JPH04125165U - Cooling system - Google Patents
Cooling systemInfo
- Publication number
- JPH04125165U JPH04125165U JP2815491U JP2815491U JPH04125165U JP H04125165 U JPH04125165 U JP H04125165U JP 2815491 U JP2815491 U JP 2815491U JP 2815491 U JP2815491 U JP 2815491U JP H04125165 U JPH04125165 U JP H04125165U
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- refrigerant
- heat
- compressor
- liquid refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 19
- 239000003507 refrigerant Substances 0.000 claims abstract description 96
- 239000007788 liquid Substances 0.000 claims abstract description 55
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000007423 decrease Effects 0.000 abstract description 21
- 238000007906 compression Methods 0.000 abstract description 13
- 230000006835 compression Effects 0.000 abstract description 9
- 238000000034 method Methods 0.000 description 9
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 206010023497 kuru Diseases 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】
【目的】 大型の装置でないにも関わらず、熱負荷の急
激な減少に対処して液圧縮を回避することができる冷却
装置を提供すること。
【構成】 この冷却装置は熱交換器4、圧縮機1、凝縮
器2、膨張弁3及び容量調整弁5を備えており、熱交換
器4と圧縮機1との間には熱交換器4とは別の熱交換器
6が組み込まれている。熱負荷が急激に減少した場合に
は熱交換器4内の冷媒圧力も急激に減少し、減圧弁であ
る容量調整弁5が直ちに大きく開く。そのため、圧縮機
1から送り出される圧縮冷媒ガスは別の熱交換器6側へ
多量に送り込まれる。熱交換器4から流出する液冷媒は
熱交換器6を介して容量調整弁5から流出する高温の圧
縮冷媒ガスとの間の熱交換によってガス化される。
(57) [Summary] [Purpose] To provide a cooling device that can cope with a sudden decrease in heat load and avoid liquid compression, even though it is not a large device. [Structure] This cooling device is equipped with a heat exchanger 4, a compressor 1, a condenser 2, an expansion valve 3, and a capacity adjustment valve 5. A separate heat exchanger 6 is incorporated. When the heat load suddenly decreases, the refrigerant pressure within the heat exchanger 4 also decreases rapidly, and the capacity adjustment valve 5, which is a pressure reducing valve, immediately opens wide. Therefore, a large amount of compressed refrigerant gas sent out from the compressor 1 is sent to another heat exchanger 6 side. The liquid refrigerant flowing out from the heat exchanger 4 is gasified by heat exchange with the high temperature compressed refrigerant gas flowing out from the capacity adjustment valve 5 via the heat exchanger 6.
Description
【0001】0001
本考案は、熱負荷体と冷媒との間の熱交換を行うための熱交換器、圧縮機から 送り出される圧縮冷媒ガスを液冷媒に凝縮する凝縮器、凝縮器の下流側に介在さ れた液冷媒流量調整器、圧縮機から送り出される圧縮冷媒ガスを熱交換器側へ迂 回させる容量調整弁からなる冷却装置に関するものである。 This invention consists of a heat exchanger and a compressor for exchanging heat between a heat load and a refrigerant. A condenser that condenses the compressed refrigerant gas sent out into liquid refrigerant. The liquid refrigerant flow regulator diverts the compressed refrigerant gas sent from the compressor to the heat exchanger side. This relates to a cooling device consisting of a capacity adjustment valve that is rotated.
