JPS6340764Y2 - - Google Patents

Info

Publication number
JPS6340764Y2
JPS6340764Y2 JP2830282U JP2830282U JPS6340764Y2 JP S6340764 Y2 JPS6340764 Y2 JP S6340764Y2 JP 2830282 U JP2830282 U JP 2830282U JP 2830282 U JP2830282 U JP 2830282U JP S6340764 Y2 JPS6340764 Y2 JP S6340764Y2
Authority
JP
Japan
Prior art keywords
flow rate
side heat
heat exchanger
valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2830282U
Other languages
Japanese (ja)
Other versions
JPS58129472U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2830282U priority Critical patent/JPS58129472U/en
Publication of JPS58129472U publication Critical patent/JPS58129472U/en
Application granted granted Critical
Publication of JPS6340764Y2 publication Critical patent/JPS6340764Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、ヒートポンプ式の空気調和装置の
暖房運転中におけるデフロスト運転時の冷媒循環
量の制御に関するものである。
[Detailed Description of the Invention] This invention relates to controlling the amount of refrigerant circulation during defrost operation during heating operation of a heat pump type air conditioner.

通常、冷凍サイクルでは蒸発温度によつて適正
冷媒流量が異なり、蒸発温度が高くなるとともに
大きな冷媒流量が必要であるが、冷凍サイクルの
減圧装置としてキヤピラリチユーブを用いたもの
では、その冷媒流量の調整巾が小さく、蒸発温度
が高いときには、冷媒流量が不足し、蒸発器出口
冷媒の過熱度が大きくなりすぎて圧縮機の温度が
上昇したり、蒸発温度が低いときには冷媒流量が
過大になつて圧縮機に液もどりを生じたりするこ
とがある。したがつて、これらの問題を解決する
ために、第1図に示すような冷凍サイクルが考え
られている。すなわち第1図において、1は圧縮
機、2は四方切換弁、3は外気と熱交換する非利
用側熱交換器、4は水と熱交換する利用側熱交換
器、5は利用側および非利用側熱交換器4,3の
間に設けられた減圧装置で、第2図に示すように
外管51内の軸心部に冷媒流通路52及び外周に
小径のスパイラル状溝53を有する内管54を密
着挿入する。そして、スパイラル状溝53及び冷
媒流通路52を互いに並列になるように入口管5
5,56及び出口管57を介して後述する各逆止
弁に接続し、入口管56には、外気温及び利用側
熱交換器4の出口水温などの検出信号に基づき弁
開度が制御される電気式膨張弁などの流量調整弁
58を設けている。6,7はそれぞれ非利用及び
利用側熱交換器3,4から減圧装置5の入口管5
5へのみ流通を許容する第1および第2の逆止
弁、8,9は減圧装置5の出口管57から利用側
および非利用側熱交換器4,3へのみ流通を許容
する第3及び第4の逆止弁、10は、減圧装置5
の入口管55と冷房時に利用側熱交換器4の入口
とに接続されることにより減圧装置5とは並列関
係のキヤピラリチユーブである。また図中実線矢
印は暖房サイクル、点線矢印はデフロイトサイク
ル時の冷媒の流通方向を示す。
Normally, in a refrigeration cycle, the appropriate refrigerant flow rate varies depending on the evaporation temperature, and as the evaporation temperature increases, a larger refrigerant flow rate is required. When the adjustment width is small and the evaporation temperature is high, the refrigerant flow rate is insufficient, and the degree of superheating of the refrigerant at the evaporator outlet becomes too large, causing the compressor temperature to rise, and when the evaporation temperature is low, the refrigerant flow rate becomes excessive. This may cause liquid backlog in the compressor. Therefore, in order to solve these problems, a refrigeration cycle as shown in FIG. 1 has been considered. In other words, in Fig. 1, 1 is a compressor, 2 is a four-way switching valve, 3 is a non-use side heat exchanger that exchanges heat with outside air, 4 is a use side heat exchanger that exchanges heat with water, and 5 is a user side and non-use side heat exchanger. This is a pressure reducing device installed between the heat exchangers 4 and 3 on the user side, and as shown in FIG. Insert the tube 54 tightly. Then, the inlet pipe 5 is arranged so that the spiral groove 53 and the refrigerant flow passage 52 are parallel to each other.
5, 56 and an outlet pipe 57, which will be described later, and the inlet pipe 56 has a valve opening degree controlled based on detection signals such as the outside temperature and the outlet water temperature of the user-side heat exchanger 4. A flow rate regulating valve 58 such as an electric expansion valve is provided. 6 and 7 are inlet pipes 5 from the unused and used side heat exchangers 3 and 4 to the pressure reducing device 5, respectively.
The first and second check valves 8 and 9 allow flow only to the use side and non-use side heat exchangers 4 and 3, and the third check valves 8 and 9 allow flow from the outlet pipe 57 of the pressure reducing device 5 only to the use side and non-use side heat exchangers 4 and 3. The fourth check valve 10 is the pressure reducing device 5
The pressure reducing device 5 is a capillary tube that is connected in parallel with the inlet pipe 55 of the air conditioner and the inlet of the user-side heat exchanger 4 during cooling. Further, solid line arrows in the figure indicate the heating cycle, and dotted line arrows indicate the flow direction of the refrigerant during the defroid cycle.

