 42 (first An expansion valve) and an evaporator are connected to circulate the refrigerant. The condenser corresponds to the outdoor heat exchanger 11 during the cooling operation and the indoor heat exchanger 21 during the heating operation. The evaporator corresponds to the indoor heat exchanger 21 during the cooling operation, and the outdoor heat exchanger 11 during the heating operation. Further, the evaporator is connected to the suction side of the compressor 31 via the four-way valve 35 and the accumulator 32. Furthermore, in the compressor 31, 31d in a figure becomes a location of intermediate pressure.

また、本実施例のヒートポンプ装置は、インジェクションも可能で、且つ圧縮機31で中間圧に圧縮した冷媒の一部を主冷媒回路に向かってバイパス可能な回路として(以後、バイパス回路と呼ぶ)、バイパス経路、バイパス膨張弁43(第2膨張弁)及び第1内部熱交換器41を備えている。ここで、バイパス経路は、冷房運転時に、室外熱交換器11(凝縮器)からメイン膨張弁42で減圧されて室内熱交換器21(蒸発器)に向かって流れる冷媒に、圧縮機31で中間圧に圧縮された冷媒の一部をバイパスして合流させる経路であり、また暖房運転時に、室内熱交換器21(凝縮器)からメイン膨張弁42に向かって流れる冷媒の一部を分岐して圧縮機31の中間圧の箇所31dにインジェクションさせることも可能な経路である。すなわち、バイパス経路は、圧縮機31の中間圧の箇所31dから主冷媒回路との接続点43dまでの経路が該当する。   In addition, the heat pump device of the present embodiment is also a circuit that can be injected and can bypass a part of the refrigerant compressed to an intermediate pressure by the compressor 31 toward the main refrigerant circuit (hereinafter referred to as a bypass circuit). A bypass path, a bypass expansion valve 43 (second expansion valve), and a first internal heat exchanger 41 are provided. Here, the bypass path is a refrigerant that is decompressed by the main expansion valve 42 from the outdoor heat exchanger 11 (condenser) and flows toward the indoor heat exchanger 21 (evaporator) during cooling operation. This is a path for bypassing and joining a part of the refrigerant compressed to the pressure, and branching off a part of the refrigerant flowing from the indoor heat exchanger 21 (condenser) toward the main expansion valve 42 during the heating operation. This is a path that can be injected into the intermediate pressure portion 31d of the compressor 31. That is, the bypass path corresponds to a path from the intermediate pressure portion 31d of the compressor 31 to the connection point 43d with the main refrigerant circuit.

また、バイパス膨張弁43は、バイパス経路に設けられて、該バイパス経路を流れる冷媒の圧力を下げる。また、第1内部熱交換器41は、蒸発器(室内熱交換器21)出口と圧縮機31の吸入との間の主冷媒と、中間圧に圧縮されたバイパス冷媒とを熱交換する。   The bypass expansion valve 43 is provided in the bypass path, and reduces the pressure of the refrigerant flowing through the bypass path. The first internal heat exchanger 41 exchanges heat between the main refrigerant between the outlet of the evaporator (indoor heat exchanger 21) and the suction of the compressor 31, and the bypass refrigerant compressed to an intermediate pressure.

さらに、本実施例のヒートポンプ装置は、メイン膨張弁42及びバイパス膨張弁43の開度を制御する制御手段(図示せず)を備えている。この制御手段は、圧縮機31の回転数制御等を行う制御器に組み込まれるものであり、冷房運転時に、例えば、圧縮機31が所定回転数に達した時点、或いは、その所定時間前または所定時間後に、バイパス膨張弁43を開くように制御する。なお、圧縮機31の吸入側圧力の検出は、蒸発器の中間部に温度センサを設置して該温度センサの検出温度に基づき推定するか、或いは、該当箇所に圧力センサを設置して直接検知する。   Further, the heat pump device of this embodiment includes control means (not shown) for controlling the opening degrees of the main expansion valve 42 and the bypass expansion valve 43. This control means is incorporated in a controller for controlling the rotational speed of the compressor 31 and the like. During the cooling operation, for example, when the compressor 31 reaches a predetermined rotational speed, a predetermined time before or a predetermined time. After the time, the bypass expansion valve 43 is controlled to open. The suction side pressure of the compressor 31 is detected by installing a temperature sensor in the middle part of the evaporator and estimating it based on the temperature detected by the temperature sensor, or by directly installing a pressure sensor at the corresponding location. To do.

次に、上記構成を備えたヒートポンプ装置の基本動作について、図1及び図2を参照して説明する。ここで、図2は本実施例のヒートポンプ装置における冷房運転時のモリエル線図である。また、図1中に付記されている矢印は、冷房運転時において冷媒が流れる方向を示しており、暖房運転時にはその矢印とは逆の方向に流れることとなる。   Next, the basic operation of the heat pump apparatus having the above configuration will be described with reference to FIGS. Here, FIG. 2 is a Mollier diagram at the time of cooling operation in the heat pump apparatus of the present embodiment. Moreover, the arrow attached in FIG. 1 has shown the direction through which a refrigerant | coolant flows at the time of air_conditionaing | cooling operation, and will flow in the direction opposite to the arrow at the time of heating operation.

冷房運転時には、四方弁35は図1に示す接続関係にあり、バイパス膨張弁43が開制御されており、まず、主冷媒回路では、圧縮機31で圧縮された(図2においてA1−C1)冷媒が吐出され、四方弁35を通過し、室外熱交換器11で凝縮され(図2:C1−E1)、メイン膨張弁42で膨張され(図2:E1−F1)、バイパス流が接続点43dで合流し、室内熱交換器21で蒸発され(図2:F1−H1)、第1内部熱交換器41での熱交換(図2:H1−A1)により過熱され、四方弁35及びアキュムレータ32を経て圧縮機31の吸入側に戻る。   During the cooling operation, the four-way valve 35 has the connection relationship shown in FIG. 1, and the bypass expansion valve 43 is controlled to open. First, in the main refrigerant circuit, the compressor 31 is compressed (A1-C1 in FIG. 2). The refrigerant is discharged, passes through the four-way valve 35, is condensed in the outdoor heat exchanger 11 (FIG. 2: C1-E1), is expanded by the main expansion valve 42 (FIG. 2: E1-F1), and the bypass flow is connected to the connection point. 43d, is evaporated in the indoor heat exchanger 21 (FIG. 2: F1-H1), is overheated by the heat exchange in the first internal heat exchanger 41 (FIG. 2: H1-A1), and the four-way valve 35 and the accumulator After 32, it returns to the suction side of the compressor 31.

