JPH03144263A - Heat accumulation type compression refrigerating cycle - Google Patents

Heat accumulation type compression refrigerating cycle

Info

Publication number
JPH03144263A
JPH03144263A JP28143589A JP28143589A JPH03144263A JP H03144263 A JPH03144263 A JP H03144263A JP 28143589 A JP28143589 A JP 28143589A JP 28143589 A JP28143589 A JP 28143589A JP H03144263 A JPH03144263 A JP H03144263A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
liquid
heat storage
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28143589A
Other languages
Japanese (ja)
Inventor
Akira Yamada
章 山田
Katsuya Ebara
江原 勝也
Yasuo Koseki
小関 康雄
Sankichi Takahashi
燦吉 高橋
Junichi Kaneko
淳一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28143589A priority Critical patent/JPH03144263A/en
Publication of JPH03144263A publication Critical patent/JPH03144263A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To flexibly cope with a variation in a load by providing a concentration difference utility heat accumulator in which high temperature refrigerant vapor of a circulation system of a compression type refrigerator is used as a heat source and low temperature refrigerant liquid of the circulation system is used as a cooling source. CONSTITUTION:In a compression type refrigerator in which refrigerant is sealed in a circulation system having a compressor 1, a condenser 2, an expansion valve 3 and an evaporator 4, a concentration difference utility heat accumulator in which high temperature refrigerant vapor of the system of the refrigerator is used as a heat source and low temperature refrigerant liquid of the system is used as a cooling source, is provided. That is, when a heat demand (heat load) is reduced, a compression refrigerating cycle concentrates the absorption liquid of the accumulator by excess hot heat and cold heat, takes the hot heat or the cold heat by using absorptivity of the absorption liquid when the heat demand is increased, and adding it to the cycle. Thus, the output of the cycle can be standardized to always continue a stable rated operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蓄熱型圧縮式冷凍サイクル、特に冷凍性能の向
上並びに省電力化に好敵な蓄熱型圧縮式冷凍サイクルに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat storage type compression type refrigeration cycle, and particularly to a heat storage type compression type refrigeration cycle that is suitable for improving refrigeration performance and saving power.

〔従来の技術〕[Conventional technology]

従来、冷媒とそれを吸収する吸収液との化学作用によっ
て冷却する吸収式冷凍装置の加熱器に蒸気圧縮式(以下
単に圧縮式と云う)冷凍装置の凝縮器を、また、同凝縮
器として圧縮式冷凍装置の蒸発器を用いたものが提案さ
れている(特開昭62−218773号)。
Conventionally, the condenser of a vapor compression type (hereinafter simply referred to as compression type) refrigeration equipment is used as the heater of an absorption refrigeration equipment that cools by the chemical action of the refrigerant and the absorption liquid that absorbs it. A method using an evaporator of a type refrigeration system has been proposed (Japanese Patent Application Laid-open No. 218773/1983).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来技術は、吸収式冷凍装置の吸収液と冷媒の加熱
、冷却源として圧縮式冷凍装置を用いたものである。こ
れは、圧縮式冷凍装置で圧縮された冷媒は、その全量が
吸収式冷凍装置の加熱器へ送られ、さらに、圧縮式冷凍
装置における断熱膨張後の冷媒の全景が吸収式冷凍装置
の凝縮器へと流れる構成となっている。
The prior art uses a compression refrigeration device as a source for heating and cooling the absorption liquid and refrigerant of the absorption refrigeration device. This means that the entire amount of the refrigerant compressed in the compression refrigeration system is sent to the heater of the absorption refrigeration system, and that the whole view of the refrigerant after adiabatic expansion in the compression refrigeration system is shown in the condenser of the absorption refrigeration system. The structure is structured to flow from one to the other.

吸収式冷凍装置はその駆動エネルギーとして廃熱等が利
用できるが、そう云った環境でないと、他の冷凍装置に
比べて動力費が高くつき、設備も大型化すると云う問題
ある。
Absorption refrigeration equipment can use waste heat, etc. as its driving energy, but unless such an environment exists, the power cost will be higher than other refrigeration equipment, and the equipment will be larger.

これに対して圧縮式冷凍装置は、比較的コンバク]・で
あるが、その負荷(冷凍、冷房または暖房の熱容量)が
変動した場合には、断続運転、または、定格サイクルよ
りずれたサイクルで運転するなどの方法によって対応し
ていた。
On the other hand, compression refrigeration equipment is relatively compact, but if the load (heat capacity for refrigeration, cooling, or heating) changes, it will operate intermittently or at a cycle that deviates from the rated cycle. This was handled by methods such as.