まず、暖房サイクル時においては、利用側熱交
換器4が凝縮器として作用し水を加熱すると共に
冷媒は凝縮液化する。そして液冷媒は、第2の逆
止弁7を経て減圧装置5のスパイラル溝53を流
通し減圧され第4の逆止弁9を経て非利用側熱交
換器3に至り、ここで蒸発して圧縮機1に戻る。
一方利用側熱交換器4からの液冷媒の一部は流量
調整弁58で減圧され、冷媒流通路52内で蒸発
してスパイラル状溝53内を流通する冷媒を冷却
し、その流体抵抗を変化させることによりスパイ
ラル状溝53を流れる冷媒流量を適切に制御す
る。このとき、流量調整弁58には、外気温度お
よび水温の検出信号に基づき演算された電圧を印
加し弁開度を決定する。これは外気温度および水
温によつて暖房能力が決められることによるもの
である。次に、非利用側熱交換器3に付着した霜
を融かすデフロスト運転時は、暖房サイクルとは
逆サイクルになるため、圧縮機1からの高温の吐
出ガスは、暖房運転時の非利用側熱交換器3に行
き、ここで放熱して凝縮液化することにより付着
した霜を融かす。この液冷媒は、第1の逆止弁6
を経て一部は暖房運転時と同様に減圧装置5を流
通し第3の逆止弁8を経て、また残りの液冷媒は
キヤピラリチユーブ10を経て暖房運転時の利用
側熱交換器4に至り蒸発して圧縮機1に戻る。
First, during the heating cycle, the user-side heat exchanger 4 acts as a condenser to heat water and condense and liquefy the refrigerant. The liquid refrigerant passes through the second check valve 7, flows through the spiral groove 53 of the pressure reducing device 5, is depressurized, passes through the fourth check valve 9, reaches the non-use side heat exchanger 3, and evaporates there. Return to compressor 1.
On the other hand, a part of the liquid refrigerant from the user-side heat exchanger 4 is reduced in pressure by the flow rate adjustment valve 58, evaporates in the refrigerant flow path 52, cools the refrigerant flowing in the spiral groove 53, and changes its fluid resistance. By doing so, the flow rate of refrigerant flowing through the spiral groove 53 is appropriately controlled. At this time, a voltage calculated based on the outside air temperature and water temperature detection signals is applied to the flow rate regulating valve 58 to determine the valve opening degree. This is because the heating capacity is determined by the outside air temperature and water temperature. Next, during the defrost operation to melt the frost attached to the heat exchanger 3 on the non-use side, the cycle is reverse to the heating cycle, so the high temperature discharge gas from the compressor 1 is transferred to the non-use side during the heating operation. It goes to the heat exchanger 3, where it radiates heat and condenses to liquefy, thereby melting the adhered frost. This liquid refrigerant flows through the first check valve 6
A part of the liquid refrigerant passes through the pressure reducing device 5 and the third check valve 8 in the same way as during heating operation, and the remaining liquid refrigerant passes through the capillary tube 10 and enters the user-side heat exchanger 4 during heating operation. It evaporates and returns to the compressor 1.

