JPS5840464A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS5840464A
JPS5840464A JP56137010A JP13701081A JPS5840464A JP S5840464 A JPS5840464 A JP S5840464A JP 56137010 A JP56137010 A JP 56137010A JP 13701081 A JP13701081 A JP 13701081A JP S5840464 A JPS5840464 A JP S5840464A
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
heat exchanger
water supply
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56137010A
Other languages
Japanese (ja)
Inventor
服部 久司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP56137010A priority Critical patent/JPS5840464A/en
Publication of JPS5840464A publication Critical patent/JPS5840464A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、給湯用熱交換器を具えたヒートポンプ式空気
調和機の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a heat pump air conditioner equipped with a heat exchanger for hot water supply.

従来のこの種の空気調和機は、通常、第1図に示すよう
に構成されている。同図において、Aは空気調和機の室
外ユ゛ニット、Bは室内ユニット。
A conventional air conditioner of this type is usually configured as shown in FIG. In the figure, A is the outdoor unit of the air conditioner, and B is the indoor unit.

Cは給湯ユニットをそれぞれ示し、室外ユニットAには
、圧縮機1、四方弁2.室外熱交換器6゜膨張機構4.
逆止弁5.室外送風機21、アキュムレータ9が内蔵さ
れており、室外送風以外の部材は図示の如く冷媒配管に
より接続されている。
C indicates a hot water supply unit, and the outdoor unit A includes a compressor 1, a four-way valve 2. Outdoor heat exchanger 6° expansion mechanism 4.
Check valve 5. An outdoor blower 21 and an accumulator 9 are built in, and components other than the outdoor blower are connected by refrigerant piping as shown.

また、室内ユニツ)Bには、膨張機構6、逆止弁7、室
内熱交換器8が冷媒配管により図示の如(連結されてい
る。なお22は室内送風機を示す。
Further, in the indoor unit) B, an expansion mechanism 6, a check valve 7, and an indoor heat exchanger 8 are connected as shown in the figure by refrigerant piping. Note that 22 indicates an indoor blower.

そして、室外ユニットAと室外ユニツ)Bとは、冷媒配
管15.16により接続゛されている。また、給湯ユニ
ットCには、給湯用熱交換器10.ポンプ11が内蔵さ
れており、該給湯ユニットCと室外ユニツ)Aとは冷媒
配管13.14で図示の如く接続され、また、給湯ユニ
ットCは外部の給湯用貯湯タンク12・と水配管17.
18で図示の如く接続されている。なお、図中19は給
水管、20は給湯管、実線矢印は冷房時の、点線矢印は
暖房時の冷媒の流れ方向をそれぞれ示す。
The outdoor unit A and the outdoor unit B are connected by refrigerant pipes 15 and 16. The hot water supply unit C also includes a hot water supply heat exchanger 10. A pump 11 is built in, and the hot water supply unit C and outdoor unit A are connected to each other by refrigerant pipes 13 and 14 as shown in the figure, and the hot water supply unit C is connected to an external hot water storage tank 12 and water pipe 17.
18 and are connected as shown in the figure. In the figure, 19 indicates a water supply pipe, 20 indicates a hot water supply pipe, solid line arrows indicate the flow direction of the refrigerant during cooling, and dotted line arrows indicate the flow direction of the refrigerant during heating.

゛ この従来の空気調和機の冷房運転時に圧縮機1より
吐出された高温、高圧のガス冷媒は、冷媒配管13を経
て給湯用熱交換器10を通るとき、ポンプ11により貯
湯タンク12から導入される給湯用水と熱交換すること
によって該給湯用水な加熱し、冷媒は冷却される。そし
て給湯用水と冷媒の熱交換量が大きくなって、給湯熱交
換器10を出る冷媒は、高圧の液・ガス混合状態となる
と、冷媒回路の冷媒の必要量が増大するため、給湯用水
は、冷媒が給湯用熱交換器10出口で液を含まない過熱
ガスとなって出るように、少ない水量に調整されている
。そして、給湯用熱交換器10を出た高圧ガス冷媒は、
四方弁2を経て膨張機構乙により絞られて低圧の液・ガ
ス混合冷媒となり、室内熱交換器8で室内送風機22に
よって送られる室内空気と熱交換して蒸発し一1低圧ガ
ス冷媒となり冷媒配管16、四方弁2、アキュムレータ
9を経て圧縮機1に吸入される。
゛ The high temperature, high pressure gas refrigerant discharged from the compressor 1 during cooling operation of this conventional air conditioner is introduced from the hot water storage tank 12 by the pump 11 when passing through the refrigerant pipe 13 and the hot water supply heat exchanger 10. By exchanging heat with the hot water supply water, the hot water supply water is heated and the refrigerant is cooled. When the amount of heat exchange between the hot water supply water and the refrigerant increases, and the refrigerant exiting the hot water heat exchanger 10 becomes a high-pressure liquid/gas mixed state, the amount of refrigerant required in the refrigerant circuit increases. The amount of water is adjusted to be small so that the refrigerant exits as superheated gas without liquid at the outlet of the hot water supply heat exchanger 10. The high-pressure gas refrigerant leaving the hot water supply heat exchanger 10 is
It passes through the four-way valve 2 and is throttled by the expansion mechanism B to become a low-pressure liquid/gas mixed refrigerant, which exchanges heat with the indoor air sent by the indoor blower 22 in the indoor heat exchanger 8 and evaporates to become a low-pressure gas refrigerant. 16, the four-way valve 2, and the accumulator 9 before being sucked into the compressor 1.

また、暖房運転時に圧縮機1より吐出された高温、高圧
ガス冷媒は、冷媒配管16を経て給湯用熱交換器10を
通る際、ポンプ11により貯湯タンク12から送られる
給湯用水と熱交換することにより、給湯用水は加熱され
、冷媒は冷却される。
In addition, when the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 during heating operation passes through the refrigerant piping 16 and the hot water heat exchanger 10, it exchanges heat with the hot water supply water sent from the hot water storage tank 12 by the pump 11. As a result, the water for hot water supply is heated and the refrigerant is cooled.

この場合、冷房運転時と同様に、給湯用熱交換器10を
通過する給湯用水の水量は、給湯用熱交換器10を出る
冷媒が液にならないように、少ない水量に調整される。
In this case, similarly to the cooling operation, the amount of water for hot water supply passing through the heat exchanger 10 for hot water supply is adjusted to a small amount so that the refrigerant exiting the heat exchanger 10 for hot water supply does not become liquid.