他方、バイパス回路では、圧縮機31の中間圧の箇所31dと主冷媒回路との接続点43dとの圧力差から、バイパス経路が形成されている。バイパス経路では、圧縮機31の中間圧の箇所31dから中間圧に圧縮された(図2:A1−B1)冷媒の一部がバイパスされ、第1内部熱交換器41の熱交換(図2:B1−D1)により冷却され、バイパス膨張弁43で膨張され(図2:D1−F1)、接続点43dで主冷媒回路に合流する。   On the other hand, in the bypass circuit, a bypass path is formed from the pressure difference between the intermediate pressure portion 31d of the compressor 31 and the connection point 43d of the main refrigerant circuit. In the bypass path, a part of the refrigerant compressed to the intermediate pressure from the intermediate pressure portion 31d of the compressor 31 (FIG. 2: A1-B1) is bypassed, and heat exchange of the first internal heat exchanger 41 (FIG. 2: B1-D1) is cooled, expanded by bypass expansion valve 43 (FIG. 2: D1-F1), and joins the main refrigerant circuit at connection point 43d.

また、暖房運転時には、四方弁35は図1とは逆の接続関係(図示せず)にあり、バイパス膨張弁43が開制御されているとき、即ち、インジェクションしている場合、まず、主冷媒回路では、圧縮機31で圧縮された冷媒が吐出され、四方弁35を通過し、室内熱交換器21で凝縮され、主冷媒の一部を接続点43dでバイパス経路に分岐後、主冷媒はメイン膨張弁42で膨張され、室外熱交換器11で蒸発され、四方弁35を経て第1内部熱交換器41での熱交換により過熱され、アキュムレータ32を経て圧縮機31の吸入側に戻り、圧縮機31で圧縮される。   Further, during the heating operation, the four-way valve 35 is in a connection relationship (not shown) opposite to that in FIG. 1, and when the bypass expansion valve 43 is controlled to open, that is, when injecting, first, the main refrigerant In the circuit, the refrigerant compressed by the compressor 31 is discharged, passes through the four-way valve 35, is condensed by the indoor heat exchanger 21, and a part of the main refrigerant is branched to the bypass path at the connection point 43d. It is expanded by the main expansion valve 42, evaporated by the outdoor heat exchanger 11, is superheated by heat exchange in the first internal heat exchanger 41 via the four-way valve 35, returns to the suction side of the compressor 31 via the accumulator 32, It is compressed by the compressor 31.

他方、バイパス回路では、室内熱交換器21で凝縮された冷媒は、接続点43dでバイパス経路に分岐する。すなわち、バイパス膨張弁43で膨張され、第1内部熱交換器41での熱交換により冷却されて圧縮機31の中間圧の箇所31dにインジェクションされる。   On the other hand, in the bypass circuit, the refrigerant condensed in the indoor heat exchanger 21 branches to the bypass path at the connection point 43d. That is, it is expanded by the bypass expansion valve 43, cooled by heat exchange in the first internal heat exchanger 41, and injected into the intermediate pressure portion 31 d of the compressor 31.

ここで、本実施例と対比するために、従来のヒートポンプ装置について説明する。図6には、従来のヒートポンプ装置(特許文献1)における冷房運転時のモリエル線図を示す。(暖房時も同じモリエル線図)なお、以下の説明では、特許文献1における構成要素の名称を本実施例の呼称に置き換えて説明する。   Here, for comparison with the present embodiment, a conventional heat pump apparatus will be described. In FIG. 6, the Mollier diagram at the time of the air_conditionaing | cooling operation in the conventional heat pump apparatus (patent document 1) is shown. (The same Mollier diagram during heating) In the following description, the names of the components in Patent Document 1 are replaced with the names of the present embodiment.

この従来例において、冷房運転時に、主冷媒回路では、圧縮機31で圧縮された(図6においてQ8−Q2)冷媒が吐出され、室外熱交換器11で凝縮され(図6:Q2−Q3)、主冷媒の一部をバイパス経路に分岐後、第1内部熱交換器41の熱交換(図6:Q3−Q6)により主冷媒は過冷却され、メイン膨張弁42で膨張され(図6:Q6−Q7)、室内熱交換器21で蒸発されアキュムレータ32を経て圧縮機31の吸入側に戻る。(図6:Q7−Q8)また、バイパス経路では、室外熱交換器11(凝縮器)出口の高圧の主冷媒から分岐(図6:Q3)されたバイパス冷媒は、バイパス膨張弁43で膨張され(図6:Q3−Q4)、第1内部熱交換器41の熱交換(図6:Q4−Q5)による加熱蒸発の後、圧縮機31の中間圧にインジェクションされる。   In this conventional example, during the cooling operation, in the main refrigerant circuit, the refrigerant compressed by the compressor 31 (Q8-Q2 in FIG. 6) is discharged and condensed in the outdoor heat exchanger 11 (FIG. 6: Q2-Q3). After branching a part of the main refrigerant to the bypass path, the main refrigerant is supercooled by the heat exchange of the first internal heat exchanger 41 (FIG. 6: Q3-Q6) and expanded by the main expansion valve 42 (FIG. 6: Q6-Q7), it is evaporated by the indoor heat exchanger 21 and returns to the suction side of the compressor 31 via the accumulator 32. (FIG. 6: Q7-Q8) In the bypass path, the bypass refrigerant branched from the high-pressure main refrigerant at the outlet of the outdoor heat exchanger 11 (condenser) (FIG. 6: Q3) is expanded by the bypass expansion valve 43. (FIG. 6: Q3-Q4), after heating and evaporation by heat exchange (FIG. 6: Q4-Q5) of the first internal heat exchanger 41, the intermediate pressure of the compressor 31 is injected.

