JP2005147456A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2005147456A
JP2005147456A JP2003383195A JP2003383195A JP2005147456A JP 2005147456 A JP2005147456 A JP 2005147456A JP 2003383195 A JP2003383195 A JP 2003383195A JP 2003383195 A JP2003383195 A JP 2003383195A JP 2005147456 A JP2005147456 A JP 2005147456A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
intermediate pressure
injection pipe
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003383195A
Other languages
Japanese (ja)
Inventor
Masakazu Okamoto
昌和 岡本
Michio Moriwaki
道雄 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003383195A priority Critical patent/JP2005147456A/en
Publication of JP2005147456A publication Critical patent/JP2005147456A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure sufficient heating ability even at low outside air temperatures. <P>SOLUTION: This air conditioner comprises a refrigerant circuit 20 of a refrigerating cycle, and the refrigerant circuit 20 has a compressor 21, an outdoor heat exchanger 25, a receiver 23, a first expansion valve 24, and an indoor heat exchanger 22. The compressor 21 is constituted so as to compress refrigerant in two stages. A second expansion valve 3a for compressing the refrigerant to a middle pressure is provided between the indoor heat exchanger 22 and the receiver 23, and an injection pipe 31 wherein the middle pressure liquid refrigerant flows into between the lower stage side compressor and the higher stage side compressor from the receiver 23 is connected between the receiver 23 and the compressor 21 and comprises a heater 32 heating the middle pressure liquid refrigerant in the injection pipe 31. Thereby, since the middle pressure refrigerant with increased enthalpy by heating by the heater 32 is added to the indoor heat exchanger 22, the heating ability can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、空気調和装置に関し、特に、冷媒を2段圧縮して冷凍サイクルを行う冷媒回路を備えた空気調和装置に係るものである。   The present invention relates to an air conditioner, and particularly relates to an air conditioner including a refrigerant circuit that performs a refrigeration cycle by compressing refrigerant in two stages.

従来より、空気調和装置には、冷媒を2段圧縮して冷凍サイクルを行う冷媒回路を備え、室内の暖房を行うものがある(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, some air conditioners include a refrigerant circuit that performs a refrigeration cycle by compressing a refrigerant in two stages and performs indoor heating (see, for example, Patent Document 1).

具体的に、上記特許文献1の空気調和装置は、圧縮機構と室外熱交換器と第1膨張弁と気液分離器(レシーバ)と第2膨張弁と室内熱交換器とが順に配管接続されてなる冷媒回路を備えている。この空気調和装置は、冷媒回路における冷媒循環を可逆に切り換えることによって暖房運転と冷房運転とが切り換わるように構成されている。そして、上記圧縮機構は、ケーシング内に低段側圧縮機と高段側圧縮機とが収納されて冷媒を2段圧縮するように構成されている。また、上記冷媒回路には、圧縮機構と気液分離器との間に接続されたインジェクション管が設けられている。このインジェクション管は、中間圧のガス冷媒を気液分離器より圧縮機構の低段側圧縮機と高段側圧縮機との間に供給するように構成されている。   Specifically, in the air conditioner disclosed in Patent Document 1, a compression mechanism, an outdoor heat exchanger, a first expansion valve, a gas-liquid separator (receiver), a second expansion valve, and an indoor heat exchanger are connected by piping in order. A refrigerant circuit. This air conditioner is configured to switch between heating operation and cooling operation by reversibly switching the refrigerant circulation in the refrigerant circuit. And the said compression mechanism is comprised so that a low stage side compressor and a high stage side compressor may be accommodated in a casing, and a refrigerant | coolant may be compressed 2 steps | paragraphs. The refrigerant circuit is provided with an injection pipe connected between the compression mechanism and the gas-liquid separator. The injection pipe is configured to supply an intermediate-pressure gas refrigerant from the gas-liquid separator between the low-stage compressor and the high-stage compressor of the compression mechanism.

上記空気調和装置の暖房運転では、圧縮機構から吐出された高圧ガス冷媒が室内熱交換器にて室内空気と熱交換して凝縮し、室内空気が加熱されて室内の暖房が行われる。この凝縮した高圧液冷媒は、第2膨張弁で減圧されて中間圧冷媒となり、気液分離器に貯留される。そして、この気液分離器における中間圧冷媒のうち中間圧液冷媒が第1膨張弁で減圧されて低圧冷媒となり、室外熱交換器にて室外空気と熱交換して蒸発した後、再び圧縮機構に戻る。また一方では、上記気液分離器における中間圧冷媒のうち中間圧ガス冷媒が圧縮機にインジェクションされる。これにより、上記室内熱交換器においては、インジェクションされた中間圧ガス冷媒が加わることによって冷媒循環量が増大するので、暖房能力が向上する。
特開2000−73974号公報
In the heating operation of the air conditioner, the high-pressure gas refrigerant discharged from the compression mechanism is condensed by exchanging heat with the room air in the room heat exchanger, and the room air is heated to heat the room. The condensed high-pressure liquid refrigerant is depressurized by the second expansion valve to become an intermediate-pressure refrigerant and stored in the gas-liquid separator. Of the intermediate pressure refrigerant in the gas-liquid separator, the intermediate pressure liquid refrigerant is depressurized by the first expansion valve to become a low pressure refrigerant, exchanges heat with outdoor air in the outdoor heat exchanger, evaporates, and then is compressed again. Return to. On the other hand, intermediate-pressure gas refrigerant among the intermediate-pressure refrigerant in the gas-liquid separator is injected into the compressor. Thereby, in the said indoor heat exchanger, since the refrigerant | coolant circulation amount increases by adding the injected intermediate pressure gas refrigerant | coolant, heating capability improves.
JP 2000-73974 A

しかしながら、上述した従来の空気調和装置においては、室外空気のみを熱源として暖房運転が行われているので、中間圧ガス冷媒のインジェクションによる暖房能力の増大にも限界があり、低外気等で暖房負荷が大きい場合に十分な暖房能力を確保できないという問題があった。   However, in the conventional air conditioner described above, since heating operation is performed using only outdoor air as a heat source, there is a limit to the increase in heating capacity due to the injection of intermediate pressure gas refrigerant. There was a problem that sufficient heating capacity could not be ensured when there was a large.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、圧縮機の運転効率を低下させることなく、低外気時においても十分な暖房能力を確保することである。   This invention is made | formed in view of such a point, The place made into the objective is ensuring sufficient heating capability also at the time of the low external air, without reducing the operating efficiency of a compressor.

具体的に、第1の発明は、圧縮機構(21)と熱源側熱交換器(25)と膨張機構(24)と利用側熱交換器(22)とが配管接続された蒸気圧縮式冷凍サイクルの冷媒回路(20)を備え、上記圧縮機構(21)は、低段側圧縮機と高段側圧縮機とを備えて冷媒を2段圧縮するように構成されている空気調和装置を前提としている。そして、上記利用側熱交換器(22)と膨張機構(24)との間から液冷媒を分流し、分流した液冷媒を中間圧の状態で低段側圧縮機と高段側圧縮機との間に供給するインジェクション管(31)を備えると共に、該インジェクション管(31)を流れる所定の暖房運転時の中間圧液冷媒を加熱する加熱手段(32)を備えている。   Specifically, the first invention is a vapor compression refrigeration cycle in which a compression mechanism (21), a heat source side heat exchanger (25), an expansion mechanism (24), and a use side heat exchanger (22) are connected by piping. On the assumption that the compression mechanism (21) includes a low-stage compressor and a high-stage compressor to compress the refrigerant in two stages. Yes. Then, the liquid refrigerant is divided from between the use side heat exchanger (22) and the expansion mechanism (24), and the divided liquid refrigerant is connected between the low stage compressor and the high stage compressor in an intermediate pressure state. In addition to an injection pipe (31) supplied in between, heating means (32) for heating the intermediate-pressure liquid refrigerant flowing through the injection pipe (31) during a predetermined heating operation is provided.

上記の発明では、加熱手段(32)により加熱されることによってエンタルピが増大した中間圧冷媒が圧縮機構(21)に加わる。これにより、室内熱交換器(22)にて凝縮する冷媒の熱量が増大するので、暖房能力が向上する。   In the above invention, the intermediate pressure refrigerant whose enthalpy is increased by being heated by the heating means (32) is added to the compression mechanism (21). Thereby, since the calorie | heat amount of the refrigerant | coolant condensed in an indoor heat exchanger (22) increases, heating capability improves.

また、中間圧の液冷媒を加熱するため、液冷媒より比体積の大きいガス冷媒を加熱する場合に比して、冷媒のエンタルピが効果的に増大されると共に、加熱後の冷媒量(冷媒密度)の低下が抑制される。これにより、圧縮機構(21)における容積効率の低下が抑制される。また、上記利用側熱交換器(22)における冷媒循環量の減少も抑えられるので、暖房能力の低下が抑制される。   Further, since the intermediate-pressure liquid refrigerant is heated, the enthalpy of the refrigerant is effectively increased and the amount of refrigerant after the heating (refrigerant density) compared to heating a gas refrigerant having a specific volume larger than that of the liquid refrigerant. ) Is suppressed. Thereby, the fall of the volumetric efficiency in a compression mechanism (21) is suppressed. Moreover, since the fall of the refrigerant | coolant circulation amount in the said utilization side heat exchanger (22) is also suppressed, the fall of heating capability is suppressed.