給湯用熱交換器10を出た高圧ガス冷媒は、四方弁2を
通り冷媒配管16を経て室内熱交換器8で通過空気によ
り冷却されて高圧液冷媒となり、室内熱交換器8.逆止
弁7を通り、冷媒配管15を経て膨張機構4により絞ら
れて低圧の液・ガス混合冷媒となり、室外熱交換器3で
通過空気により加熱されて蒸発し、四方弁2.アキュム
レータ9を経て圧縮機1に吸入される。そのため、暖房
運転時は、給湯用熱交換器10で放熱した熱量分だけ、
室内熱交換器8の放熱能力が減少することになる。また
、冷房運転時及び暖房運転時の何れの場合にもポンプ1
1が停止のときは、給湯はできず、冷房のみか暖房のみ
が行われる。
The high-pressure gas refrigerant that exits the hot water supply heat exchanger 10 passes through the four-way valve 2, passes through the refrigerant pipe 16, and is cooled by the passing air in the indoor heat exchanger 8 to become a high-pressure liquid refrigerant. It passes through the check valve 7, passes through the refrigerant piping 15, and is throttled by the expansion mechanism 4 to become a low-pressure liquid/gas mixed refrigerant, which is heated by the passing air in the outdoor heat exchanger 3 and evaporates, and then passes through the four-way valve 2. It is sucked into the compressor 1 via the accumulator 9. Therefore, during heating operation, only the amount of heat radiated by the hot water heat exchanger 10 is
The heat dissipation capacity of the indoor heat exchanger 8 will be reduced. In addition, the pump 1 is
When 1 is stopped, hot water cannot be supplied and only cooling or heating is performed.

上記従来のヒートポンプ式空気調和機では、(1)冷媒
量の調節装置がないため、給湯のみの運転を行うことが
できず、給湯を行うには、冷房か暖房かの何れかの運転
を行う必要があるため、冷暖房の不要な中間季には、実
際上給湯を行うことができない。
The above conventional heat pump air conditioners (1) do not have a refrigerant amount adjustment device, so they cannot operate only to supply hot water; in order to supply hot water, they must operate either cooling or heating; As a result, hot water cannot actually be heated during the middle seasons when heating and cooling are not required.

(同 給湯用熱交換器10を出る冷媒が、液冷媒になら
ないように、水量を少な(するため、給湯能力が小さく
、従って貯湯タンク12の水温を上げるに長時間を要す
る。
(In order to prevent the refrigerant leaving the hot water supply heat exchanger 10 from becoming a liquid refrigerant, the amount of water is small. Therefore, the hot water supply capacity is small, and therefore it takes a long time to raise the water temperature in the hot water storage tank 12.

などの欠点があった。There were drawbacks such as.

本発明は、上記従来のヒートポンプ式空気調和機の欠点
を解消することを目的として提案されたもので、圧縮機
、四方弁、室外熱交換器、膨張機構、逆止弁、室内熱交
換器、アキュムレータを、冷媒配管で接続した空気調和
轡の圧縮機の吐出側と四方弁との間に、給湯用熱交換器
を配設してなる空気調和機において、室外熱交換器と室
内熱交換器を結ぶ冷媒液配管の途中に、受液器を介装し
てなることを特徴とする空気調和機に係るものである。
The present invention was proposed for the purpose of eliminating the drawbacks of the conventional heat pump type air conditioners, and includes a compressor, a four-way valve, an outdoor heat exchanger, an expansion mechanism, a check valve, an indoor heat exchanger, In an air conditioner in which a heat exchanger for hot water supply is arranged between a four-way valve and the discharge side of a compressor of an air conditioner to which an accumulator is connected via refrigerant piping, an outdoor heat exchanger and an indoor heat exchanger are used. This relates to an air conditioner characterized in that a liquid receiver is interposed in the middle of a refrigerant liquid pipe connecting the air conditioners.

以下、第2図に示す実施例により、本発明につき具体的
に説明する。
The present invention will be specifically explained below with reference to an embodiment shown in FIG.

第2図において、Aは空気調和機の室外ユニットで、同
室外ユニツ)Aには、圧縮機1.四方弁2、室外熱交換
器ろ、膨張機構4、逆止弁5、室外送風機21.アキュ
ムレータ9が内蔵すれており、室外送風機21以外は冷
媒配管によって接続されていることは、上記従来の空気
調和機の室外ユニットとほぼ同様である(均等部分には
同一符号を付しである)。巳は室内ユニットで、同室内
ユニットBKは、膨張機構6、逆止弁7、室内熱交換器
8が冷媒配管で接続されて内蔵されており、また、室内
送風機22が設けられていることも、上記従来の室内ユ
ニッ)Bとほぼ同様である(均等部分には同一符号が付
されている)。C′は給湯ユニットで、同給湯ユニット
C′は、給湯用熱交換器10、ポンプ11を内蔵する点
及び冷媒配管13.14を介して室外ユニットAと接続
されている点では、上記従来の空気調和機の給湯ユニッ
トCとほぼ同様であるが、本発明の給湯ユニットC′は
、受液器26を図示の如く内蔵し、該受液器26は冷媒
配管15aを介して給湯ユニットC′と室外ユニツ)A
とを接続し、また冷媒配管15bを介して給湯ユニット
C′と室内ユニッ)Bとを接続した点で、上記従来の空
気調和機と構成を異にしている。この受液器23の詳細
構造は、第5図に示す通りで、冷媒配管15’+ 15
bの受液器2ろ内における管先端高さhは同一に設定さ
れている。
In FIG. 2, A is an outdoor unit of an air conditioner, and A includes a compressor 1. Four-way valve 2, outdoor heat exchanger filter, expansion mechanism 4, check valve 5, outdoor blower 21. The accumulator 9 is built-in, and everything except the outdoor blower 21 is connected by refrigerant piping, which is almost the same as the above-mentioned conventional air conditioner outdoor unit (equal parts are given the same reference numerals). . Snake is an indoor unit, and the same indoor unit BK has an expansion mechanism 6, a check valve 7, and an indoor heat exchanger 8 built-in and connected by refrigerant piping, and is also equipped with an indoor blower 22. , is almost the same as the above-mentioned conventional indoor unit) B (equal parts are given the same reference numerals). C' is a hot water supply unit, and the hot water supply unit C' is different from the conventional one in that it includes a hot water supply heat exchanger 10 and a pump 11, and is connected to the outdoor unit A via refrigerant pipes 13 and 14. Although it is almost similar to the hot water supply unit C of an air conditioner, the hot water supply unit C' of the present invention has a built-in liquid receiver 26 as shown in the figure, and the liquid receiver 26 is connected to the hot water supply unit C' via a refrigerant pipe 15a. and outdoor units) A
The structure differs from the conventional air conditioner described above in that the hot water supply unit C' and the indoor unit B are connected via the refrigerant pipe 15b. The detailed structure of this liquid receiver 23 is as shown in FIG.
The height h of the tube tip in the receiver 2 filter b is set to be the same.