ところで、デフロスト運転時は、非利用側熱交
換器3には霜が付着しているため、凝縮温度は通
常の暖房運転時の温度より低く保たれ、したがつ
て高圧側圧力も低くなる。このため、高圧と低圧
の圧力差が小さくなり、この圧力差に比例した流
量特性を示す減圧装置5、キヤピラリチユーブ1
0を流れる冷媒流量は減少し、除霜能力が減少し
て、デフロストの時間が長くかかるという欠点が
あつた。
By the way, during the defrost operation, since frost is attached to the non-use side heat exchanger 3, the condensing temperature is kept lower than the temperature during normal heating operation, and therefore the high pressure side pressure is also lowered. Therefore, the pressure difference between high pressure and low pressure becomes small, and the pressure reducing device 5 and capillary tube 1 exhibit flow characteristics proportional to this pressure difference.
There was a drawback that the flow rate of refrigerant flowing through the 0 was reduced, the defrosting ability was reduced, and the defrosting time took a long time.

この考案は上記欠点を除去するためになされた
ものであり、デフロスト運転中は、流量調整弁5
8の弁開度を強制的に開とすることにより、デフ
ロスト運転中の冷媒流量を確保し、デフロスト運
転を早く終了させることのできる空気調和装置を
提供することを目的としている。
This invention was made to eliminate the above-mentioned drawbacks, and during defrost operation, the flow rate adjustment valve 5
It is an object of the present invention to provide an air conditioner that can ensure a refrigerant flow rate during a defrost operation and quickly end the defrost operation by forcibly opening the valve opening of No. 8.

以下、第3図に示すこの考案の一実施例につい
て説明する。第3図において、第1図と異なると
ころはデフロスト運転時には、流量調整弁58を
強制的に所定量開く弁制御装置60を設けた点で
ある。
An embodiment of this invention shown in FIG. 3 will be described below. 3 differs from FIG. 1 in that a valve control device 60 is provided that forcibly opens the flow rate regulating valve 58 by a predetermined amount during defrost operation.

暖房運転時は、従来サイクルと同じく、利用側
熱交換器4が凝縮器として作用し水を加熱すると
共に冷媒は凝縮液化する。そして液冷媒は、第2
の逆止弁7を経て減圧装置5のスパイラル溝53
を流通し減圧され第4の逆止弁9を経て非利用側
熱交換器3に至り、ここで蒸発して圧縮機1に戻
る。一方利用側熱交換器4からの液冷媒の一部は
流量調整弁58で減圧され、冷媒流通路52内で
蒸発してスパイラル状溝53内を流通する冷媒を
冷却し、その流体抵抗を変化させることによりス
パイラル状溝53を流れる冷媒流量を適節に制御
する。このとき、流量調整弁58には、外気温度
および水温の検出信号に基づき演算された電圧を
印加し弁の開度を調整する。これは、外気温度お
よび水温によつて暖房能力が決められるためであ
る。次に、非利用側熱交換器3に付着した霜を融
かすデフロスト運転時は、暖房サイクルとは逆サ
イクルになるため、圧縮機1からの高温の吐出ガ
スは、暖房運転時の非利用側熱交換器3に行き、
ここで放熱して凝縮液化することにより付着した
霜を融かす。この液冷媒は、第1の逆止弁6を経
て一部は暖房運転と同様に減圧装置5を流通し第
3の逆止弁8を経て、また残りの液冷媒はキヤピ
ラリチユーブ10を経て暖房運転時の利用側熱交
換器4に至り蒸発して圧縮機1に戻る。このと
き、外気温度および水温に関係なく流量調整弁5
8を強制的に所定量開く、例えば全開とする弁制
御装置60により流量調整弁58の弁開度は全開
となつているため、流量調整弁58を十分な冷媒
量が流れ、冷媒流通路52内で蒸発しスパイラル
状溝53内を流れる冷媒を十分冷却するため、ス
パイラル状溝53内で一部ガス化している冷媒は
液化され、その流路抵抗は減少する。このため、
デフロスト運転中は、凝縮圧力が低下し、減圧装
置5、キヤピラリチユーブ10前後での高低圧圧
力差が小さいが、上記に述べたごとく減圧装置5
の流路抵抗が減少した状態にあるため、冷媒流量
は十分確保でき、デフロスト運転を早く終らせる
ことができる。
During heating operation, the user-side heat exchanger 4 acts as a condenser to heat water and condense and liquefy the refrigerant, as in the conventional cycle. The liquid refrigerant is then
The spiral groove 53 of the pressure reducing device 5 passes through the check valve 7 of
The air is depressurized, passes through the fourth check valve 9, reaches the non-use side heat exchanger 3, evaporates there, and returns to the compressor 1. On the other hand, a part of the liquid refrigerant from the user-side heat exchanger 4 is reduced in pressure by the flow rate adjustment valve 58, evaporates in the refrigerant flow path 52, cools the refrigerant flowing in the spiral groove 53, and changes its fluid resistance. By doing so, the flow rate of the refrigerant flowing through the spiral groove 53 is appropriately controlled. At this time, a voltage calculated based on the outside air temperature and water temperature detection signals is applied to the flow rate adjustment valve 58 to adjust the opening degree of the valve. This is because the heating capacity is determined by the outside air temperature and water temperature. Next, during the defrost operation to melt the frost attached to the heat exchanger 3 on the non-use side, the cycle is reverse to the heating cycle, so the high temperature discharge gas from the compressor 1 is transferred to the non-use side during the heating operation. Go to heat exchanger 3,
Here, the frost is melted by dissipating heat and condensing it into liquid. This liquid refrigerant passes through the first check valve 6, a part of which flows through the pressure reducing device 5 in the same manner as in the heating operation, and passes through the third check valve 8, and the remaining liquid refrigerant passes through the capillary tube 10. It reaches the user-side heat exchanger 4 during heating operation, evaporates, and returns to the compressor 1. At this time, regardless of the outside air temperature and water temperature, the flow rate regulating valve 5
Since the valve control device 60 forcibly opens the flow rate adjustment valve 58 by a predetermined amount, for example, fully opens the flow rate adjustment valve 58, a sufficient amount of refrigerant flows through the flow rate adjustment valve 58, and In order to sufficiently cool the refrigerant that evaporates within the spiral grooves 53 and flows within the spiral grooves 53, the refrigerant that is partially gasified within the spiral grooves 53 is liquefied and its flow path resistance is reduced. For this reason,
During defrost operation, the condensing pressure decreases and the pressure difference between the high and low pressures before and after the pressure reducing device 5 and the capillary tube 10 is small, but as mentioned above, the pressure reducing device 5
Since the flow path resistance is reduced, a sufficient flow rate of refrigerant can be ensured, and the defrost operation can be completed quickly.

なお、上記実施例では、流量調整弁58の弁開
度をデフロスト時に全開とする例について述べた
が、この開度は弁の容量と装置の容量とから定ま
つてくるものであり、常に全開としなくでも、例
えば強制的に4/5開度あるいは2/3開度などとして
も良い。
In the above embodiment, an example was described in which the opening degree of the flow rate adjustment valve 58 is fully opened during defrosting, but this opening degree is determined by the capacity of the valve and the capacity of the device, and is always fully open. For example, it may be forced to open at 4/5 or 2/3.

また、利用側熱交換器4を流れる熱媒体の例と
して水を選んだが、水に限定されることなく空気
でも良く、第1図に示す冷媒回路においてもアキ
ユムレータ、受液器など付属していても良いこと
は言うまでもない。
In addition, although water was selected as an example of the heat medium flowing through the heat exchanger 4 on the user side, it is not limited to water, and air may be used, and the refrigerant circuit shown in Fig. 1 may also include an accumulator, a liquid receiver, etc. Needless to say, it's a good thing.