したがって、この従来のヒートポンプ装置では、冷媒循環量の増加は、常にバイパスされた冷媒(インジェクション流GINJ)分であり、室外熱交換器11側での冷媒循環量はインジェクション流GINJ分増加する(図6:G+GINJ)が、利用側である室内熱交換器21では冷媒循環量は増加せず(図6:G)、過冷却効果(図6:Q3−Q6)により、蒸発のエンタルピー差が増大するが、増大した部分の冷媒の乾き度が低くなり(乾き度0.05〜0.1程度)、さらに利用側の熱交換器(室内熱交換器21)の流量が小さく、冷媒の流速が低いので、冷媒の熱伝達率が低下し、効率良く蒸発ができない。そのため、暖房運転時に比べて冷房運転時の性能向上に不向きである。 Therefore, in this conventional heat pump device, the increase in the refrigerant circulation amount is always the amount of the bypassed refrigerant (injection flow G INJ ), and the refrigerant circulation amount on the outdoor heat exchanger 11 side is increased by the injection flow G INJ . (FIG. 6: G E + G INJ ) evaporates due to the subcooling effect (FIG. 6: Q3-Q6) without increasing the refrigerant circulation rate in the indoor heat exchanger 21 on the use side (FIG. 6: G E ). Enthalpy difference increases, but the dryness of the refrigerant in the increased portion is low (dryness is about 0.05 to 0.1), and the flow rate of the heat exchanger on the use side (indoor heat exchanger 21) is small. Since the flow rate of the refrigerant is low, the heat transfer coefficient of the refrigerant is lowered and the evaporation cannot be performed efficiently. Therefore, it is not suitable for improving the performance during the cooling operation as compared with the heating operation.

これに対して、本実施例では、図2に示したように、冷媒循環量の増加はバイパスされた冷媒(バイパス流G2)分であり、利用側である室内熱交換器21での冷媒循環量はバイパス流G2分増加し(図2:G1+G2)、室外熱交換器11側では冷媒循環量は増加しない(図2:G1)。また、従来例と比べて、蒸発器入口の乾き度が高く(0.2〜0.3)、且つ利用側の熱交換器の流量が増加し、冷媒の流速が増加するので、冷媒の熱伝達率が向上し、効率良く蒸発ができる。   In contrast, in this embodiment, as shown in FIG. 2, the increase in the refrigerant circulation amount is the amount of the bypassed refrigerant (bypass flow G2), and the refrigerant circulation in the indoor heat exchanger 21 on the usage side The amount increases by the bypass flow G2 (FIG. 2: G1 + G2), and the refrigerant circulation amount does not increase on the outdoor heat exchanger 11 side (FIG. 2: G1). Also, compared to the conventional example, the dryness of the evaporator inlet is high (0.2 to 0.3), the flow rate of the heat exchanger on the use side is increased, and the flow rate of the refrigerant is increased. The transmission rate is improved and evaporation can be performed efficiently.

通常、利用側の室内熱交換器21は、室外熱交換器11に比べて熱交換器サイズ(伝熱面積)と風量が小さいため、本発明のように、冷房時においても利用側での冷媒の伝熱性能を向上させた方が効率良く性能向上できる。また、逆に、冷房時に利用側でない室外熱交換器11は、室内熱交換器21と比べて、熱交換器サイズ(伝熱面積)も風量も格段に大きいため、流量増加による冷媒の伝熱性能向上は、利用側に比べて影響が小さく、効率の良い性能向上は期待できない。   Usually, the indoor heat exchanger 21 on the use side has a smaller heat exchanger size (heat transfer area) and air volume than the outdoor heat exchanger 11, so that the refrigerant on the use side even during cooling as in the present invention. The performance can be improved more efficiently by improving the heat transfer performance. On the other hand, the outdoor heat exchanger 11 that is not on the use side during cooling is much larger in heat exchanger size (heat transfer area) and air volume than the indoor heat exchanger 21, so that the heat transfer of the refrigerant due to an increase in the flow rate. The performance improvement has less influence than the user side, and an efficient performance improvement cannot be expected.

なお、本発明における第1内部熱交換器41の効果として、吸入の過熱度を確保して圧縮機31の信頼性を向上させるとともに、増加した過熱度は凝縮側の凝縮エンタルピー差を拡大させ放熱量を増加させ、放熱効率を向上させる。これは、従来例における内部熱交換器の過冷却効果による蒸発エンタルピーの拡大に相当する。   As an effect of the first internal heat exchanger 41 in the present invention, the degree of suction superheat is ensured to improve the reliability of the compressor 31, and the increased degree of superheat increases the condensation enthalpy difference on the condensation side and releases it. Increases heat quantity and improves heat dissipation efficiency. This corresponds to the expansion of the evaporation enthalpy due to the supercooling effect of the internal heat exchanger in the conventional example.

以上説明したように、本実施例のヒートポンプ装置では、冷房運転時に、バイパス膨張弁43を開制御してバイパス経路を形成し、該バイパス経路において、圧縮機31の中間圧の箇所31dから、中間圧に圧縮された冷媒の一部をバイパスして、第1内部熱交換器41による熱交換を行い、バイパス膨張弁43で膨張した後、接続点43dで主冷媒回路に合流させる。これにより、利用側である室内熱交換器21での冷媒循環量はバイパス流G2分増加し(図2:G1+G2)、高圧側(凝縮側)となる室外熱交換器11側での冷媒循環量(図2:G1)が相対的に減少するので、高圧が抑制され、圧縮機31の動力を低減することができ、結果として、高い冷房効率を得ることができる。   As described above, in the heat pump apparatus of the present embodiment, during the cooling operation, the bypass expansion valve 43 is controlled to be opened to form a bypass path, and the intermediate pressure point 31d of the compressor 31 is intermediated in the bypass path. A part of the refrigerant compressed to the pressure is bypassed, heat is exchanged by the first internal heat exchanger 41, expanded by the bypass expansion valve 43, and then joined to the main refrigerant circuit at the connection point 43d. As a result, the refrigerant circulation amount in the indoor heat exchanger 21 on the use side increases by the bypass flow G2 (FIG. 2: G1 + G2), and the refrigerant circulation amount on the outdoor heat exchanger 11 side on the high pressure side (condensation side) Since (FIG. 2: G1) decreases relatively, high pressure is suppressed, and the power of the compressor 31 can be reduced. As a result, high cooling efficiency can be obtained.