なお、該受液器23は、給湯ユニットC′以外の室外ユ
ニットA、室内ユニットB内に設置してもよい。なお、
貯湯タンク12が給水管19.給湯管20を具え、かつ
水配管18.19で給湯ユニットC′に接続されている
ことも、上記従来の空気調和機とほぼ同様である。
Note that the liquid receiver 23 may be installed in an outdoor unit A or an indoor unit B other than the hot water supply unit C'. In addition,
The hot water storage tank 12 is connected to the water supply pipe 19. It is also substantially the same as the conventional air conditioner described above in that it includes a hot water supply pipe 20 and is connected to the hot water supply unit C' through water pipes 18 and 19.

本発明のヒートポンプ式空気調和機の一実施例は、上記
の如く構成されており、本空気調和機の運転は次のよう
にして行われる。
An embodiment of the heat pump air conditioner of the present invention is constructed as described above, and the air conditioner is operated as follows.

(a)  冷房のみの運転時には、ポンプ11を停止t
7た状態で運転すると、圧縮機から吐出された高温・高
圧のガス冷媒は実線矢印で示す如く冷媒配管13を経て
給湯用熱交換器10へ入るが、ポンプ11が停止してい
るため、給湯水が流れていないので熱交換されずに、高
温・高圧ガス冷媒のままの状態で冷媒配管14.四方弁
2を通り、室外熱交換器3で室外送風機21により通過
する室外空気により冷却されて高圧液冷媒となり、逆止
弁5、冷媒配管15a、受液器23、冷媒配管151)
を経て室内・ユニッ)Bの膨張機構乙によって絞られて
低圧の液・ガス混合冷媒となり、室内熱交換器8で室内
送風機22によって通過する室内空気と熱交換し、加熱
されて蒸発して低圧ガス冷媒となる。この場合、室内空
気は室内熱交換器8を通ることにより冷却かつ除湿され
る。そして室内熱交換器8を出た低圧ガス冷媒は、冷媒
配管16、四方弁2.アキュレータ9を経て圧縮機1に
吸入される。
(a) Stop the pump 11 when operating only for cooling.
When the compressor is operated under the condition of Since water is not flowing, there is no heat exchange and the high temperature, high pressure gas refrigerant remains in the refrigerant pipe 14. It passes through the four-way valve 2, is cooled by the outdoor air passing through the outdoor blower 21 in the outdoor heat exchanger 3, and becomes a high-pressure liquid refrigerant, which is transferred to the check valve 5, the refrigerant pipe 15a, the liquid receiver 23, and the refrigerant pipe 151).
After that, the refrigerant is squeezed by the expansion mechanism B in the indoor/unit) B to become a low-pressure liquid/gas mixed refrigerant, which exchanges heat with the indoor air passing by the indoor blower 22 in the indoor heat exchanger 8, is heated and evaporated, and becomes a low-pressure refrigerant. It becomes a gas refrigerant. In this case, the indoor air is cooled and dehumidified by passing through the indoor heat exchanger 8. The low pressure gas refrigerant leaving the indoor heat exchanger 8 is then transferred to the refrigerant pipe 16, the four-way valve 2. It is sucked into the compressor 1 through the accurator 9.

(b)  冷房及び給湯運転時には、ポンプ11も運転
すると、圧縮機1より吐出された高温、高圧ガス冷媒は
、実線矢印で示す如く冷媒配管13を経て給湯用熱交換
器1oへ入る。ここでポンプ11により貯湯タンク12
より水配管17を介して導入される給湯水と熱交換し、
高温、高圧ガス冷媒は冷却され、また、給湯水は加熱さ
れる。この加熱された給湯水は水配管18を経て貯湯タ
ンク12へ戻され、以下ポンプ11の作用で貯湯タンク
12と給湯用熱交換器100間を循環し、貯湯タンク1
2内の給湯水の温度が所定の温度に上昇するまで給湯運
転は続けられる。一方、給湯用熱交換器10で給湯水と
熱交換して該給湯用熱交換器10を出る冷媒は、給湯水
の温度が低い時は、高圧液冷媒となり、また給湯水の温
度が上昇してくると液・ガス混合冷媒となり、更にその
水温が上昇すると、高圧ガス冷媒となり、冷媒配管14
、四方弁2を経て室外熱交換器°6へ入る。そしてここ
で給湯用熱交換器10を出た冷媒が液冷媒のときにおい
て、室外空気温度が低いときは室外熱交換器ろで該冷媒
は冷却されて過冷却液となり、室外空気温度が高いとき
は逆に加熱される。給湯用熱交換器10を出た冷媒が、
液・ガス混合状態のときや、ガス状冷媒のときは、室外
熱交換器6の通過空気により冷却されてガス冷媒は凝縮
され、高圧液冷媒となり室外熱交換器3を出て冷媒配管
15a。
(b) During cooling and hot water supply operation, when the pump 11 is also operated, the high temperature, high pressure gas refrigerant discharged from the compressor 1 enters the hot water supply heat exchanger 1o via the refrigerant pipe 13 as shown by the solid arrow. Here, the pump 11 causes the hot water storage tank 12 to
exchange heat with the hot water introduced via the water pipe 17,
The high temperature, high pressure gas refrigerant is cooled and the hot water is heated. This heated hot water supply water is returned to the hot water storage tank 12 via the water pipe 18, and then circulated between the hot water storage tank 12 and the hot water supply heat exchanger 100 by the action of the pump 11.
The hot water supply operation continues until the temperature of the hot water in the hot water supply unit 2 rises to a predetermined temperature. On the other hand, when the temperature of the hot water supply water is low, the refrigerant that exchanges heat with the hot water supply water in the hot water supply heat exchanger 10 and exits the hot water supply heat exchanger 10 becomes a high-pressure liquid refrigerant, and the temperature of the hot water supply water increases. As the water temperature rises, it becomes a liquid/gas mixed refrigerant, and as the water temperature rises further, it becomes a high-pressure gas refrigerant, and the refrigerant pipe 14
, enters the outdoor heat exchanger °6 via the four-way valve 2. Here, when the refrigerant exiting the hot water supply heat exchanger 10 is a liquid refrigerant, when the outdoor air temperature is low, the refrigerant is cooled in the outdoor heat exchanger filter and becomes a supercooled liquid, and when the outdoor air temperature is high, the refrigerant is cooled into a supercooled liquid. On the contrary, it is heated. The refrigerant leaving the hot water supply heat exchanger 10 is
When it is in a liquid/gas mixed state or when it is a gaseous refrigerant, the gas refrigerant is cooled by the air passing through the outdoor heat exchanger 6 and condensed, becoming a high-pressure liquid refrigerant and exiting the outdoor heat exchanger 3 into the refrigerant pipe 15a.