【0002】0002
この種の冷却装置は冷却に用いられるが、水、空気等の熱負荷は0〜100% まで変動する。熱負荷が0%のような場合には熱交換器へ送り込まれた液冷媒が 蒸発されずに圧縮機内に流入し、液圧縮という圧縮機に故障を引き起こす原因の 発生可能性が常にある。従来の冷却装置では熱負荷減少時には膨張弁が閉塞傾向 に制御され、この閉塞方向への制御によって熱交換器内の冷媒圧力が低下する。 熱交換器内の冷媒圧力が規定以下になると減圧弁である容量調整弁が大きく開き 、圧縮機から送り出された圧縮冷媒ガスが熱交換器側へ多量に迂回供給される。 膨張弁の開閉制御は熱交換器の冷媒出口側の温度情報に基づいて行われる。熱交 換器の冷媒出口側の温度は熱負荷を反映し、熱負荷が大きくなれば出口側温度は 上昇し、熱負荷が小さくなれば出口側温度は低下する。通常、この温度はガス圧 に変換され、このガス圧によって膨張弁の開閉制御が行われる。熱負荷が急激に 低下したり、或いは無くなったりした場合には膨張弁は閉じる。このような流量 制御により熱交換器へ導入される液冷媒量が調整される。 This type of cooling device is used for cooling, but the heat load of water, air, etc. is 0 to 100%. It fluctuates up to. When the heat load is 0%, the liquid refrigerant sent to the heat exchanger Liquid compression, which flows into the compressor without being evaporated, causes malfunctions in the compressor. There is always a possibility that it may occur. In conventional cooling systems, the expansion valve tends to close when the heat load decreases. This control in the closing direction reduces the refrigerant pressure within the heat exchanger. When the refrigerant pressure in the heat exchanger falls below the specified level, the capacity adjustment valve, which is a pressure reducing valve, opens wide. A large amount of the compressed refrigerant gas sent out from the compressor is detoured and supplied to the heat exchanger side. Opening/closing control of the expansion valve is performed based on temperature information on the refrigerant outlet side of the heat exchanger. heat exchange The temperature on the refrigerant outlet side of the converter reflects the heat load, and as the heat load increases, the outlet temperature will decrease. If the heat load increases and the heat load becomes smaller, the outlet side temperature will decrease. Typically this temperature is the gas pressure This gas pressure controls the opening and closing of the expansion valve. sudden heat load When it drops or disappears, the expansion valve closes. Such a flow rate The control adjusts the amount of liquid refrigerant introduced into the heat exchanger.
【0003】0003
ところが、熱負荷変動が膨張弁の開閉制御に波及するまでに若干時間を要する ため、熱負荷の減少が急激であると、膨張弁の開閉制御がなされるまでの間に液 冷媒が熱交換器へ流入してしまう。膨張弁の代わりにキャピラリチューブを用い た場合には液冷媒の流入量は更に増えてしまう。液冷媒が熱交換器へ送り込まれ ても熱負荷が無いために液冷媒が蒸発することはなく、液冷媒が圧縮機側へ送り 出されてしまう。 However, it takes some time for the thermal load fluctuation to affect the opening/closing control of the expansion valve. Therefore, if the heat load decreases rapidly, the liquid will drain before the expansion valve is controlled to open and close. Refrigerant flows into the heat exchanger. Using a capillary tube instead of an expansion valve In this case, the amount of liquid refrigerant flowing in will further increase. Liquid refrigerant is sent to the heat exchanger However, since there is no heat load, the liquid refrigerant does not evaporate, and the liquid refrigerant is sent to the compressor. It will be served.