さらに、第1内部熱交換器41による熱交換により、圧縮機31の吸入の過熱度を確保することができるので、圧縮機31の信頼性を向上させることができる。   Further, the heat exchange by the first internal heat exchanger 41 can ensure the degree of superheat of the suction of the compressor 31, and thus the reliability of the compressor 31 can be improved.

次に、図3は本発明の実施例2に係るヒートポンプ装置の構成を説明する冷媒回路図である。なお、図3(a)では冷房運転時の冷媒の流れを矢印で示し、図3(b)では暖房運転時の冷媒の流れを矢印で示す。本実施例のヒートポンプ装置は、実施例1のヒートポンプ装置の構成(図1参照)において、バイパス経路に設けられ、暖房運転時に、第1内部熱交換器41を迂回して、バイパス膨張弁43から圧縮機31の中間圧の箇所31dに向かって冷媒を流す第1迂回回路、をさらに備えた構成である。ここで、第1迂回回路は逆止弁45及び46を備える。これ以外の構成要素については、実施例1と同等であるので説明を省略する。   Next, FIG. 3 is a refrigerant circuit diagram illustrating the configuration of the heat pump device according to the second embodiment of the present invention. In FIG. 3A, the refrigerant flow during the cooling operation is indicated by an arrow, and in FIG. 3B, the refrigerant flow during the heating operation is indicated by an arrow. The heat pump device of the present embodiment is provided in a bypass path in the configuration of the heat pump device of Embodiment 1 (see FIG. 1), bypasses the first internal heat exchanger 41 during heating operation, and bypasses the bypass expansion valve 43. It is the structure further provided with the 1st detour circuit which flows a refrigerant | coolant toward the location 31d of the intermediate pressure of the compressor 31. FIG. Here, the first bypass circuit includes check valves 45 and 46. Since the other components are the same as those in the first embodiment, description thereof is omitted.

次に、本実施例のヒートポンプ装置の基本動作について説明する。冷房運転時には、四方弁35は図3(a)に示す接続関係にあり、まず、主冷媒回路では、圧縮機31で圧縮された冷媒が吐出され、四方弁35を通過し、室外熱交換器11で凝縮され、メイン膨張弁42で膨張され、バイパス流が接続点43dで合流し、室内熱交換器21で蒸発され、第1内部熱交換器41の熱交換により過熱され、四方弁35及びアキュムレータ32を経て圧縮機31の吸入側に戻る。他方、バイパス回路では、圧縮機31の中間圧の箇所31dから中間圧に圧縮された冷媒の一部がバイパスされ、第1内部熱交換器41の熱交換により冷却され、バイパス膨張弁43で膨張された後、接続点43dで主冷媒回路に合流する。   Next, the basic operation of the heat pump apparatus of this embodiment will be described. During the cooling operation, the four-way valve 35 has the connection relationship shown in FIG. 3A. First, in the main refrigerant circuit, the refrigerant compressed by the compressor 31 is discharged, passes through the four-way valve 35, and the outdoor heat exchanger. 11, expanded by the main expansion valve 42, the bypass flow merges at the connection point 43 d, is evaporated by the indoor heat exchanger 21, is superheated by heat exchange of the first internal heat exchanger 41, and the four-way valve 35 and It returns to the suction side of the compressor 31 via the accumulator 32. On the other hand, in the bypass circuit, a part of the refrigerant compressed to the intermediate pressure from the intermediate pressure portion 31 d of the compressor 31 is bypassed, cooled by heat exchange of the first internal heat exchanger 41, and expanded by the bypass expansion valve 43. After that, it joins the main refrigerant circuit at the connection point 43d.

また、暖房運転時には、四方弁35は図3(b)に示す接続関係にあり、インジェクションを行っている場合において、まず、主冷媒回路では、圧縮機31で圧縮された冷媒が吐出され、四方弁35を通過し、室内熱交換器21で凝縮され、主冷媒の一部を圧縮機31の中間部31dに向かってバイパスし(インジェクション流)、主冷媒はメイン膨張弁42で膨張され、室外熱交換器11で蒸発され、四方弁35を経て第1内部熱交換器41を通過した後、アキュムレータ32を経て圧縮機31の吸入側に戻り、圧縮機31で圧縮される。他方、接続点43dで分岐した冷媒は、バイパス膨張弁43で膨張された後、第1迂回回路によって第1内部熱交換器41による熱交換を行うことなく、圧縮機31の中間圧の箇所31dに液インジェクションされる。   Further, during the heating operation, the four-way valve 35 has the connection relationship shown in FIG. 3B, and when injection is performed, first, the refrigerant compressed by the compressor 31 is discharged in the main refrigerant circuit, and the four-way valve 35 It passes through the valve 35 and is condensed in the indoor heat exchanger 21, and part of the main refrigerant is bypassed toward the intermediate part 31 d of the compressor 31 (injection flow), and the main refrigerant is expanded by the main expansion valve 42, After being evaporated by the heat exchanger 11 and passing through the first internal heat exchanger 41 via the four-way valve 35, the accumulator 32 is returned to the suction side of the compressor 31 and the compressor 31 compresses it. On the other hand, the refrigerant branched at the connection point 43d is expanded by the bypass expansion valve 43, and then is not subjected to heat exchange by the first internal heat exchanger 41 by the first bypass circuit, so that the intermediate pressure point 31d of the compressor 31 is obtained. Liquid injection.

ここで、本実施例は、寒冷地の低外気温時(例えば、−10℃〜―25℃)の暖房を特に想定しており、このような低外気温の条件で実施例1を実施した場合、第1内部熱交換器41の熱交換の温度差が拡大するため、冷却効果が増大し、インジェクション冷媒(バイパス冷媒)が過冷却状態の完全な液となってしまう。これが、インジェクションされた場合、液圧縮を起こし圧縮機の信頼性が低下する。(通常の液インジェクション冷媒の乾き度は0.2前後である。)即ち、実施例2は、これを回避することを目的としている。   Here, this example specifically assumes heating at a low outside air temperature in a cold region (for example, −10 ° C. to −25 ° C.), and Example 1 was performed under such a low outside air temperature condition. In this case, since the temperature difference of the heat exchange of the first internal heat exchanger 41 is increased, the cooling effect is increased, and the injection refrigerant (bypass refrigerant) becomes a completely supercooled liquid. When this is injected, liquid compression is caused and the reliability of the compressor is lowered. (The dryness of a normal liquid injection refrigerant is around 0.2.) That is, Example 2 aims to avoid this.