受液器23、冷媒配管15bを経て室内熱交換器8に入
り、以下冷房時と同様な運転を行う。
The liquid enters the indoor heat exchanger 8 via the liquid receiver 23 and the refrigerant pipe 15b, and thereafter operates in the same manner as during cooling.

(C)  暖房のみの運転時(この場合、ポンプ11は
給湯運転が行われないので停止状態にある)圧縮機1よ
り吐出された高圧、高温のガス冷媒は、点線矢印で示す
如く冷媒配管13を経て給湯用熱交換器10へ入るが、
給湯水が流れていないため、熱交換されずに高温、高圧
ガぢ冷媒の状態で該給湯用熱交換器10より出て、冷媒
配管14.四方弁2.冷媒配管16を通り・、室内熱交
換器8へ入る。そしてここで室内通風機22によって通
過する室内空気と熱交換を行ってガス冷媒は冷却されて
凝縮し、高圧液冷媒となり、室内空気は加熱される。室
内熱交換器8な出た高圧液冷媒は、逆止弁7を通り、冷
媒配管15b、受液器23.冷媒配管15aを通過し、
膨張機構4により絞られて低圧の液・ガス混合冷媒とな
り、室外熱交換器3へ入る。そしてここで室外送風機2
1により通過する室外空気と熱交換を行って液・ガス混
合冷媒は加熱されて蒸発し、低圧のガス冷媒となり、四
方弁2、アキュムレータ9を経て圧縮機1に吸入される
(C) During heating-only operation (in this case, the pump 11 is in a stopped state because hot water supply operation is not performed), the high-pressure, high-temperature gas refrigerant discharged from the compressor 1 is transferred to the refrigerant pipe 13 as shown by the dotted arrow. It enters the hot water heat exchanger 10 through
Since the hot water supply water is not flowing, the hot water is not exchanged and comes out of the hot water heat exchanger 10 as a high temperature, high pressure refrigerant, and enters the refrigerant pipe 14. Four-way valve 2. The refrigerant passes through the refrigerant pipe 16 and enters the indoor heat exchanger 8. Here, the gas refrigerant is cooled and condensed by exchanging heat with the indoor air passing through it by the indoor ventilation fan 22, becoming a high-pressure liquid refrigerant, and the indoor air is heated. The high-pressure liquid refrigerant discharged from the indoor heat exchanger 8 passes through the check valve 7, the refrigerant pipe 15b, and the liquid receiver 23. Passes through the refrigerant pipe 15a,
It is throttled by the expansion mechanism 4 to become a low-pressure liquid/gas mixed refrigerant, and enters the outdoor heat exchanger 3. And here outdoor blower 2
1, the liquid/gas mixed refrigerant is heated and evaporated by exchanging heat with the outdoor air passing through it, becoming a low-pressure gas refrigerant, which is sucked into the compressor 1 via the four-way valve 2 and the accumulator 9.

(d)暖房及び給湯運転時(この場合、ポンプ11は運
転される)には、圧縮機1から吐出された高温、高圧ガ
ス冷媒は、点線矢印で示す如く冷媒配管13を経て給湯
用熱交換器10へ入り、ここでポンプ11によって貯湯
タンク12かも送られてくる給湯水と熱交換し、高温・
高圧ガス冷媒は冷却され、また給湯水は加熱される。給
湯用熱交換器10で加熱された給湯水は、水配管18を
経て貯湯タンク12へ戻され、以陵ポンプ11により貯
湯タンク12と給湯用熱交換器10I:r)間を循環し
、貯湯タンク12内の給湯水、の温度が所定の温度に上
昇するまで、給湯運転は行われる。一方。
(d) During heating and hot water supply operation (in this case, the pump 11 is operated), the high temperature, high pressure gas refrigerant discharged from the compressor 1 passes through the refrigerant pipe 13 as shown by the dotted line arrow to exchange heat for hot water supply. The pump 11 exchanges heat with the hot water supplied from the hot water storage tank 12, resulting in high temperature and
The high pressure gas refrigerant is cooled and the hot water is heated. The hot water heated by the hot water supply heat exchanger 10 is returned to the hot water storage tank 12 via the water piping 18, and is circulated between the hot water storage tank 12 and the hot water heat exchanger 10I:r) by the iris pump 11, and is then stored. The hot water supply operation continues until the temperature of the hot water in the tank 12 rises to a predetermined temperature. on the other hand.