前者の運転方法では装置の容量が大きいほど起動、停止
に時間がかかり、また、起動、停止の繰り返しによる各
機器の熱歪が、故障の原因あるいは寿命の低下等につな
がると云う問題があった。
The former method of operation had the problem that the larger the capacity of the equipment, the longer it took to start and stop it, and the thermal distortion of each device due to repeated startups and stops could lead to failures or shortened service life. .

また、後者の運転方法では運転特性が低下するため、運
転エネルギーの効率が悪いと云う問題があった。
Furthermore, in the latter operating method, the operating characteristics deteriorate, so there is a problem that the efficiency of operating energy is poor.

本発明は前記に鑑みてなされたもので、その目的は、大
容量圧縮式冷凍サイクルにおいて負荷の変動に柔軟に対
応できる冷凍サイクルを提供することにある。
The present invention has been made in view of the above, and an object thereof is to provide a refrigeration cycle that can flexibly respond to load fluctuations in a large-capacity compression type refrigeration cycle.

第二の目的は、負荷の変動に対する運転エネルギーの効
率を改善した冷凍サイクルを提供することにある。
A second object is to provide a refrigeration cycle with improved operating energy efficiency against load fluctuations.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するための本発明の要旨は下記のとおり
である。
The gist of the present invention for achieving the above object is as follows.

(1)圧縮機、凝縮器、膨脹弁、蒸発器を含む循環系で
構成され、該系内に冷媒を封入して成る圧縮式冷凍装置
に、該圧縮式冷凍装置の前記循環系の高温冷媒蒸気を加
熱源に、前記循環系の低温冷媒液を冷却源とした濃度差
利用蓄熱装置を併設したことを特徴とする蓄熱型圧縮式
冷凍サイクル。
(1) In a compression type refrigeration system that is composed of a circulation system including a compressor, a condenser, an expansion valve, and an evaporator, and in which a refrigerant is sealed, a high-temperature refrigerant in the circulation system of the compression type refrigeration apparatus is A heat storage type compression type refrigeration cycle characterized in that a heat storage device using a concentration difference is installed, using steam as a heating source and a low-temperature refrigerant liquid in the circulation system as a cooling source.

上記は、圧縮式冷凍装置の高温高圧冷媒ガスの凝縮熱の
一部を利用して、吸収性の高い溶液(以下、吸収液と云
う)を加熱し、冷媒を蒸発させて濃縮した吸収液を貯蔵
しておき、前記圧縮式冷凍装置の低温低圧冷媒液の蒸発
熱の一部を利用して、前記吸収液から発生した冷媒蒸気
を凝縮させて貯蔵しておくサイクルを加えたものである
The above method uses part of the heat of condensation of high-temperature, high-pressure refrigerant gas in a compression refrigeration system to heat a highly absorbent solution (hereinafter referred to as absorption liquid), evaporates the refrigerant, and produces a concentrated absorption liquid. A cycle is added in which the refrigerant vapor generated from the absorption liquid is condensed and stored using part of the heat of evaporation of the low-temperature, low-pressure refrigerant liquid in the compression refrigeration device.

(2)圧縮式冷凍サイクルの熱負荷が低い時には当該サ
イクルを循環する冷媒の余剰熱により濃度差利用蓄熱装
置の吸収性液体を濃縮した濃厚液と、当該吸収液から蒸
発凝縮した冷媒とをそれぞれ貯蔵しておき、前記熱負荷
が高くなった時に、前記貯に&濃厚液と貯蔵冷媒とによ
り前記濃度差利用蓄熱装置を稼働し、前記熱負荷の不足
分を補充することを特徴とする前記(1)記載の蓄熱型
圧縮式冷凍サイクル。
(2) When the heat load of the compression type refrigeration cycle is low, the excess heat of the refrigerant circulating in the cycle is used to convert the concentrated liquid obtained by concentrating the absorbing liquid of the heat storage device using concentration difference, and the refrigerant evaporated and condensed from the absorbing liquid, respectively. The heat storage device is stored and when the heat load becomes high, the concentration difference utilizing heat storage device is operated using the stored & concentrated liquid and the stored refrigerant to replenish the shortfall in the heat load. (1) The heat storage compression type refrigeration cycle as described.

上記は、前記濃縮貯蔵された吸収液と、前記冷媒蒸気を
0縮貯蔵された凝縮液とで、通常の吸収式冷凍装置の蒸
発器、吸収器を構成して、冷熱または温熱を得ることが
できるサイクルとし、当該冷熱または温熱を前記圧縮式
冷凍サイクルの補充用の熱源とするものである。これに
よって、前記圧縮式冷凍装置を熱負荷の変動にかかわら
ず定格運転することができる。
In the above, the evaporator and absorber of a normal absorption refrigeration system are configured with the concentrated and stored absorbent liquid and the condensate liquid that is stored by reducing the refrigerant vapor to zero, thereby obtaining cold heat or heat. The cold or warm heat is used as a supplementary heat source for the compression type refrigeration cycle. Thereby, the compression type refrigeration system can be operated at the rated value regardless of fluctuations in heat load.