【0004】 液冷媒が圧縮機内へ入り込まないようにするため、熱交換器から排出される液 冷媒を一旦保持するためのアキュムレータを圧縮機の上流側に設けたり、更には アキュムレータ内の液冷媒を加熱ヒータによってガス化する対策も提案されてい る。しかしながら、液冷媒をアキュムレータにより保持しようとしても冷却性能 、冷却能力の設計の観点からして液冷媒保持量には制約があり、圧縮機への液冷 媒流入を回避させることはできない。加熱ヒータを用いた液冷媒のガス化に必要 な熱量を確保するためにはヒータ用の別電源を設ける必要があり、コスト高にな るという問題がある。0004 To prevent liquid refrigerant from entering the compressor, the liquid refrigerant is discharged from the heat exchanger. Installing an accumulator upstream of the compressor to temporarily hold the refrigerant, or even A measure has also been proposed in which the liquid refrigerant in the accumulator is gasified using a heater. Ru. However, even if you try to hold liquid refrigerant in an accumulator, the cooling performance will be limited. , from the perspective of cooling capacity design, there are restrictions on the amount of liquid refrigerant that can be held, and liquid cooling to the compressor is limited. It is not possible to avoid medium inflow. Necessary for gasifying liquid refrigerant using a heater In order to ensure a sufficient amount of heat, it is necessary to provide a separate power supply for the heater, which increases costs. There is a problem that
【0005】 圧縮機内への液冷媒の流入を防止するための別の方法として、熱交換器から送 り出される冷媒を気液分離器によって液冷媒と冷媒ガスとに分離し、冷媒ガスの みを圧縮機内に導入すると共に液冷媒を再び熱交換器に戻す方式もあるが、この 方式では配管等の構造が複雑になり、かつ全体の大型化が避けられないという問 題がある。[0005] Another way to prevent liquid refrigerant from entering the compressor is to The extracted refrigerant is separated into liquid refrigerant and refrigerant gas by a gas-liquid separator, and the refrigerant gas is separated into liquid refrigerant and refrigerant gas. There is also a method in which the refrigerant is introduced into the compressor and the liquid refrigerant is returned to the heat exchanger again. With this method, the structure of piping etc. becomes complicated and the overall size becomes unavoidable. There is a problem.
【0006】 本考案は上記の問題点に鑑みて成されたものであり、その目的は、大型の装置 でないにも関わらず、熱負荷の急激な減少に対処して液圧縮を回避することがで きる冷却装置を提供することである。[0006] This invention was created in view of the above problems, and its purpose is to However, it is possible to cope with a sudden decrease in heat load and avoid liquid compression. The objective is to provide a cooling device that can
【0007】[0007]
上記目的を達成するために、本考案は水、空気といった熱負荷と冷媒との間の 熱交換を行うための熱交換器、冷媒ガスを圧縮するための圧縮機、圧縮機から送 り出される圧縮冷媒ガスを液冷媒に凝縮する凝縮器、凝縮器の下流側に介在され た液冷媒流量調整器、圧縮機から送り出される圧縮冷媒ガスを熱交換器側へ迂回 させる容量調整弁を備えた冷却装置において、前記熱交換器から流出する冷媒と 容量調整弁から流出する冷媒との間の熱交換を行う別の熱交換器を組み込んでい る。 In order to achieve the above objective, the present invention has developed A heat exchanger for heat exchange, a compressor for compressing refrigerant gas, and a A condenser that condenses the compressed refrigerant gas discharged into liquid refrigerant, which is located downstream of the condenser. Liquid refrigerant flow regulator, bypasses compressed refrigerant gas sent from the compressor to the heat exchanger side In a cooling device equipped with a capacity adjustment valve, the refrigerant flowing out from the heat exchanger and It incorporates another heat exchanger that exchanges heat with the refrigerant flowing out from the capacity regulating valve. Ru.
【0008】[0008]
熱負荷が急激に減少した場合には熱交換器内の冷媒圧力も急激に減少し、容量 調整弁が直ちに大きく開く。そのため、圧縮機から送り出される圧縮冷媒ガスは 別の熱交換器側へ多量に送り込まれる。熱交換器から流出する液冷媒は別の熱交 換器を介して容量調整弁から流出する高温の圧縮冷媒ガスとの間の熱交換によっ てガス化される。 When the heat load suddenly decreases, the refrigerant pressure inside the heat exchanger also decreases rapidly, reducing the capacity. The regulating valve immediately opens wide. Therefore, the compressed refrigerant gas sent out from the compressor is A large amount is sent to another heat exchanger side. The liquid refrigerant flowing out of the heat exchanger is another heat exchanger. This is achieved by heat exchange with the high temperature compressed refrigerant gas flowing out from the capacity adjustment valve via the converter. It is then gasified.