給湯用熱交換器10を出る冷媒は給湯水温の低いときは
、高圧液冷媒となり、また、給湯水の温度が上昇してく
ると、液、ガス混合冷媒となり、更にその水温が上昇す
ると、高圧ガス冷媒となり、冷媒配管14、四方弁2.
冷媒配管16を経て室内熱交換器8へ入る。そして、こ
こで給湯用熱交換器10を出た冷媒が、液冷媒のときは
、室内空気温度が低い場合には、冷媒は冷却されて過冷
却液となり、また、室内温度が高い場合には、逆に加熱
される。給湯用熱交換器10を出た冷媒が液・ガス混合
状態のときや、ガス冷媒のときは、通過室内空気によっ
て冷却され、ガス冷媒は冷却されて凝縮し、高圧液冷媒
となり、室内熱交換器8を出て、以後暖房時と同様の運
転が行われる。このように、暖房と同時に給湯運転を行
う場合の暖房能力は、暖房のみの運転時の暖房能力に比
して小さい能力となる。その理由は、給湯用熱交換器1
0での凝縮能力により、圧縮機1の吐出圧力が低下して
圧縮機1の消費電力が減少し、該消費電力を熱量に換算
した圧縮機10発熱量と室内熱交換器乙の蒸発能力の和
の必要放熱能力(凝縮能力)が小さくなることと、凝縮
能力は、給湯用熱交換器10の能力と室内熱交換器8の
暖房i能力の和であることから、給湯用熱交換器10の
能力が大きい程、室内熱交換器8の暖房能力は小さくな
り、給湯用熱交換器10の能力が小さい程、室内熱交換
器8の暖房能力は大きくなるが、暖房のみの運転時の暖
房能力より常に小さくなるからである。
When the hot water supply heat exchanger 10 leaves the hot water supply heat exchanger 10, the refrigerant becomes a high-pressure liquid refrigerant when the hot water supply water temperature is low, and when the hot water supply temperature rises, it becomes a liquid and gas mixed refrigerant, and when the water temperature further increases, the refrigerant becomes a high-pressure liquid refrigerant. It becomes a gas refrigerant, refrigerant piping 14, four-way valve 2.
The refrigerant enters the indoor heat exchanger 8 via the refrigerant pipe 16. When the refrigerant leaving the hot water supply heat exchanger 10 is a liquid refrigerant, when the indoor air temperature is low, the refrigerant is cooled and becomes a supercooled liquid, and when the indoor temperature is high, the refrigerant is cooled and becomes a supercooled liquid. , on the contrary, it is heated. When the refrigerant exiting the hot water supply heat exchanger 10 is in a liquid/gas mixed state or is a gas refrigerant, it is cooled by the passing indoor air, and the gas refrigerant is cooled and condensed to become a high-pressure liquid refrigerant, which is used for indoor heat exchange. After leaving the container 8, the same operation as during heating is performed. In this way, the heating capacity when hot water supply operation is performed at the same time as heating is smaller than the heating capacity when only heating operation is performed. The reason is that the hot water heat exchanger 1
Due to the condensing capacity at 0, the discharge pressure of the compressor 1 decreases, and the power consumption of the compressor 1 decreases. Since the required heat dissipation capacity (condensing capacity) of the sum becomes smaller and the condensing capacity is the sum of the capacity of the hot water supply heat exchanger 10 and the heating i capacity of the indoor heat exchanger 8, the hot water supply heat exchanger 10 The larger the capacity of the indoor heat exchanger 8, the smaller the heating capacity of the indoor heat exchanger 8, and the smaller the capacity of the hot water supply heat exchanger 10, the larger the heating capacity of the indoor heat exchanger 8. This is because it will always be smaller than the capacity.

(e)  給湯のみの運転時(この場合、ポンプ11は
運転され、室内送風機22は停止される)には、圧縮機
1から吐出された高温、高圧のガス冷媒は点線矢印に示
す如く、冷媒配管13を経て給湯用熱交換器10に入る
。そしてここでポンプ11によって貯湯タンク12より
送られる給湯水と熱交換を行い、ガス冷媒は冷却されて
凝縮し、高圧箪冷媒となる。そして給湯水は加熱され、
水配管18を経て貯湯タンク12へ戻り、以後ポンプ1
1により貯湯タンク12と給湯用熱交換器10の間を循
環し、貯湯タンク12内の給湯水の温度が所定の温度に
上昇するまで給湯運転が行われる。給湯用熱交換器10
を出た高圧液冷媒は、冷媒配管14、四方弁2.冷媒配
管16を経て室内熱交換器8へ入る。この場合、室内送
風機22は停止して(・るので、室内熱交換a8を通過
する室内空気の量は。
(e) During operation for only hot water supply (in this case, the pump 11 is operated and the indoor blower 22 is stopped), the high temperature, high pressure gas refrigerant discharged from the compressor 1 becomes a refrigerant as shown by the dotted arrow. It enters the heat exchanger 10 for hot water supply via the piping 13. Here, the gas refrigerant exchanges heat with hot water sent from the hot water storage tank 12 by the pump 11, and the gas refrigerant is cooled and condensed to become a high-pressure cabinet refrigerant. Then the hot water is heated,
It returns to the hot water storage tank 12 via the water pipe 18, and then the pump 1
1, the hot water is circulated between the hot water storage tank 12 and the hot water supply heat exchanger 10, and hot water supply operation is performed until the temperature of the hot water in the hot water storage tank 12 rises to a predetermined temperature. Heat exchanger 10 for hot water supply
The high-pressure liquid refrigerant that exits the refrigerant pipe 14 and the four-way valve 2. The refrigerant enters the indoor heat exchanger 8 via the refrigerant pipe 16. In this case, the indoor blower 22 is stopped, so the amount of indoor air passing through the indoor heat exchanger a8 is .

自然対流による非常に少ない量であるため、熱交換は殆
んどないに等しい量となる。従って室内熱交換器8を出
る高亜液冷媒は、室内熱交換器80入口状態と殆んど同
じ状態であり、逆止弁7.冷媒配管15b、受液器23
.冷媒配管15aを経て膨張機構4により絞られて低圧
の液・ガス混合冷媒となり、室外熱交換器6へ入る。そ
してここで室外送風機21により通過する室外空気によ
り加熱されて蒸発し、四方弁2.アキュムレータ9を通
り圧縮機1へ吸Å以上の各運転の場合、受液器26は、
冷房のみ、冷房及び給湯の入、暖房のみ、暖房及び給湯
、給湯のみの各運転時の冷媒回路中の冷媒量の調整を以
下のようにして行う。
Since the amount due to natural convection is very small, the amount of heat exchange is almost negligible. Therefore, the high-density liquid refrigerant exiting the indoor heat exchanger 8 is in almost the same state as the inlet state of the indoor heat exchanger 80, and the check valve 7. Refrigerant piping 15b, liquid receiver 23
.. The refrigerant passes through the refrigerant pipe 15a, is throttled by the expansion mechanism 4, becomes a low-pressure liquid/gas mixed refrigerant, and enters the outdoor heat exchanger 6. Here, the outdoor air passing through the outdoor blower 21 heats and evaporates, and the four-way valve 2. In each operation above the absorption through the accumulator 9 to the compressor 1, the receiver 26
The amount of refrigerant in the refrigerant circuit during each operation of cooling only, cooling and hot water supply, heating only, heating and hot water supply, and hot water supply only is adjusted as follows.

いま、装置内の全冷媒量をRとすると、該全冷媒量Rは
rg冷媒の体積■と冷媒の密度Xで決まり、R=V、X
      となる。
Now, if the total amount of refrigerant in the device is R, the total amount R is determined by the volume of the rg refrigerant and the density of the refrigerant, R=V,
becomes.

