JPS58160774A - Hot-water supply device - Google Patents

Hot-water supply device

Info

Publication number
JPS58160774A
JPS58160774A JP57044312A JP4431282A JPS58160774A JP S58160774 A JPS58160774 A JP S58160774A JP 57044312 A JP57044312 A JP 57044312A JP 4431282 A JP4431282 A JP 4431282A JP S58160774 A JPS58160774 A JP S58160774A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
liquid
gas
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57044312A
Other languages
Japanese (ja)
Inventor
田島 正久
竹司 渡辺
達規 桜武
藤本 佳嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57044312A priority Critical patent/JPS58160774A/en
Publication of JPS58160774A publication Critical patent/JPS58160774A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、ヒートポンプを用いた太陽熱及び大気熱利用
の給湯装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot water supply device using solar heat and atmospheric heat using a heat pump.

従来太陽熱利用の給湯装置としては水を集熱媒体とする
太陽熱温水器が一般に知られている。水を集熱媒体とす
るこれら従来の太陽熱温水器は、当然のことながら太陽
日射により集熱量、集熱温度が左右され、給湯装置とし
ては補助熱源を必要とする。又集熱器は希薄な太陽熱を
効率よく集熱するため、集熱面積が大きくなるとともに
、透過ガラス、断熱材等で構成されることから重くなり
、集熱器設置のだめの据付部材が必要となる等の欠点が
あった。
2. Description of the Related Art Conventionally, solar water heaters that use water as a heat collecting medium are generally known as water heaters that utilize solar heat. In these conventional solar water heaters that use water as a heat collection medium, the amount and temperature of heat collection is naturally influenced by solar radiation, and the water heater requires an auxiliary heat source. In addition, since heat collectors efficiently collect dilute solar heat, the heat collection area becomes large, and since they are made of transparent glass and heat insulating materials, they become heavy, and additional installation materials are required to install the heat collector. There were drawbacks such as:

これら従来の欠点を解決するものとしてヒートポンプを
太陽熱集熱装置に用いるものが考えられる。すなわち、
第1図に示す如く圧縮機1′ 、凝縮器2′、膨張弁3
′、集熱器4′を順次環状連結してなる冷媒集熱回路と
、貯湯槽6′ 、水循環ポンプ6′、水加熱器7′を順
次環状連結してなる水加熱回路を具備し、この凝縮器2
′と水加熱器7′を伝熱関係に保持せしめ給湯装置を構
成するのである。尚、集熱器4′はフィンチー−プ熱交
換器で構成されている。
A possible solution to these conventional drawbacks is to use a heat pump in a solar heat collector. That is,
As shown in Fig. 1, there are a compressor 1', a condenser 2', and an expansion valve 3.
', a refrigerant heat collection circuit formed by sequentially connecting a heat collector 4' in a ring, and a water heating circuit formed by sequentially connecting a hot water storage tank 6', a water circulation pump 6', and a water heater 7' in a ring. Condenser 2
' and the water heater 7' are held in a heat transfer relationship to constitute a water heater. Incidentally, the heat collector 4' is constituted by a fin-chip heat exchanger.

上記給湯装置において作用を説明すると、圧縮機1′が
作動することによシ、高温、高圧に圧縮された吐出冷媒
ガスは、凝縮器2′に流入し、この凝縮器2′ と伝熱
関係にある水加熱器7′を流動する給湯水に放熱し、凝
縮液化する。次いで膨張弁3′にて減圧され低温、低圧
となり集熱器4′に流入し蒸発する集熱器4′における
蒸発温度は外気温度より低く設定しておけば冷媒は太陽
熱及び大気熱より吸熱し、蒸発ガス化し、圧縮機1′に
もどる。−力水加熱器7′を流動する間に冷媒の凝縮潜
熱により加熱された給湯水は前記水加熱器7′、貯湯槽
6′ を水循環ポンプ6′の作用により循環し昇温する
のである。
To explain the operation of the water heater described above, when the compressor 1' operates, the discharged refrigerant gas compressed to high temperature and high pressure flows into the condenser 2', and has a heat transfer relationship with the condenser 2'. Heat is radiated through the water heater 7' to the flowing hot water, causing it to condense and liquefy. Next, the pressure is reduced by the expansion valve 3', the temperature and pressure become low, and the refrigerant flows into the heat collector 4' where it evaporates.If the evaporation temperature in the heat collector 4' is set lower than the outside air temperature, the refrigerant absorbs more heat than solar heat and atmospheric heat. , evaporate and gasify, and return to the compressor 1'. - The hot water heated by the latent heat of condensation of the refrigerant while flowing through the power water heater 7' is circulated through the water heater 7' and the hot water storage tank 6' by the action of the water circulation pump 6' and is raised in temperature.

以上の如く、集熱器4′にて吸熱した太陽熱、大気熱及
び圧縮機で消費した圧縮仕事熱の大部分を凝縮器2′と
伝熱関係にある水加熱器7′にて放熱し給湯水を加熱す
るのである。したがって、ヒートポンプを太陽熱集熱手
段とする給湯装置においては、太陽日射のない時にも集
熱運転が可能になることから、小さな集熱面積で。集熱
量を増大させる〜ことが可能となる。又、集熱器4′は
フインチー−ブ熱交換器等で構成され軽蓋小型化が計れ
、設置工事も極めて容易になる等の利点がある。
As described above, most of the solar heat, atmospheric heat absorbed by the heat collector 4', and compression work heat consumed by the compressor is radiated by the water heater 7', which is in a heat transfer relationship with the condenser 2', to supply hot water. It heats water. Therefore, in a water heater that uses a heat pump as a solar heat collection means, heat collection operation is possible even when there is no solar radiation, so a small heat collection area is required. It becomes possible to increase the amount of heat collected. Further, the heat collector 4' is composed of a fin-cheve heat exchanger or the like, which has advantages such as a light and compact lid and extremely easy installation work.

しかしながら、上記ヒートポンプを太陽熱集熱装置に応
用した場合の問題点は、集熱器4′の負荷変動中が広く
、膨張弁3′の頻繁な・・ンチング現象を生じることに
ある。すなわち、集熱器4′の蒸発能力は太陽日射、外
気風速、外気温湿度等に影響される。したがって膨張弁
3′は巾広い能力変動に瞬時に冷媒量の制御が追従する
必要かある。−・ンチング現象に伴なう問題点は、集熱
器4′の能力を有効に使用出来なくなること、圧縮機へ
の液戻り、圧縮機モータの負荷変動等による圧縮機信頼
性の低下等である。
However, a problem when the heat pump is applied to a solar heat collector is that the load on the heat collector 4' varies widely, resulting in frequent quenching of the expansion valve 3'. That is, the evaporation capacity of the heat collector 4' is influenced by solar radiation, outside air wind speed, outside temperature and humidity, etc. Therefore, it is necessary for the expansion valve 3' to instantaneously control the refrigerant amount to follow wide range fluctuations in capacity. - The problems associated with the nitching phenomenon include the inability to use the capacity of the heat collector 4' effectively, liquid returning to the compressor, and a decrease in compressor reliability due to load fluctuations of the compressor motor. be.

本発明は、上述の如く、ヒートポンプを太陽熱集熱装置
に用いた給湯装置において、負荷変動に対する膨張弁の
−・ンチング現象を防止し、集熱効率の改善、圧縮機信
頼性の向上を計ることを目的とするものである。
As described above, the present invention aims to improve heat collection efficiency and compressor reliability by preventing the expansion valve from shrinking due to load fluctuations in a water heater that uses a heat pump as a solar heat collector. This is the purpose.

上記目的を達成するため本発明の特徴とするところは・
圧縮機・、凝縮器・膨張弁・集熱器を順次    ・1
環状連結してなる冷媒集熱回路と貯湯槽、水循環ポンプ
、水加熱器を順次環状連結してなる水加熱回路とを具備
し、前記凝縮器と水加熱器とを伝熱関係に保持せしめた
給湯装置において、前記冷媒集熱回路の凝縮器と膨張弁
の間の冷媒液と、集熱器を出た蒸発後の低温冷媒ガスと
を熱交換させる液−ガス熱交換器を設けるとともに、膨
張弁の感温筒を、前記液−ガス熱交換器出口の低温ガス
配管に固定したことにある。
In order to achieve the above object, the present invention is characterized by:
Compressor, condenser, expansion valve, and heat collector in sequence ・1
It is equipped with a refrigerant heat collection circuit connected in a ring, and a water heating circuit in which a hot water storage tank, a water circulation pump, and a water heater are connected in order in a ring, and the condenser and water heater are maintained in a heat transfer relationship. In the water heater, a liquid-gas heat exchanger is provided for exchanging heat between the refrigerant liquid between the condenser and the expansion valve of the refrigerant heat collection circuit and the evaporated low-temperature refrigerant gas exiting the heat collector; The temperature-sensitive cylinder of the valve is fixed to the low-temperature gas pipe at the outlet of the liquid-gas heat exchanger.

本発明によれば、集熱器負荷変動すなわち、太陽日射量
の急変、外気風速の急変に伴なう、集熱器出口の冷媒状
態が急激に変化し、未蒸発冷媒が含まれるような場合に
おいても、高温の液冷媒との熱交換により、未蒸発冷媒
が完全にガス化に、適正な過熱度を得圧縮機へ吸入され
るのである。
According to the present invention, when the refrigerant condition at the collector outlet suddenly changes due to a change in the collector load, that is, a sudden change in the amount of solar radiation or a sudden change in the outside air wind speed, and unevaporated refrigerant is included. In this case, by heat exchange with the high temperature liquid refrigerant, the unevaporated refrigerant is completely gasified and has an appropriate degree of superheating, and is sucked into the compressor.

すなわち、従来、集熱器出口に未蒸発冷媒が混入すると
、圧縮機長入管に固定した膨張弁筒湿部がこれを検知し
、膨張弁を閉じるため急激な低圧圧力の降下が生じ、圧
縮機モータへの負荷も急激に変化する等のハンチング現
象を防止するのに有効である。したがって、ハンチング
現象に伴なう、集熱能力の低下、未蒸発冷媒の吸入や、
モータ負荷の急激な変化等による圧縮機信頼性の低下を
防止することが出来るのである。
In other words, conventionally, when unevaporated refrigerant enters the outlet of the collector, the wet part of the expansion valve tube fixed to the compressor length inlet pipe detects this and closes the expansion valve, causing a sudden drop in low pressure, which causes the compressor motor to This is effective in preventing hunting phenomena such as sudden changes in the load on the vehicle. Therefore, due to the hunting phenomenon, the heat collection ability decreases, unevaporated refrigerant is inhaled,
This makes it possible to prevent a decrease in compressor reliability due to sudden changes in motor load, etc.

以下本発明の詳細な説明する。第2図において、1は圧
縮機、2は凝縮器、3は外部均圧型の膨張弁本体、4は
集熱器であり、フィンチー−ブ熱交換器で構成され、表
面は黒色塗装されている。
The present invention will be explained in detail below. In Fig. 2, 1 is a compressor, 2 is a condenser, 3 is an external pressure equalization type expansion valve body, and 4 is a heat collector, which is composed of a fin-chive heat exchanger and whose surface is painted black. .

8は気液分離器、12は圧縮機1の吸入管に直結した他
の気液分離器である。9は液ガス熱交換器であり、2重
管で構成され内管9aを凝縮後の液状冷媒が外管9bを
低圧のガス状冷媒が流動する。
8 is a gas-liquid separator, and 12 is another gas-liquid separator directly connected to the suction pipe of the compressor 1. Reference numeral 9 denotes a liquid-gas heat exchanger, which is composed of double pipes, in which a liquid refrigerant after condensing flows through an inner pipe 9a and a low-pressure gaseous refrigerant flows through an outer pipe 9b.

10は前記膨張弁3の感温筒であり、前記液ガス熱交換
器9の出口低圧ガス配管に固定される。
Reference numeral 10 denotes a temperature-sensitive cylinder of the expansion valve 3, which is fixed to the outlet low-pressure gas pipe of the liquid-gas heat exchanger 9.

冷媒は圧縮機1〜凝縮器2〜液ガス熱交換器9〜膨張弁
3〜接続配管11a〜集熱器4〜接続配管11b〜気液
分離器8〜液ガス熱交換器9〜気液分離器8〜圧縮機1
の順に循環するよう接続され冷媒集熱回路を構成する。
The refrigerant is transferred from the compressor 1 to the condenser 2 to the liquid gas heat exchanger 9 to the expansion valve 3 to the connecting pipe 11a to the heat collector 4 to the connecting pipe 11b to the gas-liquid separator 8 to the liquid-gas heat exchanger 9 to gas-liquid separation. Container 8 ~ Compressor 1
The refrigerant is connected to circulate in this order to form a refrigerant heat collection circuit.

6は貯湯槽、6は水循環ポンプ、了は水加熱器であり、
これらは順次環状連結され水加熱回路を構成する。
6 is a hot water tank, 6 is a water circulation pump, and 6 is a water heater.
These are sequentially connected in a ring to form a water heating circuit.

上記冷媒集熱回路の凝縮器2と水加熱回路の水加熱器7
は伝熱関係に保持されている。例えば2重管熱交換器で
構成されているのである。
The condenser 2 of the refrigerant heat collection circuit and the water heater 7 of the water heating circuit
is held in a heat transfer relationship. For example, it consists of a double tube heat exchanger.

次に上記構成による給湯装置の作用を説明する。Next, the operation of the water heater with the above configuration will be explained.

圧縮機1にて圧縮された高温・高圧の吐出ガス冷媒は凝
縮器2に流入する。こ\で凝縮器2と伝熱関係にある水
加熱器7を水循環ポンプ6の作用により流動する給湯水
に放熱し、凝縮液化する。凝縮器2を流出した液冷媒は
、液ガス熱交換器9で低温の蒸発冷媒に放熱−、更に過
冷却された状態となり、膨張弁3にて減圧され低温・低
圧となり、接続配管11aを通り、集熱器4に流、入し
、外気温度より若干低い温度で蒸発する。よって太陽熱
The high-temperature, high-pressure discharged gas refrigerant compressed by the compressor 1 flows into the condenser 2 . Here, the water heater 7, which is in a heat transfer relationship with the condenser 2, radiates heat to the flowing hot water by the action of the water circulation pump 6, and condenses and liquefies it. The liquid refrigerant that has flowed out of the condenser 2 radiates heat to the low-temperature evaporative refrigerant in the liquid-gas heat exchanger 9, and is further subcooled.The liquid refrigerant is depressurized by the expansion valve 3 to become low temperature and low pressure, and then passes through the connecting pipe 11a. , flows into the heat collector 4, and evaporates at a temperature slightly lower than the outside air temperature. Hence solar heat.

大気熱より吸熱し蒸発ガス化し接続配管11bを通り、
気液分離器8、液ガス熱交換器9を通る間に完全に蒸発
ガス化し、所定の過熱度を有する過熱ガス状態で圧縮機
1に流入されるのである。尚、水加熱器7にて昇温した
給湯水は、貯湯槽6に順次貯湯されていくのである。
It absorbs heat from the atmosphere, becomes evaporative gas, and passes through the connecting pipe 11b.
The gas is completely evaporated and gasified while passing through the gas-liquid separator 8 and the liquid-gas heat exchanger 9, and then flows into the compressor 1 in a superheated gas state having a predetermined degree of superheat. The hot water heated by the water heater 7 is sequentially stored in the hot water storage tank 6.

次に集熱器4での負荷変動時の作用を説明する。Next, the action of the heat collector 4 when the load fluctuates will be explained.

すなわち、太陽日射が急激に減少したり、外気風速が減
少すると集熱器4の集S熱惜が減少することから集熱器
4を流れる冷媒が蒸発するに必要な熱址が得られなくな
ると未蒸発冷媒が集熱器4の出口に混入する。そして未
蒸発冷媒の混入した状態で接続配管11bを通り、気液
分離器8に流入する、ここでガス冷媒と液冷媒に分離さ
れ、飽和ガス冷媒は気液分離器7より液ガス熱交換器9
に流入し、ここで凝縮液冷媒より吸熱し所定の過熱度を
得圧縮機1に流入するのである。
In other words, if the solar radiation suddenly decreases or the outside air wind speed decreases, the amount of heat collected by the heat collector 4 decreases, and the heat loss necessary for the refrigerant flowing through the heat collector 4 to evaporate cannot be obtained. Unevaporated refrigerant enters the outlet of the collector 4. Then, the unevaporated refrigerant flows through the connecting pipe 11b and flows into the gas-liquid separator 8, where it is separated into gas refrigerant and liquid refrigerant, and the saturated gas refrigerant is transferred from the gas-liquid separator 7 to the liquid-gas heat exchanger. 9
Here, the refrigerant absorbs heat from the condensed liquid refrigerant, attains a predetermined degree of superheat, and flows into the compressor 1.

以上説明した如く本発明の実施例によれば、集熱器4へ
の日射量や外気風速が減少し、集熱器能力が減少するこ
とにより、集熱器4の出口に混入する未蒸発冷媒を気液
分離器8にて液とガスに分離し、飽和ガス冷媒を液ガス
熱交換器に導き凝縮冷媒から吸熱することにより所定の
過熱度が得られるのである。したがって、集熱器負荷の
急激な変動により、集熱器出口に未蒸発冷媒が混入する
ような場合においても、膨張弁の急な閉弁動作を生じる
ようなことがなくなり、集熱能力の低下や、液戻りはも
とより、急激な圧縮機モータの負荷変動を防止し、圧縮
機信頼性を向上させることが出来るのである。
As explained above, according to the embodiment of the present invention, the amount of solar radiation to the collector 4 and the wind speed of outside air decrease, and the collector capacity decreases, so that unevaporated refrigerant mixes at the outlet of the collector 4. A predetermined degree of superheating is obtained by separating the refrigerant into liquid and gas in the gas-liquid separator 8, and introducing the saturated gas refrigerant into a liquid-gas heat exchanger to absorb heat from the condensed refrigerant. Therefore, even if unevaporated refrigerant gets mixed into the collector outlet due to a sudden change in the collector load, the expansion valve will not close suddenly, and the heat collection capacity will decrease. In addition to liquid return, sudden load fluctuations of the compressor motor can be prevented and compressor reliability can be improved.

以上説明した如く、本発明はヒートポンプを太陽熱集熱
装置に用いた給湯装置において、圧縮機。
As explained above, the present invention relates to a hot water supply system using a heat pump as a solar heat collecting device, and a compressor.

凝縮器、膨張弁、集熱器を順次環状連結した冷媒集熱回
路の凝縮器と膨張弁間の液冷媒と集熱器からの戻りガス
冷媒とを熱交換させる液ガス熱交換器を設け、膨張弁の
感温筒を前記液ガス熱交換器出口の吸入ガス配管に固定
することにより日射量や、外気風速の減少による集熱器
能力の減少した場合、集熱器出口に未蒸発冷媒が混入す
るようなことがあっても液ガス熱交換器において、凝縮
液冷媒より吸熱し、未蒸発冷媒を完全にガス化すること
が出来る。したがって、集熱器負荷減少時の液戻りと、
これに伴なう膨張弁の急激な閉弁動作による蒸発圧力の
低下すなわちハンチング現象を防止することが可能とな
る。これにより集熱能力の低下が防止用き集熱効率を高
めることが出来る。
A liquid-gas heat exchanger is provided for exchanging heat between the liquid refrigerant between the condenser and the expansion valve of a refrigerant heat collection circuit in which a condenser, an expansion valve, and a heat collector are sequentially connected in a ring, and a return gas refrigerant from the heat collector, By fixing the temperature-sensitive tube of the expansion valve to the suction gas pipe at the outlet of the liquid gas heat exchanger, if the collector capacity decreases due to a decrease in solar radiation or outside air wind speed, unevaporated refrigerant will not flow to the collector outlet. Even if contamination occurs, heat is absorbed from the condensed liquid refrigerant in the liquid-gas heat exchanger, and the unevaporated refrigerant can be completely gasified. Therefore, liquid return when the collector load decreases,
It becomes possible to prevent a decrease in evaporation pressure, that is, a hunting phenomenon due to the rapid closing operation of the expansion valve accompanying this. This prevents the heat collection ability from decreasing and increases the heat collection efficiency.

加えて、液戻りゃ、急激な圧力変動に伴なう圧縮機モー
タの負荷変動を防止することが出来、圧縮機の信頼性を
高めることが出来る。
In addition, liquid return can prevent load fluctuations on the compressor motor due to sudden pressure fluctuations, and can improve the reliability of the compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はヒートポンプを太陽熱集熱装置に用いた場合の
給湯装置回路構成図、第2図は本発明の給湯装置の回路
構成図である。 1・・・・・・圧縮機、2・・・・・−凝縮器、3・・
・・・・膨張弁、4・・・・・・集熱器、5・・・・・
・貯湯槽、6・・・・・・水循環ポンプ、7・・・・・
・水加熱器、8・・・・・・気液分離器、9・・・・・
・液ガス熱交換器、10・・・・・・感温筒、11・・
・・・・接続配管。
FIG. 1 is a circuit diagram of a water heater when a heat pump is used as a solar heat collector, and FIG. 2 is a circuit diagram of the water heater of the present invention. 1...Compressor, 2...-Condenser, 3...
...Expansion valve, 4... Heat collector, 5...
・Hot water tank, 6...Water circulation pump, 7...
・Water heater, 8... Gas-liquid separator, 9...
・Liquid gas heat exchanger, 10... Temperature sensing cylinder, 11...
...Connection piping.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、膨張弁、集熱器を順次環状連結した冷
媒集熱回路と、貯湯槽、水循環ポンプ水加熱器を順次環
状連結した水加熱回路を備え、前記冷媒集熱回路の凝縮
器と水加熱回路の水加熱器を伝熱関係に保持するととも
に、凝縮器と膨張弁間の高温液冷媒と集熱器を出た低温
ガス状冷媒を熱交換する液ガス熱交換部を設け、膨張弁
の感温筒を前記液ガス熱交換器の出口低温ガス配管に固
定した給湯装置。
A refrigerant heat collection circuit in which a compressor, a condenser, an expansion valve, and a heat collector are sequentially connected in a ring, and a water heating circuit in which a hot water storage tank, a water circulation pump, and a water heater are sequentially connected in a ring, and a condenser in the refrigerant heat collection circuit. and a water heater in the water heating circuit in a heat transfer relationship, and a liquid-gas heat exchange section for exchanging heat between the high-temperature liquid refrigerant between the condenser and the expansion valve and the low-temperature gaseous refrigerant exiting the collector; A water heater in which a temperature-sensitive cylinder of an expansion valve is fixed to an outlet low-temperature gas pipe of the liquid-gas heat exchanger.
JP57044312A 1982-03-18 1982-03-18 Hot-water supply device Pending JPS58160774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57044312A JPS58160774A (en) 1982-03-18 1982-03-18 Hot-water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044312A JPS58160774A (en) 1982-03-18 1982-03-18 Hot-water supply device

Publications (1)

Publication Number Publication Date
JPS58160774A true JPS58160774A (en) 1983-09-24

Family

ID=12687963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044312A Pending JPS58160774A (en) 1982-03-18 1982-03-18 Hot-water supply device

Country Status (1)

Country Link
JP (1) JPS58160774A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197954A (en) * 1985-02-27 1986-09-02 Matsushita Electric Ind Co Ltd Heat collecting device utilizing solar heat
US10974372B2 (en) 2018-02-23 2021-04-13 Makita Corporation Impact tool
US11192223B2 (en) 2017-03-07 2021-12-07 Makita Corporation Tool holding apparatus and power tool, and impact tool
US11660681B2 (en) 2019-07-23 2023-05-30 Makita Corporation Tool-holding apparatus, impact driver, and electric work machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197954A (en) * 1985-02-27 1986-09-02 Matsushita Electric Ind Co Ltd Heat collecting device utilizing solar heat
US11192223B2 (en) 2017-03-07 2021-12-07 Makita Corporation Tool holding apparatus and power tool, and impact tool
US10974372B2 (en) 2018-02-23 2021-04-13 Makita Corporation Impact tool
US11660681B2 (en) 2019-07-23 2023-05-30 Makita Corporation Tool-holding apparatus, impact driver, and electric work machine

Similar Documents

Publication Publication Date Title
US4171619A (en) Compressor assisted absorption refrigeration system
US4285211A (en) Compressor-assisted absorption refrigeration system
US4409796A (en) Reversible cycle heating and cooling system
GB2166856A (en) Coupled dual loop absorption heat pump
US4341202A (en) Phase-change heat transfer system
JP4115242B2 (en) Refrigeration system
JPS58160774A (en) Hot-water supply device
JPS5835361A (en) Hot-water supply device
JPH049978B2 (en)
KR100486099B1 (en) Heat pump system
KR0121983Y1 (en) Heat pump type aircontroller
SU857658A1 (en) Combined solar unit
JPS6138787B2 (en)
JPS6210343B2 (en)
JPH0112132Y2 (en)
JPS6337636Y2 (en)
JPS6238200Y2 (en)
JPS60138358A (en) Solar heat utilizing hot water supplier
JPS6222391B2 (en)
JPS58213163A (en) Solar heat-heat pump system
JPS644044Y2 (en)
JPH0350373Y2 (en)
JPS5835354A (en) Solar heat collecting system
JPS62218768A (en) Direct expansion type heat-collecting system
JPS60259A (en) Solar heat collecting device