また、第2の発明は、第1の発明において、上記利用側熱交換器(22)と膨張機構(24)との間には、受液器(23)が設けられ、上記インジェクション管(31)は、受液器(23)に接続され、該受液器(23)の液冷媒が流れるように構成されている。そして、上記利用側熱交換器(22)と受液器(23)との間、および、インジェクション管(31)における受液器(23)と加熱手段(32)との間の少なくとも何れか一方には、液冷媒を中間圧に減圧する中間圧調整機構(30)が設けられている。   Further, according to a second aspect, in the first aspect, a liquid receiver (23) is provided between the use side heat exchanger (22) and the expansion mechanism (24), and the injection pipe (31 ) Is connected to the liquid receiver (23), and the liquid refrigerant of the liquid receiver (23) flows. And at least any one between the use side heat exchanger (22) and the liquid receiver (23) and between the liquid receiver (23) and the heating means (32) in the injection pipe (31). Is provided with an intermediate pressure adjusting mechanism (30) for reducing the liquid refrigerant to an intermediate pressure.

上記の発明では、例えば中間圧調整機構(30)を利用側熱交換器(22)と受液器(23)との間に設けた場合、受液器(23)より中間圧液冷媒がインジェクション管(31)に流れる。一方、上記中間圧調整機構(30)をインジェクション管(31)における受液器(23)と加熱手段(32)との間に設けた場合、受液器(23)よりインジェクション管(31)に流れた液冷媒が中間圧調整機構(30)で減圧されて中間圧液冷媒となる。また、上述した両方に中間圧調整機構(30)を設けた場合、利用側熱交換器(22)にて凝縮した高圧液冷媒が最初の中間圧調整機構(30)で減圧されることにより、高圧と中間圧との間の圧力状態の冷媒となって受液器(23)に溜まり、該受液器(23)よりインジェクション管(31)に流れた液冷媒が2つ目の中間圧調整機構(30)で減圧されることによって中間圧液冷媒となる。これにより、確実に中間圧状態の冷媒がインジェクション管(31)を流れて加熱手段(32)によって加熱される。   In the above invention, for example, when the intermediate pressure adjusting mechanism (30) is provided between the use side heat exchanger (22) and the liquid receiver (23), the intermediate pressure liquid refrigerant is injected from the liquid receiver (23). It flows into the pipe (31). On the other hand, when the intermediate pressure adjusting mechanism (30) is provided between the liquid receiver (23) and the heating means (32) in the injection pipe (31), the liquid receiver (23) is connected to the injection pipe (31). The flowing liquid refrigerant is depressurized by the intermediate pressure adjusting mechanism (30) to become an intermediate pressure liquid refrigerant. Further, when the intermediate pressure adjusting mechanism (30) is provided in both of the above, the high-pressure liquid refrigerant condensed in the use side heat exchanger (22) is reduced in pressure by the first intermediate pressure adjusting mechanism (30). The refrigerant in the pressure state between the high pressure and the intermediate pressure is accumulated in the liquid receiver (23), and the liquid refrigerant flowing from the liquid receiver (23) to the injection pipe (31) is adjusted for the second intermediate pressure. By being depressurized by the mechanism (30), it becomes an intermediate-pressure liquid refrigerant. Thereby, the refrigerant in the intermediate pressure state surely flows through the injection pipe (31) and is heated by the heating means (32).

また、第3の発明は、第2の発明において、上記膨張機構(24)は、第1膨張弁(24)で構成されている。一方、上記中間圧調整機構(30)は、利用側熱交換器(22)と受液器(23)との間に設けられた第2膨張弁(3a)で構成されている。   In a third aspect based on the second aspect, the expansion mechanism (24) comprises a first expansion valve (24). On the other hand, the intermediate pressure adjusting mechanism (30) includes a second expansion valve (3a) provided between the use side heat exchanger (22) and the liquid receiver (23).

上記の発明では、図1に示すように、利用側熱交換器(22)にて凝縮した高圧液冷媒が第2膨張弁(3a)で減圧され、中間圧冷媒となって受液器(23)に溜まる。この受液器(23)における中間圧液冷媒の一部は、第1膨張弁(24)で減圧されて低圧の二相冷媒となり、熱源側熱交換器(25)で蒸発する。その一方では、受液器(23)における中間圧液冷媒がインジェクション管(31)に流れ、加熱手段(32)によって加熱されて圧縮機構(21)に供給される。   In the above invention, as shown in FIG. 1, the high-pressure liquid refrigerant condensed in the use side heat exchanger (22) is depressurized by the second expansion valve (3a) and becomes an intermediate-pressure refrigerant to receive the receiver (23 ). Part of the intermediate-pressure liquid refrigerant in the liquid receiver (23) is decompressed by the first expansion valve (24) to become a low-pressure two-phase refrigerant, and is evaporated by the heat source side heat exchanger (25). On the other hand, the intermediate-pressure liquid refrigerant in the liquid receiver (23) flows into the injection pipe (31), is heated by the heating means (32), and is supplied to the compression mechanism (21).

また、第4の発明は、第2の発明において、上記膨張機構(24)は、第1膨張弁(24)で構成されている。一方、上記中間圧調整機構(30)は、利用側熱交換器(22)と受液器(23)との間に設けられたキャピラリチューブ(3b)と、インジェクション管(31)における受液器(23)と加熱手段(32)との間に設けられた第2膨張弁(3a)とにより構成されている。   In a fourth aspect based on the second aspect, the expansion mechanism (24) comprises a first expansion valve (24). On the other hand, the intermediate pressure adjusting mechanism (30) includes a capillary tube (3b) provided between the use side heat exchanger (22) and the liquid receiver (23), and a liquid receiver in the injection pipe (31). (23) and a second expansion valve (3a) provided between the heating means (32).

上記の発明では、図5に示すように、利用側熱交換器(22)にて凝縮した高圧液冷媒がキャピラリチューブ(3b)で減圧され、高圧と中間圧との間の圧力状態の冷媒となって受液器(23)に溜まる。この受液器(23)における液冷媒の一部は、インジェクション管(31)に流れ、第2膨張弁(3a)で減圧されて中間圧液冷媒となった後、加熱手段(32)によって加熱されて圧縮機構(21)に供給される。   In the above invention, as shown in FIG. 5, the high-pressure liquid refrigerant condensed in the use side heat exchanger (22) is depressurized in the capillary tube (3b), and the refrigerant in a pressure state between the high pressure and the intermediate pressure And accumulates in the receiver (23). A part of the liquid refrigerant in the liquid receiver (23) flows into the injection pipe (31), is decompressed by the second expansion valve (3a) to become an intermediate-pressure liquid refrigerant, and is then heated by the heating means (32). And supplied to the compression mechanism (21).

また、第5の発明は、第1〜4の何れか1の発明において、上記加熱手段(32)は、所定の暖房運転時である圧縮機構(21)が最大周波数時に冷媒を加熱するように構成されている
上記の発明によれば、例えば外気温が高い場合、つまり暖房負荷が小さい場合においては、圧縮機構(21)の周波数制御によって利用側熱交換器(22)における冷媒循環量を調整することにより、暖房能力が調整される。そして、外気温が低下して暖房負荷が大きくなり、圧縮機構(21)が最大周波数(最大容量)で駆動されても暖房負荷に対応できない場合に、インジェクション管(31)の中間圧液冷媒が加熱手段(32)によって加熱される。これにより、暖房負荷に見合った効率のよい運転が行われる。
In addition, in a fifth aspect based on any one of the first to fourth aspects, the heating means (32) is configured such that the compression mechanism (21) during a predetermined heating operation heats the refrigerant at the maximum frequency. According to the above-described invention, for example, when the outside air temperature is high, that is, when the heating load is small, the refrigerant circulation amount in the use side heat exchanger (22) is adjusted by the frequency control of the compression mechanism (21). By doing so, the heating capacity is adjusted. When the outside air temperature decreases and the heating load increases, and the compression mechanism (21) is driven at the maximum frequency (maximum capacity) and cannot cope with the heating load, the intermediate pressure liquid refrigerant in the injection pipe (31) Heated by the heating means (32). Thereby, the efficient driving | operation corresponding to heating load is performed.

また、第6の発明は、第2〜4の何れか1の発明において、上記中間圧調整機構(30)は、加熱手段(32)によって加熱されたインジェクション管(31)の中間圧冷媒と圧縮機構(21)における中間圧ガス冷媒とが混合して所定の過熱度のガス冷媒となるように流量を制御する。   Further, a sixth aspect of the present invention is the method according to any one of the second to fourth aspects, wherein the intermediate pressure adjusting mechanism (30) is compressed with the intermediate pressure refrigerant of the injection pipe (31) heated by the heating means (32). The flow rate is controlled such that the intermediate pressure gas refrigerant in the mechanism (21) is mixed to become a gas refrigerant having a predetermined superheat degree.

上記の発明では、常時所定の過熱度の中間圧ガス冷媒が高段側圧縮機に吸入される。これにより、圧縮機構(21)の吐出温度の上昇が抑制されるので、圧縮機構(21)に優しい運転が行われる。   In the above invention, the intermediate-pressure gas refrigerant having a predetermined superheat is always sucked into the high-stage compressor. Thereby, since the rise in the discharge temperature of the compression mechanism (21) is suppressed, an operation friendly to the compression mechanism (21) is performed.

したがって、第1の発明によれば、加熱手段(32)を設け、圧縮機構(21)にインジェクションされる中間圧液冷媒を加熱するようにしたため、圧縮機構(21)にエンタルピの増大した中間圧冷媒を供給することができる。これにより、利用側熱交換器(22)にて凝縮する冷媒の熱量を増大させることができるので、暖房能力を向上させることができる。   Therefore, according to the first invention, the heating means (32) is provided to heat the intermediate pressure liquid refrigerant injected into the compression mechanism (21), so that the intermediate pressure with increased enthalpy is applied to the compression mechanism (21). A refrigerant can be supplied. Thereby, since the calorie | heat amount of the refrigerant | coolant condensed with a utilization side heat exchanger (22) can be increased, heating capability can be improved.