ただし−R: h+  ” : ”3+  X: KV
/m3また。冷媒の密度Xは、(1)、冷媒の状態(液
または液・ガス混合またはガス)(町、冷媒の圧力、温
度によって変化し、上記(i)の冷媒の状態では、密度
Xの太きいものから液澹、液・ガス混合x2.ガス(X
3)の順延なり、また密度Xの変化の大きさも、上記(
ii)の冷媒の圧力、温度による変化よりも大きく、装
置内の全冷媒量Hの変化は、主に上記(1)の冷媒の状
態による変化と考えればよい。従って装置内の冷媒量R
は、 R−Xl、v1+X2・■2+x3.■3ただしvlは
液となる体積、■2は液・ガス混合となる体積v3はガ
スとなる体積を示す。
However, -R: h+ ”: ”3+ X: KV
/m3 again. The density From liquid to liquid, liquid/gas mixture x2.Gas (X
The extension of 3) and the magnitude of the change in density X are also determined by the above (
The change in the total amount H of refrigerant in the device is larger than the change due to the pressure and temperature of the refrigerant in ii), and can be considered to be mainly the change due to the state of the refrigerant in (1) above. Therefore, the amount of refrigerant in the device R
is R-Xl, v1+X2・■2+x3. (3) However, vl is the volume of liquid, and (2) is the volume of liquid/gas mixture v3 is the volume of gas.

また密度は、xl〉X2〉X3の関係にある。各運転に
よってXl、X2.X3の値も変化するが、これは上記
(ii)の冷媒の圧力、温度によるもので変化は小さい
。そして各運転により冷媒量が変化する主要因は、■1
.v2.■3の変化である。
Further, the density has a relationship of xl>X2>X3. Depending on each operation, Xl, X2. The value of X3 also changes, but this is due to the pressure and temperature of the refrigerant mentioned in (ii) above, and the change is small. The main factors that cause the amount of refrigerant to change depending on each operation are ■1
.. v2. ■This is the change in number 3.

装置内の全冷媒量Rは、Vl、−V2が大きい程大きく
なり、■3が大きい程小さくなる。
The total amount R of refrigerant in the device becomes larger as Vl and -V2 are larger, and becomes smaller as (3) is larger.

各運転により、V1■2■3が変化するため、全冷媒量
Rは変化する。
Since V1■2■3 changes with each operation, the total refrigerant amount R changes.

サイクル内冷媒充填量Rは、受液器23を除く他の機器
内の冷媒量が最大となる運転時の冷媒量R1と、受液器
23内の冷媒配管15a、15bの管先端部が液で充た
された状態での受液器23内の冷媒量R2の加算された
値となる。
The refrigerant filling amount R in the cycle is the refrigerant amount R1 during operation when the amount of refrigerant in other devices other than the liquid receiver 23 is at its maximum, and the refrigerant amount R1 during operation when the refrigerant amount in other devices except the liquid receiver 23 is at a maximum. This is the added value of the refrigerant amount R2 in the liquid receiver 23 in the filled state.

R=R1+R2 そして、受液器26内でホールドされる冷媒量はR2が
最小であり、他の運転時には、R2より多くホールドさ
れ、受液器23を除く装置内の冷媒量が最小となる運転
時に、受液器23内の冷媒ホールド量は最大となる。
R=R1+R2 Then, the amount of refrigerant held in the liquid receiver 26 is the minimum in R2, and during other operations, more than R2 is held, and the amount of refrigerant in the device excluding the liquid receiver 23 is the minimum. At times, the amount of refrigerant held in the liquid receiver 23 reaches a maximum.

いま、受液器23内の圧力をR2とし、受液器入口の液
冷媒の温度の飽和圧力をPsとすると、R2は凝縮圧力
P、凝縮器から受液器までの冷媒摩擦圧力損失ΔPF、
凝縮器液面y受液器液面のヘット差ΔPH受液器23と
その周囲空気との熱交換による冷媒の凝縮、蒸発によっ
て変化する圧力ΔPAにより決まり、 p2==p、+ΔPA+ΔPH−ΔPFとなる。
Now, if the pressure inside the liquid receiver 23 is R2, and the saturation pressure of the temperature of the liquid refrigerant at the inlet of the liquid receiver is Ps, then R2 is the condensation pressure P, the refrigerant friction pressure loss ΔPF from the condenser to the liquid receiver,
The head difference ΔPH between the condenser liquid level and the liquid receiver liquid level is determined by the pressure ΔPA that changes due to the condensation and evaporation of the refrigerant due to heat exchange between the receiver 23 and its surrounding air, p2==p, +ΔPA+ΔPH−ΔPF. .

なお、Plは運転条件同一の場合、凝縮器内の冷媒ホー
ルド量(冷媒液面)が多い程高く、少ない程低くなる。
Note that under the same operating conditions, Pl increases as the amount of refrigerant held in the condenser (refrigerant liquid level) increases, and decreases as the amount of refrigerant held in the condenser decreases.

また、ΔPHは凝縮器液面が受液器液面より高いとき、
ΔPH> o 、低いとき、ΔPH<○、同一のと、き
、ΔPH:oとなり、ΔPFは冷媒循環量が多いほど大
きく、−また、ガスが混入すると大きくなり、常にΔp
F>oである。
In addition, ΔPH is when the condenser liquid level is higher than the receiver liquid level,
ΔPH>o, when low, ΔPH<○, when the same, ΔPH:o, and ΔPF becomes larger as the amount of refrigerant circulation increases;
F>o.

また、ΔPAは受液器の周囲空気温度が高く、受液器内
の液冷媒が加熱され蒸発している時はΔPA〈0となり
、逆に周囲空気温度が低く、受液器内のガス冷媒が冷却
され凝縮している時は、ΔPp、>Oとなる。
In addition, when the ambient air temperature of the liquid receiver is high and the liquid refrigerant in the liquid receiver is heated and evaporated, ΔPA becomes ΔPA<0; conversely, when the ambient air temperature is low and the gas refrigerant in the liquid receiver is When is cooled and condensed, ΔPp becomes >O.

また、Psは凝縮器出口での冷媒温度と凝縮器から受液
器までの冷媒配管と周囲空気とめ熱交換による熱の出入
りによって決まる。
Further, Ps is determined by the refrigerant temperature at the condenser outlet, the refrigerant piping from the condenser to the liquid receiver, and the heat exchanged with the surrounding air.