(3)熱負荷の程度を検出する検出手段と、該検出手段
からの信号により圧縮式冷凍サイクルから濃度差利用蓄
熱装置への冷媒の流量を制御する制御装置を備えたこと
を特徴とする前記(1)または(2)記載の蓄熱型圧縮
式冷凍サイクル。
(3) The above-mentioned device is characterized by comprising a detection means for detecting the degree of heat load, and a control device for controlling the flow rate of refrigerant from the compression refrigeration cycle to the concentration difference utilization heat storage device based on a signal from the detection means. The heat storage compression type refrigeration cycle described in (1) or (2).

上記は、熱負荷の変動を検出する温度検出手段を備えた
ことによって、併設した濃度差利用蓄熱装置の運転を自
動化したものである。
The above system automates the operation of the attached heat storage device utilizing concentration difference by providing a temperature detection means for detecting fluctuations in heat load.

〔作用〕[Effect]

熱需要(熱負荷)が減少した時に、当該圧縮冷凍サイク
ルの余剰となる温熱および冷熱によって。
When the heat demand (heat load) decreases, the surplus hot and cold heat of the compression refrigeration cycle is used.

濃度差利用蓄熱装置の吸収液を濃縮して貯えておき、熱
需要が増大してきた時に前記吸収液の吸収性を利用して
温熱または冷熱を取り出し、これを前記サイクルに付加
することで、当該冷凍サイクルの出力の平準化を図るこ
とができるのである。
The absorption liquid of the heat storage device using concentration difference is concentrated and stored, and when the heat demand increases, the absorbency of the absorption liquid is used to extract hot or cold heat and this is added to the cycle. This makes it possible to level out the output of the refrigeration cycle.

これによって、熱負荷減少時にも圧縮式冷凍装置の断続
運転またはサイクルをずらした無理な運転を行なうこと
なく、常に安定した定格運転が継続でき、起動・停止時
の無駄時間並びに急激な温度変化による熱歪に伴なう各
機器の故障を軽減することができ、機器の長寿命化を図
ることができるのである。
As a result, even when the heat load decreases, stable rated operation can be maintained without intermittent operation of the compression refrigeration equipment or unreasonable operation by shifting the cycle. Failure of each device due to thermal strain can be reduced, and the life of the device can be extended.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第3図を用いて説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は、本発明の蓄熱型圧縮式冷凍サイクルの系統図
の一例で、1〜19の符号で示される圧縮式冷凍サイク
ルに、20以降の符号で示される濃度差利用蓄熱装置を
結合させたものである。
FIG. 1 is an example of a system diagram of a heat storage type compression type refrigeration cycle of the present invention, in which a compression type refrigeration cycle denoted by numerals 1 to 19 is combined with a concentration difference utilizing heat storage device denoted by numerals 20 and onwards. It is something that

まず、圧縮式冷凍機のサイクルを第2図に示すエンタル
ピー/圧力線図を併用して説明する。
First, the cycle of a compression refrigerator will be explained using the enthalpy/pressure diagram shown in FIG. 2.

圧縮機1で圧縮された冷媒(例えばフロンR−22)は
高温、高圧(第2図A点)となり管10を経て凝縮器2
へ導入され、冷却されて液化(第2図B点)し管11へ
流れる。当該凝縮器2の冷却源(例えば水)は管16か
ら導入され、昇温されて管17から排出される。換言す
れば、当該凝縮器2は加熱器であり、管17の温熱供給
源ともなる。
The refrigerant (e.g. Freon R-22) compressed by the compressor 1 becomes high temperature and high pressure (point A in Figure 2) and passes through the pipe 10 to the condenser 2.
It is cooled and liquefied (point B in FIG. 2) and flows into the pipe 11. A cooling source (for example, water) for the condenser 2 is introduced through a pipe 16, heated, and discharged through a pipe 17. In other words, the condenser 2 is a heater and also serves as a heat supply source for the tube 17.

管11の冷媒液は菩液器5を介して管12を流れ、膨脹
弁3に至る。該膨脹弁3をによって断熱膨張し、低温、
低圧の冷媒液(第2図C点)となって管13を流れ、蒸
発器4へ導入される。
The refrigerant liquid in pipe 11 flows through pipe 12 via liquid reservoir 5 and reaches expansion valve 3 . The expansion valve 3 is adiabatically expanded by the low temperature,
The refrigerant becomes a low-pressure refrigerant liquid (point C in FIG. 2), flows through the pipe 13, and is introduced into the evaporator 4.