【0009】[0009]
以下に本考案を具体化した実施例について、図1及び図2を参照しながら説明 する。 図1に示すように1は冷媒ガスの圧縮を行うための圧縮機であり、圧縮機1の 上流側には液冷媒を一旦保持するためのアキュムレータ1aが組付けられている 。圧縮機1の下流側には凝縮器2が接続されており、圧縮機1から凝縮器2へ送 り込まれた圧縮冷媒ガスがファン2aの送風作用により冷却して液冷媒になる。 凝縮器2の下流側には液冷媒流量調整器としての膨張弁3が接続されている。膨 張弁3は凝縮器2から送り出される液冷媒の流量制限を行う。膨張弁3の下流側 には熱交換器4が接続されており、膨張弁3から送り出される液冷媒と熱負荷回 路R0 側の空気、水等の熱負荷体と間の熱交換が熱交換器4を介して行われる。 これらの圧縮機1、アキュムレータ1a、凝縮器2、膨張弁3及び熱交換器4に よって冷媒回路の主流路R1 が形成されている。 Examples embodying the present invention will be explained below with reference to FIGS. 1 and 2. do. As shown in Fig. 1, 1 is a compressor for compressing refrigerant gas. An accumulator 1a is installed on the upstream side to temporarily hold liquid refrigerant. . A condenser 2 is connected to the downstream side of the compressor 1. The compressed refrigerant gas that has been introduced is cooled by the blowing action of the fan 2a and becomes liquid refrigerant. An expansion valve 3 serving as a liquid refrigerant flow rate regulator is connected to the downstream side of the condenser 2. swelling The expansion valve 3 restricts the flow rate of liquid refrigerant sent out from the condenser 2. Downstream side of expansion valve 3 A heat exchanger 4 is connected to the heat exchanger 4, which exchanges the liquid refrigerant sent out from the expansion valve 3 with the heat load cycle. Heat exchange with a heat load such as air or water on the road R0 side is performed via a heat exchanger 4. These compressor 1, accumulator 1a, condenser 2, expansion valve 3 and heat exchanger 4 Therefore, a main flow path R1 of the refrigerant circuit is formed.
【0010】 主流路R1 上の凝縮器2及び膨張弁3に対して並列関係となるように迂回路R 2 が主流路R1 に接続されている。減圧弁型の容量調整弁5が設けられており、 迂回路R2 上には迂回路R2 の連通遮断が容量調整弁5によって行われる。容量 調整弁5の下流側には熱交換器6が接続されている。熱交換器6は容量調整弁5 の下流側の迂回路R2 と熱交換器4の下流側の主流路R1 との間の熱交換を行う 。0010 A bypass path R is arranged in parallel to the condenser 2 and expansion valve 3 on the main flow path R1. 2 is connected to the main flow path R1. A pressure reducing valve type capacity adjustment valve 5 is provided, On the detour R2, communication of the detour R2 is cut off by a capacity regulating valve 5. capacity A heat exchanger 6 is connected downstream of the regulating valve 5 . The heat exchanger 6 is a capacity adjustment valve 5 Heat exchange is performed between the detour R2 on the downstream side of the heat exchanger 4 and the main flow path R1 on the downstream side of the heat exchanger 4. .