そして、受液器23内冷媒液面(ホールド献)は、Ps
とR2で決まり、 (7) P8=P2の場合には、受液器液面は変化せず
安定する。
Then, the refrigerant liquid level (hold contribution) in the liquid receiver 23 is Ps
(7) When P8=P2, the receiver liquid level does not change and remains stable.

(イl  Pa>R2の場合には、受液器の液面は低下
してホールド量が減少し、膨張機構4の前にガスが液に
混入し流れ込むので、膨張機構4の絞りがチョークして
冷媒流量が減少し、装置内の冷媒量分布が、凝縮器内に
偏よって多くなり、凝縮器出口での液冷媒の過冷却が増
加してPlが上昇することになり、ある点で、Ps=P
2となり受液器の液面は安定する。
(If Pa > R2, the liquid level in the liquid receiver decreases and the holding amount decreases, and gas mixes with the liquid and flows in before the expansion mechanism 4, so the throttle of the expansion mechanism 4 becomes choked. As a result, the refrigerant flow rate decreases, the refrigerant amount distribution within the device becomes concentrated in the condenser, and the supercooling of the liquid refrigerant at the condenser outlet increases, resulting in an increase in Pl. Ps=P
2, and the liquid level in the liquid receiver becomes stable.

(つ)Ps<R2の場合には、受液器の液面は上昇(冷
媒ホールド量増加)して凝縮器内冷媒ボールド量は、減
少し、Plは低下し、凝縮器出口での冷媒の過冷却は減
少し、更にはガスが混入することになるとΔPFは増大
し、〜=P2となり受液器の液面は安定する。
(1) When Ps<R2, the liquid level in the liquid receiver rises (the amount of refrigerant held increases), the amount of refrigerant bold in the condenser decreases, Pl decreases, and the amount of refrigerant at the condenser outlet increases. When supercooling decreases and gas is mixed in, ΔPF increases, and becomes ~=P2, and the liquid level in the liquid receiver becomes stable.

以上の様にして受液器23の周囲温度、凝縮器から受液
器26までの冷媒摩擦損失、凝縮器と受液器の液面ヘッ
ド差、等を最適な状態にすることにより、装置内の余剰
冷媒は、受液器内にホールドされ、受液器23は、装置
内の冷媒制御を行う。
As described above, by optimizing the ambient temperature of the liquid receiver 23, the refrigerant friction loss from the condenser to the liquid receiver 26, the difference in liquid level between the condenser and the liquid receiver, etc., it is possible to The surplus refrigerant is held in the receiver, and the receiver 23 controls the refrigerant in the device.

本発明の空気調和機は、上記のような構成1作用を具有
するものであるから、本発明によれば、(1)冷媒回路
内の冷媒量の調節可能な受液器26を設け、室内送風機
22の運転を停止することにより、給湯のみの運転が可
能となった。
Since the air conditioner of the present invention has the above configuration 1 function, according to the present invention, (1) a liquid receiver 26 is provided in which the amount of refrigerant in the refrigerant circuit can be adjusted; By stopping the operation of the blower 22, only hot water supply operation became possible.

(2)  電磁弁等を使用することなく、単純な冷媒回
路で、給湯のみの運転ができるので、信頼性が高い。
(2) It is highly reliable because it can operate only for hot water supply with a simple refrigerant circuit without using a solenoid valve or the like.

(3)給湯のみの運転ができるので、中間季の冷。(3) It is possible to operate only hot water supply, so it is cold in the middle of the season.

暖房の不要なときも給湯運転ができる。Hot water can be operated even when heating is not required.

(4)冷房及び給湯運転により圧縮機1の消費電力を低
減して冷房能力を増大し、給湯運転ができるので、非常
に成績係数の高い運転となり、給湯運転料金の低減が可
能となる。
(4) Since the power consumption of the compressor 1 is reduced through the cooling and hot water supply operation, the cooling capacity is increased, and the hot water supply operation is possible, the operation has a very high coefficient of performance, and it is possible to reduce the hot water supply operation fee.

などの実用的効果を挙げることができる。The following practical effects can be mentioned.

次に、第3図に示す本発明の他の実施例は、室内ユニツ
)B内に圧縮機1を内蔵した場合の例を示し、本例の場
合、室外ユニットA内には、冷媒配管で結ばれた室外熱
交換器3.膨張機構4.逆止弁5及び室外送風機21が
配設されており、室内ユニツ)Bには、冷媒配管で結ば
れた圧縮機1゜四方弁2.膨張機構6.逆止弁7、室内
熱交換器8、アキュムレータ9及び室内送風機22が図
示の如く配設され、なおまた、給湯ユニットGKは給湯
用熱交換器10、給湯用ポンプ11.受液器23が図示
のように配設さ゛れている。そして室外ユニツ)Aと室
内ユニツ)Bは冷媒配管24で結ばれ、室外ユニットA
と給湯ユニットCは冷媒配管15aで結ばれ、また室内
ユニッ)Bと給湯ユニツ)Cは冷媒配管15b、13−
14で結ばれており、上記実施例と同様の作用、効果を
奏するものである。。
Next, another embodiment of the present invention shown in FIG. 3 is an example in which the compressor 1 is built in the indoor unit B. In this example, the outdoor unit A has a refrigerant pipe. Tied outdoor heat exchanger3. Expansion mechanism 4. A check valve 5 and an outdoor blower 21 are installed, and the indoor unit) B has a compressor 1° four-way valve 2. connected by refrigerant piping. Expansion mechanism 6. A check valve 7, an indoor heat exchanger 8, an accumulator 9, and an indoor blower 22 are arranged as shown in the figure, and the hot water supply unit GK also includes a hot water supply heat exchanger 10, a hot water supply pump 11. A liquid receiver 23 is arranged as shown. Then, the outdoor unit (A) and the indoor unit (B) are connected by a refrigerant pipe 24, and the outdoor unit (A)
and hot water supply unit C are connected by a refrigerant pipe 15a, and indoor unit) B and hot water supply unit) C are connected by refrigerant pipes 15b and 13-.
14, and has the same function and effect as the above embodiment. .