当該蒸発器4は、冷媒が蒸発するための加熱液例えば水
が管18から導入され、冷媒を加熱蒸発させ、該水は降
温し管19から排出される。換言すれば、加熱液を冷却
することになり、当該加熱液を冷熱として需要側へ供給
する。蒸発器4で加熱された冷媒は蒸気(第2図り点)
となって管14を流れアキュームレータ6へ導入された
後、管15を経て圧縮機の吸込側から吸入される。
In the evaporator 4, a heating liquid such as water for evaporating the refrigerant is introduced from a pipe 18, heats and evaporates the refrigerant, and the water is cooled and discharged from a pipe 19. In other words, the heated liquid is cooled, and the heated liquid is supplied as cold energy to the demand side. The refrigerant heated in the evaporator 4 becomes steam (second target point)
After flowing through the pipe 14 and being introduced into the accumulator 6, it is sucked through the pipe 15 from the suction side of the compressor.

吸入された冷媒蒸気は、前記と同様に原動機7により駆
動される圧縮器1により圧縮され、高温・高圧状態(第
2図A点)とする行程を繰り返すことによって運転され
る。
The sucked refrigerant vapor is compressed by the compressor 1 driven by the prime mover 7 in the same manner as described above, and the compressor is operated by repeating the process of bringing it to a high temperature and high pressure state (point A in FIG. 2).

前記の如く、温熱量、冷熱量は圧縮機の仕様により厳密
に定まる値であり、従来は、温熱、冷熱の需要量(負荷
)の変動に対しては、定格値以内の変動であれば、第1
の方法は、一部の温熱あるいは冷熱を他の箇所、例えば
放熱塔から大気と熱交換することで調整するか、第2の
方法は、当該圧縮機の原動機の回転数を変化させて第2
図に示したA−Dの各点をずらして運転するか、さらに
第3の方法としては、当該圧縮機を停止、起動を繰り返
して運転する等の方法で調節されていた。
As mentioned above, the amount of heat and cold is a value strictly determined by the specifications of the compressor, and conventionally, with respect to fluctuations in the demand for heat and cold (load), if the fluctuation is within the rated value, 1st
In the second method, some of the hot or cold heat is adjusted by exchanging heat with the atmosphere from another location, for example, from a radiator tower, or in the second method, the rotational speed of the prime mover of the compressor is changed to
Adjustments have been made by operating the compressor by shifting the points A to D shown in the figure, or, as a third method, by repeatedly stopping and starting the compressor.

しかしながら、前記の第1の方法では折角発生させた熱
を無駄に廃棄することになり、当該圧縮機1を駆動する
原動機7への入力エネルギーを浪費することになる。第
2の方法の定格からずれたサイクルで運転することは、
機械的な損失を増大せしめ、結果として性能低下を招き
成績係数が低下する。さらに第3の方法は起動から定常
まで、定常から停止までの非定常状態の占める割合が増
大し、前述と同様に成績係数の低下を来たすと共に、繰
り返しの起動停止で機器をを構成する部材の熱による膨
張、収縮に伴なう熱歪により思わぬ損傷や故障を発生し
1機器の寿命低下の原因となる。もちろん、圧縮機の定
格値以上の冷熱、温熱を出力することはできないのは自
明である。
However, in the first method, the generated heat is wasted, and the energy input to the prime mover 7 that drives the compressor 1 is wasted. Operating at a cycle that deviates from the rating of the second method is
This increases mechanical loss, resulting in a decrease in performance and a decrease in the coefficient of performance. Furthermore, in the third method, the ratio of unsteady states from start to steady state and from steady state to stop increases, which causes a decrease in the coefficient of performance as described above, and also causes damage to the parts that make up the equipment due to repeated starting and stopping. Thermal distortion caused by expansion and contraction due to heat can cause unexpected damage or failure, which can shorten the lifespan of a single device. Of course, it is self-evident that it is not possible to output cold or hot heat that exceeds the rated value of the compressor.

本発明は、第1図において20以降の符号で示した濃度
差利用蓄熱装置を併設し、前記の問題を解決したもので
ある。濃度差利用蓄熱装置は特開昭61−180891
号にも記載されるように、吸収性液体の濃縮、希釈を利
用した装置である。
The present invention solves the above-mentioned problem by providing a heat storage device utilizing concentration difference, which is indicated by reference numerals 20 onward in FIG. 1. The heat storage device using concentration difference is disclosed in Japanese Patent Application Laid-open No. 61-180891.
As described in the issue, this is a device that utilizes the concentration and dilution of absorbent liquids.

本発明の蓄熱型圧縮式冷凍サイクルは、温熱。The heat storage type compression type refrigeration cycle of the present invention is a thermal storage type compression type refrigeration cycle.

冷熱の負荷が少ない場合は、以下に述べる操作を行なう
If the cold/heat load is small, perform the operations described below.