以上説明したように、本実施例のヒートポンプ装置では、暖房運転のインジェクション時に、接続点43dで分岐した冷媒を、バイパス膨張弁43で膨張した後、第1内部熱交換器41による熱交換の影響を受けることなく、圧縮機31の中間圧の箇所31dにインジェクションするので、暖房運転時に従来と同等の液インジェクションを行うことができ、利用側となる室外熱交換器11で冷媒循環量をバイパス流分増加することができ、暖房運転時の暖房効率を向上させつつ、特に低外気温での運転における圧縮機31の信頼性の低下を防ぐことができる。なお、冷房運転時については、実施例1と同等の効果を奏することができる。   As described above, in the heat pump device of the present embodiment, the refrigerant branched at the connection point 43d during the heating operation is expanded by the bypass expansion valve 43, and then the heat exchange effect by the first internal heat exchanger 41 is affected. In this way, the liquid injection equivalent to the conventional one can be performed during heating operation, and the refrigerant circulation amount is bypassed by the outdoor heat exchanger 11 on the use side. Thus, the reliability of the compressor 31 can be prevented from being lowered particularly during operation at a low outside temperature while improving the heating efficiency during the heating operation. In addition, about the time of air_conditionaing | cooling operation, there can exist an effect equivalent to Example 1. FIG.

次に、図4は本発明の実施例3に係るヒートポンプ装置の構成を説明する冷媒回路図である。なお、図4(a)では冷房運転時の冷媒の流れを矢印で示し、図4(b)では暖房運転時の冷媒の流れを矢印で示す。本実施例のヒートポンプ装置は、実施例1のヒートポンプ装置の構成(図1参照)において、暖房運転時に凝縮器出口の主冷媒とバイパス回路の第2膨張弁43で減圧されたバイパス冷媒と熱交換する第2内部熱交換器51と、バイパス経路に設けられ、冷房運転時に第2内部熱交換器51を迂回して、圧縮機31の中間圧の箇所31dから第1内部熱交換器41に向かって冷媒を流す第2迂回回路と、をさらに備えた構成である。ここで、第2迂回回路は逆止弁55及び56を備える。これら以外の構成要素については、実施例1と同等であるので説明を省略する。なお、ここでは第2迂回回路として逆止弁55及び56を備えているが、電磁弁や三方弁を用いて迂回しても良い。   Next, FIG. 4 is a refrigerant circuit diagram illustrating the configuration of the heat pump device according to the third embodiment of the present invention. In FIG. 4A, the refrigerant flow during the cooling operation is indicated by an arrow, and in FIG. 4B, the refrigerant flow during the heating operation is indicated by an arrow. The heat pump device of the present embodiment is the same as the heat pump device of the first embodiment (see FIG. 1), and heat exchange is performed with the main refrigerant at the outlet of the condenser and the bypass refrigerant decompressed by the second expansion valve 43 of the bypass circuit during heating operation. The second internal heat exchanger 51 is provided in a bypass path, bypasses the second internal heat exchanger 51 during cooling operation, and travels from the intermediate pressure portion 31d of the compressor 31 toward the first internal heat exchanger 41. And a second bypass circuit for flowing the refrigerant. Here, the second bypass circuit includes check valves 55 and 56. Since the other components are the same as those in the first embodiment, the description thereof is omitted. Here, the check valves 55 and 56 are provided as the second bypass circuit, but a bypass may be provided using an electromagnetic valve or a three-way valve.

ここで、第2内部熱交換器51の迂回について説明する。迂回をしない場合において、主冷媒とバイパス冷媒が一旦、熱交換した後、再び冷媒同士が合流するので、実質的に熱交換がなされていないことになる。しかし、合流の損失を考慮した場合、例えば、熱交換によって主冷媒とバイパス冷媒の乾き度が大きく異なってしまう場合や、流動様相が大きく変化してしまう場合など、の合流損失が大きくなってしまう場合において、不要な熱交換を行わない方が、より効率的な運転制御が期待できる。   Here, detouring of the second internal heat exchanger 51 will be described. When the bypass is not performed, the main refrigerant and the bypass refrigerant once exchange heat, and then the refrigerant joins again. Therefore, the heat exchange is not substantially performed. However, when the loss of merging is taken into account, for example, the merging loss becomes large when the dryness of the main refrigerant and the bypass refrigerant is greatly different due to heat exchange, or when the flow aspect changes greatly. In some cases, more efficient operation control can be expected without unnecessary heat exchange.

また、上記とは逆に、主冷媒とバイパス冷媒の合流損失の影響が小さい場合は、第2迂回回路を設けない。以上、第2内部熱交換器の迂回は、冷凍機、空調機、給湯機といった、能力や使用環境条件を含めた様々な冷凍サイクルの条件に合わせて、適宜選択をする。   Contrary to the above, when the influence of the merging loss between the main refrigerant and the bypass refrigerant is small, the second bypass circuit is not provided. As described above, the bypass of the second internal heat exchanger is appropriately selected in accordance with various refrigeration cycle conditions including capacity and use environment conditions such as a refrigerator, an air conditioner, and a water heater.

次に、本実施例のヒートポンプ装置の基本動作について説明する。冷房運転時には、四方弁35は図4(a)に示す接続関係にあり、まず、主冷媒回路では、圧縮機31で圧縮された冷媒が吐出され、室外熱交換器11で凝縮され、メイン膨張弁42で膨張され、第2内部熱交換器51を殆ど熱交換することなく通過した後にバイパス流が接続点43dで合流し、室内熱交換器21で蒸発され、四方弁35を経て第1内部熱交換器41の熱交換により過熱され、アキュムレータ32を経て圧縮機31の吸入側に戻る。他方、バイパス回路では、圧縮機31の中間圧の箇所31dから中間圧に圧縮された冷媒の一部がバイパスされ、第2内部熱交換器51による熱交換を行うことなく、第2迂回回路を通過した後、第1内部熱交換器41の熱交換により冷却され、バイパス膨張弁43で膨張された後、接続点43dで主冷媒回路に合流する。   Next, the basic operation of the heat pump apparatus of this embodiment will be described. During the cooling operation, the four-way valve 35 has a connection relationship shown in FIG. 4A. First, in the main refrigerant circuit, refrigerant compressed by the compressor 31 is discharged, condensed in the outdoor heat exchanger 11, and main expansion. After being expanded by the valve 42 and passing through the second internal heat exchanger 51 with little heat exchange, the bypass flow merges at the connection point 43d, is evaporated by the indoor heat exchanger 21, passes through the four-way valve 35, and the first internal It is overheated by heat exchange of the heat exchanger 41 and returns to the suction side of the compressor 31 via the accumulator 32. On the other hand, in the bypass circuit, a part of the refrigerant compressed to the intermediate pressure from the intermediate pressure portion 31d of the compressor 31 is bypassed, and the second bypass circuit is bypassed without performing heat exchange by the second internal heat exchanger 51. After passing, it is cooled by heat exchange of the first internal heat exchanger 41, expanded by the bypass expansion valve 43, and then merges with the main refrigerant circuit at the connection point 43d.

また、暖房運転時の基本動作について、図5を参照して説明する。ここで、図5は本実施例のヒートポンプ装置における暖房運転のインジェクション時のモリエル線図である。暖房運転時には、四方弁35は図4(b)に示す接続関係にあり、インジェクションを行っている場合において、まず、主冷媒回路では、圧縮機31で圧縮された(図5においてA2−B2−C2−D2)冷媒が吐出され、四方弁35を通過し、室内熱交換器21で凝縮され(図5:D2−E2)、主冷媒の一部を圧縮機31の中間部31dに向かってバイパスし(図5:E2)、主冷媒は第2内部熱交換器51の熱交換(図5:E2−F2)による過冷却の後、メイン膨張弁42で膨張され(図5:F2−L2)、室外熱交換器11で蒸発され(図5:L2−M2)、四方弁35を経て第1内部熱交換器41の熱交換(図5:M2−A2)により過熱され、アキュムレータ32を経て圧縮機31の吸入側に戻り、圧縮機31で圧縮される。   Further, the basic operation during the heating operation will be described with reference to FIG. Here, FIG. 5 is a Mollier diagram at the time of injection of the heating operation in the heat pump apparatus of the present embodiment. At the time of heating operation, the four-way valve 35 has a connection relationship shown in FIG. 4B. When injection is performed, the main refrigerant circuit is first compressed by the compressor 31 (A2-B2- in FIG. 5). C2-D2) The refrigerant is discharged, passes through the four-way valve 35, is condensed in the indoor heat exchanger 21 (FIG. 5: D2-E2), and a part of the main refrigerant is bypassed toward the intermediate part 31d of the compressor 31. (FIG. 5: E2), the main refrigerant is expanded by the main expansion valve 42 after being supercooled by heat exchange (FIG. 5: E2-F2) of the second internal heat exchanger 51 (FIG. 5: F2-L2). Evaporated in the outdoor heat exchanger 11 (FIG. 5: L2-M2), passed through the four-way valve 35, overheated by the heat exchange in the first internal heat exchanger 41 (FIG. 5: M2-A2), and compressed through the accumulator 32 It returns to the suction side of the machine 31 and is compressed by the compressor 31.

他方、バイパス回路では、接続点43dで分岐(図5:E2)した冷媒は、バイパス膨張弁43で膨張された(図5:E2−H2)後、第1内部熱交換器41の熱交換(図5:H2−J2)により冷却された後、さらに、第2内部熱交換器51の熱交換(図5:J2−K2)により加熱蒸発されて乾き度が大きくなった後、圧縮機31の中間圧の箇所31dにインジェクションされる。なお、第2内部熱交換器51によって、実施例2で説明した([0032])過冷却液をインジェクションしてしまうことを回避できるため、第1迂回回路(図3参照)が不要となっている。   On the other hand, in the bypass circuit, the refrigerant branched at the connection point 43d (FIG. 5: E2) is expanded by the bypass expansion valve 43 (FIG. 5: E2-H2), and then the heat exchange of the first internal heat exchanger 41 ( FIG. 5: After being cooled by H2-J2), after being further heated and evaporated by heat exchange (FIG. 5: J2-K2) of the second internal heat exchanger 51, the degree of dryness is increased. It is injected into the intermediate pressure point 31d. Since the second internal heat exchanger 51 can avoid the injection of the supercooled liquid described in the second embodiment ([0032]), the first bypass circuit (see FIG. 3) becomes unnecessary. Yes.

以上説明したように、本実施例のヒートポンプ装置では、冷房運転時には、第2内部熱交換器51による熱交換を行うことなく、実施例1と同等のバイパス経路を形成し、また、暖房運転のインジェクション時には、接続点43dで分岐した冷媒を、バイパス膨張弁43で膨張した後、第1内部熱交換器41による熱交換、並びに、第2内部熱交換器51による熱交換を経て、圧縮機31の中間圧の箇所31dにインジェクションする。すなわち、冷房及び暖房運転の両方において、利用側の熱交換器で冷媒循環量を増加することができるため、より効率の良いヒートポンプ装置が得られる。   As described above, in the heat pump device of the present embodiment, during the cooling operation, the heat exchange by the second internal heat exchanger 51 is not performed, a bypass path equivalent to that of the first embodiment is formed, and the heating operation is performed. At the time of injection, the refrigerant branched at the connection point 43 d is expanded by the bypass expansion valve 43, and then subjected to heat exchange by the first internal heat exchanger 41 and heat exchange by the second internal heat exchanger 51, and the compressor 31. The intermediate pressure portion 31d is injected. That is, in both the cooling and heating operations, the refrigerant circulation rate can be increased by the use-side heat exchanger, so that a more efficient heat pump device can be obtained.

暖房運転のインジェクション時には、図5に示したように、第1内部熱交換器41による熱交換(図5:H2−J2)の分だけ、インジェクション(図5:K2)の乾き度が小さくなり、通常のガスインジェクションや高乾き度の2相インジェクションに比べて吐出温度の低減効果を高めることができる。なお、冷房運転時については、実施例1と同等の効果を奏することができる。   At the time of the injection of the heating operation, as shown in FIG. 5, the dryness of the injection (FIG. 5: K2) is reduced by the amount of heat exchange (FIG. 5: H2-J2) by the first internal heat exchanger 41, The effect of reducing the discharge temperature can be enhanced as compared with normal gas injection and high-dryness two-phase injection. In addition, about the time of air_conditionaing | cooling operation, there can exist an effect equivalent to Example 1. FIG.

以上、本発明の好ましい実施例について詳述したが、本発明に係るヒートポンプ装置は、上述した実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。例えば、実施例の説明では、圧縮機31について特に限定していないが、本発明は、ロータリ式、スクロール式またはレシプロ式など種々の圧縮機31を持つヒートポンプ装置に適用可能である。例えば、インジェクション可能なスクロール式の圧縮機として、固定スクロールと旋回スクロールにより区画される複数の圧縮室の内、中間圧まで圧縮された冷媒がある圧縮室に冷媒を吐出できるインジェクションポートを設けたものがある。このインジェクションポートから中間圧まで圧縮された冷媒を吐出させ、主冷媒回路までバイパスすることで、冷媒循環量を増加させるようにしても良い。また、圧縮機31は2以上の段数を持つ多段圧縮機構であっても良い。さらに、また、空調機を想定した実施例で説明したが、室内熱交換器21を、冷媒−水熱交換器としたチラーなどであっても良く、また、冷媒についても限定されるものでなく、フロン系冷媒の他、CO2、HFO系冷媒であっても良い。   Although the preferred embodiments of the present invention have been described in detail above, the heat pump device according to the present invention is not limited to the above-described embodiments, and is within the scope of the gist of the present invention described in the claims. Various modifications and changes are possible. For example, in the description of the embodiment, the compressor 31 is not particularly limited, but the present invention can be applied to a heat pump apparatus having various compressors 31 such as a rotary type, a scroll type, or a reciprocating type. For example, as a scroll compressor capable of injection, an injection port is provided that can discharge the refrigerant into a compression chamber having a refrigerant compressed to an intermediate pressure among a plurality of compression chambers partitioned by a fixed scroll and a turning scroll. There is. The refrigerant compressed to the intermediate pressure may be discharged from the injection port and bypassed to the main refrigerant circuit to increase the refrigerant circulation amount. The compressor 31 may be a multistage compression mechanism having two or more stages. Furthermore, although it demonstrated with the Example supposing the air conditioner, the indoor heat exchanger 21 may be a chiller etc. which used the refrigerant | coolant-water heat exchanger, and it is not limited about a refrigerant | coolant. In addition to chlorofluorocarbon refrigerants, CO2 and HFO refrigerants may be used.

11 室外熱交換器
21 室内熱交換器
31 圧縮機
32 アキュムレータ
35 四方弁
41 第1内部熱交換器
41a〜41d,51a〜51d 出入口
42 メイン膨張弁(第1膨張弁)
43 バイパス膨張弁(第2膨張弁)
45,46,55,56 逆止弁
51 第2内部熱交換器
DESCRIPTION OF SYMBOLS 11 Outdoor heat exchanger 21 Indoor heat exchanger 31 Compressor 32 Accumulator 35 Four-way valve 41 1st internal heat exchanger 41a-41d, 51a-51d Entrance / exit 42 Main expansion valve (1st expansion valve)
43 Bypass expansion valve (second expansion valve)
45, 46, 55, 56 Check valve 51 Second internal heat exchanger

Claims (3)

冷媒に熱を吸収させる蒸発器と、中間圧にインジェクション可能な圧縮機と、冷媒の熱を放熱させる凝縮器と、冷媒の圧力を下げる第1膨張弁と、が冷媒を循環させるように接続された主冷媒回路と、
主冷媒回路の前記凝縮機と前記蒸発器の間と前記圧縮機の中間圧部とをつなぐバイパス経路と、前記蒸発器出口と前記圧縮機の吸入との間の主冷媒と中間圧に圧縮されたバイパス冷媒が熱交換する第1内部熱交換器と、前記バイパス経路に設けられ、前記第1内部熱交換器と主冷媒回路との間の前記バイパス経路に設けられた第2膨張弁とから構成されたインジェクション回路と、
を備えるヒートポンプ装置であって、
前記第1膨張弁及び前記第2膨張弁の開度を制御する制御手段を有し、
利用側の熱交換器が蒸発器の時、
前記インジェクション回路を用いて、前記凝縮器から前記第1膨張弁で減圧後の前記蒸発器に向かって流れる冷媒に、前記圧縮機で中間圧に圧縮された冷媒の一部をバイパスして合流させることを特徴としたヒートポンプ装置。
An evaporator that absorbs heat into the refrigerant, a compressor that can inject the intermediate pressure, a condenser that dissipates the heat of the refrigerant, and a first expansion valve that reduces the pressure of the refrigerant are connected to circulate the refrigerant. Main refrigerant circuit,
Compressed to a main refrigerant and intermediate pressure between the condenser and the evaporator of the main refrigerant circuit and a bypass path connecting the intermediate pressure portion of the compressor, and between the outlet of the evaporator and the suction of the compressor. A first internal heat exchanger in which the bypass refrigerant exchanges heat, and a second expansion valve provided in the bypass path and provided in the bypass path between the first internal heat exchanger and the main refrigerant circuit. A configured injection circuit; and
A heat pump device comprising:
Control means for controlling the opening degree of the first expansion valve and the second expansion valve;
When the heat exchanger on the user side is an evaporator,
Using the injection circuit, the refrigerant flowing from the condenser toward the evaporator after being depressurized by the first expansion valve is joined by bypassing a part of the refrigerant compressed to the intermediate pressure by the compressor. A heat pump device characterized by that.
冷媒の流路を暖房と冷房に切り替える手段を備え、前記バイパス経路に設けられ、前記第1内部熱交換器を迂回して、前記第2膨張弁から前記圧縮機に向かって冷媒を流す第1迂回回路、をさらに備え、
暖房運転時に、前記バイパス経路及び前記第1迂回回路を介して前記圧縮機へのインジェクションを行うことを特徴とした請求項1に記載のヒートポンプ装置。
Means for switching a refrigerant flow path between heating and cooling; provided in the bypass path; bypassing the first internal heat exchanger; and flowing the refrigerant from the second expansion valve toward the compressor Further comprising a bypass circuit,
2. The heat pump device according to claim 1, wherein during the heating operation, the compressor is injected through the bypass path and the first bypass circuit.
前記凝縮器出口の主冷媒と前記第2膨張弁で減圧されたバイパス冷媒と熱交換する第2内部熱交換器と、
前記バイパス経路に設けられ、前記第2内部熱交換器を迂回して、前記圧縮機から前記第1内部熱交換器に向かって冷媒を流す第2迂回回路、をさらに備え、
冷房運転時に、前記バイパス経路及び前記第2迂回回路を介してバイパスを行い、暖房運転時に、前記バイパス経路を介して前記第2内部熱交換器で熱交換を行って前記圧縮機へのインジェクションを行うことを特徴とした請求項1または2に記載のヒートポンプ装置。
A second internal heat exchanger that exchanges heat with the main refrigerant at the outlet of the condenser and the bypass refrigerant decompressed by the second expansion valve;
A second bypass circuit that is provided in the bypass path, bypasses the second internal heat exchanger, and flows a refrigerant from the compressor toward the first internal heat exchanger;
During cooling operation, bypass is performed via the bypass path and the second bypass circuit, and during heating operation, heat exchange is performed by the second internal heat exchanger via the bypass path to perform injection to the compressor. The heat pump device according to claim 1, wherein the heat pump device is performed.
JP2011073435A 2011-03-29 2011-03-29 Heat pump equipment Expired - Fee Related JP5659908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073435A JP5659908B2 (en) 2011-03-29 2011-03-29 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073435A JP5659908B2 (en) 2011-03-29 2011-03-29 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2012207843A true JP2012207843A (en) 2012-10-25
JP5659908B2 JP5659908B2 (en) 2015-01-28