【0011】 熱交換器4の冷媒出口側には温度検知器7が設置されている。温度検知器7は 熱交換器4における冷媒出口温度をガス圧として変換検出し、検出ガス圧は膨張 弁3の開閉制御を行うための制御圧として膨張弁3に導入されている。膨張弁3 は常時わずかに開放状態になっている。 熱負荷が減少すると液冷媒が熱負荷体から与えられる熱量は少なくなり、熱交 換器4の冷媒出口側の温度は低下する。この温度低下の情報は温度検知器7によ り検出ガス圧の低下として膨張弁3に波及し、膨張弁3が閉塞傾向に制御される 。圧縮機1は連続作動しており、熱交換器4内の冷媒は圧縮機1側へ常時吸引さ れている。従って、膨張弁3の閉塞方向への制御によって熱交換器4内の冷媒圧 力が低下する。熱交換器4内の冷媒圧力が規定以下になると容量調整弁5が開い て迂回路R2 が連通されるため、圧縮機1から送り出された圧縮冷媒ガスが容量 調整弁5を介して熱交換器6側へ多量に迂回供給される。熱交換器4から流出す る液冷媒は熱交換器6を介して容量調整弁5から流出する高温の圧縮冷媒ガスと の間の熱交換によりガス化される。[0011] A temperature detector 7 is installed on the refrigerant outlet side of the heat exchanger 4. The temperature sensor 7 is The refrigerant outlet temperature in the heat exchanger 4 is converted and detected as gas pressure, and the detected gas pressure is expanded. The pressure is introduced into the expansion valve 3 as control pressure for controlling the opening and closing of the valve 3. expansion valve 3 is always slightly open. When the heat load decreases, the amount of heat given to the liquid refrigerant by the heat load body decreases, and the heat exchange The temperature on the refrigerant outlet side of the converter 4 decreases. Information on this temperature drop is obtained by the temperature sensor 7. This spreads to the expansion valve 3 as a decrease in the detected gas pressure, and the expansion valve 3 is controlled to tend to close. . The compressor 1 operates continuously, and the refrigerant in the heat exchanger 4 is constantly drawn into the compressor 1 side. It is. Therefore, by controlling the expansion valve 3 in the closing direction, the refrigerant pressure in the heat exchanger 4 is increased. Power decreases. When the refrigerant pressure in the heat exchanger 4 falls below a specified value, the capacity adjustment valve 5 opens. Since the detour R2 is communicated with the compressor 1, the compressed refrigerant gas sent out from the compressor A large amount of the heat exchanger 6 is detoured and supplied via the regulating valve 5 to the heat exchanger 6 side. Outflow from heat exchanger 4 The liquid refrigerant is mixed with the high temperature compressed refrigerant gas flowing out from the capacity adjustment valve 5 via the heat exchanger 6. It is gasified by heat exchange during the process.
【0012】 この熱交換作用を図2の絶対圧力(p)−エンタルピ(h)線図に基づき説明 する。曲線SC 1 は飽和液線、SC 2 は飽和蒸気線であり、SC 0 は絶対圧力P に対する臨界点である。閉鎖曲線A−B−C−D、A0 −B0 −C−D及びA’ −B’−C−Dはそれぞれ異なる冷凍サイクルを示している。 閉鎖曲線A0 −B0 −C−Dは、熱交換器4の出口において液冷媒がちょうど 蒸発を完了し、乾燥飽和蒸気の状態で圧縮器1に送り込まれる乾燥飽和圧縮サイ クルを示す。熱負荷の変動がない通常状態では同一圧力下における乾燥飽和蒸気 と過熱蒸気との温度差である過熱度を一定に維持するために、一般には閉鎖曲線 A−B−C−Dで表される過熱圧縮サイクルに設定されている。0012 This heat exchange effect is explained based on the absolute pressure (p)-enthalpy (h) diagram in Figure 2. do. The curve SC 1 is the saturated liquid line, SC 2 is the saturated vapor line, and SC 0 is the absolute pressure P. This is the critical point for Closed curves A-B-C-D, A0 -B0 -C-D and A' -B'-C-D indicate different refrigeration cycles. The closed curve A0 -B0 -C-D indicates that the liquid refrigerant is just at the outlet of the heat exchanger 4. Dry saturated compression steam that has completed evaporation and is sent to the compressor 1 in the form of dry saturated vapor Shows the kuru. Dry saturated steam under the same pressure under normal conditions with no variation in heat load In order to maintain a constant degree of superheating, which is the temperature difference between The superheat compression cycle is set as A-B-C-D.