温熱負荷(図示せず)が少ない場合は、管16を流れる
温水の温度が上昇するので、これを温度検出センサ26
で検出し、予め設定された温度以上になれば弁23.2
4および25の開閉制御(微開、微開を含む)を行なう
。例えば、温度温度が設定値以上になれば温度検出セン
サ26と制御装置(制御装置は図示せず)により弁24
および弁25を開、弁23を閉とすることで、高温高圧
蒸気の状態で管10を流れている冷媒の一部を管101
により抜き出し、濃度差利用蓄熱装置の密閉容器である
濃縮希釈器20の熱交換器100へ導入させる。この時
ノズル33から当該熱交換器100の表面に散布される
希薄吸収液(例えばLiBr水溶液)を加熱して蒸発さ
せ、濃縮された吸収液を管34.熱回収器50.管36
を経て吸収液貯槽30へ導入し貯蔵する。発生した蒸気
は室22側へ流れる。
When the thermal load (not shown) is small, the temperature of the hot water flowing through the pipe 16 increases, which is detected by the temperature detection sensor 26.
If the temperature exceeds a preset temperature, valve 23.2 is activated.
4 and 25 (including slight opening and slight opening). For example, when the temperature exceeds a set value, the temperature detection sensor 26 and the control device (the control device is not shown) activate the valve 24.
By opening the valve 25 and closing the valve 23, a part of the refrigerant flowing through the pipe 10 in the state of high temperature and high pressure steam is transferred to the pipe 101.
and introduced into the heat exchanger 100 of the concentration diluter 20, which is a closed container of the heat storage device utilizing concentration difference. At this time, the dilute absorption liquid (for example, LiBr aqueous solution) sprayed from the nozzle 33 onto the surface of the heat exchanger 100 is heated and evaporated, and the concentrated absorption liquid is transferred to the tube 34. Heat recovery device 50. tube 36
The absorbent liquid is then introduced into the absorbent storage tank 30 and stored. The generated steam flows to the chamber 22 side.

吸収液を加熱した冷媒は液化し、管102を経て、主配
管系である管1上へ合流される。
The refrigerant that has heated the absorption liquid is liquefied and flows through the pipe 102 onto the pipe 1, which is the main piping system.

一方、管13を流れる低温低圧の冷媒液の一部を管30
1から抜き出し、熱交換器300へ導入することにより
、前記室21で発生した蒸気を冷却(熱交換)して凝縮
液化し、管43を経て凝縮液貯槽40へ貯蔵される。熱
交換器300内を流れる冷媒液は加熱されて蒸気となり
、管302を経て、主配管14へ合流する。
On the other hand, a portion of the low-temperature, low-pressure refrigerant liquid flowing through the pipe 13 is transferred to the pipe 30.
1 and introduced into the heat exchanger 300, the steam generated in the chamber 21 is cooled (heat exchanged), condensed and liquefied, and stored in the condensate storage tank 40 via the pipe 43. The refrigerant liquid flowing in the heat exchanger 300 is heated and turned into vapor, which flows through the pipe 302 and joins the main pipe 14 .

また、冷熱負荷が少ない場合には、管18を流れる冷水
温度を温度検出センサ27で検出し、前記と同様に弁2
3.24および25の開閉制御(制御装置は図示せず)
を行なうものである。
In addition, when the cold load is small, the temperature of the cold water flowing through the pipe 18 is detected by the temperature detection sensor 27, and the valve 2 is
3. Opening/closing control of 24 and 25 (control device not shown)
This is what we do.

以上述べたように、本発明によれば温熱および冷熱負荷
が少ない時に、圧縮機の冷媒の余剰熱で濃度差利用蓄熱
装置の吸収液を濃縮して貯蔵しておくことができる。当
該操作は換言すれば、エネルギーを蓄積したことになる
As described above, according to the present invention, when the thermal and cold loads are small, it is possible to concentrate and store the absorption liquid of the heat storage device using concentration difference using the surplus heat of the refrigerant of the compressor. In other words, this operation accumulates energy.

次に、冷房負荷が増大した場合と暖房負荷が増加した場
合の本発明の蓄熱型圧縮式冷凍サイクルの操作方法を分
けて説明する。
Next, the operating method of the heat storage compression type refrigeration cycle of the present invention will be explained separately when the cooling load increases and when the heating load increases.

先ず冷房負荷が増えた場合、即ち蒸発器4における管1
8の冷水温度が上昇した場合について述べる。
First, when the cooling load increases, that is, the pipe 1 in the evaporator 4
The case where the cold water temperature rises in No. 8 will be described.