また、第4図に示す本発明の更に他の実施例はチリング
ユニットの場合の実施例で、チリングユニツ)D内には
、圧縮機1.四方弁2.室外熱交換器3.膨張機1It
4.6.逆止弁5,7、利用側熱交換器25、アキュム
レータ9が冷媒配管を介して図示の如(結ばれて配設さ
れており、また、室外送風機21が配設されている。ま
た、給湯二二ツ)Cには、図示の如く給湯用熱交換器1
0.受液器2ろ、給湯用ポンプ11が内蔵されている。
Further, another embodiment of the present invention shown in FIG. 4 is an embodiment in the case of a chilling unit, in which a compressor 1. Four-way valve 2. Outdoor heat exchanger 3. Expander 1It
4.6. The check valves 5, 7, the user-side heat exchanger 25, and the accumulator 9 are connected to each other via refrigerant piping as shown in the figure, and an outdoor blower 21 is also provided. 22) C has a heat exchanger 1 for hot water supply as shown in the diagram.
0. A liquid receiver 2 filter and a hot water supply pump 11 are built-in.

26は冷、暖房用ポンプで、27はファンコイルユニッ
トで、冷温水配管28.29によりチリングユニツ)D
の水熱交換器25に接続されている。
26 is a cooling and heating pump, 27 is a fan coil unit, and a chilling unit is provided by cold and hot water pipes 28 and 29)D
The water heat exchanger 25 is connected to the water heat exchanger 25.

本例は、第2図に示す実施例の室内熱交換器8を水熱交
換器25に、また室内送風機22を冷暖房用ポンプ26
に置換えれば、各運転方法及び作用。
In this example, the indoor heat exchanger 8 of the embodiment shown in FIG.
If replaced with , each operating method and effect.

効果は第2図の実施例と同様である。The effect is similar to the embodiment shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の給湯用熱交換器を具えた空気調和機の
一例の系統図、第2図は、本発明の一実施例の系統図、
第3図及び第4図はそれぞれ本発明の他の実施例の系統
図、第5図は、受液器の縦断面図である。 1:圧縮機、  2:西方弁、  ろ:室外熱交換器。 4.6:膨張機構1  517 :逆止弁、 8:室内
熱交換器、  9:アキュムレータ、   10:給湯
用熱交換器、   il:xンプ、  12:貯湯タン
ク。 13、14.15a、 15’b :冷媒配管。 17.18:水配管、  23:受液器。
FIG. 1 is a system diagram of an example of an air conditioner equipped with a conventional hot water heat exchanger, and FIG. 2 is a system diagram of an embodiment of the present invention.
3 and 4 are system diagrams of other embodiments of the present invention, respectively, and FIG. 5 is a longitudinal sectional view of a liquid receiver. 1: Compressor, 2: West valve, Ro: Outdoor heat exchanger. 4.6: Expansion mechanism 1 517: Check valve, 8: Indoor heat exchanger, 9: Accumulator, 10: Hot water supply heat exchanger, il: x pump, 12: Hot water storage tank. 13, 14.15a, 15'b: Refrigerant piping. 17.18: Water piping, 23: Receiver.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室外熱交換器、膨張機構、逆止弁、室
内熱交換器、アキュムレータを、冷媒配管で接続した空
気調和機の圧縮機の吐出側と四方弁との間に、給湯用熱
交換器を配設してなる空気調和機において、室外熱交換
器と室内熱交換器を結ぶ冷媒液配管の途中に、受液器を
介装してなることを特徴とする空気調和機。−
A compressor, four-way valve, outdoor heat exchanger, expansion mechanism, check valve, indoor heat exchanger, and accumulator are connected via refrigerant piping between the discharge side of the compressor and the four-way valve of an air conditioner for hot water supply. An air conditioner equipped with a heat exchanger, characterized in that a liquid receiver is interposed in the middle of a refrigerant liquid pipe connecting an outdoor heat exchanger and an indoor heat exchanger. −
JP56137010A 1981-09-02 1981-09-02 Air conditioner Pending JPS5840464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56137010A JPS5840464A (en) 1981-09-02 1981-09-02 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56137010A JPS5840464A (en) 1981-09-02 1981-09-02 Air conditioner

Publications (1)

Publication Number Publication Date
JPS5840464A true JPS5840464A (en) 1983-03-09

Family

ID=15188697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56137010A Pending JPS5840464A (en) 1981-09-02 1981-09-02 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5840464A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193962U (en) * 1983-06-11 1984-12-22 小林 清男 Household heat pump
JPS6014465U (en) * 1983-07-08 1985-01-31 小林 清男 Air conditioning equipment
US9631847B2 (en) 2011-10-04 2017-04-25 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2018063103A1 (en) * 2016-09-30 2018-04-05 Chitipalungsri Somsak A water-cooled split air conditioner capable of making hot water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193962U (en) * 1983-06-11 1984-12-22 小林 清男 Household heat pump
JPS6014465U (en) * 1983-07-08 1985-01-31 小林 清男 Air conditioning equipment
JPH0447572Y2 (en) * 1983-07-08 1992-11-10
US9631847B2 (en) 2011-10-04 2017-04-25 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2018063103A1 (en) * 2016-09-30 2018-04-05 Chitipalungsri Somsak A water-cooled split air conditioner capable of making hot water

Similar Documents

Publication Publication Date Title
US4688396A (en) Air-conditioning hot-water supply device
JPH04263758A (en) Heat pump hot-water supplier
JPS58133575A (en) Refrigerator
JP2006284035A (en) Air conditioner and its control method
CA1137323A (en) Series compressor refrigeration circuit with liquid quench and compressor by-pass
US4306420A (en) Series compressor refrigeration circuit with liquid quench and compressor by-pass
JPH04254156A (en) Heat pump type hot water supply device
JPS5840464A (en) Air conditioner
US2892320A (en) Liquid level control in refrigeration system
JPS62158958A (en) Separation type heat pump system air conditioner
JPH078999Y2 (en) Air source heat pump
JPS5815820Y2 (en) air conditioner
WO2023026344A1 (en) Heat pump device
JP2911253B2 (en) Refrigerant heating multi refrigeration cycle
CN213931199U (en) Outdoor heating assembly and multi-split air conditioning system
JPS5849863A (en) Refrigerating cycle of heat pump type hot-water supply machine
CN107401788A (en) A kind of directly evaporation and direct condensing earth-source hot-pump system
JPH0540763U (en) Heat pump air conditioner
JPS6329156A (en) Air conditioner
JP3213992B2 (en) Air conditioner
JPH04359763A (en) Refrigerant heating type multi-freezing cycle
JPS618567A (en) Heat pump
JPH05256478A (en) Radiation room cooler
CN112503765A (en) Carbon dioxide heat pump water supply unit
JPS6017634Y2 (en) Separate air conditioner/heater