【0013】 A−B間の圧縮工程では絶対圧力はP0 からPk に上昇し、エンタルピはha からhb に増加する。B−C間の凝縮工程では絶対圧力はPk に保たれ、エンタ ルピはhb からhc に減少する。C−D間の膨張工程では絶対圧力はPk からP 0 に下降し、エンタルピはhc に保たれる。D−A間の蒸発工程では絶対圧力は P0 に保たれ、エンタルピはhc からha に増加する。[0013] In the compression process between A and B, the absolute pressure increases from P0 to Pk, and the enthalpy becomes ha increases from hb to hb. In the condensation process between B and C, the absolute pressure is maintained at Pk, and the enter Rupee decreases from hb to hc. In the expansion process between C and D, the absolute pressure is from Pk to P The enthalpy is kept at hc. In the evaporation process between D and A, the absolute pressure is P0 is maintained, and enthalpy increases from hc to ha.
【0014】 熱交換器4に送り込まれた液冷媒は前記蒸発工程によりガス化され、このとき 熱負荷から吸収する熱量q1 はD−A間のエンタルピの差ha −hc で表される 。また、圧縮機1による冷媒ガスの圧縮仕事に要する熱当量、即ち圧縮工程によ り圧縮冷媒ガスが得る熱量q2 はA−B間のエンタルピの差hb −ha で表され る。[0014] The liquid refrigerant sent to the heat exchanger 4 is gasified by the evaporation process, and at this time The amount of heat q1 absorbed from the heat load is expressed by the enthalpy difference ha - hc between D and A. . Also, the heat equivalent required for the compression work of the refrigerant gas by the compressor 1, that is, the heat equivalent due to the compression process. The amount of heat q2 obtained by the compressed refrigerant gas is expressed by the difference in enthalpy between A and B, hb −ha. Ru.
【0015】 熱負荷が減少した場合には液冷媒が熱負荷から吸収する熱量q1 が減少するた め、本来ならばD−A’間で蒸発工程が行われ、冷却サイクルは閉鎖曲線A’− B’−C−Dで示される湿り圧縮サイクルに移行する。しかし、圧縮冷媒ガスが 得た熱量q2 の一部は別の熱交換器6を介して液冷媒に移行するため、A’にお ける液冷媒のエンタルピの値ha'はha に近づく。これにより冷凍サイクルは閉 鎖曲線A−B−C−Dの過熱圧縮サイクルに復帰して、通常どうり冷媒ガスのみ が圧縮機1内へ導入される。[0015] When the heat load decreases, the amount of heat q1 absorbed by the liquid refrigerant from the heat load decreases. Therefore, the evaporation process would normally take place between D and A', and the cooling cycle would follow the closed curve A'- Moving on to the wet compaction cycle shown as B'-C-D. However, compressed refrigerant gas A part of the obtained heat quantity q2 is transferred to the liquid refrigerant via another heat exchanger 6, so it is transferred to A'. The enthalpy value ha' of the liquid refrigerant approaches ha. This closes the refrigeration cycle. Returning to the superheated compression cycle of the chain curve A-B-C-D, only refrigerant gas is used as usual. is introduced into the compressor 1.
【0016】 一般にこのような冷却サイクルでは、液冷媒が熱負荷から吸収する熱量q1 と 圧縮工程により圧縮冷媒ガスが得る熱量q2 との比は約3:1となっている。従 って、熱負荷が0%になることで液冷媒が熱交換器4から送り出されたとしても 、そのうちの約1/3という比較的大量の液冷媒が熱交換器6を介した熱交換に より蒸発する。[0016] Generally, in such a cooling cycle, the amount of heat q1 absorbed by the liquid refrigerant from the heat load is The ratio to the amount of heat q2 obtained by the compressed refrigerant gas in the compression process is approximately 3:1. subordinate Therefore, even if the liquid refrigerant is sent out from the heat exchanger 4 due to the heat load becoming 0%, , a relatively large amount of liquid refrigerant, about 1/3 of which, is used for heat exchange through the heat exchanger 6. It evaporates more.