冷媒配管101,102,301,302に冷媒を流さ
ずに、濃度差利用蓄熱装置の濃縮希釈器20の熱交換器
200の管201から冷水塔(図示せず)等の機器から
冷却水を流し、前記した濃厚吸収液を吸収液貯槽30か
ら抜き出して、管31.32を経てノズル33で前記熱
交換器200へ散布する。一方濃縮時に貯えられた凝縮
液を凝縮液貯WJ40から抜き出し、管41から、ノズ
ル42により熱交換器400上に散布する。
Cooling water is flowed from equipment such as a cooling water tower (not shown) through the pipe 201 of the heat exchanger 200 of the concentrator diluter 20 of the heat storage device using concentration difference, without flowing the refrigerant through the refrigerant pipes 101, 102, 301, and 302. The concentrated absorption liquid described above is extracted from the absorption liquid storage tank 30 and sprayed into the heat exchanger 200 by the nozzle 33 via the pipes 31 and 32. On the other hand, the condensate stored during concentration is extracted from the condensate storage WJ 40 and sprayed onto the heat exchanger 400 through the pipe 41 and the nozzle 42 .

上記操作により、濃縮希釈器20内の圧力は低下し、1
え側の熱交換器400上に散布される液(例えば水)は
蒸発し降温する。該発生蒸気は21側の熱交換器200
に散布されている濃厚吸収液に吸収され、該吸収液は昇
温し、熱交換器200で冷却される。なお、熱交換器2
00を冷却する冷却水は202から排出される。
By the above operation, the pressure inside the concentrator diluter 20 decreases, and
The liquid (for example, water) sprayed onto the heat exchanger 400 on the opposite side evaporates and its temperature drops. The generated steam is transferred to the heat exchanger 200 on the 21 side.
The absorbent liquid is absorbed by the concentrated absorbing liquid that is being sprayed on the air, the temperature of the absorbing liquid increases, and the absorbent liquid is cooled by the heat exchanger 200. In addition, heat exchanger 2
Cooling water for cooling 00 is discharged from 202.

一方、容器22側で蒸発させてII?:温した液は、熱
交換器400内を流れる液(例えば水)から熱を奪い、
連続して蒸発できる。なお、管401から導入された熱
交換器400を加熱する液は降温しで402から排出さ
れ、冷熱源となる。当該冷熱源は前記管18の温度上昇
分を低下させるための冷熱源として利用するか、または
別個に402からの冷熱を需要側へ供給することもでき
、いずれも、冷熱負荷が増大した際に対処できる。
On the other hand, evaporate it on the side of the container 22. : The heated liquid removes heat from the liquid (for example, water) flowing inside the heat exchanger 400,
Can be evaporated continuously. Note that the liquid introduced from the pipe 401 to heat the heat exchanger 400 cools down and is discharged from the pipe 402, thereby serving as a source of cold heat. The cold source can be used as a cold source to reduce the temperature rise of the pipe 18, or can separately supply the cold heat from 402 to the demand side, in either case, when the cold load increases. I can handle it.

また、凝縮器2から取り出す温熱負荷の増大時、即ち管
16での温度が降下した場合には、前記と同様に、管1
01,102,301,302(7)冷媒流れを中止し
、濃度差利用蓄熱装置の濃縮希釈器20の熱交換器20
0上に濃厚吸収液を吸収液槽30から取り出し、管31
,32、ノズル33を介して散布する。
Further, when the thermal load taken out from the condenser 2 increases, that is, when the temperature in the tube 16 decreases, the tube 16
01, 102, 301, 302 (7) The refrigerant flow is stopped and the heat exchanger 20 of the concentration diluter 20 of the heat storage device using concentration difference
Take out the concentrated absorption liquid from the absorption liquid tank 30 onto the tube 31.
, 32 and spraying via nozzle 33.

一方、濃縮希釈器20の熱交換器400上に凝縮液を凝
縮液貯槽40から取り出し、管41、ノズル42を介し
て散布する。熱交換器400内には、管401から適切
な温度レベルの液(例えば水)、即ち、太気温、河用水
、地下水、中水等と熱交換して昇温しだ液を導入するこ
とにより、前記したと同様に、22側で蒸気が発生し、
21側へ流れ、吸収現象により発熱し、熱交換器200
を流れる液(例えば水)を加熱し、管202より取り出
される。
On the other hand, the condensate is taken out from the condensate storage tank 40 and sprayed onto the heat exchanger 400 of the concentrator diluter 20 through the pipe 41 and nozzle 42 . Into the heat exchanger 400, a liquid (for example, water) at an appropriate temperature level is introduced from the pipe 401, and the temperature is increased by exchanging heat with a liquid (for example, water) at an appropriate temperature level, such as atmospheric temperature, river water, ground water, gray water, etc. , as described above, steam is generated on the 22 side,
21 side, heat is generated due to absorption phenomenon, and heat exchanger 200
The liquid (for example, water) flowing through the tube 202 is heated and taken out from the tube 202.