また、上記の発明によれば、中間圧の液冷媒を加熱するようにしたため、ガス冷媒を加熱する場合に比して冷媒のエンタルピを効果的に増大させることができると共に、加熱後の冷媒量(冷媒密度)の低下を抑制することができる。これにより、暖房能力の向上を効果的に図ることができると共に、圧縮機構(21)における容積効率の低下を抑制できるので、効率のよい暖房運転を行うことができる。また、上記利用側熱交換器(22)における冷媒循環量の低下を抑制できるので、暖房能力の低下を抑えることができる。   Further, according to the above invention, since the intermediate-pressure liquid refrigerant is heated, the enthalpy of the refrigerant can be effectively increased as compared with the case of heating the gas refrigerant, and the amount of the refrigerant after the heating A decrease in (refrigerant density) can be suppressed. Thereby, while being able to aim at the improvement of heating capability effectively, the fall of the volumetric efficiency in a compression mechanism (21) can be suppressed, efficient heating operation can be performed. Moreover, since the fall of the refrigerant | coolant circulation amount in the said utilization side heat exchanger (22) can be suppressed, the fall of heating capability can be suppressed.

また、第2の発明によれば、利用側熱交換器(22)と受液器(23)との間、および、インジェクション管(31)における受液器(23)と加熱手段(32)との間の少なくとも何れか一方に液冷媒を中間圧に減圧する中間圧調整機構(30)を設けるようにしたので、インジェクション管(31)に中間圧液冷媒を確実に流して加熱手段(32)によって加熱することができる。これにより、確実に暖房能力を向上させることができる。   Moreover, according to 2nd invention, between the utilization side heat exchanger (22) and liquid receiver (23), and the liquid receiver (23) and heating means (32) in an injection pipe (31), Since the intermediate pressure adjusting mechanism (30) for reducing the liquid refrigerant to the intermediate pressure is provided at at least one of the two, the intermediate pressure liquid refrigerant is surely flowed into the injection pipe (31) and the heating means (32) Can be heated. Thereby, heating capability can be improved reliably.

また、第3または第4の発明によれば、中間圧調整機構(30)を第2膨張弁(3a)のみ、または第2膨張弁(3a)およびキャピラリチューブ(3b)の2つで構成するようにしたので、第2の発明の効果を具体的に得ることができる。   Further, according to the third or fourth invention, the intermediate pressure adjusting mechanism (30) is constituted by only the second expansion valve (3a) or two of the second expansion valve (3a) and the capillary tube (3b). Since it did in this way, the effect of 2nd invention can be acquired concretely.

また、第5の発明によれば、圧縮機構(21)が最大周波数時、つまり暖房負荷が大きい場合に、加熱手段(32)によって中間圧液冷媒を加熱するようにしたので、暖房負荷に見合った効率のよい運転を行うことができる
また、第6の発明によれば、加熱手段(32)によって加熱されたインジェクション管(31)の中間圧冷媒と圧縮機構(21)における中間圧ガス冷媒とが混合して所定の過熱度のガス冷媒となるように中間圧調整機構(30)によって流量制御するようにしたので、常時所定の過熱度の中間圧ガス冷媒を高段側圧縮機に吸入させることができる。これにより、圧縮機構(21)の吐出温度の上昇および圧縮機構(21)における容積効率の低下を抑制できるので、圧縮機構(21)に優しい且つ効率のよい運転を行うことができる。
According to the fifth aspect of the invention, when the compression mechanism (21) is at the maximum frequency, that is, when the heating load is large, the intermediate pressure liquid refrigerant is heated by the heating means (32). Further, according to the sixth aspect of the invention, the intermediate pressure refrigerant in the injection pipe (31) heated by the heating means (32) and the intermediate pressure gas refrigerant in the compression mechanism (21) Since the flow rate is controlled by the intermediate pressure adjusting mechanism (30) so that the gas refrigerant is mixed and becomes a gas refrigerant with a predetermined superheat degree, the high-pressure side compressor always sucks the intermediate pressure gas refrigerant with the predetermined superheat degree. be able to. As a result, an increase in the discharge temperature of the compression mechanism (21) and a decrease in volumetric efficiency in the compression mechanism (21) can be suppressed, so that a gentle and efficient operation can be performed on the compression mechanism (21).

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
図1に示すように、本実施形態1の空気調和装置(10)は、冷媒が循環して蒸気圧縮式冷凍サイクルを行う冷媒回路(20)を備え、暖房運転のみを行う暖房専用機に構成されている。
Embodiment 1 of the Invention
As shown in FIG. 1, the air-conditioning apparatus (10) of Embodiment 1 includes a refrigerant circuit (20) that performs a vapor compression refrigeration cycle by circulating refrigerant, and is configured as a dedicated heating unit that performs only heating operation. Has been.

上記冷媒回路(20)は、圧縮機(21)と利用側熱交換器である室内熱交換器(22)と受液器であるレシーバ(23)と膨張機構である第1膨張弁(24)と熱源側熱交換器である室外熱交換器(25)とが順に配管接続されて閉回路に形成されている。そして、上記冷媒回路(20)は、室内熱交換器(22)が凝縮器として機能し、室外熱交換器(25)が蒸発器として機能する暖房サイクルで冷媒が循環するように構成されている。   The refrigerant circuit (20) includes a compressor (21), an indoor heat exchanger (22) as a use side heat exchanger, a receiver (23) as a liquid receiver, and a first expansion valve (24) as an expansion mechanism. And an outdoor heat exchanger (25), which is a heat source side heat exchanger, are piped in order to form a closed circuit. The refrigerant circuit (20) is configured such that the refrigerant circulates in a heating cycle in which the indoor heat exchanger (22) functions as a condenser and the outdoor heat exchanger (25) functions as an evaporator. .

上記圧縮機(21)は、図示しないが、密閉型のケーシング内に低段側圧縮機と高段側圧縮機とが収納されて圧縮機構を構成している。そして、上記圧縮機(21)は、低段側圧縮機の吸込側が室外熱交換器(25)に連通し、高段側圧縮機の吐出側が室内熱交換器(22)に連通するように接続されている。この圧縮機(21)は、冷媒を2段圧縮して冷媒回路(20)内で循環に構成されている。また、上記圧縮機(21)は、容量が段階的または連続的に可変となるように構成されている。   Although not shown, the compressor (21) includes a low-stage compressor and a high-stage compressor housed in a hermetic casing to form a compression mechanism. The compressor (21) is connected so that the suction side of the low-stage compressor communicates with the outdoor heat exchanger (25) and the discharge side of the high-stage compressor communicates with the indoor heat exchanger (22). Has been. The compressor (21) is configured to circulate in the refrigerant circuit (20) by compressing the refrigerant in two stages. The compressor (21) is configured such that the capacity is variable stepwise or continuously.

上記レシーバ(23)は、流入した冷媒がガス冷媒と液冷媒とに分かれて貯留される気液分離器に構成されている。上記第1膨張弁(24)は、開度調整自在な電動弁で構成されている。   The receiver (23) is configured as a gas-liquid separator in which the refrigerant flowing in is divided into a gas refrigerant and a liquid refrigerant and stored. The first expansion valve (24) is a motor-operated valve whose opening degree is adjustable.

上記冷媒回路(20)には、本発明の特徴として、中間圧調整機構(30)と、インジェクション管(31)およびヒータ(32)とが設けられている。上記中間圧調整機構(30)は、膨張機構である第2膨張弁(3a)で構成され、該第2膨張弁(3a)は、開度調整自在な電動弁で構成されている。この第2膨張弁(3a)は、室内熱交換器(22)とレシーバ(23)との間に設けられ、室内熱交換器(22)にて凝縮した高圧液冷媒を減圧して中間圧冷媒とし、レシーバ(23)に貯留するように構成されている。   The refrigerant circuit (20) is provided with an intermediate pressure adjusting mechanism (30), an injection pipe (31), and a heater (32) as features of the present invention. The intermediate pressure adjusting mechanism (30) is constituted by a second expansion valve (3a) which is an expansion mechanism, and the second expansion valve (3a) is constituted by an electric valve whose opening degree is adjustable. The second expansion valve (3a) is provided between the indoor heat exchanger (22) and the receiver (23), and depressurizes the high-pressure liquid refrigerant condensed in the indoor heat exchanger (22) to provide an intermediate pressure refrigerant. And is configured to be stored in the receiver (23).

上記インジェクション管(31)は、一端がレシーバ(23)に接続され、他端が圧縮機(21)に接続されている。このインジェクション管(31)は、レシーバ(23)における中間圧冷媒のうちの中間圧液冷媒が圧縮機(21)における低段側圧縮機と高段側圧縮機との間に向かって流れるように構成されている。つまり、上記インジェクション管(31)は、室内熱交換器(22)と第1膨張弁(24)との間から液冷媒が分流し、分流した液冷媒が中間圧の状態で低段側圧縮機と高段側圧縮機との間に供給される。   The injection pipe (31) has one end connected to the receiver (23) and the other end connected to the compressor (21). The injection pipe (31) allows the intermediate-pressure liquid refrigerant of the intermediate-pressure refrigerant in the receiver (23) to flow between the low-stage compressor and the high-stage compressor in the compressor (21). It is configured. That is, in the injection pipe (31), the liquid refrigerant is divided from between the indoor heat exchanger (22) and the first expansion valve (24), and the low-stage compressor is in a state where the divided liquid refrigerant is at an intermediate pressure. And a high-stage compressor.

上記ヒータ(32)は、インジェクション管(31)の途中に設けられている。このヒータ(32)は、インジェクション管(31)を流れる所定の暖房運転時の中間圧液冷媒を加熱する加熱手段に構成されている。なお、上記所定の暖房運転時は、暖房負荷が大きくなって圧縮機(21)が最大周波数(最大容量)で駆動される場合である。   The heater (32) is provided in the middle of the injection pipe (31). The heater (32) is configured as a heating unit that heats the intermediate-pressure liquid refrigerant flowing through the injection pipe (31) during a predetermined heating operation. The predetermined heating operation is a case where the heating load is increased and the compressor (21) is driven at the maximum frequency (maximum capacity).