以上のように、この考案によれば、暖房のデフ
ロスト運転時に流量調整弁を強制的に開とするこ
とにより、減圧装置を流れる冷媒流量を十分確保
でき、デフロスト運転を早く終らせることができ
る効果がある。
As described above, according to this invention, by forcibly opening the flow rate regulating valve during defrost operation of heating, a sufficient flow rate of refrigerant flowing through the pressure reducing device can be ensured, and the defrost operation can be completed quickly. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空気調和装置を示す構成図、第
2図は第1図に示される減圧装置の一例を示す構
成図、第3図はこの考案の一実施例を示す構成図
である。 図において、1は圧縮機、2は四方切換弁、3
は非利用側熱交換器、4は利用側熱交換器、5は
減圧装置、58は流量調整弁、6〜9は第1〜第
4の逆止弁、60は弁制御装置である。なお図中
同一符号は同一又は相当部分を示す。
FIG. 1 is a block diagram showing a conventional air conditioner, FIG. 2 is a block diagram showing an example of the pressure reducing device shown in FIG. 1, and FIG. 3 is a block diagram showing an embodiment of this invention. In the figure, 1 is a compressor, 2 is a four-way switching valve, and 3 is a compressor.
4 is a non-use side heat exchanger, 4 is a use side heat exchanger, 5 is a pressure reducing device, 58 is a flow rate adjustment valve, 6 to 9 are first to fourth check valves, and 60 is a valve control device. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機と、四方切換弁と、利用側熱交換器と、
非利用側熱交換器と、外気温と前記利用側熱交換
器の出口側熱媒体温度に応じて弁開度が制御され
る流量調整弁により液冷媒の一部を利用して減圧
部を流通する冷媒の冷却量を調整して該減圧部を
流通する冷媒流量を制御する減圧装置と、逆止弁
などを接続して構成される冷凍サイクルを備えて
なる空気調和装置において、暖房サイクル運転時
とは逆サイクルによる冬期デフロスト運転時に前
記流量調整弁を強制的に所定量開く弁制御装置を
設けたことを特徴とする空気調和装置。
A compressor, a four-way switching valve, a user-side heat exchanger,
A part of the liquid refrigerant is used to circulate through the pressure reduction section by a non-use side heat exchanger and a flow rate adjustment valve whose opening degree is controlled according to the outside air temperature and the outlet side heat medium temperature of the use side heat exchanger. In an air conditioner equipped with a refrigeration cycle configured by connecting a pressure reducing device that adjusts the cooling amount of the refrigerant to control the flow rate of the refrigerant flowing through the pressure reducing part, and a check valve, etc., when the heating cycle is operated. An air conditioner comprising a valve control device that forcibly opens the flow rate regulating valve by a predetermined amount during winter defrost operation in a reverse cycle.
JP2830282U 1982-02-25 1982-02-25 air conditioner Granted JPS58129472U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2830282U JPS58129472U (en) 1982-02-25 1982-02-25 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2830282U JPS58129472U (en) 1982-02-25 1982-02-25 air conditioner

Publications (2)

Publication Number Publication Date
JPS58129472U JPS58129472U (en) 1983-09-01
JPS6340764Y2 true JPS6340764Y2 (en) 1988-10-25

Family

ID=30040159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2830282U Granted JPS58129472U (en) 1982-02-25 1982-02-25 air conditioner

Country Status (1)

Country Link
JP (1) JPS58129472U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022219666A1 (en) * 2021-04-12 2022-10-20

Also Published As

Publication number Publication date
JPS58129472U (en) 1983-09-01

Similar Documents

Publication Publication Date Title
US20080197206A1 (en) Refrigerant System With Water Heating
US20100107665A1 (en) Refrigerating apparatus
US7028494B2 (en) Defrosting methodology for heat pump water heating system
JPS645227B2 (en)
JPH1068553A (en) Air conditioner
JPS6340764Y2 (en)
JPH0914802A (en) Air conditioner
JPS6136659A (en) Heat pump type air conditioner
JPH1163709A (en) Air conditioner
JPH0611204A (en) Heat pump type air conditioner
JPS6322464Y2 (en)
JPS6343660B2 (en)
JPS592832B2 (en) Heat recovery air conditioner
JPS61259064A (en) Heat pump air conditioner
US3163016A (en) Split refrigeration system including charge measuring means
JPS6322463Y2 (en)
JPS63286676A (en) Air conditioner
JPS6352304B2 (en)
JPH0221731Y2 (en)
JPH08296883A (en) Air conditioner
JPS5818618Y2 (en) Heat pump air conditioner
JPH0219392B2 (en)
JPS5969663A (en) Refrigeration cycle
JP2871166B2 (en) Air conditioner
JPS6015084Y2 (en) Refrigeration equipment