上記によって昇温しだ液は、前記と同様に、管16を流
れる水の加熱に供することもでき、また、別個に’17
202より温熱需要側へ供給することもできる。
The heated liquid may be used to heat the water flowing through the pipe 16 in the same manner as described above, or may be heated separately in the '17
It is also possible to supply heat from 202 to the heat demand side.

第3図は本発明の他の実施例の系統図である。FIG. 3 is a system diagram of another embodiment of the present invention.

冷媒配管10の途中に熱交換器500および6oOを付
設したもので、管501,502並びに管601,60
2に圧縮式冷凍サイクルに用いる冷媒(例えばフロンR
−22)とは異なる液(例えば水)を用いることにより
、第1図に示した熱交換器100および熱交換器300
を省略した。
Heat exchangers 500 and 6oO are attached to the middle of the refrigerant pipe 10, and the pipes 501, 502 and 601, 60
2. Refrigerants used in compression refrigeration cycles (e.g. Freon R)
-22) By using a different liquid (e.g. water), the heat exchanger 100 and the heat exchanger 300 shown in FIG.
was omitted.

さらにまた、管501,502並びに管601.602
、即ち熱交換器500と200及び熱交換器600と4
00をヒートパイプを用いることにより、さらに性能を
向上することができる。
Furthermore, tubes 501, 502 and tubes 601, 602
, namely heat exchangers 500 and 200 and heat exchangers 600 and 4.
By using a heat pipe for 00, the performance can be further improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の圧縮式冷凍サイクルでは困難で
あった冷温熱出力の可変を容易に行なうことができる。
According to the present invention, it is possible to easily vary the cold and hot heat output, which has been difficult with conventional compression refrigeration cycles.

また、圧縮機を旺動する動力として電力を用いる場合に
は、夜間は主として熱エネルギーのfir運転を実施し
、昼間に当該熱エネルギーを放出せさせることで、昼夜
間の電力負荷平準化に寄与できる。
In addition, when electricity is used as the motive power to operate the compressor, the heat energy is mainly used in the fir operation at night, and the heat energy is released during the day, which contributes to leveling the power load between day and night. can.

また、従来圧縮式冷凍サイクルではできなかった定格値
以上の冷温熱出力が成績係数を低下させることな〈実施
できる。
In addition, it is possible to achieve cold and hot heat output that exceeds the rated value without lowering the coefficient of performance, which was not possible with conventional compression refrigeration cycles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図は本発明の実施例の蓄熱型圧縮式冷
凍サイクルの系統図、第2図は圧縮式冷凍サイクルのエ
ンタルピー/圧力線図である。 1・・・圧縮機、2・・・凝縮器、3・・・膨脹弁、4
・・蒸発器、5・・蓄液器、6・・・アキュームレータ
、7・・・原動機、10〜19,31,32,34,3
6,41.43,101,102,201,202,3
01.302,401,402,501,502゜60
1.602・・管、20・・・濃縮希釈器、23゜24
.25・・・弁、26.27・・・温度検出センサ、3
0・・・吸収液貯槽、33,4.2・・・ノズル、40
・・凝縮液貯槽、50・・・熱回収器、100,200
゜300.400,500.600・・・熱交換器。
FIGS. 1 and 3 are system diagrams of a heat storage compression type refrigeration cycle according to an embodiment of the present invention, and FIG. 2 is an enthalpy/pressure diagram of the compression type refrigeration cycle. 1... Compressor, 2... Condenser, 3... Expansion valve, 4
...Evaporator, 5..Liquid storage container, 6..Accumulator, 7..Motor, 10-19, 31, 32, 34, 3
6,41.43,101,102,201,202,3
01.302,401,402,501,502゜60
1.602...tube, 20...concentrator diluter, 23°24
.. 25...Valve, 26.27...Temperature detection sensor, 3
0... Absorption liquid storage tank, 33, 4.2... Nozzle, 40
... Condensate storage tank, 50 ... Heat recovery device, 100,200
゜300.400,500.600...Heat exchanger.

Claims (1)

【特許請求の範囲】 1、圧縮機、凝縮器、膨脹弁、蒸発器を含む循環系で構
成され、該系内に冷媒を封入して成る圧縮式冷凍装置に
、該圧縮式冷凍装置の前記循環系の高温冷媒蒸気を加熱
源に、前記循環系の低温冷媒液を冷却源とした濃度差利
用蓄熱装置を併設したことを特徴とする蓄熱型圧縮式冷
凍サイクル。 2、圧縮式冷凍サイクルの熱負荷が低い時には当該サイ
クルを循環する冷媒の余剰熱により濃度差利用蓄熱装置
の吸収性液体を濃縮した濃厚液と、当該吸収液から蒸発
凝縮した冷媒とをそれぞれ貯蔵しておき、前記熱負荷が
高くなった時に、前記貯蔵濃厚液と貯蔵冷媒とにより前
記濃度差利用蓄熱装置を稼働し、前記熱負荷の不足分を
補充することを特徴とする請求項第1項記載の蓄熱型圧
縮式冷凍サイクル。 3、熱負荷の程度を検出する検出手段と、該検出手段か
らの信号により圧縮式冷凍サイクルから濃度差利用蓄熱
装置への冷媒の流量を制御する制御装置を備えたことを
特徴とする請求項第1項または第2項記載の蓄熱型圧縮
式冷凍サイクル。
[Scope of Claims] 1. A compression refrigeration system comprising a circulation system including a compressor, a condenser, an expansion valve, and an evaporator, and a refrigerant sealed in the system. A heat storage type compression type refrigeration cycle characterized in that a heat storage device using a concentration difference is installed in which the high temperature refrigerant vapor in the circulation system is used as a heating source and the low temperature refrigerant liquid in the circulation system is used as a cooling source. 2. When the heat load of the compression refrigeration cycle is low, the excess heat of the refrigerant circulating in the cycle is used to store the concentrated liquid obtained by concentrating the absorbing liquid in the heat storage device using concentration difference, and the refrigerant evaporated and condensed from the absorbing liquid. Claim 1, characterized in that when the heat load becomes high, the heat storage device using the concentration difference is operated by the stored concentrated liquid and the stored refrigerant to replenish the shortfall in the heat load. The heat storage compression type refrigeration cycle described in Section 1. 3. A claim characterized by comprising a detection means for detecting the degree of heat load, and a control device for controlling the flow rate of refrigerant from the compression refrigeration cycle to the concentration difference utilization heat storage device based on a signal from the detection means. The heat storage compression type refrigeration cycle according to item 1 or 2.
JP28143589A 1989-10-28 1989-10-28 Heat accumulation type compression refrigerating cycle Pending JPH03144263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28143589A JPH03144263A (en) 1989-10-28 1989-10-28 Heat accumulation type compression refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28143589A JPH03144263A (en) 1989-10-28 1989-10-28 Heat accumulation type compression refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH03144263A true JPH03144263A (en) 1991-06-19

Family

ID=17639129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28143589A Pending JPH03144263A (en) 1989-10-28 1989-10-28 Heat accumulation type compression refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH03144263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141097A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Heat source system and control method therefor
WO2017164201A1 (en) * 2016-03-25 2017-09-28 日本電気株式会社 Cooling system, and method for controlling cooling system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123233A (en) * 1985-11-20 1987-06-04 Mitsubishi Heavy Ind Ltd Heat accumulation system
JPS62218773A (en) * 1986-03-20 1987-09-26 株式会社日立製作所 Cold and heat accumulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123233A (en) * 1985-11-20 1987-06-04 Mitsubishi Heavy Ind Ltd Heat accumulation system
JPS62218773A (en) * 1986-03-20 1987-09-26 株式会社日立製作所 Cold and heat accumulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141097A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Heat source system and control method therefor
WO2017164201A1 (en) * 2016-03-25 2017-09-28 日本電気株式会社 Cooling system, and method for controlling cooling system

Similar Documents

Publication Publication Date Title
JP3662557B2 (en) Heat pump system
KR20210126100A (en) Energy conversion methods and systems
WO2021248289A1 (en) Transducing method and system
CN2913969Y (en) Compression type and absorption type associated refrigerating plant
JPH0252962A (en) Method and device for generating cold heat
KR100756240B1 (en) Air cooling and heating system
JP4115242B2 (en) Refrigeration system
US5018367A (en) Cooling energy generator with cooling energy accumulator
CN114234312B (en) Energy storage method of compression type and absorption type integrated air conditioner and energy storage air conditioner
Ito et al. Studies of a heat pump using water and air heat sources in parallel
CN115560494A (en) Refrigerating system capable of secondarily utilizing waste heat
JPH03144263A (en) Heat accumulation type compression refrigerating cycle
Auh Survey of absorption cooling technology in solar applications
KR200431243Y1 (en) air cooling and heating system
WO2017152759A1 (en) Low-temperature heat energy recycling unit and method
JP2678211B2 (en) Heat storage type cold / heat generator
RU2784256C1 (en) Air-conditioning system based on an absorption refrigerator with connecting a heat pump unit and solar collectors
CN206269414U (en) A kind of auxiliary hot enthalpy increasing heat pump system
JPS6222059B2 (en)
JPH0754211B2 (en) Co-generation system using absorption heat pump cycle
CN115111802B (en) Coupled compression and absorption type high-temperature heat pump system and method thereof
CN110017717B (en) Energy conversion and storage system and working method thereof
CN213447185U (en) Energy recovery blast furnace dehumidification blower system of circulation heat pipe
CN212109055U (en) High-temperature overlapping unit capable of switching evaporators
CN101975487A (en) Diffused absorption refrigeration and hot water system using solar power