−運転動作−
次に、上述した空気調和装置(10)の暖房運転の動作について説明する。この空気調和装置(10)は、暖房負荷が小さい場合に行う「通常運転」と、暖房負荷が大きい場合に行う「低外気運転」とを切り換えて行う。以下、各運転について図2〜図4を参照しながら説明する。
-Driving action-
Next, the heating operation of the above-described air conditioner (10) will be described. The air conditioner (10) performs switching between “normal operation” performed when the heating load is small and “low outside air operation” performed when the heating load is large. Hereinafter, each operation will be described with reference to FIGS.

〈通常運転〉
この通常運転は、ヒータ(32)を通電しない、つまりインジェクション管(31)を流れる冷媒を加熱しないで圧縮機(21)に供給する運転である。以下に、運転動作を説明すると共に、図4を参照しながら冷媒挙動についても併せて説明する。なお、この図4は、低外気運転時における冷媒挙動を示したものであるが、図中のF点を除けば通常運転時における冷媒挙動を示すものとなるものである。
<Normal operation>
This normal operation is an operation in which the heater (32) is not energized, that is, the refrigerant flowing through the injection pipe (31) is supplied to the compressor (21) without being heated. In the following, the operation is described, and the refrigerant behavior is also described with reference to FIG. FIG. 4 shows the refrigerant behavior during the low outside air operation, but shows the refrigerant behavior during the normal operation except for point F in the figure.

まず、上記圧縮機(21)を駆動すると、該圧縮機(21)で圧縮された高圧ガス冷媒(図4のC点)は、室内熱交換器(22)にて室内空気と熱交換して凝縮する(図4のD点)。その際、加熱された室内空気が室内に供給されて室内の暖房が行われる。上記室内熱交換器(22)で凝縮した高圧液冷媒は、第2膨張弁(3a)で減圧されて中間圧の二相冷媒となり(図4のE点)、レシーバ(23)内で中間圧ガス冷媒と中間圧液冷媒とに分離して平衡状態で溜まる。このレシーバ(23)における中間圧冷媒のうちの中間圧液冷媒(図4のH点)は、第1膨張弁(24)で減圧されて低圧の二相冷媒となる(図4のI点)。この低圧の二相冷媒は、室外熱交換器(25)にて室外空気と熱交換して蒸発し、所定の過熱度の低圧ガス冷媒となって再び圧縮機(21)に戻る(図4のA点)。その後、この低圧ガス冷媒は、低段側圧縮機で圧縮されて中間圧ガス冷媒となり(図4のB点)、この冷媒循環を繰り返す。   First, when the compressor (21) is driven, the high-pressure gas refrigerant (point C in FIG. 4) compressed by the compressor (21) exchanges heat with room air in the indoor heat exchanger (22). Condensation (point D in FIG. 4). At that time, the heated room air is supplied to the room and the room is heated. The high-pressure liquid refrigerant condensed in the indoor heat exchanger (22) is reduced in pressure by the second expansion valve (3a) to become a two-phase refrigerant having an intermediate pressure (point E in FIG. 4), and the intermediate pressure in the receiver (23). It separates into a gas refrigerant and an intermediate pressure liquid refrigerant and accumulates in an equilibrium state. Of the intermediate pressure refrigerant in the receiver (23), the intermediate pressure liquid refrigerant (point H in FIG. 4) is decompressed by the first expansion valve (24) to become a low-pressure two-phase refrigerant (point I in FIG. 4). . This low-pressure two-phase refrigerant evaporates by exchanging heat with outdoor air in the outdoor heat exchanger (25), and returns to the compressor (21) again as a low-pressure gas refrigerant having a predetermined superheat degree (see FIG. 4). A point). Thereafter, the low-pressure gas refrigerant is compressed by the low-stage compressor to become an intermediate-pressure gas refrigerant (point B in FIG. 4), and this refrigerant circulation is repeated.

上記通常運転では、上述した冷媒循環を繰り返す一方、レシーバ(23)の中間圧液冷媒(図4のH点)がインジェクション管(31)を通って圧縮機(21)に流れる。この圧縮機(21)において、中間圧液冷媒と低段側圧縮機で圧縮された中間圧ガス冷媒とが混合され、所定の過熱度の中間圧ガス冷媒となる(図4のG点)。その後、この中間圧ガス冷媒は、高段側圧縮機で圧縮され、高圧ガス冷媒となって圧縮機(21)から吐出される(図4のC点)。これにより、室内熱交換器(22)においては、中間圧液冷媒がインジェクションされて加わることで冷媒循環量が増大するので、暖房能力が向上する。   In the normal operation, while the refrigerant circulation described above is repeated, the intermediate-pressure liquid refrigerant (point H in FIG. 4) of the receiver (23) flows to the compressor (21) through the injection pipe (31). In this compressor (21), the intermediate-pressure liquid refrigerant and the intermediate-pressure gas refrigerant compressed by the low-stage compressor are mixed to become an intermediate-pressure gas refrigerant having a predetermined superheat degree (point G in FIG. 4). Thereafter, the intermediate-pressure gas refrigerant is compressed by the high-stage compressor, becomes high-pressure gas refrigerant, and is discharged from the compressor (21) (point C in FIG. 4). As a result, in the indoor heat exchanger (22), the intermediate pressure liquid refrigerant is injected and added to increase the refrigerant circulation amount, so that the heating capacity is improved.

次に、上記通常運転時における暖房能力の制御について、図2を参照しながら説明する。まず、暖房負荷が変動すると、ステップST1において圧縮機(21)が暖房負荷に応じた周波数に調整される。続いて、ステップST2において、室外熱交換器(25)で冷媒が蒸発して所定の過熱度(図4のA点)の低圧ガス冷媒となるように第1膨張弁(24)の開度が調整される。そして、ステップST3において、インジェクション管(31)の中間圧液冷媒と低段側圧縮機で圧縮された中間圧ガス冷媒とが混合されて所定の過熱度(図4のG点)の中間圧ガス冷媒となるように第2膨張弁(3a)の開度が調整される。   Next, the control of the heating capacity during the normal operation will be described with reference to FIG. First, when the heating load varies, the compressor (21) is adjusted to a frequency corresponding to the heating load in step ST1. Subsequently, in step ST2, the opening of the first expansion valve (24) is adjusted so that the refrigerant evaporates in the outdoor heat exchanger (25) and becomes a low-pressure gas refrigerant having a predetermined degree of superheat (point A in FIG. 4). Adjusted. In step ST3, the intermediate-pressure gas refrigerant having a predetermined superheat (point G in FIG. 4) is mixed by mixing the intermediate-pressure liquid refrigerant in the injection pipe (31) and the intermediate-pressure gas refrigerant compressed by the low-stage compressor. The opening degree of the second expansion valve (3a) is adjusted so as to become a refrigerant.

具体的には、例えば外気温が低下して暖房負荷が大きくなると、圧縮機(21)の周波数が増大される。これにより、圧縮機(21)から吐出される高圧ガス冷媒量が増大するので、室内熱交換器(22)における冷媒循環量が増大して暖房能力が向上する。   Specifically, for example, when the outside air temperature decreases and the heating load increases, the frequency of the compressor (21) is increased. Thereby, since the amount of high-pressure gas refrigerant discharged from the compressor (21) increases, the amount of refrigerant circulation in the indoor heat exchanger (22) increases and the heating capacity is improved.

つまり、上記通常運転時では、暖房負荷の増大に伴って圧縮機(21)の周波数(容量)を増大させることにより、暖房能力の向上を図っている。また、上記第1膨張弁(24)および第2膨張弁(3a)は、常時圧縮機(21)における低段側圧縮機と高段側圧縮機とにそれぞれ所定の過熱度(図4のA点およびG点)のガス冷媒が吸入されるように開度が一定制御される。これにより、上記圧縮機(21)において、いわゆる液バックを防止することができると共に、ガス冷媒の吐出温度(図4のC点)の上昇を抑制することができる。そして、上記通常運転は、暖房負荷が増大して圧縮機(21)の周波数が最大周波数(最大容量)に達すると、低外気運転に切り換わる。   That is, during the normal operation, the heating capacity is improved by increasing the frequency (capacity) of the compressor (21) as the heating load increases. Further, the first expansion valve (24) and the second expansion valve (3a) are respectively provided with a predetermined degree of superheat (A in FIG. 4) in the low-stage compressor and the high-stage compressor in the constant compressor (21). The opening degree is controlled to be constant so that the gas refrigerant at the point and the point G) is sucked. Thereby, in the said compressor (21), while being able to prevent what is called a liquid back | bag, the raise of the discharge temperature (C point of FIG. 4) of gas refrigerant can be suppressed. The normal operation is switched to the low outside air operation when the heating load increases and the frequency of the compressor (21) reaches the maximum frequency (maximum capacity).

〈低外気運転〉
この低外気運転は、圧縮機(21)が最大周波数で駆動された状態でヒータ(32)を通電し、インジェクション管(31)を流れる冷媒を加熱して圧縮機(21)に供給する運転である。なお、ここでは、上述した通常運転時と異なる運転動作および冷媒挙動についてのみ説明する。
<Low outside air operation>
This low outside air operation is an operation in which the heater (32) is energized while the compressor (21) is driven at the maximum frequency, and the refrigerant flowing through the injection pipe (31) is heated and supplied to the compressor (21). is there. Here, only the operation operation and refrigerant behavior different from those in the normal operation described above will be described.

この低外気運転では、レシーバ(23)よりインジェクション管(31)に流れた中間圧液冷媒(図4のH点)がヒータ(32)によって加熱され、中間圧の二相冷媒となる(図4のF点)。この中間圧の二相冷媒は、通常運転時と同様に、圧縮機(21)において低段側圧縮機で圧縮された中間圧ガス冷媒(図4のH点)と混合し、所定の過熱度の中間圧ガス冷媒となる(図4のG点)。その後、この中間圧ガス冷媒は、高段側圧縮機で圧縮され、高圧ガス冷媒となって圧縮機(21)から吐出される(図4のC点)。これにより、室内熱交換器(22)においては、該室内熱交換器(22)を流れる冷媒にヒータ(32)により加熱されることによってエンタルピが増大した中間圧冷媒が加わるので、凝縮する冷媒の熱量が増大する。したがって、暖房能力がより一層向上する。   In this low outside air operation, the intermediate-pressure liquid refrigerant (point H in FIG. 4) that has flowed from the receiver (23) to the injection pipe (31) is heated by the heater (32) to become a two-phase refrigerant of intermediate pressure (FIG. 4). F point). This intermediate-pressure two-phase refrigerant is mixed with the intermediate-pressure gas refrigerant (point H in FIG. 4) compressed by the low-stage compressor in the compressor (21) in the same manner as during normal operation, and has a predetermined degree of superheat. Intermediate pressure gas refrigerant (G point in FIG. 4). Thereafter, the intermediate-pressure gas refrigerant is compressed by the high-stage compressor, becomes high-pressure gas refrigerant, and is discharged from the compressor (21) (point C in FIG. 4). As a result, in the indoor heat exchanger (22), the intermediate pressure refrigerant whose enthalpy has been increased by being heated by the heater (32) is added to the refrigerant flowing through the indoor heat exchanger (22). The amount of heat increases. Therefore, the heating capacity is further improved.

次に、上記低外気運転時における暖房能力の制御について、図3を参照しながら説明する。まず、この制御がスタートすると、ステップST4において、圧縮機(21)が最大周波数で駆動される。そして、この状態で暖房負荷が変動すると、ステップST5において、室外熱交換器(25)で冷媒が蒸発して所定の過熱度(図4のA点)の低圧ガス冷媒となるように第1膨張弁(24)の開度が調整される。次に、ステップST6において、室内熱交換器(22)にて高圧ガス冷媒が所定圧力(図4のD点)で凝縮するようにヒータ(32)の加熱量が調整される。最後に、ステップST7において、ヒータ(32)によって加熱されたインジェクション管(31)の中間圧冷媒と低段側圧縮機で圧縮された中間圧ガス冷媒とが混合されて所定の過熱度(図4のG点)の中間圧ガス冷媒となるように第2膨張弁(3a)の開度が調整されて流量制御される。   Next, the control of the heating capacity during the low outside air operation will be described with reference to FIG. First, when this control starts, in step ST4, the compressor (21) is driven at the maximum frequency. If the heating load fluctuates in this state, in step ST5, the first expansion is performed so that the refrigerant evaporates in the outdoor heat exchanger (25) and becomes a low-pressure gas refrigerant having a predetermined degree of superheat (point A in FIG. 4). The opening of the valve (24) is adjusted. Next, in step ST6, the heating amount of the heater (32) is adjusted so that the high-pressure gas refrigerant is condensed at a predetermined pressure (point D in FIG. 4) in the indoor heat exchanger (22). Finally, in step ST7, the intermediate pressure refrigerant of the injection pipe (31) heated by the heater (32) and the intermediate pressure gas refrigerant compressed by the low-stage compressor are mixed to obtain a predetermined superheat degree (FIG. 4). The opening of the second expansion valve (3a) is adjusted so that the intermediate-pressure gas refrigerant at point G) is adjusted to control the flow rate.

具体的には、上記圧縮機(21)が最大周波数で駆動された状態で、例えば外気温が低下して暖房負荷が増大すると、第1膨張弁(24)の開度が減少され、冷媒がより減圧される。次に、上記ヒータ(32)の加熱量が増大され、室内熱交換器(22)における冷媒の凝縮圧力が上昇する。最後に、上記第2膨張弁(3a)の開度が増大され、インジェクション管(31)に流れる液冷媒量が増大する。これにより、上記圧縮機(21)にインジェクションされる中間圧冷媒の循環量が増大するので、室内熱交換器(22)における冷媒の凝縮熱量が増大して暖房能力が向上する。   Specifically, in the state where the compressor (21) is driven at the maximum frequency, for example, when the outside air temperature decreases and the heating load increases, the opening of the first expansion valve (24) is decreased and the refrigerant is reduced. The pressure is further reduced. Next, the heating amount of the heater (32) is increased, and the condensation pressure of the refrigerant in the indoor heat exchanger (22) is increased. Finally, the opening degree of the second expansion valve (3a) is increased, and the amount of liquid refrigerant flowing through the injection pipe (31) is increased. Thereby, since the circulation amount of the intermediate pressure refrigerant injected into the compressor (21) is increased, the heat of condensation of the refrigerant in the indoor heat exchanger (22) is increased and the heating capacity is improved.

つまり、上記低外気運転時では、暖房負荷の増大に伴ってヒータ(32)の加熱量を増大させ、且つ、第2膨張弁(3a)の開度を増大させることにより、中間圧冷媒の循環量を増大させて暖房能力の向上を図っている。   That is, during the low outside air operation, the heating amount of the heater (32) is increased as the heating load is increased, and the opening of the second expansion valve (3a) is increased, thereby circulating the intermediate pressure refrigerant. The amount is increased to improve the heating capacity.

また、上記第1膨張弁(24)および第2膨張弁(3a)の開度は、常時圧縮機(21)における低段側圧縮機と高段側圧縮機とにそれぞれ所定の過熱度(図4のA点およびG点)のガス冷媒が吸入されるように一定制御される。これにより、上記圧縮機(21)において、いわゆる液バックを防止することができると共に、ガス冷媒の吐出温度(図4のC点)の上昇を抑制することができるので、圧縮機(21)に優しい運転を行うことができる。   Further, the opening degree of the first expansion valve (24) and the second expansion valve (3a) is set to a predetermined degree of superheat (see FIG. 2) for the low-stage compressor and the high-stage compressor in the constant compressor (21). 4 is controlled so that the gas refrigerant at points A and G) is sucked. Thus, in the compressor (21), so-called liquid back can be prevented and an increase in the discharge temperature of gas refrigerant (point C in FIG. 4) can be suppressed. You can do gentle driving.

また、上記圧縮機(21)における低段側圧縮機と高段側圧縮機とにそれぞれ所定の過熱度のガス冷媒が吸入されることから、冷媒密度の低下、つまり冷媒の比体積の増大に伴う圧縮機(21)における容積効率の低下を抑制することができる。   Further, since the gas refrigerant having a predetermined superheat degree is sucked into the low-stage compressor and the high-stage compressor in the compressor (21), the refrigerant density is lowered, that is, the refrigerant specific volume is increased. The accompanying reduction in volumetric efficiency in the compressor (21) can be suppressed.

−実施形態の効果−
以上説明したように、本実施形態1によれば、中間圧液冷媒をヒータ(32)により加熱して圧縮機(21)における低段側圧縮機と高段側圧縮機との間にインジェクションするようにしたので、暖房負荷の増大に伴ってヒータ(32)の加熱量および第2膨張弁(3a)の開度を増大させることで、圧縮機(21)に液バックさせることなくインジェクション管(31)における中間圧冷媒の循環量を増大させることができる。これにより、室内熱交換器(22)における冷媒の凝縮熱量を増大し、暖房能力を向上させることができる。
-Effect of the embodiment-
As described above, according to the first embodiment, the intermediate-pressure liquid refrigerant is heated by the heater (32) and injected between the low-stage compressor and the high-stage compressor in the compressor (21). As the heating load is increased, the heating amount of the heater (32) and the opening of the second expansion valve (3a) are increased to increase the injection pipe without causing the compressor (21) to liquid-back. The circulation amount of the intermediate pressure refrigerant in 31) can be increased. Thereby, the amount of heat of condensation of the refrigerant in the indoor heat exchanger (22) can be increased, and the heating capacity can be improved.

また、中間圧の液冷媒を加熱するようにしたため、液冷媒より比体積の大きいガス冷媒を加熱する場合に比して、冷媒のエンタルピを効果的に増大させることができると共に、加熱後の冷媒量(冷媒密度)の低下を抑制することができる。これにより、暖房能力の向上を効果的に図ることができると共に、圧縮機(21)における容積効率の低下を抑制できるので、効率のよい運転を行うことができる。また、上記利用側熱交換器(22)における冷媒循環量の低下を抑制できるので、暖房能力の低下を抑えることができる。   In addition, since the intermediate-pressure liquid refrigerant is heated, the enthalpy of the refrigerant can be effectively increased as compared with the case of heating the gas refrigerant having a larger specific volume than the liquid refrigerant, and the refrigerant after the heating A decrease in the amount (refrigerant density) can be suppressed. Thereby, while being able to aim at the improvement of heating capability effectively and the fall of the volumetric efficiency in a compressor (21) can be suppressed, an efficient driving | operation can be performed. Moreover, since the fall of the refrigerant | coolant circulation amount in the said utilization side heat exchanger (22) can be suppressed, the fall of heating capability can be suppressed.

また、室内熱交換器(22)とレシーバ(23)との間に中間圧調整機構(30)である第2膨張弁(3a)を設けるようにしたので、インジェクション管(31)に中間圧液冷媒を確実に流すことができる。これにより、確実に暖房能力を向上させることができる。   In addition, since the second expansion valve (3a), which is an intermediate pressure adjusting mechanism (30), is provided between the indoor heat exchanger (22) and the receiver (23), the intermediate pressure liquid is added to the injection pipe (31). Refrigerant can be reliably flowed. Thereby, heating capability can be improved reliably.

また、上記圧縮機(21)が最大周波数時、つまり暖房負荷が大きい場合に、加熱手段(32)によって中間圧液冷媒を加熱するようにしたので、暖房負荷に見合った効率のよい運転を行うことができる
また、上記ヒータ(32)によって加熱されたインジェクション管(31)の中間圧冷媒と圧縮機(21)における中間圧ガス冷媒とが混合して所定の過熱度のガス冷媒となるように第2膨張弁(3a)の開度を調整するようにしたので、常時所定の過熱度の中間圧ガス冷媒を高段側圧縮機に吸入させることができる。これにより、圧縮機(21)の吐出温度の上昇および圧縮機(21)における容積効率の低下を抑制できるので、圧縮機(21)に優しい且つ効率のよい運転を行うことができる。
In addition, when the compressor (21) is at the maximum frequency, that is, when the heating load is large, the intermediate pressure liquid refrigerant is heated by the heating means (32), so that an efficient operation corresponding to the heating load is performed. Further, the intermediate pressure refrigerant in the injection pipe (31) heated by the heater (32) and the intermediate pressure gas refrigerant in the compressor (21) are mixed to become a gas refrigerant having a predetermined superheat degree. Since the opening degree of the second expansion valve (3a) is adjusted, the intermediate pressure gas refrigerant having a predetermined superheat degree can always be sucked into the high stage compressor. Thereby, since the raise of the discharge temperature of a compressor (21) and the fall of the volumetric efficiency in a compressor (21) can be suppressed, a friendly and efficient driving | operation can be performed to a compressor (21).

《発明の実施形態2》
本実施形態2の空気調和装置(10)は、図5に示すように、上述した実施形態1が中間圧調整機構(30)を第2膨張弁(3a)のみで構成するようにしたのに代えて、中間圧調整機構(30)を第2膨張弁(3a)およびキャピラリチューブ(3b)の2つで構成するようにしたものである。
<< Embodiment 2 of the Invention >>
In the air conditioner (10) of the second embodiment, as shown in FIG. 5, the above-described first embodiment is configured such that the intermediate pressure adjusting mechanism (30) is configured only by the second expansion valve (3a). Instead, the intermediate pressure adjusting mechanism (30) is configured by two of the second expansion valve (3a) and the capillary tube (3b).

具体的に、上記第2膨張弁(3a)は、インジェクション管(31)におけるレシーバ(23)とヒータ(32)との間に設けられている。一方、上記キャピラリチューブ(3b)は、室内熱交換器(22)とレシーバ(23)との間に設けられている。そして、上記キャピラリチューブ(3b)は、常時一定の割合で冷媒を減圧する膨張機構に構成されている。   Specifically, the second expansion valve (3a) is provided between the receiver (23) and the heater (32) in the injection pipe (31). On the other hand, the capillary tube (3b) is provided between the indoor heat exchanger (22) and the receiver (23). The capillary tube (3b) is configured as an expansion mechanism that depressurizes the refrigerant at a constant rate at all times.

上記の場合、室内熱交換器(22)にて凝縮した高圧液冷媒がキャピラリチューブ(3b)で減圧されてレシーバ(23)に溜まる。その後、上記レシーバ(23)よりインジェクション管(31)に流れた液冷媒が第2膨張弁(3a)で減圧されて中間圧液冷媒となる。つまり、上記レシーバ(23)内の冷媒は、高圧と中間圧との間の圧力状態にある。その他の構造、作用および効果は、実施形態1と同様である。   In the above case, the high-pressure liquid refrigerant condensed in the indoor heat exchanger (22) is depressurized by the capillary tube (3b) and accumulated in the receiver (23). Thereafter, the liquid refrigerant flowing from the receiver (23) to the injection pipe (31) is depressurized by the second expansion valve (3a) to become an intermediate pressure liquid refrigerant. That is, the refrigerant in the receiver (23) is in a pressure state between a high pressure and an intermediate pressure. Other structures, operations, and effects are the same as those in the first embodiment.

《発明の実施形態3》
本実施形態3の空気調和装置(10)は、図6に示すように、上述した実施形態2における第2膨張弁(3a)とキャピラリチューブ(3b)との接続位置を入れ替えたものである。つまり、上記第2膨張弁(3a)は室内熱交換器(22)とレシーバ(23)との間に設けられ、キャピラリチューブ(3b)はインジェクション管(31)におけるレシーバ(23)とヒータ(32)との間に設けられている。
<< Embodiment 3 of the Invention >>
As shown in FIG. 6, the air conditioner (10) of the third embodiment is obtained by replacing the connection positions of the second expansion valve (3a) and the capillary tube (3b) in the second embodiment described above. That is, the second expansion valve (3a) is provided between the indoor heat exchanger (22) and the receiver (23), and the capillary tube (3b) is connected to the receiver (23) and the heater (32 in the injection pipe (31)). ).

上記の場合、室内熱交換器(22)にて凝縮した高圧液冷媒が第2膨張弁(3a)で減圧されてレシーバ(23)に溜まる。その後、上記レシーバ(23)よりインジェクション管(31)に流れた液冷媒がキャピラリチューブ(3b)で減圧されて中間圧液冷媒となる。その他の構造、作用および効果は、実施形態2と同様である。   In the above case, the high-pressure liquid refrigerant condensed in the indoor heat exchanger (22) is depressurized by the second expansion valve (3a) and accumulated in the receiver (23). Thereafter, the liquid refrigerant flowing from the receiver (23) to the injection pipe (31) is depressurized by the capillary tube (3b) to become an intermediate pressure liquid refrigerant. Other structures, operations, and effects are the same as those of the second embodiment.

《発明の実施形態4》
本実施形態4の空気調和装置(10)は、図7に示すように、上述した実施形態3におけるキャピラリチューブ(3b)を膨張機構である第3膨張弁(3c)に変更したものである。この第3膨張弁(3c)は、第2膨張弁(3a)と同様に、開度調整自在な電動弁に構成されている。つまり、上記中間圧調整機構(30)を第2膨張弁(3a)および第3膨張弁(3c)の2つの膨張弁で構成するようにしたものである。
<< Embodiment 4 of the Invention >>
As shown in FIG. 7, the air conditioner (10) of Embodiment 4 is obtained by changing the capillary tube (3b) in Embodiment 3 described above to a third expansion valve (3c) that is an expansion mechanism. The third expansion valve (3c) is configured as a motor-operated valve whose opening degree can be adjusted, like the second expansion valve (3a). That is, the intermediate pressure adjusting mechanism (30) is constituted by two expansion valves, the second expansion valve (3a) and the third expansion valve (3c).

上記の場合、室内熱交換器(22)にて凝縮した高圧液冷媒が第2膨張弁(3a)で減圧されてレシーバ(23)に溜まる。その後、上記レシーバ(23)よりインジェクション管(31)に流れた液冷媒が第3膨張弁(3c)で減圧されて中間圧液冷媒となる。   In the above case, the high-pressure liquid refrigerant condensed in the indoor heat exchanger (22) is depressurized by the second expansion valve (3a) and accumulated in the receiver (23). Thereafter, the liquid refrigerant flowing from the receiver (23) to the injection pipe (31) is depressurized by the third expansion valve (3c) to become an intermediate pressure liquid refrigerant.

本実施形態における通常運転時では、インジェクション管(31)の中間圧冷媒と圧縮機(21)における中間圧ガス冷媒とが混合されて所定の過熱度(図4のG点)の中間圧ガス冷媒となるように、第2膨張弁(3a)および第3膨張弁(3c)の両方の開度が調整される。一方、上記低外気運転時では、ヒータ(32)によって加熱されたインジェクション管(31)の中間圧冷媒と圧縮機(21)における中間圧ガス冷媒とが混合されて所定の過熱度(図4のG点)の中間圧ガス冷媒となるように、第2膨張弁(3a)および第3膨張弁(3c)の両方の開度が調整される。その他の構造、作用および効果は、実施形態3と同様である。   During normal operation in the present embodiment, the intermediate pressure gas refrigerant in the injection pipe (31) and the intermediate pressure gas refrigerant in the compressor (21) are mixed to have a predetermined degree of superheat (point G in FIG. 4). Thus, the opening degrees of both the second expansion valve (3a) and the third expansion valve (3c) are adjusted. On the other hand, during the low outside air operation, the intermediate pressure refrigerant in the injection pipe (31) heated by the heater (32) and the intermediate pressure gas refrigerant in the compressor (21) are mixed to obtain a predetermined superheat degree (see FIG. 4). The opening degrees of both the second expansion valve (3a) and the third expansion valve (3c) are adjusted so that the intermediate pressure gas refrigerant at point G) is obtained. Other structures, operations, and effects are the same as those in the third embodiment.

《発明の実施形態5》
本実施形態5の空気調和装置(10)は、図8に示すように、上述した実施形態2におけるレシーバ(23)およびキャピラリチューブ(3b)を省略したものである。つまり、上記中間圧調整機構(30)を第2膨張弁(3a)のみで構成するようにしたものである。
<< Embodiment 5 of the Invention >>
As shown in FIG. 8, the air conditioner (10) of the fifth embodiment is obtained by omitting the receiver (23) and the capillary tube (3b) in the second embodiment described above. That is, the intermediate pressure adjusting mechanism (30) is configured only by the second expansion valve (3a).

具体的に、上記インジェクション管(31)は、室内熱交換器(22)と第1膨張弁(24)との間の液配管に直接接続されている。この場合、室内熱交換器(22)にて凝縮した高圧液冷媒の一部が液配管からインジェクション管(31)に分流し、第2膨張弁(3a)で減圧されて中間圧液冷媒となる。つまり、上記インジェクション管(31)は、室内熱交換器(22)と第1膨張弁(24)との間から液冷媒を分流し、分流した液冷媒を中間圧の状態で低段側圧縮機と高段側圧縮機との間に供給するように構成されている。その他の構造、作用および効果は、実施形態2と同様である。   Specifically, the injection pipe (31) is directly connected to a liquid pipe between the indoor heat exchanger (22) and the first expansion valve (24). In this case, part of the high-pressure liquid refrigerant condensed in the indoor heat exchanger (22) is diverted from the liquid pipe to the injection pipe (31), and is depressurized by the second expansion valve (3a) to become an intermediate-pressure liquid refrigerant. . That is, the injection pipe (31) diverts the liquid refrigerant from between the indoor heat exchanger (22) and the first expansion valve (24), and the diverted liquid refrigerant in the intermediate pressure state is a low-stage compressor. And a high-stage compressor. Other structures, operations, and effects are the same as those of the second embodiment.

《その他の実施形態》
本発明は、上記実施形態について、以下のような構成としてもよい。
<< Other Embodiments >>
The present invention may be configured as follows with respect to the above embodiment.

例えば、上記各実施形態では、空気調和装置(10)を暖房専用機としたが、本発明は冷暖兼用の空気調和装置にも適用することができる。例えば、上記冷媒回路(20)に流路切換手段である四路切換弁を設け、冷媒回路(20)における冷媒循環を可逆に構成する。その場合、冷房運転は、ヒータ(32)に通電しない状態で行われ、冷媒が室外熱交換器(25)で凝縮し、室内熱交換器(22)で蒸発するように循環する。この冷房運転時では、室内熱交換器(22)に流れる冷媒(図4のI点)のエンタルピが増大する(図4のE点からH点)ので、室内熱交換器(22)における冷媒の蒸発熱量が増大して冷房能力が向上する。   For example, in each of the above embodiments, the air conditioner (10) is a dedicated heating unit, but the present invention can also be applied to an air conditioner that is also used for cooling and heating. For example, the refrigerant circuit (20) is provided with a four-way switching valve which is a flow path switching means, and refrigerant circulation in the refrigerant circuit (20) is configured reversibly. In this case, the cooling operation is performed without energizing the heater (32), and the refrigerant is circulated so as to be condensed in the outdoor heat exchanger (25) and evaporated in the indoor heat exchanger (22). During this cooling operation, the enthalpy of the refrigerant (point I in FIG. 4) flowing through the indoor heat exchanger (22) increases (point H from point E in FIG. 4), so the refrigerant in the indoor heat exchanger (22) The amount of heat of evaporation increases and the cooling capacity improves.

以上説明したように、本発明は、冷媒を2段圧縮して冷凍サイクルを行う空気調和装置として有用である。   As described above, the present invention is useful as an air conditioner that performs a refrigeration cycle by compressing a refrigerant in two stages.

実施形態1に係る空気調和装置の冷媒回路図である。1 is a refrigerant circuit diagram of an air conditioner according to Embodiment 1. FIG. 実施形態1に係る空気調和装置の通常時の運転制御を示すフローチャート図である。It is a flowchart figure which shows the normal operation control of the air conditioning apparatus which concerns on Embodiment 1. FIG. 実施形態1に係る空気調和装置の低外気時の運転制御を示すフローチャート図である。It is a flowchart figure which shows the operation control at the time of the low outside air of the air conditioning apparatus which concerns on Embodiment 1. FIG. 実施形態1に係る空気調和装置の低外気運転時の冷媒挙動を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant behavior at the time of the low outdoor air driving | running of the air conditioning apparatus which concerns on Embodiment 1. FIG. 実施形態2に係る空気調和装置の冷媒回路図である。6 is a refrigerant circuit diagram of an air conditioner according to Embodiment 2. FIG. 実施形態3に係る空気調和装置の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of an air conditioner according to Embodiment 3. 実施形態4に係る空気調和装置の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of an air conditioner according to Embodiment 4. 実施形態5に係る空気調和装置の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of an air conditioner according to Embodiment 5.

符号の説明Explanation of symbols

10 空気調和装置
20 冷媒回路
21 圧縮機(圧縮機構)
22 室内熱交換器(利用側熱交換器)
23 レシーバ(受液器)
24 第1膨張弁(膨張機構)
25 室外熱交換器(熱源側熱交換器)
30 中間圧調整機構
3a 第2膨張弁
3b キャピラリチューブ
31 インジェクション管
32 ヒータ(加熱手段)
10 Air conditioner
20 Refrigerant circuit
21 Compressor (compression mechanism)
22 Indoor heat exchanger (use side heat exchanger)
23 Receiver
24 First expansion valve (expansion mechanism)
25 Outdoor heat exchanger (heat source side heat exchanger)
30 Intermediate pressure adjustment mechanism
3a Second expansion valve
3b capillary tube
31 Injection tube
32 Heater (heating means)

Claims (6)

圧縮機構(21)と熱源側熱交換器(25)と膨張機構(24)と利用側熱交換器(22)とが配管接続された蒸気圧縮式冷凍サイクルの冷媒回路(20)を備え、
上記圧縮機構(21)は、低段側圧縮機と高段側圧縮機とを備えて冷媒を2段圧縮するように構成されている空気調和装置であって、
上記利用側熱交換器(22)と膨張機構(24)との間から液冷媒を分流し、分流した液冷媒を中間圧の状態で低段側圧縮機と高段側圧縮機との間に供給するインジェクション管(31)と、
上記インジェクション管(31)を流れる所定の暖房運転時の中間圧液冷媒を加熱する加熱手段(32)とを備えている
ことを特徴とする空気調和装置。
A refrigerant circuit (20) of a vapor compression refrigeration cycle in which a compression mechanism (21), a heat source side heat exchanger (25), an expansion mechanism (24), and a use side heat exchanger (22) are connected by piping;
The compression mechanism (21) is an air conditioner that includes a low-stage compressor and a high-stage compressor, and is configured to compress the refrigerant in two stages,
The liquid refrigerant is divided from between the use side heat exchanger (22) and the expansion mechanism (24), and the divided liquid refrigerant is interposed between the low stage compressor and the high stage compressor in an intermediate pressure state. An injection pipe (31) to be supplied;
An air conditioner comprising heating means (32) for heating the intermediate-pressure liquid refrigerant flowing through the injection pipe (31) during a predetermined heating operation.
請求項1において、
上記利用側熱交換器(22)と膨張機構(24)との間には、受液器(23)が設けられ、
上記インジェクション管(31)は、受液器(23)に接続され、該受液器(23)の液冷媒が流れるように構成される一方、
上記利用側熱交換器(22)と受液器(23)との間、および、インジェクション管(31)における受液器(23)と加熱手段(32)との間の少なくとも何れか一方には、液冷媒を中間圧に減圧する中間圧調整機構(30)が設けられている
ことを特徴とする空気調和装置。
In claim 1,
Between the use side heat exchanger (22) and the expansion mechanism (24), a liquid receiver (23) is provided,
The injection pipe (31) is connected to the liquid receiver (23), and is configured to allow the liquid refrigerant in the liquid receiver (23) to flow.
Between at least one of the use side heat exchanger (22) and the liquid receiver (23) and between the liquid receiver (23) and the heating means (32) in the injection pipe (31) An air conditioner comprising an intermediate pressure adjusting mechanism (30) for reducing the liquid refrigerant to an intermediate pressure.
請求項2において、
上記膨張機構(24)は、第1膨張弁(24)で構成され
上記中間圧調整機構(30)は、利用側熱交換器(22)と受液器(23)との間に設けられた第2膨張弁(3a)で構成されている
ことを特徴とする空気調和装置。
In claim 2,
The expansion mechanism (24) includes a first expansion valve (24), and the intermediate pressure adjustment mechanism (30) is provided between the use side heat exchanger (22) and the liquid receiver (23). An air conditioner comprising the second expansion valve (3a).
請求項2において、
上記膨張機構(24)は、第1膨張弁(24)で構成され
上記中間圧調整機構(30)は、利用側熱交換器(22)と受液器(23)との間に設けられたキャピラリチューブ(3b)と、インジェクション管(31)における受液器(23)と加熱手段(32)との間に設けられた第2膨張弁(3a)とにより構成されている
ことを特徴とする空気調和装置。
In claim 2,
The expansion mechanism (24) includes a first expansion valve (24), and the intermediate pressure adjustment mechanism (30) is provided between the use side heat exchanger (22) and the liquid receiver (23). It is constituted by a capillary tube (3b) and a second expansion valve (3a) provided between the liquid receiver (23) and the heating means (32) in the injection pipe (31). Air conditioner.
請求項1〜4の何れか1項において、
上記加熱手段(32)は、所定の暖房運転時である圧縮機構(21)が最大周波数時に冷媒を加熱するように構成されている
ことを特徴とする空気調和装置。
In any one of Claims 1-4,
The air conditioner characterized in that the heating means (32) is configured such that the compression mechanism (21) during a predetermined heating operation heats the refrigerant at the maximum frequency.
請求項2〜4の何れか1項において、
上記中間圧調整機構(30)は、加熱手段(32)によって加熱されたインジェクション管(31)の中間圧冷媒と圧縮機構(21)における中間圧ガス冷媒とが混合して所定の過熱度のガス冷媒となるように流量を制御する
ことを特徴とする空気調和装置。
In any one of Claims 2-4,
The intermediate pressure adjusting mechanism (30) is a gas having a predetermined superheat degree by mixing the intermediate pressure refrigerant in the injection pipe (31) heated by the heating means (32) and the intermediate pressure gas refrigerant in the compression mechanism (21). An air conditioner that controls a flow rate so as to be a refrigerant.
JP2003383195A 2003-11-13 2003-11-13 Air conditioner Pending JP2005147456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383195A JP2005147456A (en) 2003-11-13 2003-11-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383195A JP2005147456A (en) 2003-11-13 2003-11-13 Air conditioner

Publications (1)

Publication Number Publication Date
JP2005147456A true JP2005147456A (en) 2005-06-09

Family

ID=34691982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383195A Pending JP2005147456A (en) 2003-11-13 2003-11-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP2005147456A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127375A (en) * 2005-11-07 2007-05-24 Daikin Ind Ltd Refrigeration unit
JP2007147227A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
JP2008190829A (en) * 2007-02-07 2008-08-21 Mitsubishi Heavy Ind Ltd Refrigerant cooling device and cooling device
EP2075519A3 (en) * 2007-12-26 2009-08-12 LG Electronics Inc. Air Conditoning system
WO2012040864A1 (en) * 2010-09-29 2012-04-05 Erik Vincent Granwehr Heat pump
EP2730859A1 (en) * 2011-07-05 2014-05-14 Panasonic Corporation Refrigeration cycle device
US20140326014A1 (en) * 2010-05-28 2014-11-06 Lg Electronics Inc. Hot water supply apparatus associated with heat pump
KR101475929B1 (en) * 2012-05-31 2014-12-23 (주) 비앤에프솔루션 Cooling and heating apparatus
US8973384B2 (en) 2009-05-26 2015-03-10 Mitsubishi Electric Corporation Heat pump apparatus
CN105202792A (en) * 2015-10-15 2015-12-30 珠海格力电器股份有限公司 Enhanced vapor injection system, air conditioning unit with same and enhanced vapor control method
CN105298840A (en) * 2015-11-23 2016-02-03 珠海格力节能环保制冷技术研究中心有限公司 Multi-cylinder double-level enthalpy-increasing compressor, air conditioner, heat pump water heater and control method
CN105783197A (en) * 2016-04-20 2016-07-20 广东美芝制冷设备有限公司 Control method for air conditioner
EP2284459A4 (en) * 2009-05-04 2016-07-20 Lg Electronics Inc Air conditioner
CN106801981A (en) * 2017-02-04 2017-06-06 青岛海尔空调器有限总公司 A kind of control method of air-conditioning, device and air-conditioning
CN107036352A (en) * 2017-05-05 2017-08-11 重庆美的通用制冷设备有限公司 Economizer gas supply control method and apparatus
JP2018028405A (en) * 2016-08-18 2018-02-22 富士電機株式会社 Refrigerant circuit device
WO2019077906A1 (en) * 2017-10-16 2019-04-25 株式会社デンソー Heat pump cycle
CN110260569A (en) * 2019-06-12 2019-09-20 珠海格力电器股份有限公司 Heat pump unit, air conditioning system and regulation and control method thereof
KR20200009765A (en) * 2018-07-20 2020-01-30 엘지전자 주식회사 An air conditioning system and a method for controlling the same
JP2020093790A (en) * 2017-01-23 2020-06-18 株式会社デンソー Refrigeration cycle device
JP2021032534A (en) * 2019-08-28 2021-03-01 伸和コントロールズ株式会社 Refrigerator and liquid temperature adjusting device
EP4071425A4 (en) * 2019-12-04 2022-11-30 Mitsubishi Electric Corporation Outdoor unit and refrigeration cycle device
KR20230139509A (en) * 2022-03-28 2023-10-05 현대로템 주식회사 Phase change heat management system for heating element using heat source supply system

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127375A (en) * 2005-11-07 2007-05-24 Daikin Ind Ltd Refrigeration unit
JP2007147227A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
JP2008190829A (en) * 2007-02-07 2008-08-21 Mitsubishi Heavy Ind Ltd Refrigerant cooling device and cooling device
EP2075519A3 (en) * 2007-12-26 2009-08-12 LG Electronics Inc. Air Conditoning system
US8006504B2 (en) 2007-12-26 2011-08-30 Lg Electronics Inc. Air conditioning system
EP2284459A4 (en) * 2009-05-04 2016-07-20 Lg Electronics Inc Air conditioner
US8973384B2 (en) 2009-05-26 2015-03-10 Mitsubishi Electric Corporation Heat pump apparatus
US9234675B2 (en) 2010-05-28 2016-01-12 Lg Electronics Inc. Hot water supply apparatus associated with heat pump
US20140326014A1 (en) * 2010-05-28 2014-11-06 Lg Electronics Inc. Hot water supply apparatus associated with heat pump
US9234676B2 (en) 2010-05-28 2016-01-12 Lg Electronics Inc. Hot water supply apparatus associated with heat pump
WO2012040864A1 (en) * 2010-09-29 2012-04-05 Erik Vincent Granwehr Heat pump
EP2730859A4 (en) * 2011-07-05 2014-11-12 Panasonic Corp Refrigeration cycle device
EP2730859A1 (en) * 2011-07-05 2014-05-14 Panasonic Corporation Refrigeration cycle device
KR101475929B1 (en) * 2012-05-31 2014-12-23 (주) 비앤에프솔루션 Cooling and heating apparatus
CN105202792A (en) * 2015-10-15 2015-12-30 珠海格力电器股份有限公司 Enhanced vapor injection system, air conditioning unit with same and enhanced vapor control method
CN105202792B (en) * 2015-10-15 2018-02-16 珠海格力电器股份有限公司 Enhanced vapor injection system, air conditioning unit with same and enhanced vapor control method
CN105298840B (en) * 2015-11-23 2017-07-11 珠海格力节能环保制冷技术研究中心有限公司 Multi-cylinder Dual-level enthalpy adding compressor and air-conditioner, Teat pump boiler and control method
CN105298840A (en) * 2015-11-23 2016-02-03 珠海格力节能环保制冷技术研究中心有限公司 Multi-cylinder double-level enthalpy-increasing compressor, air conditioner, heat pump water heater and control method
CN105783197A (en) * 2016-04-20 2016-07-20 广东美芝制冷设备有限公司 Control method for air conditioner
JP2018028405A (en) * 2016-08-18 2018-02-22 富士電機株式会社 Refrigerant circuit device
JP2020093790A (en) * 2017-01-23 2020-06-18 株式会社デンソー Refrigeration cycle device
WO2018141132A1 (en) * 2017-02-04 2018-08-09 青岛海尔空调器有限总公司 Air conditioner control method and device, and air conditioner
CN106801981B (en) * 2017-02-04 2019-04-19 青岛海尔空调器有限总公司 A kind of control method of air-conditioning, device and air-conditioning
CN106801981A (en) * 2017-02-04 2017-06-06 青岛海尔空调器有限总公司 A kind of control method of air-conditioning, device and air-conditioning
CN107036352A (en) * 2017-05-05 2017-08-11 重庆美的通用制冷设备有限公司 Economizer gas supply control method and apparatus
US11320170B2 (en) 2017-10-16 2022-05-03 Denso Corporation Heat pump cycle
CN111247378A (en) * 2017-10-16 2020-06-05 株式会社电装 Heat pump cycle
JP2019074250A (en) * 2017-10-16 2019-05-16 株式会社デンソー Heat pump cycle
WO2019077906A1 (en) * 2017-10-16 2019-04-25 株式会社デンソー Heat pump cycle
CN111247378B (en) * 2017-10-16 2022-09-13 株式会社电装 Heat pump cycle
KR20200009765A (en) * 2018-07-20 2020-01-30 엘지전자 주식회사 An air conditioning system and a method for controlling the same
KR102165354B1 (en) * 2018-07-20 2020-10-13 엘지전자 주식회사 An air conditioning system and a method for controlling the same
CN110260569A (en) * 2019-06-12 2019-09-20 珠海格力电器股份有限公司 Heat pump unit, air conditioning system and regulation and control method thereof
JP2021032534A (en) * 2019-08-28 2021-03-01 伸和コントロールズ株式会社 Refrigerator and liquid temperature adjusting device
EP4071425A4 (en) * 2019-12-04 2022-11-30 Mitsubishi Electric Corporation Outdoor unit and refrigeration cycle device
KR20230139509A (en) * 2022-03-28 2023-10-05 현대로템 주식회사 Phase change heat management system for heating element using heat source supply system
KR102630473B1 (en) * 2022-03-28 2024-01-29 현대로템 주식회사 Phase change heat management system for heating element using heat source supply system

Similar Documents

Publication Publication Date Title
JP2005147456A (en) Air conditioner
US7302807B2 (en) Refrigerating cycle device
JP3925545B2 (en) Refrigeration equipment
CN110337570B (en) Air conditioner
US7464563B2 (en) Air-conditioner having a dual-refrigerant cycle
JP4167196B2 (en) Natural circulation combined use air conditioner and natural circulation combined use air conditioner control method
EP1628088A2 (en) Refrigerant cycle apparatus
JP2014089004A (en) Air conditioning equipment
JP2006078087A (en) Refrigeration unit
WO2006013938A1 (en) Freezing apparatus
JP5180680B2 (en) Refrigeration cycle
JP2008215678A (en) Operation control method of air-conditioning system and air conditioning system
JP6080939B2 (en) Air conditioner
JP2008039233A (en) Refrigerating device
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
WO2024103793A1 (en) Air conditioning system, and control method therefor
JP5163161B2 (en) Auxiliary heating unit and air conditioner
JP2007155143A (en) Refrigerating device
JP4902585B2 (en) Air conditioner
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP3317170B2 (en) Refrigeration equipment
JP2005351537A (en) Refrigerating cycle system and its control method
KR20050043089A (en) Heat pump
JP2007147228A (en) Refrigerating device
KR100626756B1 (en) Heat pump air-conditioner