【0017】 熱負荷が急激に減少してから膨張弁3が閉じるまでに多少時間がかかり、この 間に熱交換器4へ流入する液冷媒がそのまま圧縮機1内へ流出してしまう。この 流出量がアキュムレータ1aの容量を越え、かつ液状のままアキュムレータ1a へ流入すれば圧縮機1にも液冷媒が入り込んでしまう。しかしながら、圧縮工程 により圧縮冷媒ガスが得る熱量を液冷媒の蒸発熱として利用することにより、通 常の大きさのアキュムレータ1aであっても急激な熱負荷減少に充分に対応でき 、圧縮機1への液冷媒の流入を確実に回避することができる。また、液冷媒をガ ス化する目的でアキュムレータ1aに加熱ヒータを設ける必要がなくなり、よっ て、ヒータ用別電源の設置に伴うコスト高といったような問題が生じることもな い。[0017] It takes some time for the expansion valve 3 to close after the heat load suddenly decreases, and this Meanwhile, the liquid refrigerant flowing into the heat exchanger 4 flows out into the compressor 1 as it is. this The amount of outflow exceeds the capacity of the accumulator 1a, and the liquid remains in the accumulator 1a. If the liquid refrigerant flows into the compressor 1, the liquid refrigerant will also enter the compressor 1. However, the compression process By using the heat obtained by the compressed refrigerant gas as the heat of evaporation of the liquid refrigerant, Even if the accumulator 1a is of normal size, it can sufficiently cope with the sudden decrease in heat load. , it is possible to reliably prevent liquid refrigerant from flowing into the compressor 1. Also, the liquid refrigerant is It is no longer necessary to provide a heater to the accumulator 1a for the purpose of This eliminates problems such as high costs associated with installing a separate power supply for the heater. stomach.
【0018】 本考案は前記実施例のみに勿論限定されることはなく、例えば、膨張弁3に代 えてキャピラリチューブを使用した場合にも充分な液圧縮防止効果が得られる。 また、図3に示す別の実施例のように主流路R1 と熱負荷回路R0 との間、及び 主流路R1 と迂回路R2 との間の熱交換を共に行う熱交換器8を用いることもで きる。この方式によれば前記実施例のような熱交換器4とは別の熱交換器6を組 付ける必要がないため、冷却装置全体をより小型化することができるという利点 を有する。[0018] Of course, the present invention is not limited to the above-mentioned embodiment, and for example, the expansion valve 3 can be replaced with Even if a capillary tube is used in addition, a sufficient effect of preventing liquid compression can be obtained. Further, as in another embodiment shown in FIG. 3, between the main flow path R1 and the thermal load circuit R0, It is also possible to use a heat exchanger 8 that exchanges heat between the main flow path R1 and the bypass path R2. Wear. According to this method, a heat exchanger 6 separate from the heat exchanger 4 as in the above embodiment is assembled. The advantage is that the entire cooling system can be made more compact because there is no need to attach has.
【0019】[0019]
本考案の冷却装置によれば、大型の装置でないにも関わらず、熱負荷の急激な 減少に対処して液圧縮を回避することができるという優れた効果を奏する。 According to the cooling device of the present invention, even though it is not a large device, it is possible to rapidly increase the heat load. This has an excellent effect of being able to cope with the decrease and avoid liquid compression.
【図1】 本考案の冷却装置を具体化した一実施例を示
す簡略図である。FIG. 1 is a simplified diagram showing an embodiment of the cooling device of the present invention.
【図2】 冷凍サイクルを表した絶対圧力−エンタルピ
線図である。FIG. 2 is an absolute pressure-enthalpy diagram showing a refrigeration cycle.
【図3】 本考案の別の実施例を示す簡略図である。FIG. 3 is a simplified diagram showing another embodiment of the invention.
1 圧縮機、2 凝縮器、3 液冷媒流量調整器として
の膨張弁、4 熱交換器、5 容量調整弁、6 (別
の)熱交換器。1 compressor, 2 condenser, 3 expansion valve as liquid refrigerant flow regulator, 4 heat exchanger, 5 capacity regulating valve, 6 (another) heat exchanger.
Claims (1)
交換を行うための熱交換器(4)、冷媒ガスを圧縮する
ための圧縮機(1)、圧縮機(1)から送り出される圧
縮冷媒ガスを液冷媒に凝縮する凝縮器(2)、凝縮器
(2)の下流側に介在された液冷媒流量調整器(3)、
及び圧縮機(1)から送り出される圧縮冷媒ガスを熱交
換器(4)側へ迂回させる容量調整弁(5)を備えた冷
却装置において、前記熱交換器(4)から流出する冷媒
と容量調整弁(5)から流出する冷媒との間の熱交換を
行う別の熱交換器(6)を組み込んだことを特徴とする
冷却装置。Claim 1: A heat exchanger (4) for exchanging heat between a heat load such as water or air and a refrigerant, a compressor (1) for compressing refrigerant gas, and a refrigerant sent from the compressor (1). a condenser (2) for condensing compressed refrigerant gas into liquid refrigerant; a liquid refrigerant flow rate regulator (3) interposed on the downstream side of the condenser (2);
and a cooling device equipped with a capacity adjustment valve (5) that detours the compressed refrigerant gas sent out from the compressor (1) to the heat exchanger (4) side, the refrigerant flowing out from the heat exchanger (4) and the capacity adjustment. A cooling device characterized in that it incorporates another heat exchanger (6) that exchanges heat with the refrigerant flowing out from the valve (5).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2815491U JPH04125165U (en) | 1991-04-23 | 1991-04-23 | Cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2815491U JPH04125165U (en) | 1991-04-23 | 1991-04-23 | Cooling system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04125165U true JPH04125165U (en) | 1992-11-16 |
Family
ID=31912298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2815491U Pending JPH04125165U (en) | 1991-04-23 | 1991-04-23 | Cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04125165U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007029803A1 (en) * | 2005-09-09 | 2007-03-15 | Daikin Industries, Ltd. | Refrigeration device |
JP2012207843A (en) * | 2011-03-29 | 2012-10-25 | Fujitsu General Ltd | Heat pump apparatus |
-
1991
- 1991-04-23 JP JP2815491U patent/JPH04125165U/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007029803A1 (en) * | 2005-09-09 | 2007-03-15 | Daikin Industries, Ltd. | Refrigeration device |
US7788937B2 (en) | 2005-09-09 | 2010-09-07 | Daikin Industries, Ltd. | Refrigeration system |
JP2012207843A (en) * | 2011-03-29 | 2012-10-25 | Fujitsu General Ltd | Heat pump apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11193967A (en) | Refrigerating cycle | |
JPS645227B2 (en) | ||
JP3413943B2 (en) | Refrigeration cycle | |
JPH04125165U (en) | Cooling system | |
JP3365027B2 (en) | Air conditioner | |
JP3906398B2 (en) | Thermal storage air conditioner | |
JP4597404B2 (en) | Air conditioner for vehicles | |
US4393661A (en) | Means and method for regulating flowrate in a vapor compression cycle device | |
JP2551978B2 (en) | Evaporation control structure in refrigeration cycle | |
JPS6230690Y2 (en) | ||
JP3009481B2 (en) | Heat pump type air conditioner | |
JPS6340764Y2 (en) | ||
JP4167719B2 (en) | Refrigeration circuit and air conditioner using the same | |
JPH0221731Y2 (en) | ||
JPS604039Y2 (en) | air conditioner | |
JPS58160774A (en) | Hot-water supply device | |
JPS581738Y2 (en) | Air conditioning equipment | |
JPS5835971Y2 (en) | Refrigeration equipment | |
JPS5840464A (en) | Air conditioner | |
JPS6238148Y2 (en) | ||
JP4330220B2 (en) | Thermal storage air conditioner | |
JPS6322464Y2 (en) | ||
JPS583011Y2 (en) | heat pump equipment | |
JPS5815819Y2 (en) | air conditioner | |
JPS5835972Y2 (en) | Refrigeration equipment |