Family

ID=47187738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073435A Expired - Fee Related JP5659908B2 (en) 2011-03-29 2011-03-29 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP5659908B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640420A (en) * 2013-11-21 2015-05-20 珠海格力电器股份有限公司 Cooling system for heating power device
CN104640421A (en) * 2013-11-25 2015-05-20 珠海格力电器股份有限公司 Air conditioning unit
KR101591358B1 (en) 2014-01-27 2016-02-04 인하공업전문대학산학협력단 the hybrid-type plant factory using the heat pump
WO2016166845A1 (en) * 2015-04-15 2016-10-20 三菱電機株式会社 Refrigeration cycle apparatus
CN109579296A (en) * 2017-09-29 2019-04-05 青岛经济技术开发区海尔热水器有限公司 Heat pump water heater unit and control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629756U (en) * 1979-08-13 1981-03-20
JPS57172367U (en) * 1981-04-23 1982-10-29
JPS6354565A (en) * 1986-08-25 1988-03-08 ダイキン工業株式会社 Heat pump system
JPS6484056A (en) * 1987-09-25 1989-03-29 Hitachi Ltd Air conditioner
JPH04125165U (en) * 1991-04-23 1992-11-16 シーケーデイ株式会社 Cooling system
JP2006524313A (en) * 2003-04-21 2006-10-26 キャリア コーポレイション Vapor compression system with bypass / economizer circuit
JP2007155266A (en) * 2005-12-07 2007-06-21 Toshiba Kyaria Kk Refrigerating cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629756U (en) * 1979-08-13 1981-03-20
JPS57172367U (en) * 1981-04-23 1982-10-29
JPS6354565A (en) * 1986-08-25 1988-03-08 ダイキン工業株式会社 Heat pump system
JPS6484056A (en) * 1987-09-25 1989-03-29 Hitachi Ltd Air conditioner
JPH04125165U (en) * 1991-04-23 1992-11-16 シーケーデイ株式会社 Cooling system
JP2006524313A (en) * 2003-04-21 2006-10-26 キャリア コーポレイション Vapor compression system with bypass / economizer circuit
JP2007155266A (en) * 2005-12-07 2007-06-21 Toshiba Kyaria Kk Refrigerating cycle device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640420A (en) * 2013-11-21 2015-05-20 珠海格力电器股份有限公司 Cooling system for heating power device
CN104640421A (en) * 2013-11-25 2015-05-20 珠海格力电器股份有限公司 Air conditioning unit
KR101591358B1 (en) 2014-01-27 2016-02-04 인하공업전문대학산학협력단 the hybrid-type plant factory using the heat pump
WO2016166845A1 (en) * 2015-04-15 2016-10-20 三菱電機株式会社 Refrigeration cycle apparatus
JPWO2016166845A1 (en) * 2015-04-15 2017-12-14 三菱電機株式会社 Refrigeration cycle equipment
GB2553970A (en) * 2015-04-15 2018-03-21 Mitsubishi Electric Corp Refrigeration cycle apparatus
GB2553970B (en) * 2015-04-15 2020-08-05 Mitsubishi Electric Corp Refrigeration cycle apparatus
CN109579296A (en) * 2017-09-29 2019-04-05 青岛经济技术开发区海尔热水器有限公司 Heat pump water heater unit and control method thereof

Also Published As

Publication number Publication date
JP5659908B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5611353B2 (en) heat pump
JP4899489B2 (en) Refrigeration equipment
US8733118B2 (en) Heat pump water heater outdoor unit and heat pump water heater
JP4906894B2 (en) Heat pump device and outdoor unit of heat pump device
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
KR101201062B1 (en) Refrigeration device
JP4781390B2 (en) Refrigeration cycle equipment
JP6019837B2 (en) Heat pump system
WO2006028218A1 (en) Refrigerating apparatus
JP2009228979A (en) Air conditioner
JP6161741B2 (en) Air conditioner
JP2001056159A (en) Air conditioner
JP5659908B2 (en) Heat pump equipment
WO2019064332A1 (en) Refrigeration cycle device
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP2009257706A (en) Refrigerating apparatus
JP6110187B2 (en) Refrigeration cycle equipment
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2011214753A (en) Refrigerating device
JP5659909B2 (en) Heat pump equipment
CN111919073B (en) Refrigerating device
JP4608303B2 (en) Vapor compression heat pump
JPWO2018096580A1 (en) Refrigeration cycle device
JP2007051788A (en) Refrigerating device
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R151 Written notification of patent or utility model registration

Ref document number: 5659908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees