JP4115242B2 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP4115242B2
JP4115242B2 JP2002310884A JP2002310884A JP4115242B2 JP 4115242 B2 JP4115242 B2 JP 4115242B2 JP 2002310884 A JP2002310884 A JP 2002310884A JP 2002310884 A JP2002310884 A JP 2002310884A JP 4115242 B2 JP4115242 B2 JP 4115242B2
Authority
JP
Japan
Prior art keywords
refrigerant
regenerator
evaporator
absorber
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002310884A
Other languages
Japanese (ja)
Other versions
JP2004144420A (en
Inventor
洋 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002310884A priority Critical patent/JP4115242B2/en
Publication of JP2004144420A publication Critical patent/JP2004144420A/en
Application granted granted Critical
Publication of JP4115242B2 publication Critical patent/JP4115242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷凍機の構成を用いて、太陽熱などの外部熱源により冷水やブラインなどの低温の冷凍用媒体を取出す冷凍システムに関する。
【0002】
【従来の技術】
従来の吸収冷凍機としては、非特許文献1に開示されているものがあった。
この従来例によれば、図の従来例を示す概略構成図に示すように、太陽熱集熱器01で得た熱を蓄熱槽02に温水として蓄え、その温水を熱源として発生器03で冷媒蒸気を発生させ、分離器04で分離した後の冷媒蒸気を凝縮器05に供給し、凝縮器05で凝縮液化した冷媒液を蒸発器06に供給し、吸収器07での冷媒の吸収に伴って蒸発器06で冷媒液を蒸発させ、その蒸発潜熱で冷水を得、得られた冷水を空気調和器08に供給して空調を行い、また、蓄熱槽02に蓄えた温水を給湯に利用するように構成されている。図中09は、雨天などで集熱温度が低い場合に対処するための補助熱源を示し、010は、凝縮器05および吸収器07に冷却水を送る冷却塔を示している。
【0003】
【非特許文献1】
高田秋一著,「吸収冷凍機とヒートポンプ」第2版,社団法人 日本冷凍協会 平成元年9月18日,p119,図8.21
【0004】
【発明が解決しようとする課題】
しかしながら、従来例の場合、発生器03に入力する外部熱源の温度変化に対応するために、蓄熱槽02や補助熱源09などの設備が必要であり、システムが複雑になり、イニシャルコストが増大する欠点があった。
【0005】
また、冷水の取り出し温度が低い場合、必要な冷水の温度と蒸発器06から取出される冷水の温度との温度差が小さくなるために、空気調和器08に供給する冷水量を多くしたり、熱交換器を大きくして熱交換面積を拡大するなど空調二次側設計で冷水配管や熱交換器が過大になり、イニシャルコストが増大する欠点があった。
【0006】
本発明は、このような事情に鑑みてなされたものであって、請求項1に係る発明は、太陽熱などのように入熱量が変動する外部熱源を用いる場合に、外部熱源の入熱量の変動にかかわらず、安価にして所定の冷熱を取出せるようにすることを目的とし、請求項および請求項に係る発明は、外部熱源を安価にして得るようにすることを目的とする。
【0007】
【課題を解決するための手段】
請求項1に係る発明の冷凍システムは、前述のような目的を達成するために、
冷媒−吸収剤を収容するとともに外部熱源の加熱により冷媒を蒸発分離する再生器と、
前記再生器に接続されて前記再生器で吸収剤から蒸発分離させた冷媒を導入して凝縮液化する凝縮器と、
前記再生器および凝縮器と離れて設けられるとともに前記再生器に接続されて前記再生器から供給される冷媒蒸発後の吸収剤に冷媒を吸収して前記再生器に戻す吸収器と、
前記再生器および凝縮器と離れて設けられるとともに前記凝縮器および前記吸収器に接続されて前記凝縮器からの冷媒液を蒸発する蒸発器と、
前記蒸発器内の冷媒を吸引して前記吸収器に加圧供給する圧縮機と、
前記蒸発器に付設されて前記蒸発器で得られる冷熱を取出す冷熱取り出し手段と、
前記吸収器と前記蒸発器とにわたって接続されるとともに膨張弁が介装されて、前記圧縮機と前記吸収器と前記蒸発器とにより冷凍回路を構成する冷凍回路用配管と、
前記外部熱源の入熱量に基づいて、前記吸収器を凝縮器として前記冷凍回路で冷媒を強制循環する冷凍制御手段とを備えて構成する。
冷媒−吸収剤としては、アンモニアを冷媒とし、水を吸収剤とするアンモニア―水系のものとか、メタノールを冷媒とし、水を吸収剤とするメタノール―水系のものなど、各種の冷媒―吸収剤が適用できる。
【0008】
(作用・効果)
請求項1に係る発明の冷凍システムの構成によれば、太陽熱などのように入熱量が変動する外部熱源を用いる場合に、外部熱源の入熱量が所定量以上有るときには、外部熱源の加熱により再生器で冷媒を蒸発分離し、その蒸発分離させた冷媒を凝縮器に導入して凝縮液化し、その冷媒液を再生器および凝縮器と離れた位置に設けた蒸発器に供給して蒸発させる。蒸発器では、圧縮機により冷媒を吸引して吸収器に加圧供給して吸収器内の吸収剤に冷媒を吸収させ、蒸発器での冷媒の蒸発を促進し、その蒸発潜熱によって冷熱取り出し手段により冷熱を取出すことができる。
一方、外部熱源の入熱量が所定量以上無いときには、冷凍制御手段により、膨張弁を介装した冷凍用配管を通じ、吸収器を凝縮器として作用させて、吸収器、膨張弁、蒸発器、圧縮機とで構成される冷凍回路で冷媒を強制循環し、冷熱取り出し手段により冷熱を取出すことができる。
【0009】
したがって、大掛かりな蓄熱槽や補助熱源を設けたりせずに、安価にして所定の冷熱を取出すことができる。
しかも、冷媒液を再生器および凝縮器と離れた位置に設けた蒸発器に供給して蒸発させ、その蒸発潜熱によって冷熱を取出すから、再生器は外部熱源を利用しやすい位置に設置できながら、蒸発器は冷熱を利用するのに便利な位置に設置でき、実用上極めて有用である。
【0010】
【0011】
【0012】
【0013】
【0014】
【0015】
【0016】
【0017】
また、請求項に係る発明は、上述のような目的を達成するために、
請求項1に記載の冷凍システムにおいて、
外部熱源として太陽熱を用いる。
【0018】
(作用・効果)
請求項に係る発明の冷凍システムの構成によれば、外部熱源として自然エネルギーである太陽熱を利用する。
したがって、外部熱源を安価にして得ることができ、経済性を向上できる。
【0019】
また、請求項に係る発明は、上述のような目的を達成するために、
請求項1または2に記載の冷凍システムにおいて、
外部熱源として地熱を用いる。
【0020】
(作用・効果)
請求項に係る発明の冷凍システムの構成によれば、外部熱源として自然エネルギーである地熱を利用する。
したがって、外部熱源を安価にして得ることができ、経済性を向上できる。
【0021】
【発明の実施の形態】
次に、本発明の実施例を図面に基づいて詳細に説明する。
図1は、本発明に係る冷凍システムの実施例を示す概略構成図であり、アンモニアを冷媒とし、水を吸収剤としたアンモニア−水系溶液が収容された再生器1に、外部熱源としての太陽熱集熱器2に接続されるとともに温水ポンプ3を介装した加熱配管4が通され、太陽熱を利用した加熱によりアンモニア蒸気を蒸発分離するように構成されている。
【0022】
再生器1には、凝縮器5が連通接続されて、再生器1で蒸発分離したアンモニア蒸気を導入して凝縮液化するように構成されている。再生器1には、アンモニア蒸気と水とを分離する精留器が設けられるが、精留器を再生器1の一部とみなし、再生器1と称する。
【0023】
ビルの各部屋とか、スーパーや百貨店の食料品売り場とかコンビニエンスストアなどの冷凍機や保冷装置などの、再生器1および凝縮器5と離れた位置に、蒸発器6と吸収器7とが設けられている。
【0024】
再生器1に第1の配管6を介して吸収器7が接続され、冷媒蒸発後のアンモニア濃度の低いアンモニア希水溶液にアンモニア蒸気を吸収するように構成されている。
凝縮器5に、第1の膨張弁8を介装した第2の配管9を介して蒸発器10が接続され、凝縮器5から供給される冷媒液を蒸発するように構成されている。
また、吸収器7の底部と再生器1とが第1の開閉弁11を介装した第3の配管12を介して接続され、アンモニア蒸気を吸収したアンモニア水溶液を吸収器7に戻すように構成されている。
【0025】
第2の配管9の途中箇所に熱交換器13が設けられ、この熱交換器13で熱交換可能に蒸発器10と圧縮機14とを接続する蒸気吸引配管15が設けられ、圧縮機14と吸収器7とが第4の配管16を介して接続され、蒸発器10内の冷媒を吸引して吸収器7に加圧供給するように構成されている。
【0026】
第3の配管12の途中箇所と蒸発器10とが、第2の開閉弁17と第2の膨張弁18とを介装した冷凍回路用配管19を介して接続され、吸収器7を凝縮器5として作用させて、圧縮機14と吸収器7と蒸発器10とにより冷凍回路を構成するようになっている。
【0027】
蒸発器10に、冷熱取り出し手段としての冷水やブラインなどの冷凍用媒体を取出す冷凍用媒体取り出し管20が付設され、この冷凍用媒体取り出し管20が空調装置の冷房用熱源や、スーパーやコンビニエンスストアや百貨店などの食料品売り場の冷蔵・冷凍用熱源に導入され、冷房や冷蔵・冷凍を行えるようになっている。冷房や冷蔵・冷凍を行うために冷熱を取り出す冷熱取り出し手段としては、蒸発器10に冷風を導入する熱交換用ダクトを設け、直接的に冷風を得るようにしても良い。図中21は、クーリングタワーからの冷却水を流す冷却水配管を示している。
【0028】
冷凍用媒体取り出し管20の戻り管部分に、冷凍用媒体の温度を測定する温度センサ22が設けられ、その温度センサ22が第1のコントローラ23に接続されるとともに、その第1のコントローラ23が、圧縮機14の電動モータ24のインバータ回路25に接続されている。
【0029】
第1のコントローラ23では、温度センサ22で測定される冷凍用媒体の温度と設定温度とを比較し、測定温度が設定温度よりも低いときには、圧縮機14の回転数を下げ、一方、測定温度が設定温度よりも高いときには、圧縮機14の回転数を上げ、蒸発器10に戻される冷凍用媒体の温度を一定に維持するようになっている。
【0030】
凝縮器5に、冷媒液の所定レベルの液面を検出する液面センサ26が設けられ、その液面センサ26が冷凍制御手段としての第2のコントローラ27に接続され、第2のコントローラ27に第1および第2の開閉弁11,17が接続されている。
【0031】
第2のコントローラ27では、液面センサ26で測定される液面レベルが設定レベルを越えているときには、第1の開閉弁11に開き信号を、第2の開閉弁17に閉じ信号をそれぞれ出力し、一方、液面センサ26で測定される液面レベルが設定レベルより低くなったときには、第1の開閉弁11に閉じ信号を、第2の開閉弁17に開き信号をそれぞれ出力するようになっている。
【0032】
すなわち、太陽熱集熱器2からの入熱量に基づき、所定量以上の太陽熱が確保されているときには、再生器1で冷媒が所定量以上蒸発するために、凝縮器5で凝縮液化する量が減少せず、設定したレベル以上に冷媒液が溜まり、その状態のときには、吸収冷凍機の作用により、冷熱を取り出す。
【0033】
一方、雨天などで太陽熱が弱いときには、再生器1で蒸発する冷媒量が減少し、それに伴って、凝縮器5で凝縮液化する量が減少し、冷媒液の量が設定レベルに到達しない。その状態のときに、吸収器7を凝縮器として作用させて、冷媒を圧縮機14→吸収器7→第2の膨張弁18→蒸発器10→圧縮機14と冷凍回路で強制循環し、冷熱を取り出す。この冷凍回路で強制循環する状態への切換に際し、吸収器7内の吸収剤である水は、再生器1に供給するなどによって除去し、その後に冷凍回路による運転を行うこととなる。
【0034】
以上の構成により、太陽熱集熱器2からの入熱量の変動にかかわらず、安定した状態で冷熱を取り出すことができる。
【0035】
【0036】
【0037】
【0038】
【0039】
【0040】
【0041】
【0042】
【0043】
【0044】
記実施例では、太陽熱集熱器2からの入熱量の変動を、凝縮器5に溜まる冷媒液の量によって検出するようにしているが、加熱配管4内を流れる温水の温度を測定するようにするなど、各種の変形が可能である。
また、太陽熱に代えて、あるいは、併用して地熱を集熱するようにしても良い。
【0045】
【発明の効果】
以上説明したように、請求項1に係る発明の冷凍システムの構成によれば、太陽熱などのように入熱量が変動する外部熱源を用いる場合に、外部熱源の入熱量が所定量以上有るときには、外部熱源の加熱により再生器で冷媒を蒸発分離し、その蒸発分離させた冷媒を凝縮器に導入して凝縮液化し、その冷媒液を再生器および凝縮器と離れた位置に設けた蒸発器に供給して蒸発させる。蒸発器では、圧縮機により冷媒を吸引して吸収器に加圧供給して吸収器内の吸収剤に冷媒を吸収させ、蒸発器での冷媒の蒸発を促進し、その蒸発潜熱によって冷熱取り出し手段により冷熱を取出すことができる。
一方、外部熱源の入熱量が所定量以上無いときには、冷凍制御手段により、膨張弁を介装した冷凍用配管を通じ、吸収器を凝縮器として作用させて、吸収器、膨張弁、蒸発器、圧縮機とで構成される冷凍回路で冷媒を強制循環し、冷熱取り出し手段により冷熱を取出すことができるから、大掛かりな蓄熱槽や補助熱源を設けたりせずに、安価にして所定の冷熱を取出すことができる。
しかも、冷媒液を再生器および凝縮器と離れた位置に設けた蒸発器に供給して蒸発させ、その蒸発潜熱によって冷熱を取出すから、再生器は外部熱源を利用しやすい位置に設置できながら、蒸発器は冷熱を利用するのに便利な位置に設置でき、実用上極めて有用である。
【図面の簡単な説明】
【図1】 本発明に係る冷凍システムの第1実施例を示す概略構成図である。
【図2】 従来例の冷凍システムを示す概略構成図である。
【符号の説明】
1…再生器
2…太陽熱集熱器
5…凝縮器
7…吸収器
9…第2の配管(冷媒移送配管)
10…蒸発器
14…圧縮機
18…第2の膨張弁
19…冷凍回路用配管
20…冷凍用媒体取り出し管(冷熱取り出し手段)
27…第2のコントローラ(冷凍制御手段)
33…冷媒貯留容
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration system that takes out a low-temperature refrigeration medium such as cold water or brine by an external heat source such as solar heat using the configuration of an absorption refrigerator.
[0002]
[Prior art]
A conventional absorption refrigerator is disclosed in Non-Patent Document 1.
According to this conventional example, as shown in the schematic configuration diagram of the conventional example of FIG. 2 , the heat obtained by the solar heat collector 01 is stored in the heat storage tank 02 as hot water, and the hot water is used as a heat source to generate refrigerant in the generator 03. Vapor is generated and the refrigerant vapor separated by the separator 04 is supplied to the condenser 05, the refrigerant liquid condensed and liquefied by the condenser 05 is supplied to the evaporator 06, and the refrigerant is absorbed by the absorber 07. Then, the refrigerant liquid is evaporated by the evaporator 06, cold water is obtained by the latent heat of evaporation, the obtained cold water is supplied to the air conditioner 08 for air conditioning, and the hot water stored in the heat storage tank 02 is used for hot water supply. It is configured as follows. In the figure, reference numeral 09 denotes an auxiliary heat source for coping with a case where the heat collection temperature is low due to rain or the like, and 010 denotes a cooling tower that sends cooling water to the condenser 05 and the absorber 07.
[0003]
[Non-Patent Document 1]
Akiichi Takada, "Absorption refrigerator and heat pump" 2nd edition, Japan Refrigeration Association September 18, 1989, p119, Fig. 8.21
[0004]
[Problems to be solved by the invention]
However, in the case of the conventional example, facilities such as the heat storage tank 02 and the auxiliary heat source 09 are necessary to cope with the temperature change of the external heat source input to the generator 03, the system becomes complicated, and the initial cost increases. There were drawbacks.
[0005]
In addition, when the temperature for taking out the cold water is low, the temperature difference between the temperature of the required cold water and the temperature of the cold water taken out from the evaporator 06 is reduced, so that the amount of cold water supplied to the air conditioner 08 is increased, The air conditioning secondary design, such as increasing the heat exchanger and enlarging the heat exchange area, resulted in excessive cold water piping and heat exchangers, leading to an increase in initial cost.
[0006]
This invention is made | formed in view of such a situation, and when the invention which concerns on Claim 1 uses the external heat source from which heat input fluctuates like solar heat etc., the fluctuation | variation of the heat input amount of an external heat source. Regardless of this, the object is to make it possible to obtain a predetermined cold heat at a low cost, and the invention according to claims 2 and 3 aims to obtain an external heat source at a low cost.
[0007]
[Means for Solving the Problems]
In order to achieve the above-described object, the refrigeration system of the invention according to claim 1
A regenerator containing the refrigerant-absorbent and evaporating and separating the refrigerant by heating an external heat source;
A condenser connected to the regenerator and introducing a refrigerant evaporated and separated from an absorbent in the regenerator to condense and liquefy;
An absorber that is provided apart from the regenerator and the condenser and that is connected to the regenerator and absorbs the refrigerant into the absorbent after evaporation of the refrigerant supplied from the regenerator and returns the refrigerant to the regenerator;
An evaporator provided apart from the regenerator and the condenser and connected to the condenser and the absorber to evaporate a refrigerant liquid from the condenser;
A compressor that sucks the refrigerant in the evaporator and pressurizes and supplies it to the absorber;
A cold heat extracting means attached to the evaporator to extract the cold heat obtained by the evaporator;
A piping for a refrigeration circuit that is connected across the absorber and the evaporator and has an expansion valve interposed therein, and that constitutes a refrigeration circuit with the compressor, the absorber, and the evaporator;
Refrigeration control means for forcibly circulating the refrigerant in the refrigeration circuit using the absorber as a condenser based on the amount of heat input from the external heat source.
Refrigerant - The absorbent, an ammonia refrigerant, ammonia water with the absorbent - Toka those aqueous, the methanol and the refrigerant, methanol and water with the absorbent - such as those of water, various refrigerant - absorbent Is applicable.
[0008]
(Action / Effect)
According to the configuration of the refrigeration system of the first aspect of the invention, when using an external heat source that varies in the amount of heat input such as solar heat, if the heat input amount of the external heat source is greater than or equal to a predetermined amount, regeneration is performed by heating the external heat source. The refrigerant is evaporated and separated by the regenerator, the refrigerant separated by evaporation is introduced into the condenser to be condensed and liquefied, and the refrigerant liquid is supplied to the evaporator provided at a position away from the regenerator and the condenser to be evaporated. In the evaporator, the refrigerant is sucked by the compressor and pressurized and supplied to the absorber so that the absorbent in the absorber absorbs the refrigerant, promotes the evaporation of the refrigerant in the evaporator, and the cooling heat extraction means is generated by the latent heat of evaporation. The cold heat can be taken out.
On the other hand, when the amount of heat input from the external heat source is not more than a predetermined amount, the absorber is operated as a condenser through the refrigeration pipe interposing the expansion valve by the refrigeration control means, and the absorber, expansion valve, evaporator, compression The refrigerant is forcibly circulated in a refrigeration circuit composed of a machine, and the cold heat can be taken out by the cold heat taking-out means.
[0009]
Therefore, it is possible to take out predetermined cold heat at a low cost without providing a large-scale heat storage tank or auxiliary heat source.
Moreover, since the refrigerant liquid is supplied to the evaporator provided at a position away from the regenerator and the condenser to evaporate and the cold heat is taken out by the latent heat of evaporation, the regenerator can be installed at a position where an external heat source can be easily used. The evaporator can be installed at a convenient location for using cold heat and is extremely useful in practice.
[0010]
[0011]
[0012]
[0013]
[0014]
[0015]
[0016]
[0017]
In order to achieve the above-described object, the invention according to claim 2
The refrigeration system of claim 1 ,
Solar heat is used as an external heat source.
[0018]
(Action / Effect)
According to the configuration of the refrigeration system of the invention according to claim 2 , solar heat, which is natural energy, is used as an external heat source.
Therefore, the external heat source can be obtained at a low cost, and the economy can be improved.
[0019]
In order to achieve the above-described object, the invention according to claim 3
The refrigeration system according to claim 1 or 2 ,
Geothermal is used as an external heat source.
[0020]
(Action / Effect)
According to the configuration of the refrigeration system of the invention according to claim 3 , geothermal heat, which is natural energy, is used as an external heat source.
Therefore, the external heat source can be obtained at a low cost, and the economy can be improved.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
Figure 1 is a schematic diagram showing a real施例refrigeration system according to the present invention, ammonia is the refrigerant, ammonia was water and absorbent - the regenerator 1 aqueous solution is accommodated, as external heat source A heating pipe 4 connected to the solar heat collector 2 and having a hot water pump 3 interposed therethrough is configured to evaporate and separate ammonia vapor by heating using solar heat.
[0022]
A condenser 5 is connected to the regenerator 1 so that ammonia vapor evaporated and separated by the regenerator 1 is introduced to be condensed and liquefied. The regenerator 1 is provided with a rectifier that separates ammonia vapor and water. The rectifier is regarded as a part of the regenerator 1 and is referred to as a regenerator 1.
[0023]
An evaporator 6 and an absorber 7 are provided at positions apart from the regenerator 1 and the condenser 5, such as refrigerators and cold storage devices such as grocery departments in supermarkets and department stores, and convenience stores. ing.
[0024]
An absorber 7 is connected to the regenerator 1 via a first pipe 6 and is configured to absorb ammonia vapor in an ammonia dilute aqueous solution having a low ammonia concentration after evaporation of the refrigerant.
An evaporator 10 is connected to the condenser 5 via a second pipe 9 having a first expansion valve 8 interposed therebetween, and the refrigerant liquid supplied from the condenser 5 is evaporated.
Further, the bottom of the absorber 7 and the regenerator 1 are connected via a third pipe 12 having a first on-off valve 11, and the aqueous ammonia solution that has absorbed ammonia vapor is returned to the absorber 7. Has been.
[0025]
A heat exchanger 13 is provided in the middle of the second pipe 9, and a steam suction pipe 15 is provided to connect the evaporator 10 and the compressor 14 so that heat can be exchanged by the heat exchanger 13. The absorber 7 is connected via a fourth pipe 16 so that the refrigerant in the evaporator 10 is sucked and supplied to the absorber 7 under pressure.
[0026]
The middle portion of the third pipe 12 and the evaporator 10 are connected via a refrigeration circuit pipe 19 having a second on-off valve 17 and a second expansion valve 18 interposed therebetween, and the absorber 7 is connected to the condenser. The compressor 14, the absorber 7, and the evaporator 10 constitute a refrigeration circuit.
[0027]
The evaporator 10 is provided with a refrigeration medium take-out pipe 20 for taking out a refrigeration medium such as cold water or brine as cold heat take-out means, and this refrigeration medium take-out pipe 20 is used as a heat source for cooling the air conditioner, a supermarket or a convenience store. Introduced as a heat source for refrigeration and freezing in grocery departments such as department stores. As a cold heat extraction means for extracting cold heat for cooling or refrigeration / freezing, a heat exchange duct for introducing cold air into the evaporator 10 may be provided to directly obtain the cold air. In the figure, reference numeral 21 denotes a cooling water pipe for flowing cooling water from the cooling tower.
[0028]
A temperature sensor 22 for measuring the temperature of the refrigeration medium is provided at the return pipe portion of the refrigeration medium take-out pipe 20, and the temperature sensor 22 is connected to the first controller 23, and the first controller 23 is The electric motor 24 of the compressor 14 is connected to the inverter circuit 25.
[0029]
The first controller 23 compares the temperature of the refrigeration medium measured by the temperature sensor 22 with the set temperature. When the measured temperature is lower than the set temperature, the rotation speed of the compressor 14 is decreased, while the measured temperature Is higher than the set temperature, the rotational speed of the compressor 14 is increased to keep the temperature of the refrigeration medium returned to the evaporator 10 constant.
[0030]
The condenser 5 is provided with a liquid level sensor 26 for detecting a liquid level of a predetermined level of the refrigerant liquid. The liquid level sensor 26 is connected to a second controller 27 as a refrigeration control means. The first and second on-off valves 11 and 17 are connected.
[0031]
When the liquid level measured by the liquid level sensor 26 exceeds the set level, the second controller 27 outputs an open signal to the first on-off valve 11 and a close signal to the second on-off valve 17. On the other hand, when the liquid level measured by the liquid level sensor 26 is lower than the set level, a closing signal is output to the first on-off valve 11 and an opening signal is output to the second on-off valve 17, respectively. It has become.
[0032]
That is, based on the amount of heat input from the solar heat collector 2, when a predetermined amount or more of solar heat is secured, the refrigerant evaporates more than a predetermined amount in the regenerator 1, so that the amount of condensation and liquefaction in the condenser 5 decreases. In this state, the refrigerant liquid accumulates above the set level, and in this state, the cold heat is taken out by the action of the absorption refrigerator.
[0033]
On the other hand, when the solar heat is weak due to rain or the like, the amount of refrigerant that evaporates in the regenerator 1 decreases, and accordingly, the amount that condensates and liquefies in the condenser 5 decreases, and the amount of refrigerant liquid does not reach the set level. In this state, the absorber 7 acts as a condenser, and the refrigerant is forcibly circulated in the refrigeration circuit with the compressor 14 → the absorber 7 → the second expansion valve 18 → the evaporator 10 → the compressor 14, Take out. When switching to the state of forced circulation in this refrigeration circuit, the water as the absorbent in the absorber 7 is removed by supplying it to the regenerator 1 and thereafter the operation by the refrigeration circuit is performed.
[0034]
With the above configuration, it is possible to take out cold heat in a stable state regardless of fluctuations in the amount of heat input from the solar heat collector 2.
[0035]
[0036]
[0037]
[0038]
[0039]
[0040]
[0041]
[0042]
[0043]
[0044]
In the above SL embodiment, the variation of the heat input from the solar heat collector 2, but so as to detect the amount of the refrigerant liquid accumulating in the condenser 5, to measure the temperature of hot water flowing through the heating pipe 4 Various modifications are possible, such as.
Further, geothermal heat may be collected instead of solar heat or in combination.
[0045]
【The invention's effect】
As described above, according to the configuration of the refrigeration system of the invention according to claim 1, when using an external heat source such as solar heat where the heat input amount varies, when the heat input amount of the external heat source is equal to or greater than a predetermined amount, Refrigerant is evaporated and separated by a regenerator by heating an external heat source, the evaporated and separated refrigerant is introduced into a condenser to be condensed and liquefied, and the refrigerant liquid is placed in an evaporator provided at a position away from the regenerator and the condenser. Feed and evaporate. In the evaporator, the refrigerant is sucked by the compressor and pressurized and supplied to the absorber so that the absorbent in the absorber absorbs the refrigerant, promotes the evaporation of the refrigerant in the evaporator, and the cooling heat extraction means is generated by the latent heat of evaporation. The cold heat can be taken out.
On the other hand, when the amount of heat input from the external heat source is not more than a predetermined amount, the absorber is operated as a condenser through the refrigeration pipe interposing the expansion valve by the refrigeration control means, and the absorber, expansion valve, evaporator, compression Because it is possible to forcibly circulate the refrigerant in the refrigeration circuit composed of the machine and take out the cold heat with the cold heat take-out means, the specified cold heat can be taken out at a low cost without providing a large heat storage tank or auxiliary heat source Can do.
Moreover, since the refrigerant liquid is supplied to the evaporator provided at a position away from the regenerator and the condenser to evaporate and the cold heat is taken out by the latent heat of evaporation, the regenerator can be installed at a position where an external heat source can be easily used. The evaporator can be installed at a convenient location for using cold heat and is extremely useful in practice.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first embodiment of a refrigeration system according to the present invention.
FIG. 2 is a schematic configuration diagram showing a conventional refrigeration system.
[Explanation of symbols]
1 ... Regenerator
2 ... Solar collector
5 ... Condenser
7 ... Absorber
9. Second pipe (refrigerant transfer pipe)
DESCRIPTION OF SYMBOLS 10 ... Evaporator 14 ... Compressor 18 ... 2nd expansion valve 19 ... Piping for freezing circuits 20 ... Refrigerant medium taking-out pipe (cold-heat taking-out means)
27 ... Second controller (refrigeration control means)
33 ... refrigerant storage container

Claims (3)

冷媒−吸収剤を収容するとともに外部熱源の加熱により冷媒を蒸発分離する再生器と、
前記再生器に接続されて前記再生器で吸収剤から蒸発分離させた冷媒を導入して凝縮液化する凝縮器と、
前記再生器および凝縮器と離れて設けられるとともに前記再生器に接続されて前記再生器から供給される冷媒蒸発後の吸収剤に冷媒を吸収して前記再生器に戻す吸収器と、
前記再生器および凝縮器と離れて設けられるとともに前記凝縮器および前記吸収器に接続されて前記凝縮器からの冷媒液を蒸発する蒸発器と、
前記蒸発器内の冷媒を吸引して前記吸収器に加圧供給する圧縮機と、
前記蒸発器に付設されて前記蒸発器で得られる冷熱を取出す冷熱取り出し手段と、
前記吸収器と前記蒸発器とにわたって接続されるとともに膨張弁が介装されて、前記圧縮機と前記吸収器と前記蒸発器とにより冷凍回路を構成する冷凍回路用配管と、
前記外部熱源の入熱量に基づいて、前記吸収器を凝縮器として前記冷凍回路で冷媒を強制循環する冷凍制御手段と、
を備えたことを特徴とする冷凍システム。
A regenerator containing the refrigerant-absorbent and evaporating and separating the refrigerant by heating an external heat source;
A condenser connected to the regenerator and introducing a refrigerant evaporated and separated from an absorbent in the regenerator to condense and liquefy;
An absorber that is provided apart from the regenerator and the condenser and that is connected to the regenerator and absorbs the refrigerant into the absorbent after evaporation of the refrigerant supplied from the regenerator and returns the refrigerant to the regenerator;
An evaporator provided apart from the regenerator and the condenser and connected to the condenser and the absorber to evaporate a refrigerant liquid from the condenser;
A compressor that sucks the refrigerant in the evaporator and pressurizes and supplies it to the absorber;
A cold heat extracting means attached to the evaporator to extract the cold heat obtained by the evaporator;
A piping for a refrigeration circuit that is connected across the absorber and the evaporator and has an expansion valve interposed therein, and that constitutes a refrigeration circuit with the compressor, the absorber, and the evaporator;
Refrigeration control means for forcibly circulating refrigerant in the refrigeration circuit using the absorber as a condenser based on the amount of heat input from the external heat source;
A refrigeration system comprising:
請求項1に記載の冷凍システムにおいて、
外部熱源が太陽熱である冷凍システム。
The refrigeration system of claim 1,
A refrigeration system in which the external heat source is solar heat .
請求項1または2に記載の冷凍システムにおいて、
外部熱源が地熱である冷凍システム。
The refrigeration system according to claim 1 or 2,
A refrigeration system where the external heat source is geothermal .
JP2002310884A 2002-10-25 2002-10-25 Refrigeration system Expired - Fee Related JP4115242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310884A JP4115242B2 (en) 2002-10-25 2002-10-25 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310884A JP4115242B2 (en) 2002-10-25 2002-10-25 Refrigeration system

Publications (2)

Publication Number Publication Date
JP2004144420A JP2004144420A (en) 2004-05-20
JP4115242B2 true JP4115242B2 (en) 2008-07-09

Family

ID=32456267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310884A Expired - Fee Related JP4115242B2 (en) 2002-10-25 2002-10-25 Refrigeration system

Country Status (1)

Country Link
JP (1) JP4115242B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9994751B2 (en) * 2008-04-30 2018-06-12 Honeywell International Inc. Absorption refrigeration cycles using a LGWP refrigerant
JP2010032193A (en) * 2008-07-28 2010-02-12 Kiyoshi Yanagimachi Absorbing type chiller
JP2010271030A (en) * 2009-04-24 2010-12-02 Daikin Ind Ltd Refrigerating system
JP2011106749A (en) * 2009-11-18 2011-06-02 Daikin Industries Ltd Air conditioning system
CN102235767A (en) * 2010-05-07 2011-11-09 中国科学院工程热物理研究所 Refrigeration method and device by using low-grade heat energy
KR101370454B1 (en) * 2011-07-15 2014-03-07 한국에너지기술연구원 Power generation system of organic rankine cycle using solar heat
CN102410660B (en) * 2011-10-25 2013-04-24 浙江理工大学 Absorption-compression-type dual-purpose second species heat pump system
CN102809243A (en) * 2012-08-31 2012-12-05 上海海洋大学 Energy-saving type temperature control system of refrigerating storage
CN104034083A (en) * 2014-06-23 2014-09-10 周永奎 Self-driven thermocompression heat pump cooling method and device
CN104197575B (en) * 2014-07-30 2017-01-11 中国电子科技集团公司第三十八研究所 Efficient HGAX absorption refrigeration device
CN104390300B (en) * 2014-11-24 2017-02-22 东南大学 Heat source tower heat pump solution regeneration device achieving cooling in summer and solution regeneration in winter
CN105465924A (en) * 2015-12-02 2016-04-06 云南师范大学 Solar adsorption type refrigerating air conditioner system
CN112629067B (en) * 2020-10-28 2021-11-23 华南理工大学 Two-stage compression composite refrigeration system with parallel thermal compression and mechanical compression and method thereof

Also Published As

Publication number Publication date
JP2004144420A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
JP4115242B2 (en) Refrigeration system
US20120017621A1 (en) Cooling method and apparatus
CN202927982U (en) Air conditioning system
JPS5848822B2 (en) Absorption refrigeration equipment and cooling method
CN106482384B (en) Superposition type solution and serial double-effect lithium bromide absorption type refrigeration heat pump unit
CN105423590B (en) Absorption refrigeration system
CN101893347A (en) Direct-type solar air conditioning compound system
CN103615824B (en) A kind of many warm areas cold acquisition methods and device reclaiming driving based on expansion work
JP2004190885A (en) Absorption compression refrigerating machine and refrigerating system
CN215597816U (en) Air conditioning system
JP2004301344A (en) Ammonia absorption heat pump
CN212619487U (en) Refrigerating system supercooling degree device for improving wide temperature zone application
JP5490841B2 (en) Water refrigerant heater and water refrigerant water heater using the same
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP2009115387A (en) Water refrigerant heater and water refrigerant water heater using the same
JPH0754211B2 (en) Co-generation system using absorption heat pump cycle
CN208720514U (en) A kind of air source hot pump water heater system
KR100960059B1 (en) Air conditioner uses a solar energy
JPS6118373Y2 (en)
CN106895602A (en) A kind of semiconductor refrigerating auxiliary steam compression refrigerating system and method
JPS6138787B2 (en)
JPS58160774A (en) Hot-water supply device
CN206176810U (en) It supplies refrigerating system to stabilize heat recovery trigeminy
JPH03144263A (en) Heat accumulation type compression refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees